云南省昆明市云大附中(一二一校区)2020-2021学年度第一学期九年级数学期中试题

合集下载

2020年云大附中一二一校区九年级三模数学试题

2020年云大附中一二一校区九年级三模数学试题

2020年云大附中一二一校区九年级三模数学试题学校_________ 班级__________ 姓名__________ 学号__________一、填空题1. 的倒数是_____.2. 如图是正方体的表面展开图,则与“建”字相对的字是______.3. 要使代数式有意义,则x的取值范围是_______.4. 如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.5. 如图,直线y=m与反比例函数y=和y=的图象分别交于A、B两点,点C是x轴上任意一点,则ABC的面积为_________.6. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.二、单选题7. 随着环境污染整治的逐步推进,某经济开发区的40家化工企业已关停、整改38家,每年排放的污水减少了167000吨.将167000用科学记数法表示为()A.167´103B.16.7´104C.1.67´105D.0.167´1068. 不等式组的解集,在数轴上表示正确的是()A.B.C.D.9. 下列运算正确的是()A.a2+a3=a5B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1D.(2a3﹣a2)÷a2=2a﹣110. 下列说法正确的是()A.“任意画一个六边形,它的内角和是720度”,这是一个随机事件B.为了解全国中学生的心理健康情况,应该采用全面调查的方式C.一组数据6,8,7,9,7,10的众数和中位数都是7D.若甲组数据的方差S甲2=0.04,乙组数据的方差S乙2=0.05,为则甲组数据更稳定11. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为A.9 B.6 C.4 D.312. a,b,c为常数,且,则关于x的方程根的情况是A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为013. 如图,已知?AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB 内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)14. 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为()A.5 B.7 C.8D.三、解答题15. 已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.16. (1)计算:(2)先化简,再求值:,其中17. 某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球,B.乒乓球,C.羽毛球,D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有________人,扇形统计图中B部分所对应扇形的圆心角为______度(2)请你将条形统计图2补充完整:(3)如果该校共有学生1200人,估计全校喜欢足球的学生有多少人?(4)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率.(用树状图或列表法解答)18. 如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)19. 李华从文化宫站出发,先乘坐地铁,准备在离家较近的A、B、C、D中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单(单位:分钟)是关于x的一次函数,其关系位:千米),乘坐地铁的时间y1地铁站 A B C D Ex(千米)8 9 10 11.5 13(分Y1钟)18 20 22 25 28关于x的函数表达式;(1)求y1(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间.20. 某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2017年初开始实施后,实际每年绿化面积是原计划的1.5倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创文力度,市政府决定从2020年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21. 如图,四边形ABCD为⊙O的内接四边形,且对角线AC为直径,AD=BC,过点D作DG^AC,垂足为E,DG分别与AB及CB延长线交于点F、M.(1)求证:四边形ABCD是矩形;(2)若点G为MF的中点,求证:BG是⊙O的切线;22. 如图,在平面直角坐标系中,抛物线y=x2-2x-3与x轴交于点A,B,与y 轴交于点C(1)求点A,B的坐标;(2)过点D(0,3)作直线MN∥x轴,点P在直线MN上,且,直接写出点P的坐标.23. 爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.(特例探究)(1)如图1,当tan∠PAB=1,c=4时,a= ,b= ;如图2,当∠PAB=30°,c=2时,a= ,b= ;(归纳证明)(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.(拓展证明)(3)如图4,?ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.。

2020-2021昆明市云大附中九年级数学上期末第一次模拟试卷(带答案)

2020-2021昆明市云大附中九年级数学上期末第一次模拟试卷(带答案)
【分析】
设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
【详解】
连接BE,
设⊙O半径为r,则OA=OD=r,OC=r-2,
∵OD⊥AB,
∴∠ACO=90°,
AC=BC= AB=4,
在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE为⊙O的直径,
解析: ,且k≠0.
【解析】
【分析】
根据直线与圆相交确定k的取值,利用面积法求出相切时k的取值,再利用相切与相交之间的关系得到k的取值范围.
【详解】
∵ 交x轴于点A,交y轴于点B,
当 ,故B的坐标为(0,6k);
当 ,故A的坐标为(-6,0);
当直线y=kx+6k与⊙O相交时,设圆心到直线的距离为h,
2.C
解析:C
【解析】
试题解析:∵CC′∥AB,
∴∠ACC′=∠CAB=65°,
∵△ABC绕点A旋转得到△AB′C′,
∴AC=AC′,
∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,
∴∠CAC′=∠BAB′=50°.
故选C.
3.A
解析:A
【解析】
【分析】
根据配方法,先提取二次项的系数-3,得到 ,再将括号里的配成完全平方式即可得出结果.
∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.
故选D.
【点睛】
本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.
10.C
解析:C
【解析】
【分析】
根据对称轴的位置,分三种情况讨论求解即可.

云南省昆明市五华区云南大学附属中学(一二一校区)2021-2022学年九年级上学期学业水平学情诊断(

云南省昆明市五华区云南大学附属中学(一二一校区)2021-2022学年九年级上学期学业水平学情诊断(

2022云大附中学业水平学情诊断九年级化学试卷可能用到的相对原子质量H-1 C-12 O-16 Mg-24 Ca-40 Fe-56 Cu-64第Ⅰ卷选择题(共45分)一、选择题(本大题共20个小题,其中第1-15小题每小题2分,第16-20小题每小题3分,共45分。

每小题只有一个选项符合题意,多选、错选或不选均不得分。

请将符合题意的选项的序号填写在答题卡相应位置上。

)1.发现空气组成成分,被誉为“现代化学之父”的是()A.阿伏伽德罗B.道尔顿C.拉瓦锡D.门捷列夫2.下列属于纯净物的是()A.牛奶B.食醋C.果酒D.冰水3.下列变化属于物理变化的是()A.浓盐酸挥发B.白磷自燃C.石墨变为金刚石D.火力发电4.化学与生活、生产联系密切,下列说法正确的是()A.低碳生活中的“碳”指的是碳元素B.工业生产的氧气,一般加压储存在蓝色的钢瓶中C.石油是重要的化工产品D.一氧化碳具有可燃性,所以可用于冶炼金属5.下列实验操作正确的是()A.量取水的体积B.氧气验满C.检查装置气密性D.组装仪器6.认识燃烧原理可以利用和控制燃烧。

下列说法正确的是()A.实验桌上少量酒精着火时可用湿抹布盖灭,是因为降低了酒精的着火点B.油锅着火时放入较多新鲜蔬菜灭火,是因为隔绝了氧气C.木材架空燃烧更旺,是因为增大了可燃物与氧气的接触面积D.干粉灭火器可以用来扑灭图书、档案、贵重设备、精密仪器等物的失火7.下列现象从微观角度解释正确的是()8.碘是人体必需的微量元素之一。

如图是元素周期表中提供的碘元素的部分信息。

下列说法错误的是()A.碘原子核内共有53个中子B.碘的相对原子质量为126.9C.碘元素属于非金属元素D.碘的元素符号为I9.下列关于分子和原子的叙述正确的是()A.木炭、水银和氢气都是由原子构成的物质B.CO2.O2.H2O2中都含有氧分子C.保持水化学性质的最小微粒是氢原子和氧原子D.在化学变化中,分子可以分成原子,原子不可再分10.下列对实验现象描述正确的是()A.铁和硫酸铜溶液反应,溶液由蓝色变为浅绿色B.醋酸喷到紫色石蕊试纸上,醋酸变成了红色C.硫在空气中燃烧产生微弱的淡蓝色火焰,生成二氧化硫D.木炭还原氧化铜,红色粉末变成黑色11.维生素C (C 6H 8O 6)是人体不可或缺的营养物质,下列说法正确的是() A.维生素C 由6个碳原子、8个氢原子、6个氧原子构成 B.维生素C 中氢元素的质量分数最大 C.维生素C 由维生素C 分子构成D.维生素C 中C.H 、O 三种元素的质量比为3:4:312.下列化学方程式书写及其基本反应类型判断正确的是() A. 2254P+5O 2P O 点燃氧化反应B. 2C+2ZnO2Zn+CO ↑ 高温还原反应C. 22222MnO H O H +O ↑↑分解反应D. 22Na O+H O=2NaOH化合反应13.下列关于化学方程式:22C+O CO 点燃说法正确的是()A.该化学反应前后,分子个数发生了改变B.生成的二氧化碳不进行处理会加剧酸雨的形成C.该化学反应前后,原子种类、数目、质量都没有发生改变D.每1份质量的碳和1份质量的氧气在点燃条件下完全反应生成1份质量的二氧化碳14.在一定条件下使甲、乙、丙、丁四种物质于密闭容器内发生化学反应,反应前后各物质的质量变化如图。

云南省昆明市云大附中(一二一校区)2020-2021学年九年级(上)期中考物理试题

云南省昆明市云大附中(一二一校区)2020-2021学年九年级(上)期中考物理试题

云南省昆明市云大附中(一二一校区)2020-2021学年九年级(上)期中考物理试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 下列现象所发生的物态变化,需要吸热的是()A.冬天,窗上冰花的形成B.秋天,早晨大雾的形成C.夏天,早晨花草上露水的形成D.春天,冰雪消融2. 小明房间里准备安装一盏吊灯和一盏壁灯,要求它们能根据需要各自独立工作,下列设计的四种电路中,符合要求的是()A.B.C.D.3. 如图所示,两个相同的验电器A和B,A、B开始不带电,然后用丝绸摩擦过的玻璃棒去接触验电器金属球A,再用带有绝缘柄的金属棒把A和B连接起来,下列说法正确的是()A.电流从A流向B,B得到电子带负电B.自由电子从B向A定向移动,形成瞬间电流C.B金属箔张角变大,说明两金属箔带上同种电荷相互吸引D.摩擦起电的实质是产生电子后电子的转移,玻璃棒得到电子4. 下列叙述正确的是()A.夏天,在室内地面上洒水后会感到凉爽一些,这是利用水的比热容大B.油箱内的汽油燃烧掉一半后,剩余的汽油的质量、比热容和热值都变为原来的一半C.冬天,在保存蔬菜的菜窖里放几桶水,主要利用了水凝固放热D.冬天早晨,窗户玻璃上有一层水雾,这是由于发生了液化出现在玻璃外表面5. 如下图甲、乙、丙、丁是单缸内燃机一个工作循环有四个冲程,该内燃机工甲乙丙丁A.该内燃机一个工作循环有四个冲程,正确的顺序是丙、甲、丁、乙B.如图丙是做功冲程,机械能转化为内能C.汽油机和柴油机的吸气冲程吸入的都只是空气D.汽油机和柴油机的构造相似,柴油机在压缩冲程中对气体的压缩程度更高6. 关于内能、温度、热量,下列说法:①物体内能增大,可能是从外界吸收热量;②物体具有的内能就是物体具有的热量;③0℃的冰块变为同温度的水,内能不变;④物体内能减少时,温度可能不变;⑤热量从高温物体传给低温物体,所以热传递具有方向性;⑥相同质量、相同温度的物体,内能一定相同;⑦物体的内能增大,含有的热量一定增加;⑧锯条锯木板时,锯条的内能增加,木板的内能减少。

