线性代数_第五章
线性代数第五章
又因为c1 c 2 即
1 2
0
1 0 2 0
这与1 , 2 互异矛盾,所以假设不成立 即 c1 1 c 2 2 不是 A 的特征向量.
5. 实对称矩阵不相等的特征值所对应的特征向量正交 例 设3阶实对称矩阵 A 的特征值为6,3,3,特征值6对应 的特征向量为 p1
关于实对称矩阵的特征值和特征向量有非常好的 性质,尤其是实对称矩阵正交相似对角阵的过程, 综合考查了求行列式、求解齐次线性方程组、求特 征值和特征向量、正交化及规范化、相似对角化等 内容,加之有二次型的应用背景,非常重要,应熟 练掌握.
典型题目
1. 求方阵的 k 次方
例
2 设A 0 4 1 2 1 1 0 3
A 的 2 重特征值刚好有两个线性无关的特征向量, 所以 A 可以对角化. 即存在可逆的矩阵
1 P ( p1 , p 2 , p 3 ) 0 1 2 1 4 0 0 1 1
使得
1 1 P AP
2
以上就是判断 A 是否可对角化,以及求相似变换 矩阵的过程。这一过程在实对称矩阵和二次型里还 经常用到。
证明 反证法 假设 c1 1 c 2 2 是 A 的特征向量,所对应的特征值为 则有 展开
A ( c1 1 c 2 2 ) ( c1 1 c 2 2 )
Α ( c 1 1 c 2 2 ) c 1 ( Α 1 ) c 2 ( Α 2 ) c 1 1 1 c 2 2 2
det A 1 2 n
1 2 n a11 a 22 a nn
② 设 Ax x ,则有 f ( A ) x f ( ) x 这个式子说明 f ( A ) 的特征值是 f ( ) ,特征向 量不变.
线性代数第五章特征值和特征向量矩阵的对角化
(5)若f(x)是x的多项式,则f()是f(A)的特征值
特征向量保持不变
10
证:(2)∵AX=X A(AX)=A(X) =(AX)=(X)
A2X=2X
再继续施行上述步骤m2次,就得
AmX=mX m是矩阵Am的特征值,且X是Am的对应于 m的特征向量.
(4)当A可逆时, 0 ∵AX=X A1(AX)=A1(X) =A1X
1
1
1
1
3 2
3 1
3
3
1 3
2 3
5100 2
1 3
5100
5100
1 1
5100 1 5100 2 5100 1
5100 1 5100 1 5100 2
33
5.3 实对称矩阵的对角化 1.实对称矩阵特征值的相关性质 2.求正交矩阵的方法
34
共轭矩阵 如果A=(aij)为复矩阵时,用 aij 表示aij的
1=5: 解方程组 (5IA)X=0
4 2 2 1 0 1 5IA= 2 4 2 →0 1 1
2 2 4 0 0 0
1 基础解系: P1 1
1
对应于1=5的全部特征向量为: k1P1 (k10)
2=3= 1 : 解方程组 (IA)X=0
2 2 2 1 1 1 IA= 2 2 2 →0 0 0
k11+k22=0 (2) (2)2(1)k1(12)=0 ∵12 ,0 ∴k1=0 同理可得k2=0
∴与线性无关
推广 设1,2,,r是矩阵A的对应于不同特 征值1,2,,r的特征向量,则1,2,,r线性
无关.
定理 如果1,2,,r是矩阵A的不同特征值, 而(i=1i,12,,i2,,r)的, 线是性ikAi无的关对的应特于征特向征量值,则i向量组 也11线,性12,无,关1.k1,21,22,, 2k2,,r1,r2,,rkr
线性代数第五章 正交性
b = (-1, -1, 2, 2),
中每一个正交.
c = (3, 2, 5, 4),
20
练 习:
设 q1=
1 2
(1,1,1,1)T, q2=
1 2
(1,1,1,
1)T,
用两种方法将它们扩充成 4的一组规范正交基.
作业:
5.1节练习: 1. 2.
5.4节练习: 1. 2.
5.6节练习: 8.
课后练习:
在欧氏空间 4里找出两个单位向量,使它们同时与向量
a = (2, 1, -4, 0),
v2 ||v2||
正 交
基
vn=
xn
xn, v1,
v1 v1
v1
xn, v2,
v2 v2
v2
…
xn, vn1 vn1, vn1
vn1
un
=
vn ||vn||
Span(x1, x2, . . . , xn ) = Span(v1, v2, . . . , vn )
例5
设V = span(x1, x2, x3, x4),求 V的一组规范正交基. 其中x1= (1,−1, 1,−1)T, x2 = (1, 1, 3,−1) T , x3= (2,0, 4,−2)T , x4 = (3, 7, 1, 3)T .
||x|| ||y||
定 理 1 | xTy | ||x|| ||y|| 柯西-施瓦兹不等式 定 理 2 x y xT y = 0 称 x 和 y 正交 .
推广至更一般 向量空间 V
3
内积(P213 5.4 内积空间)
定 义 在向量空间V上定义一种运算,在这种运算下,V 中任意 一对向量 x 和 y,都对应一个实数,记作 x, y,若还满足: 对任意的 x, y, z ∈ V 及 s, t ∈ R,成立 (1) x, x 0 , 取等号当且仅当 x = 0 .
线性代数第五章释疑解难
例题二:矩阵的逆与行列式的计算
问题描述
给定一个矩阵,如何计算其逆矩阵和行列式值?
