工程材料学 概念定义原理规律小结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大物重点题:
练习一8 ,练习二7 ,练习三6,练习四6
教材第十章例6
练习五8,练习六5,练习七9,第十一章例1
练习八6,7 练习九7,8 第十二章例4
练习十7,练习十一6,练习十二9,第十三章例11
工程材料概念定义原理规律小结
一、材料部分
材料在外力作用下抵抗变形和断裂的能力称为材料的强度。
材料在外力作用下显现出的塑性变形能力称为材料的塑性。
拉伸过程中,载荷不增加而应变仍在增大的现象称为屈服。拉伸曲线上与此相对应的点应力σS,称为材料的屈服点。
拉伸曲线上D点的应力σb称为材料的抗拉强度,它表明了试样被拉断前所能承载
的最大应力。
硬度是指材料抵抗其他硬物压入其表面的能力,它是衡量材料软硬程度的力学性能指标。一般情况下,材料的硬度越高,其耐磨性就越好。
韧性是指材料在塑性变形和断裂的全过程中吸收能量的能力,它是材料塑性和强度的综合表现。
材料在交变应力作用下发生的断裂现象称为疲劳断裂。疲劳断裂可以在低于材料的屈服强度的应力下发生,断裂前也无明显的塑性变形,而且经常是在没有任何先兆的情况下突然断裂,因此疲劳断裂的后果是十分严重的。
在晶体中,原子(或分子)按一定的几何规律作周期性地排列;晶体表现出各向异性;具有的凝固点或熔点。而在非晶体中,原子(或分子)是无规则地堆积在一起。常见的有体心立方晶格、面心立方晶格和密排六方晶格。体心立方晶格的致密度比面心立方晶格结构的小。
金属的结晶都要经历晶核的形成和晶核的长大两个过程。
由两种或两种以上的金属、或金属与非金属,经熔炼、烧结或其他方法组合而成并具有金属特性的物质称为合金;合金中具有同一化学成分且结构相同的均匀部分称为相。
通过溶入溶质元素形成固溶体,使金属材料的变形抗力增大,强度、硬度升高的现象称为固溶强化,它是金属材料强化的重要途径之一。(马氏体型转变、合金化)金属自液态经冷却转变为固态的过程是原子从排列不规则的液态转变为排列规则的晶态的过程,称为金属的结晶过程。金属从一种固态过渡为另一种固态的转变即相变,称为二次结晶或重结晶。
实验证明,在一般的情况下,晶粒长大对材料力学性能不利,使强度、塑性、韧性下降。晶粒越细,金属的强度、塑性和韧性就越好。因此,晶粒细化是提高金属力学性能的最重要途径之一。
相图:是表示合金在缓慢冷却的平衡状态下相或组织与温度、成分间关系的图形,又称为平衡相图或状态图。
二元合金系中两组元在液态和固态下均能无限互溶,并由液相结晶出单相固溶体的相图称为二元匀晶相图。
在一定温度下,由一定成分的液相同时结晶出成分一定的两个固相的过程称为共晶转变。合金系的两组元在液态下无限互溶,在固态下有限互溶,并在凝固过程中发生共
晶转变的相图称为二元共晶相图。共晶反应:()1148C E 3F A +Fe C C L Ld −−−→←−−−
在一定温度下,已结晶的一定成分的固相与剩余的一定成分的液相发生转变生成另一固相的过程称为包晶转变。两组元在液态下无限互溶,固态下有限互溶,并发生包晶转变的构成的相图,叫二元包晶相图。
在恒定的温度下,一个有特定成分的固相分解成另外两个与母相成分不相同的固相的转变称为
共析转变,发生共析转变的相图称为共析相图。共析反应:()7273C S P K A P F Fe C −−−→+←−−−
铁碳相图:(要掌握)
铁素体-碳溶于α-Fe 中的间隙固溶体,以符号F 表示。体心立方晶格
奥氏体-碳溶于γ-Fe 中的间隙固溶体,以符号A 表示。面心立方晶格
渗碳体-是一种具有复杂晶格结构的间隙化合物,分子式为Fe 3C 。
珠光体—是铁素体和渗碳体组成的两相机械混合物,常用符号P 表示。
莱氏体-是奥氏体和渗碳体组成的两相机械混合物,常用符号L d 表示。
一般机械零件和建筑结构主要选用低碳钢和中碳钢制造。如果需要塑性、韧性好的
材料,就应选用碳质量分数小于0.25%的低碳钢;若需要强度、塑性及韧性都好的材料,应选用碳质量分数为0.3%~0.55%的中碳钢;而一般弹簧应选用碳质量分数为0.6%~0.85%的钢。对于各种工具,主要选用高碳钢来制造,其中需要具有足够的硬度和一定的韧性的冲压工具,可选用碳质量分数为0.7%~0.9%的钢制造;需要具有很高硬度和耐磨性的切削工具和测量工具,一般可选用碳质量分数为1.0%~1.3%的钢制造。
钢在高温时为奥氏体组织,而奥氏体的强度低、塑性好,有利于塑性变形。因此,钢材的轧制或锻压,一般都是选择在奥氏体区的适当温度范围内进行。
钢在热处理时,首先要将工件加热,使之转变成奥氏体组织,这一过程也称为奥氏体化。奥氏体晶粒越细,其冷却产物的强度、塑性和韧性越好。
随着合金中碳质量分数的增加,合金的熔点越来越低,所以铸钢的熔化温度与浇注温度都要比铸铁高得多。
共晶成分的铁碳合金,不仅其结晶温度最低,其结晶温度范围亦最小(为零)。因此,共晶合金有良好的铸造性能。
热处理是将金属或合金在固态下经过加热、保温和冷却等三个步骤,以改变其整体或表面的组织,从而获得所需性能的一种工艺。
C曲线(等温转变曲线,也称为“TTT”曲)表明了过冷奥氏体转变温度、转变时间和转变产物之间的关系。左边一条为转变开始线,右边一条为转变终了线。
1.珠光体型转变——高温转变(A1~550℃):珠光体(P)、索氏体(S)和托氏体(T)。
2.贝氏体型转变——中温转变(550℃~Ms)下贝氏体强度和硬度高(50—60HRC),并且具有良好的塑性和韧度。
3.马氏体型转变——低温转变(Ms~M f) 马氏体是碳在α-Fe中的过饱和固溶体。产生很强的固溶强化效应,使马氏体具有很高的硬度。
在c曲线的下面还有两条水平线,上面一条为马氏体转变开始的温度线(以Ms表示),下面一条为马氏体转变终了的温度线(以Mf表示)。