2020-2021学年云南省昆明市九年级(上)期末数学试卷

2020-2021学年云南省昆明市九年级(上)期末数学试卷

2020-2021学年云南省昆明市九年级(上)期末数学试卷一.填空题(本大题共6小题,每小题3分,共18分)1.(3分)方程3x2+1=8x的一次项系数是.2.(3分)二次函数y=(x﹣1)2﹣1的顶点坐标是.3.(3分)已知方程x2﹣3x+2=0的两根分别为x1和x2,则x1•x2的值等于.4.(3分)如图,飞镖游戏板由大小相等的小正方形格子构成,小东向游戏板随机投掷一枚飞镖,击中白色区域的概率是.5.(3分)正三角形的边长为2,则它的边心距为.6.(3分)用一根长为24cm的绳子围成一个矩形,则围成矩形的最大面积是cm2.二、选择题(本大题共8小题,每小题只有一-个正确选项,每小题4分,共32分)7.(4分)下列说法错误的是()A.随机事件发生的概率大于或等于0,小于或等于1B.可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率C.必然事件发生的概率为1D.一组数据的中位数,就是这组数据中间的一个数或者中间两个数的平均数8.(4分)下列一元二次方程中,有两个相等的实数根的是()A.2x2+2x+1=0B.4x2﹣4x+1=0C.x2﹣2x﹣1=0D.3x2﹣5x+3=0 9.(4分)下列图形:①平行四边形、②矩形、③正方形、④等边三角形,其中,既是轴对称图形又是中心对称图形的有()A.①②B.②③C.③④D.①④10.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A.a>0,b>0,c>0B.a>0,b>0,c=0C.a>0,b<0,c=0D.a<0,b<0,c<011.(4分)如图,将△ABC绕着点B逆时针旋转45°后得到△A'BC′,若∠A=120°,∠C=35°,则∠A'BC的度数为()A.20°B.25°C.30°D.35°12.(4分)抛物线y=ax2+bx+c(a≠0)与x轴的交点是(1,0),(﹣3,0),则这条抛物线的对称轴是()A.x=1B.x=﹣1C.x=2D.x=﹣313.(4分)如图,P是⊙O外一点,射线P A、PB分别切⊙O于点A、点B,CD切⊙O于点E,分别交P A、PB于点D、点C,若PB=4,则△PCD的周长()A.4B.6C.8D.1014.(4分)如图,半径为5的⊙O中,有两条互相垂直的弦AB、CD,垂足为点E,且AB =CD=8,则OE的长为()A.3B.C.2D.3三、解答题(本大题共9小题,满分70分,请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.特别注意:作图时,必须使用黑色碳素笔在答题卡上作图)15.(8分)用适当的方法解下列方程:(1)3x2+x=0;(2)x2﹣x﹣2=0.16.(5分)某品牌衣服原售价为每件400元,由于商店要处理库存,经过连续两次降价处理,按每件256元的售价销售,求该衣服每次平均降价的百分率?17.(6分)如图,A、B、C、D四点共圆,且∠ACB=∠ACD=60°.求证:△ABD是等边三角形.18.(7分)一面墙长为22m,一养殖户要利用长为41m的篱笆和这面墙圈成一个面积为216m2的矩形养殖场,其中,养殖场不靠墙的长边上要设一道宽为1m的门,如图所示.求这个矩形养殖场的长宽各是多少米?19.(7分)创新商场销售一批进价为14元的日用品,销售一段时间后,发现每月销售数量y(件)与售价x(元/件)满足关系y=﹣25x+800.(1)若某月售出该日用品200件,求该日用品售出价格为每件多少元?(2)商场为了获得最大的利润,该日用品售出价格应定为每件多少元?此时的最大利润是多少元?20.(9分)如图,在△ABC中,AC=BC,E是AB上一点,且CE=BE,将△CBE绕点C 旋转得到△CAD.(1)求证:AB∥DC;(2)连接DE,判断四边形BEDC的形状,并说明理由.21.(7分)在一个不透明的布袋里装有大小、质量完全相同的四个小球,标号分别为﹣1、0、1、2,先从布袋中随机摸出一个小球,记下标号数字;再从布袋中剩下的三个小球里随机摸出一个小球,记下标号数字.(1)第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为;(2)用列表或树状图的方法(只选一种即可),求两次摸出的小球标号数字之和是正数的概率.22.(10分)如图所示,在△ABC中,AB=CB,以BC边为直径的⊙O交AC于点E.点D 在BA的延长线上,且∠ACD=ABC.(1)求证:CD是⊙O的切线;(2)若∠ACB=60°,BC=12,连接OE,求劣弧所对扇形BOE的面积(结果保留π).23.(11分)如图,抛物线y=﹣x2+bx+c与x轴相交于A(﹣3,0),D(1,0)两点,其中顶点为B.(1)求该抛物线的解析式;(2)若该抛物线与y轴的交点为C,求△ABC的面积.2020-2021学年云南省昆明市九年级(上)期末数学试卷参考答案与试题解析一.填空题(本大题共6小题,每小题3分,共18分)1.(3分)方程3x2+1=8x的一次项系数是﹣8.【解答】解:一元二次方程3x2+1=8x的一般形式3x2﹣8x﹣1=0,其中一次项系数为﹣8,故答案是:﹣8.2.(3分)二次函数y=(x﹣1)2﹣1的顶点坐标是(1,﹣1).【解答】解:二次函数y=(x﹣1)2﹣1的顶点坐标是(1,﹣1).故答案为:(1,﹣1).3.(3分)已知方程x2﹣3x+2=0的两根分别为x1和x2,则x1•x2的值等于2.【解答】解:∵方程x2﹣3x+2=0的两根分别为x1和x2,∴x1•x2=2,故答案为2.4.(3分)如图,飞镖游戏板由大小相等的小正方形格子构成,小东向游戏板随机投掷一枚飞镖,击中白色区域的概率是.【解答】解:∵游戏板的面积为3×3=9,其中白色区域为6,∴小东向游戏板随机投掷一枚飞镖,击中白色区域的概率是=,故答案是:.5.(3分)正三角形的边长为2,则它的边心距为.【解答】解:如图,△ABC为正三角形,点O为其中心;作OD⊥BC于点D;连接OB、OC;∵OA=OC,∠BOC=120°,∴BD=BC=1,∠BOD=∠BOC=60°,∴tan∠BOD=,∴OD=BD=,即边长为2的正三角形的边心距为.故答案为:.6.(3分)用一根长为24cm的绳子围成一个矩形,则围成矩形的最大面积是36cm2.【解答】解:设围成矩形的长为xcm,则宽为=(12﹣x)cm,设围成矩形的面积为Scm2,由题意得:S=x(12﹣x)=﹣x2+12x=﹣(x﹣6)2+36,∵二次项系数为负,抛物线开口向下,∴当x=6cm时,S有最大值,最大值为36cm2.故答案为:36.二、选择题(本大题共8小题,每小题只有一-个正确选项,每小题4分,共32分)7.(4分)下列说法错误的是()A.随机事件发生的概率大于或等于0,小于或等于1B.可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率C.必然事件发生的概率为1D.一组数据的中位数,就是这组数据中间的一个数或者中间两个数的平均数【解答】解:A、随机事件发生的概率大于0,小于1,故原命题错误,符合题意;B、可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率,说法正确,不符合题意;C、必然事件发生的概率为1,正确,不符合题意;D、一组数据的中位数,就是这组数据中间的一个数或者中间两个数的平均数,正确,不符合题意,故选:A.8.(4分)下列一元二次方程中,有两个相等的实数根的是()A.2x2+2x+1=0B.4x2﹣4x+1=0C.x2﹣2x﹣1=0D.3x2﹣5x+3=0【解答】解:A、∵△=22﹣4×2×1=﹣4<0,∴原方程无实数根,选项A不符合题意;B、∵△=(﹣4)2﹣4×4×1=0,∴原方程有两个相等的实数根,选项B符合题意;C、∵△=(﹣2)2﹣4×1×(﹣1)=8>0,∴原方程有两个不相等的实数根,选项C不符合题意;D、∵△=(﹣5)2﹣4×3×3=﹣11<0,∴原方程没有实数根,选项D不符合题意.故选:B.9.(4分)下列图形:①平行四边形、②矩形、③正方形、④等边三角形,其中,既是轴对称图形又是中心对称图形的有()A.①②B.②③C.③④D.①④【解答】解:平行四边形是中心对称图形,不是轴对称图形;矩形,正方形既是轴对称图形又是中心对称图形;等边三角形是轴对称图形,不是中心对称图形.故选:B.10.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A.a>0,b>0,c>0B.a>0,b>0,c=0C.a>0,b<0,c=0D.a<0,b<0,c<0【解答】解:∵抛物线开口向上,∴a>0,∵抛物线与y轴交于(0,0),∴c=0,∵抛物线对称轴在y轴右侧,∴a、b异号,∴b<0,故选:C.11.(4分)如图,将△ABC绕着点B逆时针旋转45°后得到△A'BC′,若∠A=120°,∠C=35°,则∠A'BC的度数为()A.20°B.25°C.30°D.35°【解答】解:∵将△ABC绕着点B逆时针旋转45°后得到△A′BC',∴∠ACA′=45°,∵∠A=120°,∠C=35°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣120°﹣35°=25°,∴∠A′BC=∠ABA'﹣∠ABC=45°﹣25°=20°.故选:A.12.(4分)抛物线y=ax2+bx+c(a≠0)与x轴的交点是(1,0),(﹣3,0),则这条抛物线的对称轴是()A.x=1B.x=﹣1C.x=2D.x=﹣3【解答】解:∵抛物线y=ax2+bx+c与x轴的交点是(1,0),(﹣3,0),∴这条抛物线的对称轴是:x==1,即x=1.故选:B.13.(4分)如图,P是⊙O外一点,射线P A、PB分别切⊙O于点A、点B,CD切⊙O于点E,分别交P A、PB于点D、点C,若PB=4,则△PCD的周长()A.4B.6C.8D.10【解答】解:∵P A、PB分别切⊙O于点A、B,CD切⊙O于点E,∴P A=PB=4,BC=EC,AD=ED,∴PC+CD+PD=PC+CE+DE+PD=PC+BC+PD+AD=PB+P A=4+4=8,即△PCD的周长为8,故选:C.14.(4分)如图,半径为5的⊙O中,有两条互相垂直的弦AB、CD,垂足为点E,且AB =CD=8,则OE的长为()A.3B.C.2D.3【解答】解:如图,作OM⊥AB于M,ON⊥CD于N,连接OA,OC.∴AM=BM=4,CN=DN=4,∵OA=OC=5,∴OM===3,ON===3,∴OM=ON,∵AB⊥CD,∴∠OME=∠ONE=∠MEN=90°,∴四边形OMEN是矩形,∵OM=ON,∴四边形OMEN是正方形,∴OE=OM=3,故选:D.三、解答题(本大题共9小题,满分70分,请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.特别注意:作图时,必须使用黑色碳素笔在答题卡上作图)15.(8分)用适当的方法解下列方程:(1)3x2+x=0;(2)x2﹣x﹣2=0.【解答】解:(1)3x2+x=0,x(3x+1)=0,x=0或3x+1=0,x1=0,x2=﹣;(2)x2﹣x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0或x+1=0,x1=2,x2=﹣1.16.(5分)某品牌衣服原售价为每件400元,由于商店要处理库存,经过连续两次降价处理,按每件256元的售价销售,求该衣服每次平均降价的百分率?【解答】解:第一次降价后的价格为:400(1﹣x),第二次降价后的价格为:400(1﹣x)2;则可列方程:400(1﹣x)2=256,解得x1=0.2=20%,x2=1.8(舍去).答:该衣服每次平均降价的百分率是20%.17.(6分)如图,A、B、C、D四点共圆,且∠ACB=∠ACD=60°.求证:△ABD是等边三角形.【解答】证明:∵∠ACB=60°,∴∠ADB=∠ACB=60°,∵∠ACD=60°,∴∠ABD=∠ACD=60°,在△ABD中,∠BAD=180°﹣∠ADB﹣∠ABD=180°﹣60°﹣60°=60°,∴∠ABD=∠ADB=∠BAD=60°,∴△ABD是等边三角形.18.(7分)一面墙长为22m,一养殖户要利用长为41m的篱笆和这面墙圈成一个面积为216m2的矩形养殖场,其中,养殖场不靠墙的长边上要设一道宽为1m的门,如图所示.求这个矩形养殖场的长宽各是多少米?【解答】解:设这个矩形养殖场的长为x米,则宽为米,根据题意得,x=216,解得:x1=18,x2=24(不合题意,舍去),故长为18米,宽为12米,答:这个矩形养殖场的长宽各是18米和12米.19.(7分)创新商场销售一批进价为14元的日用品,销售一段时间后,发现每月销售数量y(件)与售价x(元/件)满足关系y=﹣25x+800.(1)若某月售出该日用品200件,求该日用品售出价格为每件多少元?(2)商场为了获得最大的利润,该日用品售出价格应定为每件多少元?此时的最大利润是多少元?【解答】解:(1)∵y=﹣25x+800,∴200=﹣25x+800,解得x=24,答:若某月售出该日用品200件,该日用品售出价格为每件24元.(2)设利润为w元,则有w=(x﹣14)(﹣25x+800)=﹣25(x﹣23)2+2025,当x=23时,最大利润为2025元,答:该日用品售出价格应定为每件23元,此时的最大利润是2025元.20.(9分)如图,在△ABC中,AC=BC,E是AB上一点,且CE=BE,将△CBE绕点C 旋转得到△CAD.(1)求证:AB∥DC;(2)连接DE,判断四边形BEDC的形状,并说明理由.【解答】(1)证明:由旋转的性质得∠BCE=∠ACD,∵AC=BC,∴∠B=∠BAC,∵CE=BE,∴∠B=∠BCE,∴∠ACD=∠BAC,∴AB∥CD;(2)解:四边形BEDC是平行四边形,由旋转的性质得CD=CE,∵CE=BE,∴CD=BE,∵AB∥DC,∴四边形BEDC是平行四边形.21.(7分)在一个不透明的布袋里装有大小、质量完全相同的四个小球,标号分别为﹣1、0、1、2,先从布袋中随机摸出一个小球,记下标号数字;再从布袋中剩下的三个小球里随机摸出一个小球,记下标号数字.(1)第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为0或;(2)用列表或树状图的方法(只选一种即可),求两次摸出的小球标号数字之和是正数的概率.【解答】解:(1)若先从布袋中随机摸出一个小球是1,则第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为0;若先从布袋中随机摸出一个小球不是1,则第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为;综上所述,第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为0或,故答案为:0或;(2)画树状图如图:共有12个等可能的结果,两次摸出的小球标号数字之和是正数的有8个,∴两次摸出的小球标号数字之和是正数的概率为=.22.(10分)如图所示,在△ABC中,AB=CB,以BC边为直径的⊙O交AC于点E.点D 在BA的延长线上,且∠ACD=ABC.(1)求证:CD是⊙O的切线;(2)若∠ACB=60°,BC=12,连接OE,求劣弧所对扇形BOE的面积(结果保留π).【解答】(1)证明:连接BE,∵BC是⊙O的直径,∴∠BEC=90°,∴BE⊥AC,又∵AB=CB,∴∠ABE=∠CBE=∠ABC,∵∠ACD=∠ABC,∴∠ACD=∠CBE,又∵∠BCE+∠CBE=90°,∴∠BCE+∠ACD=90°,∵点C在⊙O上,∴CD是⊙O的切线.(2)解:∵∠ACB=60°,∴∠BOE=120°,∵BC=12,∴⊙O的半径是6,∴S扇形BOE==12π.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴相交于A(﹣3,0),D(1,0)两点,其中顶点为B.(1)求该抛物线的解析式;(2)若该抛物线与y轴的交点为C,求△ABC的面积.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴相交于A(﹣3,0),D(1,0)两点,∴.解得:.故该抛物线解析式为y=﹣x2﹣2x+3;(2)由抛物线解析式y=﹣x2﹣2x+3,可得B(﹣1,4),C(0,3).如图,过点B作BE⊥x轴于点E,交直线AC于F,则点F的横坐标是﹣1.∵直线AC经过点A(﹣3,0),C(0,3),∴直线AC的解析式是y=x+3.把x=﹣1代入y=x+3,得y=2.则F(﹣1,2).∴BF=2.∴S△ABC=BF•AO==3.。

昆明市云大附中九年级数学上册第二十一章《一元二次方程》经典测试卷(含答案解析)