解题思路
首先,利用行列式的性质计算行列式的值。然后,利用逆矩阵的定义和性质求解。
例题二:矩阵的逆与行列式的计算
解题步骤
1
2
1. 利用行列式的性质,计算给定矩阵的行列式值。
3
2. 利用逆矩阵的定义和性质,求解给定矩阵的逆 矩阵。
线性代数第五章释疑 解难
目录
CONTENTS
• 第五章基本概念回顾 • 第五章中的难点解析 • 常见错误解析与纠正 • 习题解答与解析 • 综合例题解析
01
第五章基本概念回
顾
向量与矩阵的定义
向量
由n个实数组成的有序数列称为n维 向量。
矩阵
由m×n个数按m行n列排列成的数表称 为m行n列矩阵。
向量与矩阵的运算
根据二阶行列式的定义,行列式等于 主对角线上的元素乘积减去副对角线 上的元素乘积。
习题二解答与解析
问题
判断矩阵A是否为正定矩阵。
解答
矩阵A为正定矩阵当且仅当其所有特征值都大于0。
解析
正定矩阵的定义是其所有特征值都大于0,因 此判断矩阵是否为正定矩阵,需要计算其所有 特征值并比较。
习题三解答与解析
向量数乘
标量与向量的每个 分量相乘。
矩阵数乘
标量与矩阵的每个 元素相乘。
向量加法
对应分量相加。
Байду номын сангаас
矩阵加法
对应元素相加。
矩阵乘法
前矩阵的列数等于 后矩阵的行数,按 元素相乘并求和。
线性方程组与矩阵的关系
01
线性代数:第五章二次型
线性代数:第五章⼆次型第五章⼆次型§1 ⼆次型及其矩阵表⽰⼀、⼆次型及其矩阵表⽰设是⼀个数域,⼀个系数在数域中的的⼆次齐次多项式称为数域上的⼀个元⼆次型,简称⼆次型.定义1 设是两组⽂字,系数在数域P中的⼀组关系式(2)称为由到的⼀个线性替换,或简称线性替换.如果系数⾏列式,那么线性替换(2)就称为⾮退化的.线性替换把⼆次型变成⼆次型.令由于所以⼆次型(1)可写成把(3)的系数排成⼀个矩阵(4)它称为⼆次型(3)的矩阵.因为所以把这样的矩阵称为对称矩阵,因此,⼆次型的矩阵都是对称的.令或应该看到⼆次型(1)的矩阵A的元素,当时正是它的项的系数的⼀半,⽽是项的系数,因此⼆次型和它的矩阵是相互唯⼀决定的.由此可得,若⼆次型且,则.令,于是线性替换(4)可以写成或者经过⼀个⾮退化的线性替换,⼆次型还是变成⼆次型,替换后的⼆次型与原来的⼆次型之间有什么关系,即找出替换后的⼆次型的矩阵与原⼆次型的矩阵之间的关系.设(7)是⼀个⼆次型,作⾮退化线性替换(8)得到⼀个的⼆次型,⼆、矩阵的合同关系现在来看矩阵与的关系.把(8)代⼊(7),有易看出,矩阵也是对称的,由此即得.这是前后两个⼆次型的矩阵的关系。
定义2 数域P上两个阶矩阵,称为合同的,如果有数域P上可逆的矩阵,使得.合同是矩阵之间的⼀个关系,具有以下性质:1) ⾃反性:任意矩阵都与⾃⾝合同.2) 对称性:如果与合同,那么与合同.3) 传递性:如果与合同,与合同,那么与合同.因此,经过⾮退化的线性替换,新⼆次型的矩阵与原来⼆次型的矩阵是合同的。
这样把⼆次型的变换通过矩阵表⽰出来,为以下的讨论提供了有⼒的⼯具。
最后指出,在变换⼆次型时,总是要求所作的线性替换是⾮退化的。
从⼏何上看,这⼀点是⾃然的因为坐标变换⼀定是⾮退化的。
⼀般地,当线性替换是⾮退化时,由上⾯的关系即得.这也是⼀个线性替换,它把所得的⼆次型还原.这样就使我们从所得⼆次型的性质可以推知原来⼆次型的⼀些性质.§2 标准形⼀、⼆次型的标准型⼆次型中最简单的⼀种是只包含平⽅项的⼆次型. (1)定理1 数域上任意⼀个⼆次型都可以经过⾮化线性替换变成平⽅和(1)的形式.易知,⼆次型(1)的矩阵是对⾓矩阵,反过来,矩阵为对⾓形的⼆次型就只包含平⽅项.按上⼀节的讨论,经过⾮退化的线性替换,⼆次型的矩阵变到⼀个合同的矩阵,因此⽤矩阵的语⾔,定理1可以叙述为:定理2 在数域上,任意⼀个对称矩阵都合同于⼀对⾓矩阵.定理2也就是说,对于任意⼀个对称矩阵都可以找到⼀个可逆矩阵使成对⾓矩阵.⼆次型经过⾮退化线性替换所变成的平⽅和称为的标准形.例化⼆次型为标准形.⼆、配⽅法1.这时的变量替换为令,则上述变量替换相应于合同变换为计算,可令.于是和可写成分块矩阵,这⾥为的转置,为级单位矩阵.这样矩阵是⼀个对称矩阵,由归纳法假定,有可逆矩阵使为对⾓形,令,于是,这是⼀个对⾓矩阵,我们所要的可逆矩阵就是.2. 但只有⼀个.这时,只要把的第⼀⾏与第⾏互换,再把第⼀列与第列互换,就归结成上⾯的情形,根据初等矩阵与初等变换的关系,取⾏显然.矩阵就是把的第⼀⾏与第⾏互换,再把第⼀列与第列互换.