昆明市云大附中九年级数学上册第二十一章《一元二次方程》经典测试卷(含答案解析)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AM AF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B 【分析】设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案. 【详解】解:设正方形的边长为1,AF =AM =x , 则BE =EF =12,AE =x+12, 在Rt △ABE 中, ∴AE 2=AB 2+BE 2, ∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根, 故选:B . 【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A .12B .12C D 1B解析:B 【分析】根据上图可知正方形的边长为a+b ,下图长方形的长为a+b+b ,宽为b ,并且它们的面积相等,由此可列出(a+b )2=b(a+b+b),解方程即可求得结论. 【详解】解:根据题意得:正方形的边长为a+b ,长方形的长为a+b+b ,宽为b , 则(a+b )2=b(a+b+b),即a 2﹣b 2+ab=0, ∴2)10a abb+-=(,解得:a b =, ∵ab>0,∴a b =,∴当a=1时,12b ==, 故选:B . 【点睛】本题考查了图形的拼接、解一元二次方程、正方形的面积、长方形的面积,正确理解题意,找到隐含的数量关系列出方程是解答的关键.3.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( ) A .k-4且k≠0 B .k≥-4C .k>-4且k≠0D .k>-4B解析:B 【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论. 【详解】解:当k=0时,原方程为-4x+1=0, 解得:x=14, ∴k=0符合题意; 当k≠0时,∵方程kx 2-4x-1=0有实数根, ∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4. 故选:B . 【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六图1图2A .17B .18C .19D .20C解析:C 【分析】根据日历的特点得到8i e =+,8a e =-,列出一元二次方程解出e 的值. 【详解】解:根据日历的特点,同一列上下两个数相差7,前后两个数相差1, 则7h e =+,18i h e =+=+,7b e =-,18a b e =-=-, ∵最大的数与最小的数乘积是297,∴()()88297ai e e =-+=,解得19e =±,取正数,19e =. 故选:C . 【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.5.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( ) A .12 B .15C .12或15D .18B解析:B【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意. 【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6, 当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15. 故选:B . 【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.6.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3 B .6C .8D .9D解析:D 【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论. 【详解】 解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c = 故选:D . 【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.7.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( ) A .1,0 B .1,0-C .1,1-D .2,2-D解析:D 【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根. 【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②,①-②=40b =,得0b =, ①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得,∵240ax bx a +-=,240ax a -= 24ax a =∴2x =± 故选:D . 【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.8.一元二次方程20x x -=的根是( ) A .10x =,21x = B .11x =,21x =- C .10x =,21x =- D .121x x ==A解析:A 【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解. 【详解】 解:∵x 2-x=0, ∴x (x-1)=0, 则x=0或x-1=0, 解得:x 1=0,x 2=1, 故选:A . 【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 9.下列方程中,有两个不相等的实数根的是( ) A .x 2=0 B .x ﹣3=0C .x 2﹣5=0D .x 2+2=0C解析:C 【分析】利用直接开平方法分别求解可得. 【详解】解:A .由x 2=0得x 1=x 2=0,不符合题意; B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意;D .x 2+2=0无实数根,不符合题意;故选:C . 【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.10.一元二次方程x (x ﹣2)=x ﹣2的解是( ) A .x 1=x 2=0 B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2D解析:D 【分析】方程x (x ﹣2)=x ﹣2移项后,运用因式分解法可以求得方程的解,本题得以解决. 【详解】解:x (x ﹣2)=x ﹣2,移项,得x (x ﹣2)﹣(x ﹣2)=0, 提公因式,得(x ﹣2)(x ﹣1)=0, ∴x ﹣2=0或x ﹣1=0, 解得x =2或x =1. 故选:D . 【点睛】本题考查解解一元二次方程﹣因式分解法,解题的关键是会利用提公因式法解方程.二、填空题11.一元二次方程2210x x -+=的一次项系数为_________.-2【分析】根据一元二次方程的一次项系数的定义即可求解【详解】解:一元二次方程x2-2x +1=0一次项系数是:-2故答案为:-2【点睛】此题考查了一元二次方程的一般形式准确掌握一般式中的相关概念是解解析:-2 【分析】根据一元二次方程的一次项系数的定义即可求解. 【详解】解:一元二次方程x 2 -2x +1=0一次项系数是:-2. 故答案为:-2. 【点睛】此题考查了一元二次方程的一般形式,准确掌握一般式中的相关概念是解题的关键. 12.写出有一个根为1的一元二次方程是______.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考解析:20x x -=(答案不唯一) 【分析】有一个根是1的一元二次方程有无数个,只要含有因式x -1的一元二次方程都有一个根是1.【详解】可以用因式分解法写出原始方程,然后化为一般形式即可, 如()10x x -=,化为一般形式为:20x x -= 故答案为:20x x -=. 【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.13.某商贸公司2017年盈利100万元,2019年盈利144万元,且2017年到2019年每年盈利的增长率相同,则该公司2018年盈利_____万元.120【分析】设平均年增长率为x 列式求出年平均增长率即可算出结果【详解】解:设平均年增长率为x 根据题意得:整理得:开方得:解得:(舍去)则平均年增长率为20∴该公司2018年盈利100(1+20)=解析:120 【分析】设平均年增长率为x ,列式()21001144x +=,求出年平均增长率,即可算出结果. 【详解】解:设平均年增长率为x , 根据题意得:()21001144x +=, 整理得:()21 1.44x +=, 开方得:1 1.2x +=±,解得:10.2x =,2 2.2x =-(舍去), 则平均年增长率为20%,∴该公司2018年盈利100(1+20%)=120(万元). 故答案为:120. 【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的求解方法. 14.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的解析:1 【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得. 【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--,3p a ∴-=-,36a -=-,解得2a =, 则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解, 则将3x =代入得:23360p --=, 解得1p =, 故答案为:1. 【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.15.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21 【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可. 【详解】 解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21, 故答案为:21. 【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键. 16.已知1x ,2x 是关于x 的一元二次方程260x x a -+=的两个实数根,且221212x x -=,则a =________.8【分析】由一元二次方程根与系数的关系得:解方程可得进一步可得结论【详解】解:由一元二次方程根与系数的关系得:又∴∴∴解得故答案为:8【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解析:8 【分析】由一元二次方程根与系数的关系得:126x x +=,12x x a =,解方程221212x x -=可得122x x -=,进一步可得结论.解:由一元二次方程根与系数的关系得:126x x +=,12x x a =,又221212x x -=,∴1212()()12x x x x +-= ∴122x x -=,∴22121212()()43644x x x x x x a -=+-=-= 解得,8a =, 故答案为:8. 【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于ca”是解题的关键. 17.若a ,b 是方程22430x x +-=的两根,则22a ab b +-=________.4【分析】根据根与系数的关系得出a+b=-2ab=-再变形后代入即可求出答案【详解】解:∵是方程的两根∴故答案为:4【点睛】本题考查了根与系数的关系能够整体代入是解此题的关键解析:4 【分析】根据根与系数的关系得出a+b=-2,ab=-32,再变形后代入,即可求出答案. 【详解】解:∵a ,b 是方程22430x x +-=的两根,∴42232a b ab ⎧+=-=-⎪⎪⎨⎪=-⎪⎩,()()()222222224a ab b a a b b a b a b +-=+-=--=-+=-⨯-=.故答案为:4. 【点睛】本题考查了根与系数的关系,能够整体代入是解此题的关键. 18.若()22214x y +-=,则22x y +=________.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3 【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.解:两边开方得2212x y +-=±,223x y ∴+=或221x y +=-, 220x y +≥, 223x y ∴+=.故答案为:3. 【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键. 19.已知a ,b 是一元二次方程22310x x +-=的两实数根,则11a b+=________.3【分析】根据方程的系数结合根与系数的关系可得出a+b=-ab=-将其代入中即可求出结论【详解】解:∵是方程的两根故答案为:3【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是解题的关键解析:3 【分析】根据方程的系数结合根与系数的关系,可得出a+b=-32,ab=-12,将其代入11a b a b ab ++=中即可求出结论. 【详解】解:∵a ,b 是方程22310x x +-=的两根,32a b ∴+=-,12ab =-,3112312a b a b ab -+∴+===-.故答案为:3. 【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于ca”是解题的关键. 20.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.【分析】由一元二次方程根与系数的关系解题即【详解】解:∵x2+2x ﹣m2﹣m =0m =123…2020∴由根与系数的关系得:α1+β1=﹣2α1β1=﹣1×2;α2+β2=﹣2α2β2=﹣2×3;…α 解析:40402021【分析】 由一元二次方程根与系数的关系解题,即+=-b c a a αβαβ=,. 【详解】 解:∵x 2+2x ﹣m 2﹣m =0,m =1,2,3, (2020)∴由根与系数的关系得:α1+β1=﹣2,α1β1=﹣1×2;α2+β2=﹣2,α2β2=﹣2×3;…α2020+β2020=﹣2,α2020β2021=﹣2020×2021; ∴原式=3320202020112211223320202020++++++++αβαβαβαβαβαβαβαβ 2222=++++12233420202021⨯⨯⨯⨯ 1111111=2(1)2233420202021⨯-+-+-++- 1=2(1)2021⨯-4040=2021故答案为:40402021. 【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题21.某校园有一块正方形的空地,若从这块空地上划出部分区域栽种鲜花(如图阴影部分为花带),横向花带宽为2m ,纵向花带宽为1m ,栽种鲜花后剩余空地面积为42m 2,求原正方形空地的边长.解析:原正方形空地的边长为8m .【分析】观察图形得到阴影面积=正方形的面积-空白图形的面积,列方程解决问题.【详解】解:设正方形空地的边长为xm ,由题意得()()2142x x --=, 化简得23400x x --=,解得1285x x ==-,,因为0x >,故8x =,答:原正方形空地的边长为8m .【点睛】此题考查一元二次方程的实际应用—图形面积类问题,观察图形得到阴影面积=正方形的面积-空白图形的面积,由此列方程解决问题的思路是解题的关键.22.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPC S cm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPC Scm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?解析:(1)2或4;(2)2;(3)1082-+【分析】本题可设P 出发x 秒后,QPC S 符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.【详解】(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅= ∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC Scm =. (2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得: ()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.23.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.解析:(1)见解析;(2)-1或13 【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.24.解下列方程:(1)2410x x --=;(2)(4)123x x x -=-.解析:(1)12x =22x =2)x 4=或x 3=-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)2410x x --=2445x x +=-2(2)5x -=则2x -=解得12x =22x =(2)解:(4)3(4)0x x x -+-=,(4)(3)0x x -+=,则40x -=或30x +=,解得x 4=或x 3=-.【点睛】此题考查解一元二次方程:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.25.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?解析:(1)当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元;(2)每件衬衫应降价20元【分析】(1)利用日销售量202=+⨯每件衬衫降低的价格,即可求出每天可销售衬衫的数量,利用日盈利额=销售每件衬衫的利润×日销售量,即可求出日盈利额;(2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫,根据日盈利额=销售每件衬衫的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】(1)根据题意得,降价后,可售出:205230+⨯=(件)∴()1605120301050--⨯=(元)∴当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元; (2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫依题意,得:()()1601202021200x x --+=,∴2302000x x -+=解得:110x =,220x =∵要尽快清库∴20x∴每件衬衫应降价20元.【点睛】本题考查了一元二次方程、有理数混合运算的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.26.解方程:(1)x 2+6x ﹣2=0.(2)(2x ﹣1)2=x (3x +2)﹣7.解析:(1)x 1=﹣,x 2=﹣3;(2)x 1=2,x 2=4.【分析】(1)方程利用配方法求出解即可;(2)方程整理后,利用分解因式分解法求出解即可.【详解】解:(1)方程整理得:x 2+6x =2,配方得:x 2+6x +9=11,即(x +3)2=11,开方得:x +3=,解得:x 1=﹣,x 2=﹣3(2)方程整理得:x 2﹣6x +8=0,分解因式得:(x ﹣2)(x ﹣4)=0,可得x ﹣2=0或x ﹣4=0,解得:x 1=2,x 2=4.【点睛】此题考查了解一元二次方程-配方法,以及因式分解法,熟练掌握各自的解法是解本题的关键.27.我们知道20x ≥,2()0a b ±≥,这一性质在数学中有着广泛的应用,比如,探究多项式2245x x +-的最小值时,我们可以这样处理:解:原式()2225x x =+- ()22222115x x =++-- 222(1)15x ⎡⎤=+--⎣⎦22(1)25x =+--22(1)7x =+-因为()210x +≥,所以()221707x +-≥-,即()22177x +-≥-所以()2217x +-的最小值是7-,即224 5x x +-的最小值是7-.请根据上面的探究思路,解答下列问题:(1)多项式()2531x -+的最小值是_________;(2)求多项式24163x x -+的最小值(写过程).解析:(1)1;(2)13-.【分析】(1)根据偶次方的非负性得到2(3)0x -,得到答案; (2)根据完全平方公式把原式变形,根据偶次方的非负性解答.【详解】解:(1)∵2(3)0x -≥,∴25(3)11x -+≥,∴多项式25(3)1x -+的最小值是1.故答案为:1;(2)24163x x -+()2443x x =-+ ()22244223x x =-+-+24(2)43x ⎡⎤=--+⎣⎦24(2)163x =--+24(2)13x =--∵2(2)0x -≥,∴24(2)1313x --≥-,∴多项式24163x x -+的最小值为13-.【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键. 28.解方程:212270x x -+=解析:13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.。

云南省昆明市五华区云大附中(一二一校区)2020-2021学年九年级上学期期末考试数学试卷

云南省昆明市五华区云大附中(一二一校区)2020-2021学年九年级上学期期末考试数学试卷

1.共 23 题,满分 120 分,时间 120 分钟,独立完成,错解漏解均不得分. 考生须知绝密★启用前云大附中(一二一校区)2020-2021 学年上学期期末考试九年级 数学试卷5. 如图,△ABC 中,CE :EB =1:2,DE ∥AC ,若△ABC 的面积为 S ,则△ADE 的面积为( )1 A.S92 B.S 91 C.S 34 D.S 9一、选择题(本大题共 8 个小题,每小题只有一个正确选项,每小题 4 分,满分 32 分) 1. 下列说法正确的是()A. 任意掷一枚质地均匀的硬币 10 次,一定有 5 次正面向上B. 天气预报说“明天的降水概率为 40%”,表示明天有 40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a |≥0”是不可能事件2.如果方程 x 2+4x +n =0 可以配方成(x +m )2=3,那么(n ﹣m )2020 的值为().A. 2020B. 1C. 0D. -13. 把图 1 中的正方体的一角切下后摆在图 2 所示的位置,则图 2 中的几何体的主视图为()A.B .C .D .4. 如图,P 是等边△ABC 内一点,△BMC 是由△BPA 绕点 B 逆时针旋转所得,若 MC ∥BP ,则∠BMC=( )°A. 100B. 110C. 120D. 1306. 如图,一块矩形木板 ABCD 斜靠在墙边(OC ⊥OB ,点 A ,B ,C ,D ,O 在同一平面内),已知AB =a ,AD =b ,∠BCO =x ,则点 A 到 OC 的距离等于( )A .a sin x +b sin xB .a cos x +b cos xC .a sin x +b cos xD .a cos x +b sin x7. 二次函数 y =ax 2+bx +c (a ,b ,c 为常数且 a ≠0)的图象如图所示,则一次函数 y =ax +b 与反比例函数 y =的图象可能是()A .B .C .D .8. 如图,AB 是半⊙O 的直径,点 C 是半圆弧的中点,点 D 是弧 BC 的中点,下列结论中:①∠CBD=∠DAB ;②CG =CH ;③AH =2BD ;④BD 2+GD 2=AG 2;⑤AG =DG .其中正确的结论有( )A .2 个B .3 个C .4 个D .5 个二、填空题(本大题共 6 小题,每小题 3 分,满分 18 分)9. 在平面直角坐标系中,△ABO 三个顶点的坐标分别为 A (﹣2,4),B (﹣4,0),O (0,0).以原点 O 为位似中心,把这个三角形缩小为原来的,得到△CDO ,则点 A 的对应点 C 的坐标是.第 1页,共 6页 第 2页,共 6页2.在试卷封线内填填写姓名、座位号、联系方式、就读学校 就读学校联系方式座位号名姓 … … … ○ … … … … ○ … … … … 外 … … … … ○ … … … … 装 … … … … ○ … … … … 订 … … … … ○ … … … … 线 … … … … ○ … … … ………○…………○…………外…………○…………装…………○…………订…………○…………线…………○……………………○…………○…………内…………○…………10. 小蕾同学有某文学名著上、中、下各 1 册,她随机将它们叠放在一起,从上到下的顺序恰好为“ 上册、中册、下册”的概率是 .11. 抛物线 y =(k ﹣1)x 2﹣x +1 与 x 轴有交点,则 k 的取值范围是 . 12. 如图,在△ABC 中,CA =CB =4,cos C =,则 sin B 的值为.13. 如图,MN 是⊙O 的直径,MN =4,∠AMN =30°,点 B 为弧 AN 的中点,点 P 是直径 MN 上的一个动点,则 PA +PB 的最小值为 .14. 如图,Rt △AOB 中,点 B 的坐标为(2,4),双曲线 y =经过点 C 、D ,当以 B 、C 、D 为顶点的三角形与 Rt △AOB 相似时,则 k= .(3)在(2)的条件下,求点 A 在旋转过程中所走过的路径长(结果保留π).17.2020 年 1 月底,武汉爆发“新冠”疫情后,全国人民同心协力,共克时艰.在““新冠”肆虐之下,防护成为了当务之急,口罩也因此成为稀缺物资,2 月份,某公益基金组织买了医用外科口罩和 N 95 防护口罩共 25000 个,全部捐赠给武汉地区.其中医用外科口罩与 N 95 防护口罩的数量之比为 4:1.已知 N 95 防护口罩的单价是医用外科口罩单价的 6 倍还多 2 元,采购这批口罩一共用了 160000 元.(1)求 2 月份 N 95 防护口罩的单价为多少元?(2)3 月份,该公益基金组织继续购买这两种口罩捐赠给武汉地区.由于市场上口罩生产供应能1力增强,与 2 月份相比,医用外科口罩的单价下降了 31,N 95 防护口罩的单价下降了 a %,购买 医用外科口罩的数量减少了10,购买 N 95 防护口罩的数量增加了 3a %,采购这批口罩一共用了164000 元,求整数 a 的值.三、解答题(本大题共 8 个小题,满分 70 分.解答时必须写出必要的计算过程、推理步骤或文字说明.)15. 解方程: 2x 2- 5x +1 = 016. 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点 O (0,0)、A (4,1)、B (4,4)均在格点上.(1) 画出△OAB 关于 y 轴对称的△OA 1B 1,并写出点 A 1 的坐标;(2) 画出△OAB 绕原点 O 顺时针旋转 90°后得到的△OA 2B 2,并写出点 A 2 的坐标;18. 某中学 1000 名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为 100 分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:第 3页,共 6页第 4页,共 6页… … … … ○ … … … … ○ … … … … 外 … … … … ○ … … … … 装 … … … … ○ … … … … 订 … … … … ○ … … … … 线 … … … … ○ … … … …成绩分组 频数 频率 50≤x <60 8 0.16 60≤x <7012 a 70≤x <80 ■ 0.5 80≤x <90 3 0.06 90≤x ≤100 b c 合计 ■1(1) 写出 a ,b ,c 的值;(2) 请估计这 1000 名学生中有多少人的竞赛成绩不低于 70 分;(3) 在选取的样本中,从竞赛成绩是 80 分以上(含 80 分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的 2 名同学来自同一组的概率.19. 某药品研究所研发一种抗菌新药,测得成人服用该药后血液中的药物浓度(微克/毫升)与服药后时间 x (时)之间的函数关系如图所示,当血液中药物浓度上升时,y 与 x 成正比,下降时,y 与 x 成反比. (1) 求 y 与 x 的函数关系式,并指出 x 的取值范围;(2) 若血液中药物浓度不低于 3 微克/毫升的持续时间超过 4 小时,则称药物治疗有效,请问研发的这种抗菌新药可以作为有效药物投入生产吗?为什么?20. 如图,某建筑物 CD 高 96 米,它的前面有一座小山,其斜坡 AB 的坡度为 i =1:1.为了测量山顶A 的高度,在建筑物顶端 D 处测得山顶 A 和坡底B 的俯角分别为α、β.已知 tan α=2,tan β=4, DA 交 CB 的延长线于点 M ,求山顶 A 的高度 AE .21. 已知 AB 是⊙O 的直径,AM 和 BN 是⊙O 的两条切线,DC 与⊙O 相切于点 E ,分别交 AM 、BN于 D 、C 两点.(1) 求证:AB 2=4AD •BC ;(2) 连接 OE 并延长交 AM 于点 F ,连接 CF .若∠ADE =2∠OFC ,AD =1,求图中阴影部分的面积.22. 在平面直角坐标系中,直线y =﹣x +2 与x 轴交于点B ,与y 轴交于点C ,二次函数y =﹣+bx +c的图象经过 B ,C 两点,且与 x 轴的负半轴交于点 A .(1) 求二次函数的表达式;(2) 如图 1,点 D 是抛物线第四象限上的一动点,连接 DC ,DB ,当 S △DCB =S △ABC 时,求点 D坐标;(3) 如图 2,在(2)的条件下,点 Q 在 CA 的延长线上,连接 DQ ,AD ,过点 Q 作 QP ∥y 轴,交抛物线于 P ,若∠AQD =∠ACO +∠ADC ,请求出 PQ 的长.第 5页,共 6页 第 6页,共 6页就读学校 联系方式座位号名姓 … … … ○ … … … … ○ … … … … 外 … … … … ○ … … … … 装 … … … … ○ … … … … 订 … … … … ○ … … … … 线 … … … … ○ … … … ………○…………○…………外…………○…………装…………○…………订…………○…………线…………○……………………○…………○…………内…………○…………。

2020-2021学年云南省昆明市九年级(上)期末数学试卷

2020-2021学年云南省昆明市九年级(上)期末数学试卷

2020-2021学年云南省昆明市九年级(上)期末数学试卷一、选择题(本大题共8小题,共32.0分)1.下列说法错误的是()A. 随机事件发生的概率大于或等于0,小于或等于1B. 可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率C. 必然事件发生的概率为1D. 一组数据的中位数,就是这组数据中间的一个数或者中间两个数的平均数2.下列一元二次方程中,有两个相等的实数根的是()A. 2x2+2x+1=0B. 4x2−4x+1=0C. x2−2x−1=0D. 3x2−5x+3=03.下列图形:①平行四边形、②矩形、③正方形、④等边三角形,其中,既是轴对称图形又是中心对称图形的有()A. ①②B. ②③C. ③④D. ①④4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则a、b、c的符号为()A. a>0,b>0,c>0B. a>0,b>0,c=0C. a>0,b<0,c=0D. a<0,b<0,c<05.如图,将△ABC绕着点B逆时针旋转45°后得到△A′BC′,若∠A=120°,∠C=35°,则∠A′BC的度数为()A. 20°B. 25°C. 30°D. 35°6.抛物线y=ax2+bx+c(a≠0)与x轴的交点是(1,0),(−3,0),则这条抛物线的对称轴是()A. x=1B. x=−1C. x=2D. x=−37.如图,P是⊙O外一点,射线PA、PB分别切⊙O于点A、点B,CD切⊙O于点E,分别交PA、PB于点D、点C,若PB=4,则△PCD的周长()A. 4B. 6C. 8D. 108.如图,半径为5的⊙O中,有两条互相垂直的弦AB、CD,垂足为点E,且AB=CD=8,则OE的长为()A. 3B. √3C. 2√3D. 3√2二、填空题(本大题共6小题,共18.0分)9.方程3x2+1=8x的一次项系数是______ .(x−1)2−1的顶点坐标是______ .10.二次函数y=1211.已知方程x2−3x+2=0的两根分别为x1和x2,则x1⋅x2的值等于______ .12.如图,飞镖游戏板由大小相等的小正方形格子构成,小东向游戏板随机投掷一枚飞镖,击中白色区域的概率是______ .13.正三角形的边长为2,则它的边心距为______ .14.用一根长为24cm的绳子围成一个矩形,则围成矩形的最大面积是______ cm2.三、解答题(本大题共9小题,共70.0分)15.用适当的方法解下列方程:(1)3x2+x=0;(2)x2−x−2=0.16.某品牌衣服原售价为每件400元,由于商店要处理库存,经过连续两次降价处理,按每件256元的售价销售,求该衣服每次平均降价的百分率?17.如图,A、B、C、D四点共圆,且∠ACB=∠ACD=60°.求证:△ABD是等边三角形.18.一面墙长为22m,一养殖户要利用长为41m的篱笆和这面墙圈成一个面积为216m2的矩形养殖场,其中,养殖场不靠墙的长边上要设一道宽为1m的门,如图所示.求这个矩形养殖场的长宽各是多少米?19.创新商场销售一批进价为14元的日用品,销售一段时间后,发现每月销售数量y(件)与售价x(元/件)满足关系y=−25x+800.(1)若某月售出该日用品200件,求该日用品售出价格为每件多少元?(2)商场为了获得最大的利润,该日用品售出价格应定为每件多少元?此时的最大利润是多少元?20.如图,在△ABC中,AC=BC,E是AB上一点,且CE=BE,将△CBE绕点C旋转得到△CAD.(1)求证:AB//DC;(2)连接DE,判断四边形BEDC的形状,并说明理由.21.在一个不透明的布袋里装有大小、质量完全相同的四个小球,标号分别为−1、0、1、2,先从布袋中随机摸出一个小球,记下标号数字;再从布袋中剩下的三个小球里随机摸出一个小球,记下标号数字.(1)第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为______ ;(2)用列表或树状图的方法(只选一种即可),求两次摸出的小球标号数字之和是正数的概率.22.如图所示,在△ABC中,AB=CB,以BC边为直径的⊙O交AC于点E.点D∠ABC.在BA的延长线上,且∠ACD=12(1)求证:CD是⊙O的切线;(2)若∠ACB=60°,BC=12,连接OE,求劣弧BE⏜所对扇形BOE的面积(结果保留π).23.如图,抛物线y=−x2+bx+c与x轴相交于A(−3,0),D(1,0)两点,其中顶点为B.(1)求该抛物线的解析式;(2)若该抛物线与y轴的交点为C,求△ABC的面积.答案和解析1.【答案】A【解析】解:A、随机事件发生的概率大于0,小于1,故原命题错误,符合题意;B、可以通过大量重复试验,用一个随机事件发生的频率去估计它的概率,说法正确,不符合题意;C、必然事件发生的概率为1,正确,不符合题意;D、一组数据的中位数,就是这组数据中间的一个数或者中间两个数的平均数,正确,不符合题意,故选:A.根据概率的意义及中位数的定义分别判断后即可确定正确的选项.考出来概率的意义及中位数的定义,属于基础知识,比较简单.2.【答案】B【解析】解:A、∵△=22−4×2×1=−4<0,∴原方程无实数根,选项A不符合题意;B、∵△=(−4)2−4×4×1=0,∴原方程有两个相等的实数根,选项B符合题意;C、∵△=(−2)2−4×1×(−1)=8>0,∴原方程有两个不相等的实数根,选项C不符合题意;D、∵△=(−5)2−4×3×3=−11<0,∴原方程没有实数根,选项D不符合题意.故选:B.取根的判别式△=0的选项即可得出结论.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.3.【答案】B【解析】解:平行四边形是中心对称图形,不是轴对称图形;矩形,正方形既是轴对称图形又是中心对称图形;等边三角形是轴对称图形,不是中心对称图形.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.【答案】C【解析】解:∵抛物线开口向上,∴a>0,∵抛物线与y轴交于(0,0),∴c=0,∵抛物线对称轴在y轴右侧,∴a、b异号,∴b<0,故选:C.利用二次函数的性质进行解答即可.此题主要考查了二次函数的性质,关键是熟练掌握二次函数图象的开口方向、对称轴、与y轴的交点与系数的关系是解题的关键.5.【答案】A【解析】解:∵将△ABC绕着点B逆时针旋转45°后得到△A′BC′,∴∠ACA′=45°,∵∠A=120°,∠C=35°,∴∠ABC=180°−∠A−∠C=180°−120°−35°=25°,∴∠A′BC=∠ABA′−∠ABC=45°−25°=20°.故选:A.由将△ABC绕着点B逆时针旋转45°后得到△A′BC′,可求得∠ABA′=45°,然后由三角形内角和定理,求得∠ABC的度数,继而求得答案.此题考查了旋转的性质以及三角形内角和定理.注意掌握旋转前后图形的对应关系是关键.6.【答案】B【解析】解:∵抛物线y=ax2+bx+c与x轴的交点是(1,0),(−3,0),=1,即x=1.∴这条抛物线的对称轴是:x=−1+32故选:B.根据“抛物线与x轴的两个交点到对称轴的距离相等”进行填空.本题考查了求抛物线与x轴的交点问题,关键是掌握抛物线与x轴的两交点关于对称轴对称.7.【答案】C【解析】解:∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=4,BC=EC,AD=ED,∴PC+CD+PD=PC+CE+DE+PD=PC+BC+PD+AD=PB+PA=4+4=8,即△PCD的周长为8,故选:C.由切线长定理可求得PA=PB,BC=CE,AD=ED,则可求得答案.本题主要考查切线的性质,利用切线长定理求得PA=PB、BC=CE和AD=ED是解题的关键.8.【答案】D【解析】解:如图,作OM⊥AB于M,ON⊥CD于N,连接OA,OC.∴AM=BM=4,CN=DN=4,∵OA=OC=5,∴OM=√OA2−AM2=√52−42=3,ON=√OC2−CN2=√52−42=3,∴OM=ON,∵AB⊥CD,∴∠OME=∠ONE=∠MEN=90°,∴四边形OMEN是矩形,∵OM=ON,∴四边形OMEN是正方形,∴OE=√2OM=3√2,故选:D.作OM⊥AB于M,ON⊥CD于N,连接OA,OC,根据垂径定理得出BM=AM=4,DN=CN=4,根据勾股定理求出OM和ON,证明四边形OMEN是正方形,即可解决问题.本题考查垂径定理,解直角三角形,正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.9.【答案】−8【解析】解:一元二次方程3x2+1=8x的一般形式3x2−8x−1=0,其中一次项系数为−8,故答案是:−8.一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.10.【答案】(1,−1)【解析】解:二次函数y=12(x−1)2−1的顶点坐标是(1,−1).故答案为:(1,−1).已知解析式为抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为直线x=ℎ,顶点坐标为(ℎ,k).11.【答案】2【解析】解:∵方程x2−3x+2=0的两根分别为x1和x2,∴x1⋅x2=2,故答案为2.直接根据根与系数的关系求解.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba,x1x2=ca.12.【答案】23【解析】解:∵游戏板的面积为3×3=9,其中白色区域为6,∴小东向游戏板随机投掷一枚飞镖,击中白色区域的概率是69=23,故答案是:23.利用白色区域的面积除以游戏板的面积即可.本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.13.【答案】√33【解析】解:如图,△ABC为正三角形,点O为其中心;作OD⊥BC于点D;连接OB、OC;∵OA=OC,∠BOC=120°,∴BD=12BC=1,∠BOD=12∠BOC=60°,∴tan∠BOD=BDOD,∴OD=√33BD=√33,即边长为2的正三角形的边心距为√33.故答案为:√33.如图,连接OB、OC;求出∠BOC=120°,进而求出∠BOD=60°,运用三角函数即可解决问题.本题考查的是正三角形的性质、三角函数、边心距的计算;熟练掌握正三角形的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.14.【答案】36【解析】解:设围成矩形的长为xcm,则宽为24−2x2=(12−x)cm,设围成矩形的面积为Scm2,由题意得:S=x(12−x)=−x2+12x=−(x−6)2+36,∵二次项系数为负,抛物线开口向下,∴当x=6cm时,S有最大值,最大值为36cm2.故答案为:36.设围成矩形的长为xcm,则宽为24−2x2=(12−x)cm,设围成矩形的面积为Scm2,根据矩形的面积公式列出S关于x的二次函数,将其写成顶点式,根据二次函数的性质可得答案.本题考查了二次函数在几何图形问题中的应用,熟练掌握二次函数的性质是解题的关键.15.【答案】解:(1)3x2+x=0,x(3x+1)=0,x=0或3x+1=0,x1=0,x2=−1;3(2)x2−x−2=0,(x−2)(x+1)=0,x−2=0或x+1=0,x1=2,x2=−1.【解析】(1)将方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)将方程左边分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键.16.【答案】解:第一次降价后的价格为:400(1−x),第二次降价后的价格为:400(1−x)2;则可列方程:400(1−x)2=256,解得x1=0.2=20%,x2=1.8(舍去).答:该衣服每次平均降价的百分率是20%.【解析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设降价的百分率为x,根据“原售价400元,按256元的售价销售”,即可得出方程求解即可.本题考查一元二次方程的应用中求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.17.【答案】证明:∵∠ACB=60°,∴∠ADB=∠ACB=60°,∵∠ACD=60°,∴∠ABD=∠ACD=60°,在△ABD中,∠BAD=180°−∠ADB−∠ABD=180°−60°−60°=60°,∴∠ABD=∠ADB=∠BAD=60°,∴△ABD是等边三角形.【解析】先根据同弧所对的圆周角相等得出∠ADB=60°=∠ABD,再用三角形的内角和定理求出∠BAD,即可得出结论.此题主要考查了等边三角形的判定和性质,圆周角定理,三角形的内角和定理,掌握圆周角定理是解本题的关键.18.【答案】解:设这个矩形养殖场的长为x米,则宽为41+1−x米,2=216,根据题意得,x⋅41+1−x2解得:x1=18,x2=24(不合题意,舍去),故长为18米,宽为12米,答:这个矩形养殖场的长宽各是18米和12米.【解析】设这个矩形养殖场的长为x米,则宽为41+1−x米,根据矩形的面积公式,即可得出关于x的一元2二次方程,解之即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.19.【答案】解:(1)∵y=−25x+800,∴200=−25x+800,解得x=24,答:若某月售出该日用品200件,该日用品售出价格为每件24元.(2)设利润为w元,则有w=(x−14)(−25x+800)=−25(x−23)2+2025,当x=23时,最大利润为2025元,答:该日用品售出价格应定为每件23元,此时的最大利润是2025元.【解析】(1)此处y=200时x的值即可;(2)设利润为w元,根据总利润=单件利润×日销售量列出函数解析式,配方成顶点式即可得出答案.本题主要按考查二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此得出函数解析式.20.【答案】(1)证明:由旋转的性质得∠BCE=∠ACD,∵AC=BC,∴∠B=∠BAC,∵CE=BE,∴∠B=∠BCE,∴∠ACD=∠BAC,∴AB//CD;(2)解:四边形BEDC是平行四边形,由旋转的性质得CD=CE,∵CE=BE,∴CD=BE,∵AB//DC,∴四边形BEDC是平行四边形.【解析】(1)由旋转的性质得出∠BCE=∠ACD,由等腰三角形的性质得出∠B=∠BAC,∠B=∠BCE,由平行线的判定可得出结论;(2)由平行四边形的判定可得出结论.此题考查了旋转的性质,等腰三角形的性质,平行四边形的判定和性质,熟练掌握旋转的性质是解本题的关键.21.【答案】0或13【解析】解:(1)若先从布袋中随机摸出一个小球是1,则第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为0;若先从布袋中随机摸出一个小球不是1,则第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为1;3,综上所述,第二次从布袋中剩下的三个小球里随机摸出一个小球,标号数字为1的概率为0或13;故答案为:0或13(2)画树状图如图:共有12个等可能的结果,两次摸出的小球标号数字之和是正数的有8个,∴两次摸出的小球标号数字之和是正数的概率为812=23.(1)分两种情况分别解答即可;(2)画树状图,共有12个等可能的结果,两次摸出的小球标号数字之和是正数的有8个,再由概率公式求解即可.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.【答案】(1)证明:连接BE,∵BC是⊙O的直径,∴∠BEC=90°,∴BE⊥AC,又∵AB=CB,∴∠ABE=∠CBE=12∠ABC,∵∠ACD=12∠ABC,∴∠ACD=∠CBE,又∵∠BCE+∠CBE=90°,∴∠BCE+∠ACD=90°,∵点C在⊙O上,∴CD是⊙O的切线.(2)解:∵∠ACB=60°,∴∠BOE=120°,∵BC=12,∴⊙O的半径是6,∴S 扇形BOE =120×π×62360=12π.【解析】(1)连接BE ,由圆周角定理可得出∠BEC =90°,由等腰三角形的性质得出∠ABE =∠CBE =12∠ABC ,得出∠ACD =∠CBE ,证得∠BCE +∠ACD =90°,则可得出结论;(2)求出∠BOE =120°,由扇形的面积公式可得出答案.本题考查了切线的判定、圆周角定理、等腰三角形的性质、扇形的面积公式等知识,熟练掌握切线的判定方法是解决问题的关键. 23.【答案】解:(1)∵抛物线y =−x 2+bx +c 与x 轴相交于A(−3,0),D(1,0)两点,∴{−9−3b +c =0−1+b +c =0. 解得:{b =−2c =3. 故该抛物线解析式为y =−x 2−2x +3;(2)由抛物线解析式y =−x 2−2x +3,可得B(−1,4),C(0,3).如图,过点B 作BE ⊥x 轴于点E ,交直线AC 于F ,则点F 的横坐标是−1.∵直线AC 经过点A(−3,0),C(0,3),∴直线AC 的解析式是y =x +3.把x =−1代入y =x +3,得y =2.则F(−1,2).∴BF =2.∴S △ABC =12BF ⋅AO =12×2×3=3.【解析】(1)利用待定系数法确定函数关系式;(2)根据抛物线解析式求得点B 、C 的坐标,过点B 作BE ⊥x 轴于点E ,交直线AC 于F ,由直线AC 的解析式和一次函数图象上点的坐标特征求得点F 的坐标,然后根据三角形面积公式求解.本题考查了抛物线与x 轴的交点,二次函数的性质以及待定系数法确定函数关系式等知识点,注意解题过程中辅助线的作法.。