因此,左上⾓第⼀个元素就是,这样就归结到第⼀种情形.3. 但有⼀与上⼀情形类似,作合同变换可以把搬到第⼀⾏第⼆列的位置,这样就变成了配⽅法中的第⼆种情形.与那⾥的变量替换相对应,取,于是的左上⾓就是,也就归结到第⼀种情形.4.由对称性,也全为零.于是,是级对称矩阵.由归纳法假定,有可逆矩阵使成对⾓形.取,就成对⾓形.例化⼆次型成标准形.§3 唯⼀性经过⾮退化线性替换,⼆次型的矩阵变成⼀个与之合同的矩阵.由第四章§4定理4,合同的矩阵有相同的秩,这就是说,经过⾮退化线性替换后,⼆次型矩阵的秩是不变的.标准形的矩阵是对⾓矩阵,⽽对⾓矩阵的秩就等于它对⾓线上不为零的平⽅项的个数.因之,在⼀个⼆次型的标准形中,系数不为零的平⽅项的个数是唯⼀确定的,与所作的⾮退化线性替换⽆关,⼆次型矩阵的秩有时就称为⼆次型的秩.⾄于标准形中的系数,就不是唯⼀确定的.在⼀般数域内,⼆次型的标准形不是唯⼀的,⽽与所作的⾮退化线性替换有关.下⾯只就复数域与实数域的情形来进⼀步讨论唯⼀性的问题.设是⼀个复系数的⼆次型,由本章定理1,经过⼀适当的⾮退化线性替换后,变成标准形,不妨假定化的标准形是. (1)易知就是的矩阵的秩.因为复数总可以开平⽅,再作⼀⾮退化线性替换(2)(1)就变成(3)(3)就称为复⼆次型的规范形.显然,规范形完全被原⼆次型矩阵的秩所决定,因此有定理3 任意⼀个复系数的⼆次型经过⼀适当的⾮退化线性替换可以变成规范形,且规范形是唯⼀的.定理3 换个说法就是,任⼀复数的对称矩阵合同于⼀个形式为的对⾓矩阵.从⽽有两个复数对称矩阵合同的充要条件是它们的秩相等.设是⼀实系数的⼆次型.由本章定理1,经过某⼀个⾮退化线性替换,再适当排列⽂字的次序,可使变成标准形(4)其中是的矩阵的秩.因为在实数域中,正实数总可以开平⽅,所以再作⼀⾮退化线性替换(5)(4) 就变成(6)(6)就称为实⼆次型的规范形.显然规范形完全被这两个数所决定.定理4 任意⼀个实数域上的⼆次型,经过⼀适当的⾮退化线性替换可以变成规范形,且规范形是唯⼀的.这个定理通常称为惯性定理.定义3 在实⼆次型的规范形中,正平⽅项的个数称为的正惯性指数;负平⽅项的个数称为的负惯性指数;它们的差称为的符号差.应该指出,虽然实⼆次型的标准形不是唯⼀的,但是由上⾯化成规范形的过程可以看出,标准形中系数为正的平⽅项的个数与规范形中正平⽅项的个数是⼀致的,因此,惯性定理也可以叙述为:实⼆次型的标准形中系数为正的平⽅项的个数是唯⼀的,它等于正惯性指数,⽽系数为负的平⽅项的个数就等于负惯性指数.定理5 (1)任⼀复对称矩阵都合同于⼀个下述形式的对⾓矩阵:.其中对⾓线上1 的个数等于的秩.(2)任⼀实对称矩阵都合同于⼀个下述形式的对⾓矩阵:,其中对⾓线上1的个数及-1的个数(等于的秩)都是唯⼀确定的,分别称为的正、负惯性指数,它们的差称为的符号差..§4 正定⼆次型⼀、正定⼆次型定义4 实⼆次型称为正定的,如果对于任意⼀组不全为零的实数都有.实⼆次型是正定的当且仅当.设实⼆次型(1)是正定的,经过⾮退化实线性替换(2)变成⼆次型(3)则的⼆次型也是正定的,或者说,对于任意⼀组不全为零的实数都有.因为⼆次型(3)也可以经⾮退化实线性替换变到⼆次型(1),所以按同样理由,当(3)正定时(1)也正定.这就是说,⾮退化实线性替换保持正定性不变.⼆、正定⼆次型的判别定理6 实数域上⼆次型是正定的它的正惯性指数等于.定理6说明,正定⼆次型的规范形为(5)定义5 实对称矩阵A称为正定的,如果⼆次型正定.因为⼆次型(5)的矩阵是单位矩阵E,所以⼀个实对称矩阵是正定的它与单位矩阵合同.推论正定矩阵的⾏列式⼤于零.定义6 ⼦式称为矩阵的顺序主⼦式.定理7 实⼆次型是正定的矩阵的顺序主⼦式全⼤于零.例判定⼆次型是否正定.定义7 设是⼀实⼆次型,如果对于任意⼀组不全为零的实数都有,那么称为负定的;如果都有,那么称为半正定的;如果都有,那么称为半负定的;如果它既不是半正定⼜不是半负定,那么就称为不定的.由定理7不难看出负定⼆次型的判别条件.这是因为当是负定时,就是正定的.定理8 对于实⼆次型,其中是实对称的,下列条件等价:(1)是半正定的;(2)它的正惯性指数与秩相等;(3)有可逆实矩阵,使其中;(4)有实矩阵使.(5)的所有主⼦式皆⼤于或等于零;注意,在(5)中,仅有顺序主⼦式⼤于或等于零是不能保证半正定性的.⽐如就是⼀个反例.