2021-2022学年云大附中(一二一校区)初三下学期开学考数学试卷

2021-2022学年云大附中(一二一校区)初三下学期开学考数学试卷

第1页,共8页第2页,共8页绝密★启用前云大附中(一二一校区)2020-2021学年下学期开学检测九年级数学试卷考生须知1.共23题,满分120分,时间120分钟,独立完成,错解漏解均不得分.2.在试卷封线内填填写姓名、座位号、联系方式、就读学校一、填空题(本大题共6小题,每小题3分,共18分)1.在函数221xy -=中,自变量x 的取值范围是.2.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为弧BD 的中点,若∠DAB =40°,则∠ABC =.3.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为cm 2.4.如图,点A 在双曲线上,点B 在双曲线(k ≠0)上,AB ∥x 轴,分别过点A 、B 向x 轴作垂线,垂足分别为D 、C ,若矩形ABCD 的面积是8,则k 的值为.5.已知⊙O 的直径为10cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =8cm ,CD =6cm ,则AB 与CD 之间的距离为cm .6.把两个含30°角的直角三角板按如图所示拼接在一起,点E 为AD 的中点,连结BE 交AC 于点F .则=.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .8.已知关于x 的一元二次方程x 2﹣(2k +1)x +k 2+2k =0有两个实数根x 1,x 2,则实数k 的取值范围是()A .k <B .k ≤C .k >4D .k ≤且k ≠09.下列说法正确的是()A .一个游戏的中奖概率是则做10次这样的游戏一定会中奖B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据8,8,7,10,6,8,9的众数和中位数都是8D .若甲组数据的方差S 2=0.01,乙组数据的方差S 2=0.1,则乙组数据比甲组数据稳定10.如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为()A .B .C .D .11.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,∠P =72°,则∠C =()A .108°B .72°C .54°D .36°12.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用全恩教育第3页,共8页第4页,共8页…………○…………○…………外…………○…………装…………○…………订…………○…………线…………○…………来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是()A .0.5B .1C .3D .π13.如图,抛物线y =ax 2+bx +c 与x 轴正半轴交于A ,B 两点,与y 轴负半轴交于点C .若点B (4,0),则下列结论中,正确的个数是()①abc >0;②4a +b >0;③M (x 1,y 1)与N (x 2,y 2)是抛物线上两点,若0<x 1<x 2,则y 1>y 2;④若抛物线的对称轴是x =3,则c=8a .A .5B .4C .3D .213.如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF =()A .3:4B .4:5C .5:6D .6:7三、解答题(本大题共9小题,满分70分)15.(1)计算(2)解方程:)12(4)12(2-=-x x .16.小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A 组(体温检测)、B 组(便民代购)、C 组(环境消杀).(1)小红的爸爸被分到B 组的概率是;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)17.某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门AD 的顶部A 处距地面高为2.2m ,为了解自己的有效测温区间.身高1.6m 的小聪做了如下实验:当他在地面N 处时测温门开始显示额头温度,此时在额头B 处测得A 的仰角为18°;在地面M 处时,测温门停止显示额头温度,此时在额头C 处测得A 的仰角为60°.求小聪在地面的有效测温区间MN 的长度.(额头到地面的距离以身高计,计算精确到0.1m ,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32,7.13≈)全恩教育第5页,共8页第6页,共8页8.如图,在10×10的网格中,每个格子都是边长为1的小正方形,已知△ABC 三个顶点的坐标分别为A (1,1).B (4,2)、C (3,4).(1)请画出将△ABC 绕点A 顺时针旋转90°后得到的△AB 1C 1;(2)请画出△ABC 关于原点O 成中心对称的△A 2B 2C 2中,点C 2的坐标是__________;(3)当△ABC 绕点A 顺时针旋转90后得到△AB 1C 1,求点C 所经过的路径长.9.如图,在平面直角坐标系中,一次函数y =﹣x +m 的图象与反比例函数y =(x >0)的图象交于A 、B 两点,已知A (2,4)(1)求一次函数和反比例函数的解析式;(2)直接写出不等式)0(><+-x xkm x 的解集;(3)连接AO 、BO ,求△AOB 的面积.20.某网店正在热销一款电子产品,其成本为10元/件,销售中发现,该商品每天的销售量y (件)与销售单价x (元/件)之间存在如图所示的关系:(1)请求出y 与x 之间的函数关系式;(2)该款电子产品的销售单价为多少元时,每天销售利润最大?最大利润是多少元;(3)由于武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出300元捐赠给武汉,为了保证捐款后每天剩余利润不低于450元,如何确定该款电子产品的销售单价?21.如图,点D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA =∠CBD .(1)判断直线CD 和⊙O 的位置关系,并说明理由.(2)过点B 作⊙O 的切线BE 交直线CD 于点E ,若AC =2,⊙O 的半径是3,求BE 的长.全恩教育22.如图1,若点P是△ABC内一点,且有∠PBC=∠PCA=∠PAB,则称点P是△ABC的“等角点”.(1)如图1,∠ABC=70°,则∠APB=.(2)如图2,在△ABC中,∠ACB=90°,点P是△ABC的“等角点”,若∠BAC=45°.①求的值;②求tan∠PBC的值.23.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左侧)与y轴交于点C,抛物线的顶点为D,对称轴交x轴于点E.点P为抛物线对称轴上一点.(1)若点(m,4)在抛物线上,则代数式m2﹣2m的值是;(2)连接PC、PB,当∠PCB=∠PBC时,求点P的坐标;(3)以BP为边在BP的下方作等边三角形△BPQ,当点P从点D运动到点E的过程中,求出点Q经过路径的长度是多少?全恩教育第7页,共8页第8页,共8页。

〖2021年整理〗云南省云大附中一二一校区九年级初中升高中模拟考试数学模拟练习配套精选卷

〖2021年整理〗云南省云大附中一二一校区九年级初中升高中模拟考试数学模拟练习配套精选卷

云南省云大附中(一二一校区)2021届九年级中考模拟(一)考试数学试题一、填空题(每题3分,共18分)1.﹣8的立方根是 . 2.分解因式:m 2﹣9m= .3.一组数据3,4,,6,8的平均数是5,则这组数据的中位数是 .4.如图,BD ∥CE ,∠1=85°,∠2=37°,则∠A= °.5.如图,将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕为EF ,若AB=4,BC=2,那么线段EF 的长为 .6.一段抛物线:=﹣(﹣3)(0≤≤3),记为C 1,它与轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交轴于点A 2;将C 2绕点A 2旋转180°得C 3,交轴于点A 3;…若)是其中某段抛物线上一点,则m= .二、选择题(每题4分,共32分)7.一个几何体零件如图所示,则它的俯视图是( )A .B .C .D .8.函数4y x =- )A.>4 B.≥4 C.≤4 D.≠4 9.下列运算中,正确的是()A.2a﹣5a3=2a8B.21111 xxx x-+=++C.212-1=22﹣1 D.22393 m m mm m-=-+10.已知一次函数=b,随着的增大而减小,且b<0,则在直角坐标系内它的大致图象是()A.B.C.D.11.不等式组43128164xx x+>⎧⎨-≤-⎩的最小整数解是()A.0 B.﹣1 C.1 D.212.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是米/分,则根据题意所列方程正确的是()A.1440144010100x x-=-B.1440144010100x x=++C.1440144010100x x=+-D.1440144010100x x-=+13.如图,在平面直角坐标系中,⊙A与轴相切于原点O,平行于轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则点N的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣,﹣2)D.(,﹣2)14.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB 的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④三、解答题(共70分)15.计算:﹣2in30°(﹣13)﹣1﹣3tan60°(1﹣)0.16.居民区内的“广场舞”引起媒体关注,小王想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.17.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.18.一人自地平面上测得塔顶的仰角为60°,于原地登高50米后,又测得塔顶的仰角为30°,求塔高和此人在地面时到塔底的距离.19.甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?2021图,已知直线1=m与轴、轴分别交于点A、B,与双曲线2kyx(<0)分别交于点C、D,且C点的坐标为(﹣1,2).(1)分别求出直线AB及双曲线的解析式;(2)求出点D的坐标;(3)利用图象直接写出:当在什么范围内取值时,1>2?21.某商场出售一种成本为2021商品,市场调查发现,该商品每天的销售量w(千克)与销售价(元/千克)有如下关系:w=﹣280.设这种商品的销售利润为(元).(1)求与之间的函数关系式;(2)在不亏本的前提下,销售价在什么范围内每天的销售利润随售价增加而增大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?22.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.23.如图所示,直线:=33与轴交于点A,与轴交于点B.把△AOB沿轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点2﹣9m=.【答案】m(3)(﹣3)【解析】试题分析:m2﹣9m=m(2﹣9)=m(3)(﹣3).故答案为:m(3)(﹣3).考点:提取公因式法和公式法分解因式.3.一组数据3,4,,6,8的平均数是5,则这组数据的中位数是.【答案】4【解析】试题分析:∵3,4,,6,8的平均数是5,∴3468=5×5,解得=4,则该组数据为3,4,4,6,8.中位数为4.故答案为:4.考点:中位数的定义.4.如图,BD∥CE,∠1=85°,∠2=37°,则∠A=°.【答案】48【解析】试题分析:∵BD∥CE,∠1=85°,∴∠BDC=∠1=85°,又∵∠BDC=∠2∠A,∠2=37°,∴∠A=85°﹣37°=48°.故答案是:48.考点:平行线的性质和三角形的外角性质.5.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为.【答案】【解析】试题分析:如图所示,AC交EF于点O,由勾股定理知AC=2,又∵折叠矩形使C与A重合时有EF⊥AC,则Rt△AOE∽Rt△ABC,∴OE AO BC AB,∴OE=5 2故EF=2OE=.故答案为:.考点:翻折变换、勾股定理及矩形的性质.6.一段抛物线:=﹣(﹣3)(0≤≤3),记为C1,它与轴交于点O,A1;将C1绕点A1旋转180°得C2,交轴于点A2;将C2绕点A2旋转180°得C3,交轴于点A3;…若)是其中某段抛物线上一点,则m=.【答案】﹣2【解析】试题分析:∵一段抛物线:=﹣(﹣3)(0≤≤3),∴图象与轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交轴于点A2;将C2绕点A2旋转180°得C3,交轴于点A3;…如此进行下去,直至得C10.∴C672与轴的交点横坐标为(2021,0),(2021,0),且图象在轴下方,∴C672的解析式为:672=(﹣2021)(﹣2021),当=2021时,=(2021﹣2021)×(2021﹣2021)=﹣2.故答案为:﹣2.考点:二次函数图象.二、选择题(每题4分,共32分)7.一个几何体零件如图所示,则它的俯视图是()A .B .C .D .【答案】C【解析】试题分析:这个几何体零件的俯视图是一个正中间有一个小正方形的矩形, 所以它的俯视图是选项C 中的图形.故选:C .考点:简单组合体的三视图.8.函数4y x =- )A .>4B .≥4C .≤4D .≠4【答案】B【解析】试题分析:﹣4≥0解得≥4,故选:B .考点:函数自变量的取值范围.9.下列运算中,正确的是( )A .2a ﹣5a 3=2a 8B .21111xx x x -+=++C .212-1=22﹣1D .22393m m mm m -=-+【答案】B【解析】试题分析:A 、结果是2a ﹣2,故本选项错误;B 、结果是11x +,故本选项正确;C 、结果是42﹣1,故本选项错误;D 、结果是﹣3mm +,故本选项错误;故选B.考点:单项式乘以单项式法则;分式的加减;平方差公式;分式的除法的应用.10.已知一次函数=b,随着的增大而减小,且b<0,则在直角坐标系内它的大致图象是()A .B .C .D .【答案】A【解析】试题分析:∵一次函数=b,随着的增大而减小,∴<0又∵b<0∴b>0∴此一次函数图象过第一,二,四象限.故选A.考点:一次函数的性质.11.不等式组43128164xx x+>⎧⎨-≤-⎩的最小整数解是()A.0 B.﹣1 C.1 D.2 【答案】A【解析】试题分析:不等式组整理得:124xx⎧>-⎪⎨⎪≤⎩,解得:﹣12<≤4,则不等式组的最小整数解是0,故选A.考点:一元一次不等式组的整数解.12.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是米/分,则根据题意所列方程正确的是()A .1440144010100x x -=-B .1440144010100x x =++ C .1440144010100x x =+- D .1440144010100x x -=+ 【答案】B【解析】 试题分析:设小朱速度是米/分,则爸爸的速度是(100)米/分,由题意得:150060150060+10+100x x --=, 即:1440144010x 100x =++, 故选:B .考点:由实际问题抽象出分式方程.13.如图,在平面直角坐标系中,⊙A 与轴相切于原点O ,平行于轴的直线交⊙A 于M 、N 两点,若点M 的坐标是(﹣4,﹣2),则点N 的坐标为( )A .(1,﹣2)B .(﹣1,﹣2)C .(﹣,﹣2)D .(,﹣2)【答案】B【解析】故选B .考点:垂径定理及勾股定理.14.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB 的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④【答案】C【解析】试题分析:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=12 BC,∵BC=12AB,AB=BD,∴HF=14BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=12 AF,∴AG=14 AB,∵AD=AB,则AD=4AG,故③说法正确,故选:C.考点:菱形的判定和性质;全等三角形的判定和性质.三、解答题(共70分)15.计算:﹣2in30°(﹣13)﹣1﹣3tan60°(1﹣)0.【答案】原式=﹣3﹣.【解析】试题分析:直接利用特殊角的三角函数值以及负指数幂的性质以及零指数幂的性质、二次根式的性质化简进而求出答案.试题解析:原式=﹣2×12﹣3﹣312=﹣3﹣.考点:实数运算.16.居民区内的“广场舞”引起媒体关注,小王想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.【答案】(1)本次被抽查的居民有300人;(2)(3)该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有2800人.【解析】(3)∵4000×(30%40%)=2800(人),∴估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有2800人.考点:条形统计图和扇形统计图的综合运用.17.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.【答案】证明见解析【解析】试题分析:(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.试题解析:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,又∵DF=FB,∴四边形DEBF为菱形.考点:全等三角形的判定;菱形的判定;平行四边形的性质.18.一人自地平面上测得塔顶的仰角为60°,于原地登高50米后,又测得塔顶的仰角为30°,求塔高和此人在地面时到塔底的距离.【答案】塔高是75米,此人在地面时到塔底的距离是25米.【解析】试题分析:用AC表示出BE,BC长,根据BC﹣BE=30得方程求AC,进而求得BC长.试题解析:设BC=米,则DE=BC=米.∵直角△ADE中,tan∠ADE=AD DE,∴AE=DEtan30°=tan30°3(米).同理,直角△ABC中,AC=BCtan60°=(米),根据题意得:﹣33=50,解得:=25,则AC==75(米).答:塔高是75米,此人在地面时到塔底的距离是25米.考点:解直角三角形的应用.19.甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?【答案】(1)2 9 2 92 95949与轴、轴分别交于点A、B,与双曲线2kyx(<0)分别交于点C、D,且C点的坐标为(﹣1,2).(1)分别求出直线AB及双曲线的解析式;(2)求出点D的坐标;(3)利用图象直接写出:当在什么范围内取值时,1>2?【答案】(1)1=3,22yx=-;(2)D点坐标为(﹣2,1);(3)当﹣2<<﹣1时,1>2.【解析】试题分析:(1)因为两个函数的图象都过C点,将C点坐标代入求得m、的值,所以易求它们的解析式;(2)解由两个函数的解析式组成的方程组,得交点坐标D;(3)看在哪些区间1的图象在上方.试题解析:(1)∵1=m与2kyx=过点C(﹣1,2),∴m=3,=﹣2,∴1=3,22yx=-;(2)由题意32y xyx=+⎧⎪⎨=-⎪⎩,解得:12xy=-⎧⎨=⎩,或21xy=-⎧⎨=⎩,∴D点坐标为(﹣2,1);(3)由图象可知:当﹣2<<﹣1时,1>2.考点:函数图象.21.某商场出售一种成本为2021商品,市场调查发现,该商品每天的销售量w(千克)与销售价(元/千克)有如下关系:w=﹣280.设这种商品的销售利润为(元).(1)求与之间的函数关系式;(2)在不亏本的前提下,销售价在什么范围内每天的销售利润随售价增加而增大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?【答案】(1)=﹣2212021600;(2)售价在20210元时,每天的销售利润随售价的增加而增加,售价为30元/千克时每天利润最大是2021;(3)当销售价定为25元/千克时,该农户每天可获得销售利润150元.【解析】试题分析:(1)每天的销售量×每件的利润(﹣2021为这种商品的销售利润;(2)令销售利润为150元,得到关于的方程,解答即可.试题解析:(1)=w(﹣2021(﹣280)(﹣2021﹣2212021600;(2)∵=﹣2212021600=﹣2(﹣30)22021∴售价在20210元时,每天的销售利润随售价的增加而增加,售价为30元/千克时每天利润最大是2021.当=150时可得方程﹣2212021600=150,解这个方程,得1=25,2=35.根据题意,2=35不合题意,应舍去.∴当销售价定为25元/千克时,该农户每天可获得销售利润150元.考点:二次函数的应用.22.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)当BD=6,AB=10时,求⊙O的半径.【答案】(1)AC与⊙O相切,理由见解析;(2)⊙O半径是154.【解析】试题分析:(1)连结OE,如图,由BE平分∠ABD得到∠OBE=∠DBO,加上∠OBE=∠OEB,则∠OBE=∠DBO,于是可判断OE∥BD,再利用等腰三角形的性质得到BD⊥AC,所以OE⊥AC,于是根据切线的判定定理可得AC与⊙O相切;(2)设⊙O半径为r,则AO=10﹣r,证明△AOE∽△ABD,利用相似比得到10106r r-=,然后解方程求出r即可.试题解析:(1)AC与⊙O相切.理由如下:连结OE,如图,∵BE平分∠ABD,∴∠OBE=∠DBO,∵OE=OB,∴∠OBE=∠OEB,∴∠OBE=∠DBO,∴OE∥BD,∵AB=BC,D是AC中点,∴BD⊥AC,∴OE⊥AC,∴AC与⊙O相切;(2)设⊙O半径为r,则AO=10﹣r,由(1)知,OE∥BD,∴△AOE∽△ABD,∴AO OEAB BD=,即10106r r-=,∴r=154,即⊙O半径是154.考点:圆切线的判定:相似经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.解决(2)小题的关键是利用相似比构建方程.23.如图所示,直线:=33与轴交于点A,与轴交于点B.把△AOB沿轴翻折,点A落到点C,抛物线过点B、C和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点330bk b=⎧⎨+=⎩,n).(I)当点﹣3.S△12﹣12×3×3﹣12(m﹣3)n=6,化简得:mn=7 ①,∵,n)在抛物线上,∴n=m2﹣4m3,代入①式整理得:m2﹣3m﹣4=0,解得:m1=4,m2=﹣1,∴n1=3,n2=8,∴,OE=﹣n,BE=3﹣n.S△12)(﹣n)12×3×3﹣12(3﹣n)m=6,化简得:mn=﹣1 ②,∵,n)在抛物线上,∴n=m2﹣4m3,代入②式整理得:m2﹣3m4=0,△=﹣7<0,此方程无解.故此时点P不存在.综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8).方法二:假设存在点P,使S△PBD=6,过点P作直线平行BD,则与BD的距离为d,∵2233+,∴S△PBD=12BD×d,∴d=2,∵BD与轴夹角为45°,∴BB′=4,∴将BD上移或下移4个单位,①上移4个单位,解析式为:=﹣7,∵=2﹣43,∴2﹣3﹣4=0,∴1=4,2=﹣1,②下移4个单位,解析式为=﹣﹣1,∵=2﹣43,∴2﹣34=0,△<0,∴此方程无解,综上所述,点P的坐标为(4,3)或(﹣1,8).考点:二次函数的图象与性质、待定系数法、相似三角形的判定与性质、图形面积计算、解一元二次方程。