证明 Th8,设的主⼦式全⼤于或等于零,是的级顺序主⼦式,是对应的矩阵其中是中⼀切级主⼦式之和,由题设,故当时,,是正定矩阵.若不是半正定矩阵,则存在⼀个⾮零向量,使令与时是正定矩阵⽭盾,故是半正定矩阵.Th8记的⾏指标和列指标为的级主⼦式为,对应矩阵是,对任意,有,其中⼜是半正定矩阵,从⽽.若,则P234,12T,存在使与⽭盾,所以.◇设为级实矩阵,且,则都是正定矩阵.◇设为实矩阵,则都是半正定矩阵.证明是实对称矩阵,令,则是维实向量是半正定矩阵,同理可证是半正定矩阵.◇设是级正定矩阵,则时,都是正定矩阵.证明由于正定,存在可逆矩阵,使,,从⽽为正定矩阵.正定⼜正定, ,正定,正定.对称当时,,从⽽正定.当时,所以与合同,因⽽正定.第五章⼆次型(⼩结)⼀、⼆次型与矩阵1. 基本概念⼆次型;⼆次型的矩阵和秩;⾮退化线性替换;矩阵的合同.2. 基本结论(1) ⾮退化线性替换把⼆次型变为⼆次型.(2) ⼆次型可经⾮退化的线性替换化为⼆次型.(3) 矩阵的合同关系满⾜反⾝性、对称性和传递性.⼆、标准形1. 基本概念⼆次型的标准形;配⽅法.2. 基本定理(1) 数域上任意⼀个⼆次型都可经过⾮退化的线性替换化为标准形式.(2) 在数域上,任意⼀个对称矩阵都合同于⼀对⾓矩阵.三、唯⼀性1. 基本概念复⼆次型的规范形;实⼆次型的规范形,正惯性指数、负惯性指数、符号差.2. 基本定理(1) 任⼀复⼆次型都可经过⾮退化的线性替换化为唯⼀的规范形式的秩.因⽽有:两个复对称矩阵合同它们的秩相等.(2) 惯性定律:任⼀实⼆次型都可经过⾮退化线性替换化为唯⼀的规范形式的秩,为的惯性指数.因⽽两个元实⼆次型可经过⾮退化线性替换互化它们分别有相同的秩和惯性指数.(4) 实⼆次型的标准形式中系数为正的平⽅项的个数是唯⼀确定的,它等于正惯性指数,⽽系数为负的平⽅项的个数就等于负惯性指数.四、正定⼆次型1. 基本概念正定⼆次型,正定矩阵;顺序主⼦式,负定⼆次型,半正定⼆次型,半负定⼆次型,不定⼆次型.2. 基本结论(1) ⾮退化线性替换保持实⼆次型的正定性不变.(2) 实⼆次型正定①与单位矩阵合同,即存在可逆矩阵,使得;②的顺序主⼦式都⼤于零.③的正惯性指数等于.。
线性代数第五章知识要点
(3) An×n 的对角化
(i) A 能对角化的充要条件是 A 有 n 个线性
无关的特征向量.
(ii) 若 A 有 n 个互异的特征值,则 A 与对角
矩阵相似 , 即 A 可对角化.
4. 实对称矩阵的相似矩阵
(1) 实对称矩阵的特征值为实数. (2) 实对称矩阵的对应于不同特征值的特征 向量必正交. (3) 若 是实对称矩阵 A 的 r 重特征值, 则 对应于 的特征向量必有 r 个, 且它们线性无关. (4) 实对称矩阵必可对角化. 即若 A 为 n 阶 实对称矩阵, 则必有正交矩阵 P, 使得 P-1AP = , 其中 是以 A 的n个特征值为对角元素的对角矩 阵.
(7) 定义 4 若 n 阶方阵 A 满足
ATA = E ( 即 A-1 = AT),
则称 A 为正交矩阵.
A = (aij)n×n 为正交矩阵的充要条件是
1, i j; aik a jk δij 0, i j k 1
n
或
a
k 1
n
ki
akj δ ij .
(8) 定义 5 若 P 为正交矩阵, 则线性变换
6. 正定二次型 (1) 定义 9 设有实二次型 f(x) = xTAx,如
果对任何 x 0, 都有 f(x) > 0 (显然 f(0) = 0), 则称 f 为正定二次型, 并称对称矩阵 A 是正定的, 记作 A > 0 ; 如果对任何 x 0 都有 f(x) < 0, 则称 f 为 负定二次型, 并称对称矩阵 A 是负定的, 记作 A < 0.
称为二次型.
二次型可记为 f = xTAx,其中 AT = A. A 称为
二次型 f 的矩阵, f 称为对称矩阵 A 的二次型.对
线性代数第五章相似矩阵
3、标准正交组 由单位向量组成的正交组称为标准正交组.
4、性质
定理 正交向量组必为线性无关组,但反之则不一定成立. 定理 若向量β与 1 , 2 ,, s 中每个向量都正交,则
β与 1 , 2 ,, s 的任一线性组合也正交.
5、正交基 若正交向量组1 , 2 ,, r 为向量空间V上的一个基, 则称 1 , 2 ,, r 为向量空间V上的一个正交基. 6、标准正交基 若标准正交组 1 , 2 ,, r 为向量空间V上的一个基, 则称 1 , 2 ,, r 为向量空间V上的一个标准正交基.
7、施密特(Schmidt)正交化法 设 1 , 2 ,, r 是向量空间V的一个基,要求向量空 间V的一个标准正交基,就是要找到一组两两正交的单 位向量 1 , 2 ,, r ,使 1 , 2 ,, r 与 1 , 2 ,, r 等价, 此问题称为把 1 , 2 ,, r 这组基标准正交化. 1)正交化 令 1 1
1 1 0 令 1 1 , 2 1 0 , 3 2 1 . 1 1 1 1)正交化
1 1 1 1 1 1 1 i , 1 1 ,2 0 , 3 2 . 令 i i 3 2 2 6 1 1 1
(2) 1 2 n a11 a22 ann ;
证明① 当 1 , 2 ,, n 是A的特征值时,A的特征多项
式可分解为 f E A 1 2 n
1 2 n
1 , 2 2 2 1 1 , 1 1 , r 2 , r r 1 , r r r 1 2 r 1 1 , 1 2 , 2 r 1 , r 1
线性代数知识点总结(第5章)
线性代数知识点总结(第5章)(一)矩阵的特征值与特征向量1、特征值、特征向量的定义:设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。
2、特征多项式、特征方程的定义:|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。
|λE-A |=0称为矩阵A的特征方程(λ的n次方程)。
注:特征方程可以写为|A-λE|=03、重要结论:(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量(2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。
(3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。
△4、总结:特征值与特征向量的求法(1)A为抽象的:由定义或性质凑(2)A为数字的:由特征方程法求解5、特征方程法:(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略)(2)解齐次方程(λi E-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λi E-A)个解)6、性质:(1)不同特征值的特征向量线性无关(2)k重特征值最多k个线性无关的特征向量1≤n-r(λi E-A)≤k i(3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σa ii(4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σa ii=αTβ=βTα,λ2=…=λn=0(5)设α是矩阵A属于特征值λ的特征向量,则(二)相似矩阵7、相似矩阵的定义:设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B8、相似矩阵的性质(1)若A与B相似,则f(A)与f(B)相似(2)若A与B相似,B与C相似,则A与C相似(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)【推广】(4)若A与B相似,则AB与BA相似,A T与B T相似,A-1与B-1相似,A*与B*也相似(三)矩阵的相似对角化9、相似对角化定义:如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化。
线性代数第五章 相似矩阵
AX1 1 X1
, AX n 1 X 1 , 2 X 2 , L , n X n
AX 2 2 X 2
L
AX n n X n
由于P X 1 , X 2 ,L , X n 是可逆矩阵, X 1 , X 2 ,L , X n 都不是零向量,它们线性无关。所以, A有n个线性无关的特征向量。证毕
所以kX 2 (k 0)是对应于2 3 1的全部特征向量.
求特征值和特征向量的步骤
(1) 解特征方程 E - A 0, 求得特征值1,2, ,n L (2) 对每一个i,求解方程组
(i E - A) X = 0 的基础解系
基础解系为X i1 , X i 2 ,L , X iri , 则k1 X i1 k2 X i 2 L kri X iri 为A 的属于 特征值 i 的全部特征向量
当1 2时, 解方程(2 E A) X 0
3 1 0 1 行变换 2 E A 4 1 0 0 1 0 0 0
0 1 0
0 0
0
x1 0 x2 0 x c 3
得基础解系:
0 X1 0 , 1
当s 1时,X1 0, 结论成立;
假设s k时结论成立; 当s k 1时, k+1个数l1 , L , lk , lk 1满足 设有
l1 X 1 l2 X 2 L lk X k lk 1 X k 1 0
线性代数第五章
1.内积 2.向量旳范数 3.许瓦兹不等式
x x1 , x2 , , xn T , y y1 , y2 , , yn T
称 xT y x1 y1 x2 y2 xn yn
为向量 x与 y 旳内积,记为 x , y.
2
内积满足下列运算规律:
⑴ x, y y, x
⑵ kx , y kx ,y
15
三.正交矩阵与正交变化
1. 正交矩阵
1.正交矩阵 2.正交变换
定义5.2 假如 n阶方阵 A 满足AT A I
则称 A 为正交矩阵.
定理5.3 假如 A , B均为 n 阶正交矩阵,
那么:⑴ A1 AT
⑵ AT 即 A1 为正交矩阵
⑶
1 2
A A
A A
为
2n
阶正交矩阵
⑷ AB,BA 都是正交矩阵
8
定理5.2 若 1 , 2 , , r为 n 维正交向
量组,且 r n ,则必有非零 n 维向量 x , 使 x 与 1 , 2 , , r 两两正交.
推论:对 rr n个两两正交旳 n 维非零向量,总
能够添上 n r个 n 维非零向量,使 n 个向
量两两正交,从而这 n 个向量就构成了向量空
第五章 特征值 特征向量 二次型
第一讲 正交向量组与正交矩阵 第二讲 方阵旳特征值与特征向量 第三讲 相同矩阵与实对称矩阵旳对角化 第四讲 二次型及其原则形 第五讲 惯性定理和正定二次型 第六讲 习题课
1
第一讲 正交向量组与正交矩阵
一.向量旳内积与许瓦兹
(Schwarz)不等式
1.内积
内积定义:对 n维列向量
19
第二讲 方阵旳特征值和特征向量
1.定义
线性代数 第五章 向量空间
称为n元向量空间。
,an P
向量空间---基和维数
向量空间V中若向量组 1 ,2 , ,k 为极大
向 线性无关组,则称其为向量空间V的一组基
量 维数:基中所含向量的个数,dimV k.
空 Pn 的基和维数:由n个n元向量组成的极大
间
线性无关组。故基不唯一。
1,2, ,n , i 0,0, ,1, ,0T
m2 n 2
mn1n , mn2n ,
m11
M=
m21
mnnn .
mn1
m12 m22
mn2
m1n
m2
n
mnn
1 2
n 1 2
n M
M称为基(I)到基(II)的过渡矩阵。(M可逆?)