2020-2021学年云南大学附中一二一校区九年级(上)期中数学试卷

2020-2021学年云南大学附中一二一校区九年级(上)期中数学试卷

2020-2021学年云南大学附中一二一校区九年级(上)期中数学试卷1.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A. B. C. D.2.抛物线y=35(x+12)2−3的顶点坐标是()A. (12,−3) B. (−12,−3) C. (12,3) D. (−12,3)3.若方程x2−3x−1=0的两根为x1,x2,则1x1+1x2的值为()A. 3B. −3C. 13D. −134.笔筒中有9支型号、颜色完全相同的铅笔,将它们逐一标上1−9的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A. 19B. 29C. 13D. 235.抛物线y=2(x−1)2+c过(−2,y1),(0,y2),(52,y3)三点,则y1,y2,y2大小关系是()A. y2>y3>y1B. y1>y2>y3C. y2>y1>y3D. y1>y3>y26.关于x的一元二次方程(a+1)x2−4x−1=0有两个不相等的实数根,则a的取值范围是()A. a>−5B. a>−5且a≠−1C. a<−5D. a≥−5且a≠−17.下列说法中错误的有()①垂直平分弦的直线经过圆心;②平分弦的直径一定垂直于弦;③相等的圆周角所对的弧相等;④等弧所对的弦相等;⑤等弦所对的弧相等.A. 1个B. 2个C. 3个D. 4个8.圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是()A. 36°B. 60°C. 72°D. 108°9.如图,在菱形ABCD中,以AB为直径画弧分别交BC于点F,交对角线AC于点E,若AB=4,F为BC的中点,则图中阴影部分的面积为()A. 2√3−2π3B. 2√3 C. 4π3−3√3 D. 2π310.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(−3,0),其对称轴为直线x=−12,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④b2−4ac4a<0;⑤若m,n(m<n)为方程a(x+3)(x−2)+3=0的两个根,则m<−3且n>2.其中正确的结论有()A. 5个B. 4个C. 3个D. 2个11.在平面直角坐标系中,点P(2,3)与点Q(−2,m+1)关于原点对称,则m=______.12.已知圆锥的底面半径为20,侧面积为600π,则这个圆锥的母线长为______.13.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有______颗.14.在平面直角坐标系中,把一条抛物线先向上平移2个单位长度,再向左平移3个单位长度得到抛物线y=x2+4x+5,则原抛物线的解析式是______.15.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田(弦×矢+矢 2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式面积=12中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为______平方米.16.已知:如图,⊙O是△ABC的内切圆,分别切BC、AB、AC于点D、E、F,△ABC的周长为24cm,BC=10cm,则AE=______ cm.17.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程______.18.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为______.19.已知等腰三角形的一边长为9,另一边长为方程x2−8x+15=0的根,则该等腰三角形的周长为______.20.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为20m,顶点距水面6m,小孔顶点距水面3m.当水位上涨刚好淹没小孔时,大孔的水面宽度为______m.21.按要求解下列方程.(1)3x2+x−5=0(公式法);(2)(x+2)2−4(x−3)2=0(因式分解法).22.如图所示的正方形网格中(每个小正方形的边长是1,小正方形的顶点叫作格点),△ABC的顶点均在格点上,请在所给平面直角坐标系中按要求画图和解答下列问题:(1)以点C为旋转中心,将△ABC绕点C顺时针旋转90°得△CA1B1,画出△CA1B1;并求出点B在旋转过程中所经过的路径长为______;(2)作出△ABC关于点A成中心对称的△AB2C2;23.2019年12月以来,湖北省武汉市部分医院陆续发现不明原因肺炎病例,现已证实该肺炎为一种新型冠状病毒感染的肺炎,其传染性较强.为了有效地避免交叉感染,需要采取以下防护措施:①戴口罩;②勤洗手;③少出门;④重隔离;⑤捂口鼻;⑥谨慎吃.某公司为了解员工对防护措施的了解程度(包括不了解、了解很少、基本了解和很了解),通过网上问卷调查的方式进行了随机抽样调查(每名员工必须且只能选择一项),并将调查结果绘制成如下两幅统计图.(1)本次共调查了______名员工,条形统计图中m=______;(2)若该公可共有员工1000名,请你估计不了解防护措施的人数;(3)在调查中,发现有4名员工对防护措施很了解,其中有3名男员工、1名女员工.若准备从他们中随机抽取2名,让其在公司内普及防护措施,请用画树状图或列表的方法求恰好抽中一男一女的概率.24.某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?25.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.x+c与x轴交于A,B两点,与y轴交于C点,连结AC,26.如图,抛物线y=ax2−43已知B(−1,0),且抛物线经过点D(2,−2).(1)求抛物线的解析式;S△ABC,求E的坐标;(2)若点E是抛物线上位于x轴下方的一点,且S△ACE=12(3)若点P是y轴上一点,以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标.27.如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E 三点在同一直线上.(1)填空:∠CDE=______(用含α的代数式表示);(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;(3)若α=90°,AC=5√2,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.答案和解析1.【答案】C【解析】解:A、B、D中图形都不是中心对称图形,C中图形是中心对称图形,故选:C.根据中心对称图形的概念判断即可.本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.【答案】B【解析】解:∵y=35(x+12)2−3,∴抛物线y=35(x+12)2−3的顶点坐标是:(−12,−3).故选:B.根据顶点解析式,直接求其顶点坐标.本题考查了二次函数的性质.二次函数y=a(x−ℎ)2+k的对称轴为直线x=ℎ,顶点坐标是(ℎ,k).利用配方法将一般式化为顶点式是解题的关键.3.【答案】B【解析】解:由根与系数的关系得:x1+x2=−ba =3,x1⋅x2=ca=−1.∴1x1+1x2=x1+x2x1x2=−3.故选B.已知方程x2−3x−1=0,由根与系数的关系得:x1+x2=−ba =3,x1⋅x2=ca=−1,再把所求式子通分、代值可求解.本题考查了一元二次方程根与系数的关系.解此类题目要会代数式变形为两根之积或两根之和的形式.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=−ba ,x1⋅x2=ca.4.【答案】C【解析】解:∵在标有1−9的号码的9支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是39=13,故选:C.由标有1−9的号码的9支铅笔中,标号为3的倍数的有3、6、9这3种情况,利用概率公式计算可得.本题主要考查概率公式的应用,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.【答案】D【解析】解:抛物线y=2(x−1)2+c的开口向上,对称轴是直线x=1,当x<1时,y 随x的增大而减小,∵点(−2,y1)、(0,y2)、(52,y3)是抛物线y=2(x−1)2+c上的三点,∴点(52,y3)关于对称轴x=1的对称点是(−12,y3),∵−2<−12<0,∴y1>y3>y2,故选:D.先求出抛物线的对称轴和开口方向,根据二次函数的性质比较即可.本题考查了二次函数图象上点的坐标特征和二次函数的性质,能熟记二次函数的性质是解此题的关键.6.【答案】B【解析】【分析】本题考查了一元二次方程的定义及根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.关于一元二次方程有关的求根问题中,方程x2−x+a=0有两个不相等的实数根,方程必须满足△=b2−4ac>0,即可求得.【解答】解:∵关于x的一元二次方程(a+1)x2−4x−1=0有两个不相等的实数根,∴△=b2−4ac=16+4a+4>0,解得a>−5,∵a+1≠0,∴a≠−1.故选:B.7.【答案】C【解析】解:垂直平分弦的直线经过圆心,所以①的说法正确;平分弦(非直径)的直径一定垂直于弦,所以②的说法错误;在同圆或等圆中,相等的圆周角所对的弧相等,所以③的说法错误;等弧所对的弦相等,所以④的说法正确;在同圆或等圆中,等弦所对的弧对应相等,所以⑤的说法错误.故选:C.利用垂径定理对①②进行判断;根据圆周角定理对③进行判断;根据圆心角、弧、弦的关系对④⑤进行判断.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.8.【答案】C【解析】【分析】本题考查了正多边形和圆的知识,题目中还用到了三角形的外角的性质及正多边形的性质等,比较简单.首先根据正五边形的性质得到AB=BC=CD,∠ABC=∠BCD=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠CBD=∠BDC=180°−108°2=36°,最后利用三角形的外角的性质得到∠APB=∠DBC+∠ACB=72°.【解答】解:∵五边形ABCDE为正五边形,∴AB=BC=CD,∠ABC=∠BCD=108°,∴∠BAC=∠BCA=∠CBD=∠BDC=180°−108°2=36°,∴∠APB=∠DBC+∠ACB=72°,故选:C.9.【答案】D【解析】解:如图,取AB的中点O,连接AF,OF.∵AB是直径,∴∠AFB=90°,∴AF⊥BF,∵CF=BF,∴AC=AB,∵四边形ABCD是菱形,∴AB=BC=AC,∴△ABC是等边三角形,∴∠OBF=60°,∵OF=OB,∴△OBF是等边三角形,∵∠CEF+∠AEF=180°,∠AEF+∠ABF=180°,∴∠CEF=∠ABF=60°,∵∠ECF=60°,∴△ECF是等边三角形,∵CF=BF,∴△CEF≌△BOF,∴S阴=S扇形OBF=60⋅π⋅22360=2π3,故选:D.如图,取AB的中点O,连接AF,OF.证明△ABC是等边三角形,把问题转化为S阴=S 扇形OBF ,由此即可解决问题.本题考查扇形的面积,菱形的性质,等边三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.10.【答案】B【解析】解:由抛物线y =ax 2+bx +c(a ≠0)与x 轴交于点(−3,0),其对称轴为直线x =−12可得, 9a −3b +c =0,−b 2a =−12,即a =b ,与x 轴的另一个交点为(2,0),4a +2b +c =0, 抛物线开口向下,a <0,b <0,抛物线与y 轴交于正半轴,因此c >0,所以,abc >0,因此①正确;由9a −3b +c =0,而a =b ,所以6a +c =0,又a <0,因此3a +c >0,所以②正确;抛物线的对称轴为x =−12,a <0,因此当x <−12时,y 随x 的增大而增大,所以③不正确;由于抛物线的顶点在第二象限,所以4ac−b 24a >0,因此④正确;抛物线与x 轴的交点为(−3,0)(2,0),因此当y =−3时,相应的x 的值应在(−3,0)的左侧和(2,0)的右侧,因此m <−3,n >2,所以⑤正确;综上所述,正确的结论有:①②④⑤,故选:B .根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时相应a 、b 、c 之间的关系,进行综合判断即可.本题考查二次函数的图象和性质,理解和掌握抛物线的位置与系数a 、b 、c 的关系是正确判断的前提.11.【答案】−4【解析】解:根据两个点关于原点对称,则横、纵坐标都是原数的相反数,得m+1=−3,∴m=−4.故答案为−4.平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),即求关于原点的对称点时,横、纵坐标都变成原数的相反数.本题主要考查了平面直角坐标系内两点关于原点的对称点时,横、纵坐标都变成原数的相反数,难度适中.12.【答案】30【解析】解:设圆锥的母线长为l,⋅2π⋅20⋅l=600π根据题意得12解得l=30,即这个圆锥的母线长为30.故答案为30.设圆锥的母性长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面⋅2π⋅20⋅l=600π,然后的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12解方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13.【答案】14【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白珠子的频率得到相应的等量关系.【解答】解:由题意可得,66+n=0.3,解得n=14.故估计盒子中黑珠子大约有14个.故答案为:14.14.【答案】y=x2−2x【解析】解:y=x2+4x+5=(x+2)2+1,将其向右平移3个单位,再向下平移2个单位,得到原抛物线的解析式为:y=(x+2−3)2+1−2=(x−1)2−1,即y=x2−2x.故答案是:y=x2−2x.把y=x2+4x+5向右平移3个单位,再向下平移2个单位,得到原抛物线的解析式.此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.15.【答案】10【解析】解:∵弦AB=8米,半径OC⊥弦AB,∴AD=4,∴OD=√OA2−AD2=3,∴OA−OD=2,∴弧田面积=12(弦×矢+矢 2)=12×(8×2+22)=10,故答案为:10.根据垂径定理得到AD=4,由勾股定理得到OD=√OA2−AD2=3,求得OA−OD=2,根据弧田面积=12(弦×矢+矢 2)即可得到结论.此题考查垂径定理的应用,关键是根据垂径定理和扇形面积解答.16.【答案】2【解析】解:∵⊙O是△ABC的内切圆,分别切BC、AB、AC于点D、E、F,设AF=AE=x;BD=BF=y;CE=CD=z,根据题意得:{2x +2y +2z =24y +z =10, 解得x =2,∴AE =2.由切线长定理,可知:AE =AF ,CD =CE ,BF =BD ,设AF =AE =x ;BD =BF =y ;CE =CD =z ,利用已知数据建立方程组即可求出AE 的长.此题主要是考查了切线长定理,用已知数和未知数表示所有的切线长,再进一步列方程组求解.17.【答案】(30−2x)(20−x)=6×78【解析】解:设道路的宽为xm ,由题意得:(30−2x)(20−x)=6×78,故答案为:(30−2x)(20−x)=6×78.设道路的宽为xm ,将6块草地平移为一个长方形,长为(30−2x)m ,宽为(20−x)m.根据长方形面积公式即可列方程(30−2x)(20−x)=6×78.此题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.18.【答案】√10 【解析】解:在△ABC 中,∠C =90°,AC =4,BC =3,∴AB =5,∵△ABC 绕点A 逆时针旋转得到△AED ,∴∠DEA =∠C =90°,AE =AC =4,DE =BC =3,∴BE =AB −AE =5−4=1,连接BD ,在Rt △BDE 中,由勾股定理可得BD =√DE 2+BE 2=√32+12=√10, 即B 、D 两点间的距离为√10,故答案为:√10.由旋转的性质可求得AE 、DE ,由勾股定理可求得AB ,则可求得BE ,连接BD ,在Rt △BDE中可求得BD 的长.本题主要考查旋转的性质,掌握旋转前后对应线段相等、对应角相等是解题的关键.19.【答案】19或21或23【解析】【分析】本题考查了解一元二次方程和等腰三角形性质,三角形的三边关系定理的应用,因式分解法求出方程的解是根本,根据等腰三角形的性质分类讨论是关键.求出方程的解,分为两种情况,看看是否符合三角形三边关系定理,求出即可.【解答】解:由方程x2−8x+15=0得:(x−3)(x−5)=0,∴x−3=0或x−5=0,解得:x=3或x=5,当等腰三角形的三边长为9、9、3时,其周长为21;当等腰三角形的三边长为9、9、5时,其周长为23;当等腰三角形的三边长为9、3、3时,3+3<9,不符合三角形三边关系定理,舍去;当等腰三角形的三边长为9、5、5时,其周长为19;综上,该等腰三角形的周长为19或21或23,故答案为19或21或23.20.【答案】10√2【解析】解:如右图所示,点C为抛物线顶点,坐标为(0,6),则点A的坐标为(−10,0),点B的坐标为(10,0),设抛物线ACB的函数解析式为y=ax2+6,∵点A在此抛物线上,∴0=a×102+6,,解得,a=−6100x2+6,即抛物线ACB的函数解析式为y=−6100当y =3时,3=−6100x 2+6,解得,x =±5√2,∴当水位上涨刚好淹没小孔时,大孔的水面宽度为:5√2−(−5√2)=10√2(m), 故答案为:10√2.根据题意,可以画出相应的抛物线,然后即可得到大抛物线的解析式,然后令y =3,求出相应的x 的值,即可得到当水位上涨刚好淹没小孔时,大孔的水面宽度.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.21.【答案】解:(1)∵a =3,b =1,c =−5,∴b 2−4ac =1−4×3×(−5)=61>0,∴x 1=−1+√616,x 2=−1−√616;(2)∵(x +2)2−4(x −3)2=0,∴[(x +2)+(2x −6)][(x +2)−(2x −6)]=0,∴(3x −4)(−x +8)=0,则3x −4=0或−x +8=0∴x 1=43,x 2=8.【解析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22.【答案】√52π【解析】解:(1)如图,△CA 1B 1即为所求.点B 在旋转过程中所经过的路径长=90⋅π⋅√5180=√52π. 故答案为:√52π.(2)如图,△AB2C2即为所求.(1)分别作出A,B的对应点A1,B1即可,利用弧长公式计算即可.(2)分别作出点B,C的对应点B2,C2即可.本题考查作图−旋转变换,弧长公式等知识,解题的关键是熟练掌握旋转变换的性质,属于中考常考题型.23.【答案】60 20【解析】解:(1)本次调查的员工总人数为24÷40%=60(名),条形统计图中m=60−(12+24+4)=20,故答案为:60,20;=200(名);(2)估计不了解防护措施的人数为1000×1260(3)用列表法表示所有可能出现的结果如下:女男1男2男3女女,男女,男女,男男1男,女男,男男,男男2男,女男,男男,男男3男,女男,男男,男由表格可知,从4名学生中,随机抽取2名学生,共有12种情况,且每种情况出现的可能性相同,其中正好是1名男生和1名女生的情况有6种,所以恰好抽中一男一女的概率为1.2(1)用“了解很少”的人数除以其对应的百分比可得总人数,根据四种了解程度的人数之和等于总人数可得m的值;(2)用总人数乘以样本中不了解防护措施的人数所占比例;(3)用列表法表示所有可能出现的结果,找出“一男一女”的结果数,即可求出相应的概率.本题考查条形统计图、扇形统计图的意义和制作方法、列表法树状图法求随机事件发生的概率,从统计图中获取数量和数量之间的关系以及列举出所有可能出现的结果数是解决问题的关键.24.【答案】解:(1)当x =25时,y =2000÷(25−15)=200(千克),设y 与x 的函数关系式为:y =kx +b ,把(20,250),(25,200)代入得:{20k +b =25025k +b =200, 解得:{k =−10b =450, ∴y 与x 的函数关系式为:y =−10x +450;(2)设每天获利W 元,W =(x −15)(−10x +450)=−10x 2+600x −6750=−10(x −30)2+2250,∵a =−10<0,∴开口向下,∵对称轴为x =30,∴在x ≤28时,W 随x 的增大而增大,∴x =28时,W 最大值=−10×4+2250=2210(元),答:售价为28元时,每天获利最大为2210元.【解析】此题主要考查了二次函数的应用以及一次函数应用,正确利用二次函数增减性分析是解题关键.(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)首先表示出每天的获利,进而利用配方法结合二次函数增减性得出答案.25.【答案】解:(1)直线DE 与⊙O 相切,理由如下:连接OD ,∵OA=OD,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°−90°=90°,∵OD为圆的半径,∴直线DE与⊙O相切;(2)连接OE,∵OA=2,AC=6,则OD=2,OC=4,设DE=x,则EB=ED=x,CE=8−x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8−x)2=22+x2,解得:x=4.75,则DE=4.75.【解析】本题考查了直线与圆的位置关系,线段垂直平分线的性质以及勾股定理,熟练掌握直线与圆相切的判定是解本题的关键.(1)直线DE与圆O相切,连接OD,由OD=OA,利用等边对等角得到∠A=∠ODA,再利用线段垂直平分线的性质得到∠B=∠EDB,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8−x,在直角三角形OCE和ODE中,利用勾股定理列出关于x的方程,解方程得到x的值,即可确定出DE的长.26.【答案】解:(1)把B(−1,0),D(2,−2)代入y =ax 2−43x +c 得{a +43+c =04a −83+c =−2, 解得:{a =23c =−2. 故抛物线的解析式为y =23x 2−43x −2;(2)当y =0时,23x 2−43x −2=0,解得x 1=−1,x 2=3,∴A(3,0),∴AB =4,当x =0时,y =−2,∴C(0,−2),∴OC =2,∴S △ABC =12×4×2=4,设AC 的解析式为y =kx +b ,把A(3,0),C(0,−2)代入y =kx +b 得{3k +b =0b =−2, 解得{k =23b =−2. ∴y =23x −2,如图1,过点E 作x 轴的垂线交直线AC 于点F ,设点F(a,23a −2),点E(a,23a 2−43a −2),其中−1<a <3,∴S △ACE =12EF|x A −x C |=32|23a 2−a|={a 2−3a(−1<a <0)−a 2+3a(0<a <3), ∵S △ACE =12S △ABC ,∴a 2−3a =2或−a 2+3a =2,解得a 1=3+√172(舍去),a 2=3−√172,a 3=1,a 4=2, ∴E 1(3−√172,1−√173),E 2(1,−83),E 3(2,−2);(3)在y =ax 2+bx −2中,当x =0时,y =−2,∴C(0,−2),∴OC =2,如图2,设P(0,m),则PC=m+2,OA=3,AC=√22+32=√13,①当PA=CA时,则OP1=OC=2,∴P1(0,2);②当PC=CA=√13时,即m+2=√13,∴m=√13−2,∴P2(0,√13−2);③当PC=PA时,点P在AC的垂直平分线上,则△AOC∽△P3EC,∴√13P3C =√132,∴P3C=134,∴m=54,∴P3(0,54),④当PC=CA=√13时,m=−2−√13,∴P4(0,−2−√13).综上所述,P点的坐标(0,2)或(0,√13−2)或(0,54)或(0,−2−√13).【解析】(1)根据待定系数法可求抛物线的解析式;(2)在y=23x2−43x−2中,当y=0时,23x2−43x−2=0,可得A(3,0),当x=0时,y=−2,得到OC=2,根据待定系数法可求AC的解析式,如图1,过点E作x轴的垂线交直线AC于点F,设点F(a,23a−2),点E(a,23a2−43a−2),其中−1<a<3根据S△ACE=12S△ABC,得到关于a的方程,解方程即可求解;(3)如图2,设P(0,m),则PC=m+2,OA=3,根据勾股定理得到AC=√22+32=√13,①当PA=CA时,则OP1=OC=2,②当PC=CA=√13时,③当PC=PA时,点P在AC的垂直平分线上,根据相似三角形的性质得到P3(0,54),④当PC=CA=√13时,于是得到结论.本题考查了二次函数综合题,涉及待定系数法求函数解析式,等腰三角形的判定和性质,三角形的面积公式,正确地作出辅助线是解题的关键.27.【答案】解:(1)180−α2;(2)AE=BE+2√33CF;理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE,∴△ACD≌△BCE,∴AD=BE,CD=CE,∠DCE=60°,∴△CDE是等边三角形,且CF⊥DE,∴DF=EF=√33CF,∵AE=AD+DF+EF,∴AE=BE+2√33CF;(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=5√2,∴∠CAB=∠ABC=45°,AB=10,∵∠ACB=90°=∠AGB,∴点C,点G,点B,点A四点共圆,∴∠AGC=∠ABC=45°,且CE⊥AG,∴∠AGC=∠ECG=45°,∴CE=GE,∵AB=10,GB=6,∠AGB=90°,∴AG=√AB2−GB2=8,∵AC2=AE2+CE2,∴(5√2)2=(8−CE)2+CE2,∴CE=7(不合题意舍去),CE=1,若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7,∴点C到AG的距离为1或7.【解析】【分析】本题是几何变换综合题,考查了全等三角形的性质,旋转的性质,等边三角形的性质,勾股定理,利用勾股定理列出方程是本题的关键.(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF=√33CF,即可求解;(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解.【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE∴△ACD≌△BCE,∠DCE=α∴CD=CE∴∠CDE=180−α2故答案为:180−α2(2)AE=BE+2√33CF理由如下:如图,∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE ∴△ACD≌△BCE∴AD=BE,CD=CE,∠DCE=60°∴△CDE是等边三角形,且CF⊥DE∴DF=EF=√33CF∵AE=AD+DF+EF∴AE=BE+2√33CF(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,∵∠ACB=90°,AC=BC=5√2,∴∠CAB=∠ABC=45°,AB=10∵∠ACB=90°=∠AGB∴点C,点G,点B,点A四点共圆∴∠AGC=∠ABC=45°,且CE⊥AG∴∠AGC=∠ECG=45°∴CE=GE∵AB=10,GB=6,∠AGB=90°∴AG=√AB2−GB2=8∵AC2=AE2+CE2,∴(5√2)2=(8−CE)2+CE2,∴CE=7(不合题意舍去),CE=1若点G在AB的下方,过点C作CF⊥AG,同理可得:CF=7∴点C到AG的距离为1或7.。

2020-2021云南师范大学附属中学九年级数学上期末试题含答案

2020-2021云南师范大学附属中学九年级数学上期末试题含答案

10.下列对一元二次方程 x2+x﹣3=0 根的情况的判断,正确的是( )
A.有两个不相等实数根
B.有两个相等实数根
C.有且只有一个实数根
D.没有实数根
11.下列对二次函数 y=x2﹣x 的图象的描述,正确的是( )
A.开口向下
B.对称轴是 y 轴
C.经过原点
D.在对称轴右侧部分是下降的
12.当 ab>0 时,y=ax2 与 y=ax+b 的图象大致是( )
b ,当 a>0 时,抛物线 y=ax2+bx+c(a≠0)的开口向上,当 a<0 时,抛物线 y=ax2+bx+c 2a
(a≠0)的开口向下,c=0 时抛物线经过原点,熟练掌握相关知识是解题的关键.
2020-2021 云南师范大学附属中学九年级数学上期末试题含答案
一、选择题
1.已知 a , b 是方程 x2 x 3 0 的两个实数根,则 a2 b 2019 的值是( )
A.2023
B.2021
C.2020
D.2019
2.如图,在宽为 20 米、长为 32 米的矩形地面上修筑同样宽的道路(图中阴影部分),余
是黑球的概率为 3 ”,则这个袋中白球大约有_____个. 4
三、解答题
21.有四张完全相同的卡片,正面分别写有四个角度现将这四张卡片洗匀后,背面朝上;
(1)若从中任意抽取一张,求抽到锐角卡片的概率; (2)若从中任意抽取两张,求抽到两张角度恰好互余卡片的概率; 22.石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为 80 元,销售价为 120 元 时,每天可售出 20 件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大 销售量,增加利润,经市场调查发现,如果每件童装降价 1 元,那么平均可多售出 2 件. (1)设每件童装降价 x 元时,每天可销售______ 件,每件盈利______ 元;(用 x 的代数 式表示) (2)每件童装降价多少元时,平均每天赢利 1200 元. (3)要想平均每天赢利 2000 元,可能吗?请说明理由. 23.如图,以矩形 ABCD 的边 CD 为直径作⊙O,点 E 是 AB 的中点,连接 CE 交⊙O 于点 F,连接 AF 并延长交 BC 于点 H.

云南省云南大学附属中学2021-2022学年九年级上学期12月月考数学试卷带讲解

云南省云南大学附属中学2021-2022学年九年级上学期12月月考数学试卷带讲解
13.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,则BF的长度是_________.
2或
【分析】设BF= ,根据折叠的性质用x表示出B′F和FC,然后分两种情况进行讨论(1)△B′FC∽△ABC和△B′FC∽△BAC,最后根据两三角形相似对应边成比例即可求解.
14.如图,点A在反比例函数y= 的图像上,过点A作AB⊥x轴于点B,C为x轴正半轴上一点,连接AC交y轴于点D,tan∠ACB= ,AO平分∠CAB, ,则k=_____________
-6
【分析】由tan∠ACB= 可设AB=3a,则BC=4a,AC=5a.由AO平分∠CAB可得 .由 和 有相同的底AB,即得 ,即得出k=- .
(30+30 )
【分析】过点C作CD⊥AB,则在Rt△ACD中易得AD的长,再在Rt△BCD中求出BD,相加可得AB的长.
【详解】解:过C作CD⊥AB于D点,由题意可得,
∠ACD=30°,∠BCD=45°,AC=60.
在Rt△ACD中,cos∠ACD= ,
∴AD= AC=30,CD=AC•cos∠ACD=60× ,
2021-2022学年云九年级(上)诊断数学试卷
一、单选题(每小题4分,共32分)
1.如图,该立体图形的左视图为( )
A. B. C. D.
D
【分析】根据从左边看得到的图形是左视图,可得答案.
【详解】解:该立体图形的左视图为 选项,
故选: .
【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
2.如图, 的顶点是正方形网格的格点,则 的值为()

2020-2021学年云南大学附中一二一校区九年级上学期期中数学试卷(含解析)

2020-2021学年云南大学附中一二一校区九年级上学期期中数学试卷(含解析)

2020-2021学年云南大学附中一二一校区九年级上学期期中数学试卷一、选择题(本大题共10小题,共30.0分)1.如图图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.2.若二次函数y=x2−mx的对称轴是x=−3,则关于x的方程x2+mx=7的解是()A. x1=0,x2=6B. x1=1,x2=7C. x1=1,x2=−7D. x1=−1,x2=73.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(−1,0),其部分图象如图所示,下列结论:①b2−4ac>0;②方程ax2+bx+c=0的两个根是x1=−1,x2=3:③3a+c>0;④当y>0时,x的取值范围是−1≤x<3;⑤当x<0时,y随x增大而增大,其中结论正确的个数是()A. 4个B. 3个C. 2个D. 1个4.下列说法正确的是()A. 天气预报说“我市明天的降水概率为70%”,意味着该市明天一定下雨B. “买中奖率为110的奖券10张,中奖”是必然事件C. “汽车累计行驶10000km,从未出现故障”是随机事件D. 甲、乙两人的10次数学测试成绩,方差越小的成绩越好5.已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=−1,与x轴的一个交点在(−3,0)和(−2,0)之间,其部分图象如图所示,则下列结论:①点(−72,y1),(−32,y2),(54,y3)是抛物线上的点,则y1<y2<y3;②3b+2c<0;③t(at+b)≤a−b(t为任意实数),其中正确结论的个数是()A. 0B. 1C. 2D. 36.下列方程中,是关于x的一元二次方程为()A. 3x+1=5x+7B. 1x2+x−1=0C. x2−5=0D. ax2−bx=5(a和b为常数)7.如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的AB⏜多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒23π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A. −2B. −1C. 0D. 18.如图,△ABC中,∠A=32°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形中∠B 为()A. 77°B. 76°C. 75°D. 74°9.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是()A. 2−π4B. 32−π4C. 2−π8D.3 2−π810.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c>0;③a−b+c<0;其中正确的结论有()A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共10小题,共30.0分)11.点P(3,−2)关于原点中心对称的点的坐标是______ .12.若圆锥的底面直径为6cm,母线长为10cm,则圆锥的侧面积为______cm2.13.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为3m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是______m2.14.抛物线y=a(x−1)2+3向右平移1个单位,向上平移2个单位后经过点(1,7).则a的值是______ .15.小帅家的新房子刚装修完,便遇到罕见的大雨,于是他向爸爸提议给窗户安上遮雨罩.如图1所示的是他了解的一款雨罩.它的侧面如图2所示,其中顶部圆弧AB的圆心O在整直边缘D上,另一条圆弧BC的圆心O.在水平边缘DC的廷长线上,其圆心角为90°,BE⊥AD于点E,则根据所标示的尺寸(单位:c)可求出弧AB所在圆的半径AO的长度为______cm.16.如图,I是△ABC的内心,∠B=60°,则∠AIC=______.17.如图,在长为32米,宽为20米的矩形地面上修筑同样宽度的道路(图中阴影面积),余下的部分种植草坪,要使草坪的面积为540平方米,则道路的宽度为______米.18.如图,在平行四边形ABCD中,AB=2√13,AD=4,AC⊥BC.则BD=______.19.三角形两边长分别是2,4,第三边长为偶数,第三边长为______.20.学校打算用16m长的篱笆围成长方形的生物园饲养小兔,小兔活动范围的最大面积是______m2.三、解答题(本大题共7小题,共56.0分)21.解方程:x(3x+1)=4(3x+1)22.如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(−4,6),(−1,4).(1)请在图中的网格内建立平面直角坐标系;请画出△ABC关于x轴对称的△A1B1C1;将△ABC以点C为旋转中心顺时针旋转90°,画出旋转后对应的△A2B2C;(2)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.23.某校七、八年级各有300名学生,近期对他们“2020年新型冠状病毒”防治知识进行了线上测试,为了了解他们的掌握情况,从七、八年级各随机抽取了50名学生的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息:a.七年级的频数分布直方图如下(数据分为5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.七年级学生成绩在80≤x<90的这一组是:8080.58182828383.58484858686.587888989c.七、八年级学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七年级85.3m90八年级87.28591根据以上信息,回答下列问题:(1)表中m的值为______ ;(2)在随机抽样的学生中,防治知识成绩为84分的学生,在______ 年级排名更靠前,理由是______ ;(3)若各年级防治知识的前90名将参加线上防治知识竞赛,预估七年级分数至少达到______ 分的学生才能入选;(4)若85分及以上为“优秀”,请估计七年级达到“优秀”的人数.24. 2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x…3456…售价y1/元…12141618…(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所获得的利润最大?最大利润是多少元?25. 如图,点A、B、C是⊙O上的三点,AB//OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P,若AB=4,OP=2PE,求⊙O的半径和OP的长.26. 如图所示,平面直角坐标系中,O为坐标原点,二次函数y=x2−bx+c(b>0)的图象与x轴交于A(−1,0)、B两点,与y轴交于点C;(1)求c与b的函数关系式;(2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE=DF,求此二次函数解析式;。

2020-2021云南师范大学附属中学九年级数学上期中试题含答案

2020-2021云南师范大学附属中学九年级数学上期中试题含答案

2020-2021云南师范大学附属中学九年级数学上期中试题含答案一、选择题1.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >0 2.如图在平面直角坐标系中,将△ABO 绕点A 顺时针旋转到△AB 1C 1的位置,点B 、O 分别落在点B 1、C 1处,点B 1在x 轴上,再将△AB 1C 1绕点B 1顺时针旋转到△A 1B 1C 2的位置,点C 2在x 轴上,将△A 1B 1C 2绕点C 2顺时针旋转到△A 2B 2C 2的位置,点A 2在x 轴上,依次进行下去…若点A (32,0),B (0,2),则点B 2018的坐标为( )A .(6048,0)B .(6054,0)C .(6048,2)D .(6054,2) 3.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤- 4.已知实数x 满足(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,那么x 2﹣2x +1的值为( ) A .﹣1或3 B .﹣3或1 C .3D .15.一元二次方程2410x x --=配方后可化为( )A .2(2)3x +=B .2(2)5x +=C .2(2)3x -=D .2(2)5x -=6.如图,是两条互相垂直的街道,且A 到B ,C 的距离都是7 km ,现甲从B 地走向A 地,乙从A 地走向C 地,若两人同时出发且速度都是4km /h ,则两人之间的距离为5km 时,是甲出发后( )A .1hB .0.75hC .1.2h 或0.75hD .1h 或0.75h7.如图所示,⊙O 是正方形ABCD 的外接圆,P 是⊙O 上不与A 、B 重合的任意一点,则∠APB 等于( )A .45°B .60°C .45° 或135°D .60° 或120°8.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( ) A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=219.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .210.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m ,另一边减少了2m ,剩余空地的面积为18m 2,求原正方形空地的边长.设原正方形的空地的边长为xm ,则可列方程为( )A .(x+1)(x+2)=18B .x 2﹣3x+16=0C .(x ﹣1)(x ﹣2)=18D .x 2+3x+16=011.如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( )A .30πcm 2B .48πcm 2C .60πcm 2D .80πcm 212.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2y x =B .2(12)y x =-C .(12)y x x =-D .2(12)y x =-二、填空题13.如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于D .若AC =6,BD =52,则BC 的长为_____.14.若关于x 的方程x 2+2x +m =0没有实数根,则m 的取值范围是_______.15.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是______.16.已知圆锥的底面半径是2cm ,母线长是3cm ,则圆锥侧面积是_________.17.将抛物线y=﹣5x 2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________ .18.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.19.已知圆锥的母线长为5cm ,高为4cm ,则该圆锥的侧面积为_____ cm ²(结果保留π).20.一元二次方程x 2=3x 的解是:________.三、解答题21.某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?22.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?23.(1)解方程:x2﹣2x﹣8=0;(2)解不等式组3(2)1112x xx--<⎧⎪⎨-<⎪⎩24.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:()1请估计:当实验次数为10000次时,摸到白球的频率将会接近________;(精确到0.1)()2假如你摸一次,你摸到白球的概率P(摸到白球)=________;()3如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?25.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号. 【详解】∵抛物线开口向下, ∴a <0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣2ba>0, ∴b >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0, 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.2.D解析:D 【解析】 【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B 、B 2、B 4…每偶数之间的B 相差6个单位长度,根据这个规律可以求得B 2018的坐标. 【详解】 ∵A (32,0),B (0,2),∴OA=32,OB=2,∴Rt△AOB中,AB52 =,∴OA+AB1+B1C2=32+2+52=6,∴B2的横坐标为:6,且B2C2=2,即B2(6,2),∴B4的横坐标为:2×6=12,∴点B2018的横坐标为:2018÷2×6=6054,点B2018的纵坐标为:2,即B2018的坐标是(6054,2).故选D.【点睛】此题考查了点的坐标规律变换以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.3.D解析:D【解析】【分析】由﹣2a2+4a﹣5=﹣2(a﹣1)2﹣3可得:x≤﹣3.【详解】∵x=﹣2a2+4a﹣5=﹣2(a﹣1)2﹣3≤﹣3,∴不论a取何值,x≤﹣3.故选D.【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.4.D解析:D【解析】【分析】设x2﹣2x+1=a,则(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0化为a2+2a﹣3=0,求出方程的解,再判断即可.【详解】解:设x2﹣2x+1=a,∵(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0,∴a2+2a﹣3=0,解得:a=﹣3或1,当a=﹣3时,x2﹣2x+1=﹣3,即(x﹣1)2=﹣3,此方程无实数解;当a=1时,x2﹣2x+1=1,此时方程有解,故选:D.此题考查换元法解一元二次方程,借助另外设未知数的方法解一元二次方程使理解更容易,计算更简单.5.D解析:D 【解析】 【分析】根据移项,配方,即可得出选项. 【详解】 解:x 2-4x-1=0, x 2-4x=1, x 2-4x+4=1+4, (x-2)2=5, 故选:D . 【点睛】本题考查了解一元二次方程的应用,能正确配方是解题的关键.6.D解析:D 【解析】 【分析】据题画出图形如图,设走了x 小时,则BF =AG =4x ,AF =7-4x ,根据勾股定理列出方程,解方程即得答案. 【详解】解:如图,设走了x 小时,根据题意可知:BF =AG =4x ,则AF =7-4x ,根据勾股定理,得()()2274425x x -+=,即24730x x -+=.解得:11x =,234x =.故选D. 【点睛】本题考查了勾股定理的应用和一元二次方程的解法,弄清题意,根据勾股定理列出方程是解题的关键.7.C解析:C 【解析】首先连接OA ,OB ,由⊙O 是正方形ABCD 的外接圆,即可求得∠AOB 的度数,又由圆周角定理,即可求得∠APB 的度数. 【详解】 连接OA ,OB ,∵⊙O 是正方形ABCD 的外接圆, ∴∠AOB=90°,若点P 在优弧ADB 上,则∠APB=12∠AOB=45°; 若点P 在劣弧AB 上, 则∠APB=180°-45°=135°.∴∠APB=45°或135°. 故选C .8.D解析:D 【解析】 【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】 解:∵x 2-8x=5,∴x 2-8x+16=5+16,即(x-4)2=21, 故选D . 【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.9.C解析:C 【解析】 【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12bx a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12bx a =-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12bx a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0, 所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++,∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12bx a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-, 根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C . 【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.10.C解析:C【解析】 【分析】 【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =18. 故选C .考点:由实际问题抽象出一元二次方程.11.C解析:C 【解析】 【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果. 【详解】 ∵h =8,r =6, 可设圆锥母线长为l ,由勾股定理,l 10, 圆锥侧面展开图的面积为:S 侧=12×2×6π×10=60π, 所以圆锥的侧面积为60πcm 2. 故选:C . 【点睛】本题主要考查圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.12.C解析:C 【解析】 【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数. 【详解】∵长方形的周长为24cm ,其中一边长为()x cm , ∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =-故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.二、填空题13.8【解析】【分析】连接AD 根据CD 是∠ACB 的平分线可知∠ACD=∠BCD=45°故可得出AD=BD 再由AB 是⊙O 的直径可知△ABD 是等腰直角三角形利用勾股定理求出AB 的长在Rt △ABC 中利用勾股定解析:8【解析】【分析】连接AD ,根据CD 是∠ACB 的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD ,再由AB 是⊙O 的直径可知△ABD 是等腰直角三角形,利用勾股定理求出AB 的长,在Rt △ABC 中,利用勾股定理可得出BC 的长.【详解】连接AD ,∵∠ACB=90°,∴AB 是⊙O 的直径.∵∠ACB 的角平分线交⊙O 于D ,∴∠ACD=∠BCD=45°,∴AD=BD=52. ∵AB 是⊙O 的直径,∴△ABD 是等腰直角三角形,∴AB=22AD BD +=10.∵AC=6,∴BC=2222106AB AC -=-=8.故答案为:8.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.14.【解析】【分析】根据方程没有实数根得出判别式小于0列出关于m 的不等式求解即可【详解】∵关于x 的方程x2+2x +m =0没有实数根∴解得:故填:【点睛】本题主要考查根的判别式和解一元一次不等式熟练运用根 解析:1m >【解析】【分析】根据方程没有实数根得出判别式小于0,列出关于m 的不等式求解即可.【详解】∵关于x 的方程x 2+2x +m =0没有实数根∴2=240m ∆-<解得:1m >故填:1m >.【点睛】本题主要考查根的判别式和解一元一次不等式,熟练运用根的判别式进行根的情况的判断是关键.15.P >Q 【解析】∵抛物线的开口向下∴a <0∵∴b >0∴2a-b <0∵∴b+2a=0x=-1时y=a-b+c <0∴∴3b-2c >0∵抛物线与y 轴的正半轴相交∴c >0∴3b+2c >0∴P=3b-2cQ=b解析:P >Q【解析】∵抛物线的开口向下,∴a <0, ∵02b a-> ∴b >0,∴2a-b <0, ∵02b a-= ∴b+2a=0, x=-1时,y=a-b+c <0. ∴102b bc --+< ∴3b-2c >0, ∵抛物线与y 轴的正半轴相交,∴c >0,∴3b+2c >0,∴P=3b-2c ,Q=b-2a-3b-2c=-2a-2b-2c ,∴Q-P=-2a-2b-2c-3b+2c=-2a-5b=-4b <0∴P >Q ,故答案是:P >Q .【点睛】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.16.【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=【详解】根据圆锥的侧面积公式:底面半径是2cm 母线长是3cm 的圆锥侧面积为故答案是:【点睛】本题考查圆锥的侧面积解题的关键是记住圆锥是侧面积公式 解析:26cm π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2=RL π.【详解】根据圆锥的侧面积公式:RL π底面半径是2cm ,母线长是3cm 的圆锥侧面积为 236ππ⨯⨯=故答案是:26cm π【点睛】本题考查圆锥的侧面积,解题的关键是记住圆锥是侧面积公式.17.【解析】【分析】先确定出原抛物线的顶点坐标为(00)然后根据向左平移横坐标加向下平移纵坐标减求出新抛物线的顶点坐标然后写出即可【详解】抛物线的顶点坐标为(00)∵向左平移1个单位长度后向下平移2个单 解析:25(1)1y x =-+-【解析】【分析】先确定出原抛物线的顶点坐标为(0,0),然后根据向左平移横坐标加,向下平移纵坐标减,求出新抛物线的顶点坐标,然后写出即可.【详解】抛物线251y x =-+的顶点坐标为(0,0),∵向左平移1个单位长度后,向下平移2个单位长度,∴新抛物线的顶点坐标为(-1,-2),∴所得抛物线的解析式是()2511y x =-+-.故答案为:()2511y x =-+-.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键. 18.【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k 由已知条件可得h=2k=9再由条件:它在x 轴上截得的线段长为6求出a 的值即可【详解】解:由题意设此抛物线的解析式为:y=a (x-2)2+9解析:2(2)9y x =--+【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可.【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9,∵且它在x 轴上截得的线段长为6,令y=0得,方程0=a(x-2)2+9,即:ax2-4ax+4a+9=0,∵抛物线ya(x-2)2+9在x轴上的交点的横坐标为方程的根,设为x1,x2,∴x1+x2=4,x1•x2=49aa+,∴|x1-x26=即16-4×49aa+=36解得:a=-1,y=-(x-2)2+9,故答案为:y=-(x-2)2+9.【点睛】此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x轴的交点的横坐标就是方程的根.19.15π【解析】【分析】【详解】解:由图可知圆锥的高是4cm母线长5cm 根据勾股定理得圆锥的底面半径为3cm所以圆锥的侧面积=π×3×5=15πcm²故答案为:15π【点睛】本题考查圆锥的计算解析:15π.【解析】【分析】【详解】解:由图可知,圆锥的高是4cm,母线长5cm,根据勾股定理得圆锥的底面半径为3cm,所以圆锥的侧面积=π×3×5=15πcm².故答案为:15π.【点睛】本题考查圆锥的计算.20.x1=0x2=3【解析】【分析】先移项然后利用因式分解法求解【详解】x2=3xx2-3x=0x(x-3)=0x=0或x-3=0∴x1=0x2=3故答案为:x1=0x2=3【点睛】本题考查了解一元二次解析:x1=0,x2=3【解析】【分析】先移项,然后利用因式分解法求解.【详解】x2=3xx2-3x=0,x(x-3)=0,x=0或x-3=0,∴x 1=0,x 2=3.故答案为:x 1=0,x 2=3【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解三、解答题21.(1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克【解析】【分析】(1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x 元,根据这个等量关系列出方程,解方程即可.【详解】(1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x 元,得:(x ﹣40)[500﹣10(x ﹣50)]=8000,解得:x 1=60,x 2=80.当x =60时,月销售成本为16000元,不合题意舍去.∴x =80.答:销售单价应定为80元/千克.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.22.(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.【解析】【分析】(1)根据题意设平均增长率为未知数x ,再根据题意建立方程式求解.(2)根据题意设每碗售价为未知数y ,再根据题意建立方程式求解.【详解】(1)设平均增长率为x ,则2201)28.8x (+=解得:10.220%x == 2 2.2x =-(舍)·答:年平均增长率为20%(2)设每碗售价定为y 元时,每天利润为6300元()6y -[300+30(25-y )]=6300·解得:120y = 221y =·∵每碗售价不超过20元,所以20y=.【点睛】本题考查了在实际生活中对方程式的建立及求解,熟练掌握方程式的实际运用是本题解题关键.23.(1)x=﹣2或x=4;(2)52<x<3【解析】【分析】(1)用因式分解法求解;(2)分别求不等式,再确定公共解集.【详解】解:(1)∵(x+2)(x﹣4)=0,∴x+2=0或x﹣4=0,解得:x=﹣2或x=4;(2)解不等式x﹣3(x﹣2)<1,得:x>52,解不等式12x-<1,得:x<3,∴不等式组的解集为52<x<3.【点睛】考核知识点:解一元二次方程方程,解不等式组.掌握解不等式组和一元二次方程的基本方法是关键.24.(1)0.6;(2)0.6;(3)见解析.【解析】【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)首先确定40个球的颜色,然后使得黑球和白球的数量相等即可确定答案.【详解】()1∵摸到白球的频率为()0.650.620.5930.6040.6010.5990.60170.6++++++÷≈,∴当实验次数为10000次时,摸到白球的频率将会接近0.6.()2∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)0.6=.()3先得到盒子内白球数24,黑球数16;增加8个黑球(或减少8个白球等).【点睛】本题考查了用频率估计概率的知识,解题的关键是能够了解大量重复试验中,事件发生的频率约等于概率.25.(1)y=-2x+200(30≤x≤60)(2)w=-2(x-65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】【分析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b,根据题意得806010050k bk b=+⎧⎨=+⎩解得:k2b200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x-30)(-2x+200)-450=-2x2+260x-6450=-2(x-65)2 +2000)(3)W =-2(x-65)2 +2000∵30≤x≤60∴x=60时,w有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.。

2020-2021云附(一二一)初三上数学期中试卷

2020-2021云附(一二一)初三上数学期中试卷
⑤若 m, n (m<n ) 为方程 a (x+3) (x- 2) +3=0的两个根, 则 m< -3且n>2. 其中正确的结论有(


-l
x 2r
A. 5个
B. 4个
C. 3个
D. 2个
-t【解答 1 解= 由抛物线y=ax2+bx+c (a学0)与x轴交于点( - 3,。), 其对称轴为直线
x= 可得,
A. a> - 5
B. a> - 5 且a学- I C. a< - 5
D. a二主 - 5 且a学- I
【解答 1 解: X 的一 元二次方程(a+!) x2 -4x-1=0有两个实数根,
:. !::,. =b2 - 4ac= 16+4a叫泣。,
解得a主 - 5
手。 ·:a+I
:.a 学 - I.
故选: D.
-n’’= 《/M
一一
扫 了
故选: D.
D.
C
-t, A二一一一一一δ B
I 0. 如图,抛物线 y=ax2+b州叫)与x轴交于点(斗,0),其对称轴为直线 x= 结合图象分析下列结论=
①abc>O: ①3a+c>O:①当 x<O 时, y 随x的增大而增大=④-b--2--也;-4a一 ac一<O:
X1 X2
A. 3
B. -3
-C
1 3
D. 1 3
【解答 1 解z由根与系数的关系得:
x1+x 2 =-
.E..=3,
a
x1•x 2=三a =- 1.
..-1-←- 1 =一 x一 l 十一X一 2 = - 3.故选 B.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档