向量空间---过渡矩阵
(I ) 1,2, ,n; (II) 1, 2, , n 是 Pn
间
Байду номын сангаас
k31 3 , 1 / 1, 1 ; k32 3 , 2 / 2 , 2 ;
3 3
3 , 2 2 , 2
2
3, 1 1, 1
1.
向量空间---作业
向 P139 6 量 P142 3(1), 3(2) 空 P147 6,7
, , , ;
, 0, 且 , 0 O.
, , 是 Rn 中任意向量,k为任意实数。
向量空间---内积和标准正交基
向量的长度:|| || ,
向
单位向量: || || 1
向 的两组基,向量 在基(I)、(II)的坐标分
线性代数第五章
的特征值,
2 1
为对应于l
=
1
的特征向量.
一、基本概念
3、向量空间与基
向量空间的定义 :设V为n维向量的集合, 且V非空, 若集合V对 于向量的加法和数乘封闭: a, b V , k R,有
a b V , ka V , 则称集合V为向量空间. 向量空间中的一个最大无关组称为该向量空间的一个基. 如:
Rn : n 维实向量空间.
Rn中任意n个线性无关的向量组均可作为 Rn 的一组基.
[x, y] = x1 y1 + x2 y2 + … + xn yn = xT y.
内积具有下列性质(其中 x, y, z 为 n 维向量,l 为实数):
对称性: [x, y] = [y, x].
线性性质: [l x, y] = l[x, y].
[x + y, z] = [x, z] + [y, z] 当 x = 0(零向量) 时, [x, x] = 0;
可求得向量在标准正交基下的坐标. 因此,在给向量空间取 基时常常取标准正交基.
问题: 向量空间 V 中的一个基 a1, a2, …, ar
向量空间 V 中的一个标准正交基 e1, e2, …, er
4、求标准正交基的方法 基 正交基 标准正交基
第一步:正交化——施密特(Schimidt)正交化过程
, ,
ar b1
] ]
b1
[b2 [b2
, ,
ar b2
] ]
b2
[br1 , ar ] [br1 , br1 ]
br
1
于是 b1, b2, …, br 两两正交,并且与a1, a2, …, ar 等价,即
线性代数第5章课件
内积是向量的一种运算,用矩阵的记号表示,当 x与 y 都是列向量时,有
[x,y] = x' y
例 计算[x, y],其中x, y如下 : (1)x = (0,1,5,-2), y = (-2,0,-1,3); (2)x = (-2,1,0,3), y = (3,-6,8,4),
解 (1) [ x, y] = 0 • (-2) 1• 0 5• (-1) (-2) • 3 = -11
第五章
特征值与二次型
第五章主要内容
第一节 向量的内积 第二节 方阵的特征值与特征向量 第三节 相似矩阵 第四节 化二次型为标准型 第五节 正定二次型
第一节 向量的内积
定义1 设有n 维向量
x1
y1
x = x2 , y = y2
....
xn
yn
令 [x,y] = x1 y1+ x2 y2 +…+ xn yn, 则 [x,y] 称为向量x与 y 的 内积
定义2 令 x = [x, x] = x12 x22 xn2
称为 n 维向量 x 的长度(或范数)
x
若向当量xx
=10时,则, 称xxx为是单单位位向量向.量.
向量的长度具有下述性质:
(i)非负性:当x 0时,x 0;当x = 0时,x =0;
(ii)齐次性: x = x ;
(iii)三角不等式 : x y x y ;
上述从线性无关向量组a1 , …,ar 导出 1, 2 ,K , r 的 过程称为施密特正交化过程。它不仅满足1, 2 ,K , r 与a1 , …,ar 等价,还满足:对任何k ( 1≤ k ≤r ) ,向量组 1, 2 ,K , k 与a1 , …,ak 等价。
线性代数(同济大学第五版)第五章
十、化二次型为标准形
定理1: 任给可逆矩阵C, 令B=CTAC(A与B为合同 矩阵), 如果A为对称矩阵, 则B也为对称矩阵. 说明1: 若A与B是合同矩阵,则: 1.正(负,零) 特征值的个数相同,2.具有相同的秩. 说明2: 二次型 f 经可逆变换 x=Cy 后, 其秩不变, 但 f 的矩阵由A变为B=CTAC; 用正交变换化二次型为标准形的具体步骤: 1. 将二次型表示成矩阵形式 f = xTAx, 求出A; 2. 求出A的所有特征值1, 2, ·, n ; · · 3. 求出对应特征值i 的正交单位化的特征向量组, 从而有正交规范向量组 1, 2, ·, n ; · · 4. 记P=(1, 2, ·, n ), 作正交变换x=Py, 则得 f 的 · · 标准形: f = 1y12+2y22+·+nyn2 . · ·
十二、正定二次型
如果对任意的 x 0, 都有 f(x)>0, 则称 f 为正定 二次型, 并称对称矩阵A为正定矩阵; 如果对任意的 x 0, 都有 f(x)<0, 则称 f 为负定 二次型, 并称对称矩阵A为负定矩阵. 概念:正惯性指数,负惯性指数 推论: 对称矩阵A为正定的充分必要条件是A的特 征值全为正. 定理3(霍尔维茨定理): (1)对称矩阵A为正定的充 分必要条件是A的各阶主子式为正, 即
七、相似矩阵
P-1AP = B 定理1: 若n阶矩阵A与B相似, 则A与B的特征多项 式相同, 从而A与B的特征值亦相同. 推论: 若n阶方阵A与对角阵=diag(1, 2,·, n ) · · 相似, 则1, 2,·, n 既是A的n个特征值. · · 相似矩阵的性质: 若A与B相似, 则Am与Bm相似(m为正整数). (A)与 (B) 相似 当矩阵A与对角阵=diag(1, 2,·, n )相似时, · · 则 (A)= P()P-1. 而
线性代数第5章 特征值及特征向量
A 123 2, A A A1 2 A1
( A) A 3 A 2 E 2 A1 3 A 2 E
的三个特征值为 (i ) 21 3i 2 ( i 1,2,3) i 计算得 (1) 1, ( 1) 3, ( 2) 3
B 的特征值为 1 3, 2 3 3
对于 1 3 ,解方程组 (1 E B ) x 0
4 2 2 1 0 1 1 E B 3 E B 3 4 1 0 1 1 2 2 4 0 0 0
解 (1) a+2+2=4+1+1 |A|=4*1*1 (2) |A-4E|=0
|A-2E|=0
a 2 . b 1 a 3 . b 0
4 40 a 2 2 a 0 b 1 3 b 0
的特征值。
例1
解
设n阶方阵A有n个特征值1,2,….,n,求|A+3E|.
则 设A有特征值 , A 3E
3
所以,A+3E的特征值: 4,5,…..,n+3
(n 3)! | A 3E | 3!
例2 设3阶矩阵A的三个特征值为 1,1,2
求 A 3 A 2 E 解 A的特征值全不为零,故A可逆。
第一节 方阵的特征值与特征向量
一、特征值与特征向量的定义 二、特征值与特征向量的性质 三、特征值与特征向量的求法
一、特征值与特征向量的定义 定义1 设 A 是 n 阶方阵,
若数 和 n维非零列向量 X,使得
注意
AX X 成立,则称 是方阵 A 的一个特征值, X 为方阵 A 的对应于特征值 的一个特征向量。 (1) A 是方阵
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2.2 二次型的标准型
定义2 定义 只含有平方项的二次型叫做二次型的 二次型的 标准型. 标准型 二次型的标准型与对角矩阵是一一对应的,因 此化二次型为标准型的问题,也转化为: 如何 将n阶对称矩阵化为对角型.
定理1 定理
对于任意可逆矩阵P,若A为对称矩阵,
则 B=PTAP 也是对称矩阵,且R(A)=R(B) 上述定理说明,二次型经可逆变换作用后,仍 变为二次型,且两个二次型矩阵的秩不变 二次型矩阵的秩不变. 二次型矩阵的秩不变 因此,也将二次型 f 所对应的对称矩阵A的秩 二次型的秩. 叫做二次型的秩 二次型的秩
例1 当n=3时, 三维向量α =(a1, a2, a3),
β =(b1, b2, b3) 的内积 αβT=a1b1+a2b2+a3b3.
若αβT=0, 表示α与β 垂直(也就是α与β 正 交).
例2 设有四个四维向量α1=(1, 1, 1, 1),
α2=(1, -1, -1, 1), α3=(1, -1, 1, -1), α4=(1, 0, 0, 0).
2 2 f ( x1 , x2 ,L , xn ) = a11 x12 + a22 x2 + L + ann xn
+2a12 x1 x2 + 2a13 x1 x3 + L + 2an −1,n xn −1 xn
称为实数域 上的 元二次型 实数域R上的 元二次型,简称实二次型 实二次型. 实数域 上的n元二次型 实二次型
╳
1, i = j βi β = (i, j = 1, 2,L n) 0, i ≠ j
T j
6) 若A, B为n阶正交矩阵,则AB, BA也是n 阶正交矩阵. .
定理3 正交矩阵的特征值的模等于1.
定义5 正交矩阵, 定义 设A是n阶正交矩阵 X为任意一个 正交矩阵 n维向量,则称 Y=AX 为正交变换 正交变换. 正交变换
2 2 | α |= αα T = a12 + a2 + L + an
则称非负实数|α|为向量α 的长度 长度. 长度 当|α|=1时,称α 为n维单位向量.
注意, 当α 为列向量时, 其长度可定义为:
| α |= α α
T
一般地, 当非零向量α 不是单位向量时,可令
β=
1 |α |
α
使|β|=1, 此过程称为把非零向量α单位化 把非零向量 单位化.
正交的. 则α1与α2, α1与α3 , α2与α3都是正交 正交
内积的性质
1)对称性 αβT=βαT 2)齐次性 (λα)βT=λ(αβT) α 3)可加性 (α+β)γT=αγT+βγT 4)非负性 ααT≥0,当且仅当α=0时ααT=0
α是行向量
定义2 定义 设α =(a1, a2, …, an), 令
αi=k1α1+…+ ki-1αi-1 + ki+1αi+1 +…+knαn
用(αi)T右乘上式两端,
左端=αi (αi)T =|αi|2≠0 矛盾(左端不等于右端 矛盾 左端不等于右端). 左端不等于右端
(由于αi非零)
右端=(k1α1+…+ ki-1αi-1 + ki+1αi+1 +…+knαn) (αi)T =0 因此,非零正交向量组线性无关.
正交法二次型为标准型的方法
1) 写出二次型 f=XTAX 中的实对称矩阵A; 2) 由特征方程 |λI-A|=0,求得A的n个特征值λ1,
λ2, ..., λn (重根按重数计算);
3) 对每一个相异的λi, 由齐次方程组(λiI-A)X=0, 求得A的对应于λi的线性无关的特征向量;
4)将每一个对应的线性无关特征向量先正交 化再单位化,构成正交矩阵P; , P; 5)写出相应的正交变换X=PY及二次型的标准 型.
第五章 二次型
§5.1 正交矩阵
5.1.1 向量的内积与正交概念
定义1 定义 设有n维实向量
α =(a1, a2, …, an), β =(b1, b2, …, bn),
定义α与β 的内积 的内积为
αβT=a1b1+a2b2+…+anbn.
特别地, 当内积αβT=0时, 称α与β是正交 正交的,否 正交 不正交的. 则称为不正交 不正交
5.1.4 实对称矩阵的相似对角阵
定理5 实对称矩阵A的特征值 定理 都是实数.
定理6 定理 实对称矩阵A的两个不同特 征值对应的特征向量相互正交.
定理7 定理 n阶实对称矩阵A有n个线性无关 的实特征向量, 且A与实对角矩阵相似.
定理8 定理 设A为n阶实对称矩阵,则必有正交矩 阵P,使得 P-1AP=PTAP=D=diag{λ1, λ2, …, λn} 其中λ1, λ2, …, λn恰为矩阵A的n个特征值(重 根按重数计记入).
n维向量的长度的性质
1)非负性 |α|≥0, 当且仅当α=0时|α|=0; 2)齐次性 |kα|=|k||α|; 3)单位化 若α≠0,则α/(|α|)是单位向量; 4)三角不等式 |α+β| ≤|α|+|β |; 5)柯西-施瓦茨不等式 (αβT)2≤|α|2|β |2; 等号成立的充要条件是α与β线性相关.
求正交矩阵P的步骤为:
1)求出n阶实对称矩阵A的相异特征值λ1,λ2,…, λs; 2) 2)对每个特征值λi解方程组(λiI-A)X=0,求出它的一 ( I-A)X=0, 个基础解系,然后把它们先正交化再单位化; 3)将所求得的n个相互正交的单位特征向量X1,
X2, …, Xn作为列向量依次排成的矩阵P就是所要
求的正交矩阵.
例9 设三阶矩阵
1 2 2 A = 2 1 2 2 2 1
求正交矩阵P,使PTAP为对角矩阵.
§5.2 二次型及其标准形
5.2.1 二次型的基本概念
定义1 定义 若系数aij∈R (i=1,2,…,n; j≥i), 则含n 个实变量x1, x2,…, xn的二次齐次多项式
例5 用正交变换化二次型
f ( x1 , x2 , x3 , x4 ) = 2 x1 x2 + 2 x1 x3 − 2 x1 x4 − 2 x2 x3 + 2 x3 x4 + 2 x2 x4
为标准型.
§5.4 正定二次型
5.4.1 惯性定理
定理1(惯性定理 定理 惯性定理) 设有二次型 f=XTAX, 且 惯性定理 R(A)=r, 则利用任意一个可逆变换化二次型为 标准形时,其标准形中的正负平方项个数都是 确定的,且其和为r.
定义3 定义 设A, B为n阶方阵,若存在n阶可逆矩阵 P,使得PTAP=B,则称A与B合同合同,其中P称为合同 与 合同 因子阵.
矩阵合同的性质
1)自反性——A与A合同; 2)对称性——A与B合同,则B与A合同; 3)传递性——A与B合同,B与C合同,则A 与C合同。
定理2 任一 n 元二次型 f=XTAX 经可逆变 定理 换 X=PY 后变为新二次型 f=YTBY, 且所得二 次型 矩阵B 与原矩阵 A 合同. 定理3 定理 合同矩阵有相同的秩.
a11 a21 f ( x1 , x2 ,L xn ) = ( x1 , x2 ,L xn ) M an1
a12 a22 M an1
L a1n x1 L a2 n x2 = X T AX O M M L ann xn
定理2(Schmidt正交化方法 正交化方法) 定理 正交化方法 设α1, α2, …, αm是一个n维线性无关向量组,则由下 述公式
β1 = α1 T k −1 α k βi β k = α k − ∑ β β T βi , (k = 2,3,L , m) i =1 i i
所得向量组β1, β2, …, βm是一个相互正交的向量组.
特别地,取aij=aji, 则2aijxixj=aijxixj+ajixjxi, 则二 次型可改写为
f ( x1 , x2 ,L xn ) = ∑∑ aij xi x j
i =1 j =1 n n
取X=(x1, x2, …, xn)T, A=(aij)n×n , 则X为n维列 向量, A为n阶实对称矩阵.利用矩阵的乘法,可 将二次型改写为矩阵形式:
定义3 定义 若向量组α1, α2, …, αs中的向量两两 正交,则称该向量组是一个正交向量组 正交向量组;若 正交向量组 向量组α1, α2, …, αs中的任一向量与向量组β1,
β2, …, βt中的任一向量两两正交,则称两向
量组是相互正交的 相互正交的。 相互正交的
例3 试证n维向量组
例4 已知两个三维向量α =(1, 1, 1)T, β=(1, -2, 1)T 正交,试求一个非零向量γ, 使得γ与α , β 两两正交.
1, i = j α αj = (i, j = 1, 2,L n) 0, i ≠ j
T i
5) n阶实方阵A=(aij)n n为正交矩阵的充要条件是A β1 β2 的行向量为一个相互正交的单位向量组,即 A = M βn 为正交矩阵的充要条件是:
例6
5.1.3 正交矩阵
定义4 定义 设A为n阶矩阵,若 ATA=I, 则称A为n阶正交矩阵 正交矩阵. 正交矩阵
正交矩阵的性质
1) 若AAT=I, 则A为正交矩阵; 2) 若AT= A-1, 则A为正交矩阵; 3) |A|=+1;
4)n阶实方阵A=(aij)n
╳
n为正交矩阵的充要条
件是A的列向量为一个相互正交的单位向量 A 组,即A=(α1, α2, …, αn)为正交矩阵的充要条 件是: