高考物理知识点总结复习 电磁感应现象 楞次定律26

合集下载

2025年高三一轮复习物理课件第十二章电磁感应第1讲电磁感应现象楞次定律

2025年高三一轮复习物理课件第十二章电磁感应第1讲电磁感应现象楞次定律
情况
阻碍原电流的变
化——“增反减
同”(即自感现象)
楞次定律
27
例证
第1讲
电磁感应现象
楞次定律
(2024 届北京二模)在匀强磁场中放置一个金属圆环,磁场方向与圆环平面垂直。
规定图 1 所示磁场方向为正。当磁感应强度 B 随时间 t 按图 2 所示的正弦规律变化时,
下列说法正确的是( C )。
A.t2 时刻,圆环中无感应电流
的磁通量增大,A 不符合题意;开关闭合时将滑动变阻器的
滑片向左滑动,A 线圈中的电流增大,则 B 线圈中的磁通量
增大,B 项不符合题意;开关闭合时将 A 线圈从 B 线圈中拔
出,则 B 线圈中的磁通量减小,C 项符合题意;开关闭合时
将 A 线圈倒置,再重新插入 B 线圈中,则 B 线圈中反向的
磁通量增大,D 项符合题意。
向。
3.判断磁通量是否变化的方法
(1)根据公式 Φ=BSsin θ(θ 为 B 与 S 间的夹角)判断。
(2)根据穿过平面的磁感线的条数是否变化判断。
第1讲
电磁感应现象
楞次定律
角度 2 电磁感应现象及其应用
判断感应
电流有无
的方法
产生感应
电流的三
种常见情

8
第1讲
电磁感应现象
楞次定律
(多选)下列各图所描述的物理情境中,能产生感应电流的是( BCD )。
2.电磁感应现象
(1)定义:当穿过闭合导体回路的 磁通量 发生变化时,闭合导体回路中有感应电流产
生,这种利用磁场产生电流的现象叫作电磁感应。
(2)感应电流的产生条件:穿过 闭合 导体电路的 磁通量 发生变化。
4
第1讲

2025年高考物理总复习课件专题十电磁感应第1讲电磁感应现象、楞次定律

2025年高考物理总复习课件专题十电磁感应第1讲电磁感应现象、楞次定律
第1讲 电磁感应现象、楞次定律
高考总复习·物理
核心素养
重要考点
物理观念
(1)理解电磁感应现象、磁通量、自感、涡流 等概念;(2)掌握右手定则、楞次定律、法拉 第电磁感应定律等重要规律
1.电磁感应现象、 磁通量
科学思维
科学探究 科学态度
与责任
综合应用楞次定律、法拉第电磁感应定律分 析问题的能力
通过实验探究影响感应电流方向的因素,习·物理
2.实验步骤 (1)按图连接电路,闭合开关,记录下G中流入电流方 向与灵敏电流计G中指针偏转方向的关系. (2)记下线圈绕向,将线圈和灵敏电流计构成通路. (3)把条形磁铁N极(或S极)向下插入线圈中,并从线圈 中拔出,每次记下电流计中指针偏转方向,然后根据步骤(1)的结论,判 定出感应电流方向,从而可确定感应电流的磁场方向. (4)记录实验现象.
了解电磁感应知识在生活、生产和科学技术 中的应用
2.法拉第电磁感 应定律
3.楞次定律的应 用
4.自感、涡流现 象的分析理解
高考总复习·物理
一、磁通量 1.概念:磁感应强度B与面积S的__乘__积____. 2.公式:Φ=____B_S___.适用条件:匀强磁场;S是__垂__直____磁场的有效面 积. 单位:韦伯(Wb),1 Wb=__1_T_·_m__2_. 3.意义:穿过某一面积的磁感线的___条__数___. 4.标矢性:磁通量是___标__量___,但有正、负.
高考总复习·物理
例1 (2023年广东二模)如图甲所示,驱动线圈通过开关S与电源连接,
发射线圈放在绝缘且内壁光滑的发射导管内.闭合开关S后,在0~t0内驱动 线圈的电流iab随时间t的变化如图乙所示.在这段时间内,下列说法正确的 是( B )

2025年高考物理总复习配套课件第十章电磁感应第1讲电磁感应现象楞次定律

2025年高考物理总复习配套课件第十章电磁感应第1讲电磁感应现象楞次定律
阻碍原电流的变化——“增反减同”(即自 感现象)
[考法全析]
考法(一) 阻碍原磁通量的变化——“增反减同”
[例1] 电磁弹射的装置是航空母舰上的一种舰载机起飞装置。如
图所示的装置也能进行电磁弹射,线圈固定在光滑绝缘杆MN上、导体
圆环套在绝缘杆的左端。则下列说法正确的是
()
A.开关闭合,圆环将从M端离开绝缘杆
解析:只形成闭合回路,回路中的磁通量不变化,不会产生感应电流,A、B错误; 线圈中插入条形磁铁瞬间回路中磁通量有变化,电流表有变化,磁铁不动后电流 表无变化,C错误;给线圈通电或断电瞬间,通过闭合回路的磁通量变化,会产 生感应电流,能观察到电流表的变化,D正确。 答案:D
2.[磁通量的大小]
如图所示,两个单匝线圈a、b的半径分别为r和2r。圆形匀强磁场
D.线圈给磁铁的磁场力先向下再向上
[解析] 根据楞次定律的“来拒去留”,磁铁向闭合线圈靠近,要受阻力作 用,即磁场力向上,故A正确。
[答案] A
考法(三) 使回路面积有变化趋势——“增缩减扩”
[例3] (多选)如图甲所示,圆形线圈P静止在水平桌面上,其正上方固定一
螺线管Q,P和Q共轴,Q中的电流i随时间t变化的规律如图乙所示,取甲图中电
一点一过
“四步法”判断感应电流方向
研清微点3 应用右手定则判断感应电流的方向
4.下列图中表示闭合电路中的一部分导体ab在磁场中做切割磁感线运动的情景,
导体ab上的感应电流方向为a→b的是
()
解析:ab棒顺时针转动,运用右手定则:磁感线穿过手心,拇指指向顺时针方向, 则导体ab上的感应电流方向为a→b,故A正确;ab向纸外运动,运用右手定则时, 磁感线穿过手心,拇指指向纸外,则知导体ab上的感应电流方向为b→a,故B错 误;穿过回路的磁通量减小,由楞次定律知,回路中感应电流方向由b→a→d→c, 则导体ab上的感应电流方向为b→a,故C错误;ab棒沿导轨向下运动,由右手定 则判断知导体ab上的感应电流方向为b→a,故D错误。

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.5.6.(1)(2)(3)1.2.表述表述3.合,源.1.,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:1、此公式只适用于匀强磁场。

2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|. 【例】 面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转90过程中,穿过 abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁量为:ΔΦ【答案】通量为正 :楞次定律A.a → C.先b,其极。

1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:n t∆ΦE =∆公式理解:① 上式适用于回路中磁通量发生变化的情形,回路不一定闭合.② 感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比. 要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③ 当∆Φ由磁场变化引起时, t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算.图9-1-3④ 由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤ n 表示线圈的匝数,可以看成n 个单匝线圈串联而成。

高中物理电磁感应知识点总结

高中物理电磁感应知识点总结

高中物理电磁感应知识点总结
电磁感应现象:当一个变化的电流通过一个导体时,会在周围产生一个磁场,而当磁场发生变化时,又会在导体中产生电流,这种现象称为电磁感应。

简单来说,就是“电生磁,磁生电”。

产生电磁感应的条件:产生电磁感应的条件是“闭合电路的一部分导体在磁场中做切割磁感线运动”或者“穿过闭合电路的磁通量发生变化”。

换句话说,只要有闭合电路和磁通量的变化,就会产生感应电流。

楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

这个定律描述了感应电流和原磁场之间的关系,是理解电磁感应现象的关键。

感应电动势和感应电流:在电磁感应现象中产生的电动势称为感应电动势,产生感应电动势的那部分导体相当于电源。

如果把这个导体闭合成一回路,感应电动势会驱使电子流动,形成感应电流。

电磁感应的应用:电磁感应原理被广泛应用于各种设备,如电动机、发电机、变压器、电磁铁、电磁炉、电磁阀等。

这些设备的工作原理都是基于电磁感应现象。

电磁感应的特性:电磁感应具有高灵敏度、低噪声、低漂移、低抗拒力等特性,这使得它在许多领域都有重要的应用。

总的来说,电磁感应是高中物理中的一个重要概念,它揭示了电和磁之间的相互关系,为我们的生活带来了许多便利。

理解和掌握电磁感应的原理和应用,对于学习物理和应对物理考试都非常重要。

高中物理的电磁感应现象与楞次定律

高中物理的电磁感应现象与楞次定律

高中物理的电磁感应现象与楞次定律小编在这里整理了高中物理的电磁感应现象与楞次定律,希望能帮助到大家。

电磁感应现象1.定义当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应。

2.条件(1)条件:穿过闭合电路的磁通量发生变化。

(2)例如:闭合电路的一部分导体在磁场内做切割磁感线的运动。

3.实质产生感应电动势,如果电路闭合,则有感应电流.如果电路不闭合,则只有感应电动势而无感应电流。

3感应电流方向的判定1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

(2)适用范围:一切电磁感应现象。

2.右手定则(1)内容:如图,伸开右手,使拇指与其余四个手指垂直并且都与手掌在同一平面内,让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。

(2)适用情况:导线切割磁感线产生感应电流。

用右手定则时应注意①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定。

②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直。

③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向。

④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势。

⑤“因电而动”用左手定则;“因动而电”用右手定则。

⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。

楞次定律的理解(1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

(感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的) 变化原因产生结果;结果阻碍原因。

(2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。

阻碍磁通量变化指:①磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用);②磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”。

高中物理【电磁感应现象 楞次定律】知识点、规律总结

高中物理【电磁感应现象 楞次定律】知识点、规律总结

三、感应电流方向的判断 1.右手定则:伸开右手,使拇指与其余四个手指__垂__直__,并且都与 手掌在同一个平面内;让磁感线从掌心垂直进入,并使拇指指向 _导__线__运__动___的方向,这时四指所指的方向就是_感__应___电__流__的方向.如图 所示. 2.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要 _阻__碍___引起感应电流的_磁__通__量___的变化.
感应电流的磁场方向 __向__下__ __向__上__
3.实验结论 表述一:当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向_相__反___;当 穿过线圈的磁通量减少时,感应电流的磁场与原磁场的方向__相__同__. 表述二:当磁铁靠近线圈时,两者__相__斥__;当磁铁远离线圈时,两者_相__吸___.
四、电磁阻尼与电磁驱动
电磁阻尼
电磁驱动
由于导体在磁场中运动而产生感 由于磁场运动引起磁通量的变化而产
不 成因
应电流,从而使导体受到安培力 生感应电流,从而使导体受到安培力

安培力的方向与导体运动方向相 导体受安培力的方向与导体运动方向
点 效果
反,阻碍导体运动
相同,推动导体运动
电磁阻尼
电磁驱动
能量转化
第 1 讲 电磁感应现象 楞次定律
一、磁通量 1.概念:磁感应强度 B 与面积 S 的_乘__积___. 2.计算 (1)公式:Φ=__B_S___. (2)适用条件:①匀强磁场;②S 是_垂__直___磁场的有效面积. (3)单位:韦伯(Wb),1 Wb=___1__T_·_m_2_____. 3.意义:穿过某一面积的磁感线的__条__数__. 4.标矢性:磁通量是_标__量___,但有正、负.
由于电磁感应,磁场能转化为电能,通 导体克服安培力做功,其他形式的

高三第一轮复习-电磁感应现象 楞次定律

高三第一轮复习-电磁感应现象 楞次定律

电磁感应现象楞次定律1.知道电磁感应现象产生的条件2.理解磁通量及磁通量变化的含义,并能计算.3.掌握楞次定律和右手定则的应用,并能判断感应电流的方向及相关导体的运动方向.考点一电磁感应现象的判断1.磁通量(1)定义:在匀强磁场中,磁感应强度B与垂直于磁场方向的面积的乘积.(2)公式:Φ=BS.适用条件:①匀强磁场.②S为垂直磁场的有效面积.(3)磁通量是标量(填“标量”或“矢量”).(4)磁通量的意义:①磁通量可以理解为穿过某一面积的磁感线的条数.②同一线圈平面,当它跟磁场方向垂直时,磁通量最大;当它跟磁场方向平行时,磁通量为零;当正向穿过线圈平面的磁感线条数和反向穿过的一样多时,磁通量为零.2.电磁感应现象(1)电磁感应现象:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.(2)产生感应电流的条件:穿过闭合回路的磁通量发生变化.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.(3)电磁感应现象中的能量转化:发生电磁感应现象时,机械能或其他形式的能转化为电能,该过程遵循能量守恒定律.[例题1](2024•房山区一模)某同学用如图所示装置探究影响感应电流方向的因素。

将磁体从线圈中向上匀速抽出时,观察到灵敏电流计指针向右偏转。

关于该实验,下列说法正确的是()A.图中线圈中感应电流的磁场方向向下B.若将磁体向上加速抽出,灵敏电流计指针将向左偏转C.磁体放置在线圈中静止不动,灵敏电流计指针仍向右偏转D.若将磁体的N、S极对调,并将其向下插入线圈,灵敏电流计指针仍向右偏转[例题2](多选)(2024•丰台区二模)“探究影响感应电流方向的因素”的实验示意图如图所示:灵敏电流计和线圈组成闭合回路,通过“插入”、“拔出”条形磁铁,使线圈中产生感应电流。

记录实验过程中的相关信息,分析得出楞次定律。

下列说法正确的是()A.实验时必须保持磁铁运动的速率不变B.该实验需要知道线圈的绕向C.该实验需要记录磁铁的运动方向D.该实验需要判断电流计指针偏转方向与通入电流方向的关系[例题3](2023秋•通州区期末)如图甲所示,某同学在研究电磁感应现象时,将一线圈两端与电流传感器相连,强磁铁从长玻璃管上端由静止下落,电流传感器记录了强磁铁穿过线圈过程中电流随时间变化的图像,t2时刻电流为0,如图乙所示。

高考物理考点详析 电磁感应现象 楞次定律

高考物理考点详析 电磁感应现象  楞次定律

一、电磁感应现象1.概念当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应。

2.产生感应电流的条件(1)闭合回路的一部分导体在磁场内做切割磁感线运动;(2)穿过闭合回路的磁通量发生变化;①磁场强弱不变,回路面积改变;②回路面积不变,磁场强弱改变;③回路面积和磁场强弱均不变,但二者的相对位置发生改变。

注意:当回路不闭合时,没有感应电流,但有感应电动势,只产生感应电动势的现象也可以称为电磁感应现象,且产生感应电动势的那部分导体或线圈相当于电源。

3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能。

二、感应电流方向的判定1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从掌心进入,大拇指指向导体运动的方向,其余四指所指的方向,就是感应电流的方向。

适用范围:适用于闭合电路部分导体切割磁感线产生感应电流的情况。

2.楞次定律(1)内容:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

(2)理解楞次定律中“阻碍”的含义:(3)运用楞次定律判定感应电流方向的步骤:a.明确穿过闭合电路的原磁场方向;b.明确穿过闭合电路的原磁通量是如何变化的;c.根据楞次定律确定感应电流的磁场方向;d.利用安培定则判定感应电流的方向。

注意:导体切割磁感线产生感应电流的方向用右手定则较简便;变化的磁场产生感应电流只能用楞次定律判断。

具体流程如图:三、楞次定律应用的推广楞次定律描述的是感应电流与磁通量变化之间的关系,常用于判断感应电流的方向或其所受安培力的方向,一般有以下四种呈现方式:1.阻碍原磁通量的变化——“增反减同”;2.阻碍相对运动——“来拒去留”;3.使线圈面积有扩大或缩小的趋势——“增缩减扩”;4.阻碍原电流的变化(自感现象)——“增反减同”。

四、“三个定则、一个定律”的综合应用技巧1.应用现象及规律比较基本现象应用的定则或定律运动电荷、电流产生的磁场安培定则磁场对运动电荷、电流的作用力左手定则电磁感应部分导体做切割磁感线运动右手定则闭合回路磁通量变化楞次定律2.应用技巧多定则应用的关键是抓住因果关系:无论是“安培力”还是“洛伦兹力”,只要是“力”都用左手判断。

高考物理电磁学的知识总结

高考物理电磁学的知识总结

高考物理电磁学的知识总结高中物理中的电磁学部分是重点也是难点,在高考中占有较大的比重。

下面我们就来对这部分知识进行一个全面的总结。

一、电场1、库仑定律真空中两个静止的点电荷之间的作用力,与它们电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在它们的连线上。

其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为静电力常量,$k = 90×10^9 N·m^2/C^2$。

2、电场强度用来描述电场强弱和方向的物理量。

定义为放入电场中某点的电荷所受的电场力$F$跟它的电荷量$q$的比值,即$E =\frac{F}{q}$。

其单位是牛/库(N/C)。

3、电场线为了形象地描述电场而引入的假想曲线。

电场线从正电荷或无穷远出发,终止于负电荷或无穷远。

电场线的疏密表示电场的强弱,电场线上某点的切线方向表示该点的电场方向。

4、电势和电势能电势是描述电场能的性质的物理量,定义为电荷在电场中某点的电势能与电荷量的比值,即$\varphi =\frac{E_p}{q}$。

电势能是电荷在电场中具有的势能,与电荷的电荷量和所在位置的电势有关,即$E_p = q\varphi$。

5、匀强电场电场强度大小和方向都相同的电场。

在匀强电场中,电场强度与电势差的关系为$E =\frac{U}{d}$,其中$d$为沿电场方向两点间的距离。

二、电容1、电容器两个彼此绝缘又相距很近的导体就组成一个电容器。

电容器的作用是储存电荷。

2、电容电容器所带电荷量$Q$与电容器两极板间的电势差$U$的比值,叫做电容器的电容,即$C =\frac{Q}{U}$。

电容的单位是法拉(F)。

3、平行板电容器的电容平行板电容器的电容与极板的正对面积$S$成正比,与极板间的距离$d$成反比,与极板间介质的介电常数$\varepsilon$成正比,即$C=\frac{\varepsilon S}{4\pi kd}$。

高考物理一轮复习之《电磁感应》知识汇总

高考物理一轮复习之《电磁感应》知识汇总

⾼考物理⼀轮复习之《电磁感应》知识汇总第⼀节 电磁感应现象 楞次定律【基本概念、规律】⼀、磁通量1.定义:在磁感应强度为B的匀强磁场中,与磁场⽅向垂直的⾯积S和B的乘积.2.公式:Φ=B·S.3.单位:1 Wb=1_T·m2.4.标⽮性:磁通量是标量,但有正、负.⼆、电磁感应1.电磁感应现象当穿过闭合电路的磁通量发⽣变化时,电路中有电流产⽣,这种现象称为电磁感应现象.2.产⽣感应电流的条件(1)电路闭合;(2)磁通量变化.3.能量转化发⽣电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:⽆论回路是否闭合,只要穿过线圈平⾯的磁通量发⽣变化,线圈中就有感应电动势产⽣.三、感应电流⽅向的判断1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适⽤情况:所有的电磁感应现象.2.右⼿定则(1)内容:伸开右⼿,使拇指与其余四个⼿指垂直,并且都与⼿掌在同⼀个平⾯内,让磁感线从掌⼼进⼊,并使拇指指向导体运动的⽅向,这时四指所指的⽅向就是感应电流的⽅向.(2)适⽤情况:导体切割磁感线产⽣感应电流.【重要考点归纳】考点⼀ 电磁感应现象的判断1.判断电路中能否产⽣感应电流的⼀般流程:2.判断能否产⽣电磁感应现象,关键是看回路的磁通量是否发⽣了变化.磁通量的变化量ΔΦ=Φ2-Φ1有多种形式,主要有:(1)S、θ不变,B改变,这时ΔΦ=ΔB·S sin θ;(2)B、θ不变,S改变,这时ΔΦ=ΔS·B sin θ;(3)B、S不变,θ改变,这时ΔΦ=BS(sin θ2-sin θ1).考点⼆ 楞次定律的理解及应⽤1.楞次定律中“阻碍”的含义2.应⽤楞次定律判断感应电流⽅向的步骤考点三 “⼀定律三定则”的综合应⽤1.“三个定则与⼀个定律”的⽐较2.应⽤技巧⽆论是“安培⼒”还是“洛伦兹⼒”,只要是涉及磁⼒都⽤左⼿判断.“电⽣磁”或“磁⽣电”均⽤右⼿判断.【思想⽅法与技巧】楞次定律推论的应⽤楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产⽣感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈⾯积有扩⼤或缩⼩的趋势——“增缩减扩”;(4)阻碍原电流的变化(⾃感现象)——“增反减同”第⼆节 法拉第电磁感应定律 ⾃感 涡流【基本概念、规律】⼀、法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产⽣的电动势.产⽣感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I=E/(R+r)2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的⼤⼩,跟穿过这⼀电路的磁通量的变化率成正⽐.3.导体切割磁感线的情形(1)若B、l、v相互垂直,则E=Blv.(2)若B⊥l,l⊥v,v与B夹⾓为θ,则E=Blv sin_θ.⼆、⾃感与涡流1.⾃感现象(1)概念:由于导体本⾝的电流变化⽽产⽣的电磁感应现象称为⾃感,由于⾃感⽽产⽣的感应电动势叫做⾃感电动势.(3)⾃感系数L的影响因素:与线圈的⼤⼩、形状、匝数以及是否有铁芯有关.2.涡流当线圈中的电流发⽣变化时,在它附近的任何导体中都会产⽣像⽔的旋涡状的感应电流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培⼒,安培⼒的⽅向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产⽣感应电流,使导体受到安培⼒作⽤,安培⼒使导体运动起来.交流感应电动机就是利⽤电磁驱动的原理⼯作的.【重要考点归纳】考点⼀ 公式E=nΔΦ/Δt的应⽤1.感应电动势⼤⼩的决定因素(1)感应电动势的⼤⼩由穿过闭合电路的磁通量的变化率和线圈的匝数共同决定,⽽与磁通量Φ、磁通量的变化量ΔΦ的⼤⼩没有必然联系.3.应⽤电磁感应定律应注意的三个问题考点⼆ 公式E=Blv的应⽤1.使⽤条件本公式是在⼀定条件下得出的,除了磁场是匀强磁场外,还需B、l、v三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进⾏计算,公式可为E=Blv sin θ,θ为B与v⽅向间的夹⾓.2.使⽤范围3.有效性公式中的l为有效切割长度,即导体与v垂直的⽅向上的投影长度.例如,求下图中MN两点间的电动势时,有效长度分别为甲图:l=cd sin β.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.5.感应电动势两个公式的⽐较考点三 ⾃感现象的分析1.⾃感现象“阻碍”作⽤的理解(1)流过线圈的电流增加时,线圈中产⽣的⾃感电动势与电流⽅向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减⼩时,线圈中产⽣的⾃感电动势与电流⽅向相同,阻碍电流的减⼩,使其缓慢地减⼩.2.⾃感现象的四个特点(1)⾃感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发⽣突变,只能缓慢变化.(3)电流稳定时,⾃感线圈就相当于普通导体.(4)线圈的⾃感系数越⼤,⾃感现象越明显,⾃感电动势只是延缓了过程的进⾏,但它不能使过程停⽌,更不能使过程反向.3.⾃感现象中的能量转化通电⾃感中,电能转化为磁场能;断电⾃感中,磁场能转化为电能.4.分析⾃感现象的两点注意(1)通过⾃感线圈中的电流不能发⽣突变,即通电过程,线圈中电流逐渐变⼤,断电过程,线圈中电流逐渐变⼩,⽅向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电⾃感现象中灯泡是否“闪亮”问题的判断,在于对电流⼤⼩的分析,若断电后通过灯泡的电流⽐原来强,则灯泡先闪亮后再慢慢熄灭.第三节 电磁感应中的电路和图象问题【基本概念、规律】⼀、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发⽣变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压⼆、电磁感应中的图象问题1.图象类型(1)随时间t变化的图象如B-t图象、Φ-t图象、E-t图象和i-t图象.(2)随位移x变化的图象如E-x图象和i-x图象.2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量.(3)利⽤给出的图象判断或画出新的图象.【重要考点归纳】考点⼀ 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产⽣感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发⽣变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的⼀般思路:(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利⽤电路规律求解.主要应⽤欧姆定律及串、并联电路的基本性质等列⽅程求解.4.(1)对等效于电源的导体或线圈,两端的电压⼀般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的⽅向,电势逐渐升⾼.考点⼆ 电磁感应中的图象问题1.题型特点⼀般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量;(3)根据图象定量计算.2.解题关键弄清初始条件,正负⽅向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的⼀般步骤(1)明确图象的种类,即是B-t图象还是Φ-t图象,或者是E-t图象、I-t图象等;(2)分析电磁感应的具体过程;(3)⽤右⼿定则或楞次定律确定⽅向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、⽜顿运动定律等规律写出函数关系式;(5)根据函数关系式,进⾏数学分析,如分析斜率的变化、截距等;(6)画出图象或判断图象.4.解决图象类选择题的最简⽅法——分类排除法.⾸先对题中给出的四个图象根据⼤⼩或⽅向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增⼤还是减⼩)、变化快慢(均匀变化还是⾮均匀变化),特别是⽤物理量的⽅向,排除错误选项,此法最简捷、最有效.【思想⽅法与技巧】电磁感应电路与图象的综合问题解决电路与图象综合问题的思路(1)电路分析弄清电路结构,画出等效电路图,明确计算电动势的公式.(2)图象分析①弄清图象所揭⽰的物理规律或物理量间的函数关系;②挖掘图象中的隐含条件,明确有关图线所包围的⾯积、图线的斜率(或其绝对值)、截距所表⽰的物理意义.(3)定量计算运⽤有关物理概念、公式、定理和定律列式计算.第四节 电磁感应中的动⼒学和能量问题【基本概念、规律】⼀、电磁感应现象中的动⼒学问题1.安培⼒的⼤⼩2.安培⼒的⽅向(1)先⽤右⼿定则判定感应电流⽅向,再⽤左⼿定则判定安培⼒⽅向.(2)根据楞次定律,安培⼒的⽅向⼀定和导体切割磁感线运动⽅向相反.⼆、电磁感应中的能量转化1.过程分析(1)电磁感应现象中产⽣感应电流的过程,实质上是能量的转化过程.(2)感应电流在磁场中受安培⼒,若安培⼒做负功,则其他形式的能转化为电能;若安培⼒做正功,则电能转化为其他形式的能.(3)当感应电流通过⽤电器时,电能转化为其他形式的能.2.安培⼒做功和电能变化的对应关系“外⼒”克服安培⼒做多少功,就有多少其他形式的能转化为电能;安培⼒做多少功,就有多少电能转化为其他形式的能.【重要考点归纳】考点⼀ 电磁感应中的动⼒学问题分析1.导体的平衡态——静⽌状态或匀速直线运动状态.处理⽅法:根据平衡条件(合外⼒等于零)列式分析.2.导体的⾮平衡态——加速度不为零.处理⽅法:根据⽜顿第⼆定律进⾏动态分析或结合功能关系分析.3.分析电磁感应中的动⼒学问题的⼀般思路(1)先进⾏“源”的分析——分离出电路中由电磁感应所产⽣的电源,求出电源参数E和r;(2)再进⾏“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流⼤⼩,以便求解安培⼒;(3)然后是“⼒”的分析——分析研究对象(常是⾦属杆、导体线圈等)的受⼒情况,尤其注意其所受的安培⼒;(4)最后进⾏“运动”状态的分析——根据⼒和运动的关系,判断出正确的运动模型.考点⼆ 电磁感应中的能量问题1.电磁感应过程的实质是不同形式的能量转化的过程,⽽能量的转化是通过安培⼒做功的形式实现的,安培⼒做功的过程,是电能转化为其他形式能的过程,外⼒克服安培⼒做功,则是其他形式的能转化为电能的过程.2.能量转化及焦⽿热的求法(1)能量转化(2)求解焦⽿热Q的三种⽅法3. 在解决电磁感应中的能量问题时,⾸先进⾏受⼒分析,判断各⼒做功和能量转化情况,再利⽤功能关系或能量守恒定律列式求解.【思想⽅法与技巧】电磁感应中的“双杆”模型1.模型分类“双杆”模型分为两类:⼀类是“⼀动⼀静”,甲杆静⽌不动,⼄杆运动,其实质是单杆问题,不过要注意问题包含着⼀个条件:甲杆静⽌、受⼒平衡.另⼀种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产⽣的感应电动势是相加还是相减.2.分析⽅法通过受⼒分析,确定运动状态,⼀般会有收尾状态.对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、⽜顿运动定律和能量观点分析求解.3.分析“双杆”模型问题时,要注意双杆之间的制约关系,即“动杆”与“被动杆”之间的关系,需要注意的是,最终两杆的收尾状态的确定是分析该类问题的关键.电磁感应中的含容电路分析⼀、电磁感应回路中只有电容器元件1.这类问题的特点是电容器两端电压等于感应电动势,充电电流等于感应电流.(2)由本例可以看出:导体棒在恒定外⼒作⽤下,产⽣的电动势均匀增⼤,电流不变,所受安培阻⼒不变,导体棒做匀加速直线运动.⼆、电磁感应回路中电容器与电阻并联问题1.这⼀类问题的特点是电容器两端的电压等于与之并联的电阻两端的电压,充电过程中的电流只是感应电流的⼀⽀流.稳定后,充电电流为零.2.在这类问题中,导体棒在恒定外⼒作⽤下做变加速运动,最后做匀速运动.。

第十章第1讲电磁感应现象和楞次定律-2025年高考物理一轮复习PPT课件

第十章第1讲电磁感应现象和楞次定律-2025年高考物理一轮复习PPT课件

解析
高考一轮总复习•物理
第25页
1.[“三则一律”的应用](多选)如图所示,金属导轨上的导体棒 ab 在匀强磁场中沿 导轨做下列哪种运动时,铜制线圈 c 中将有感应电流产生且被螺线管吸引( )
A.向右做匀速运动 B.向左做减速运动 C.向右做减速运动 D.向右做加速运动
答案
高考一轮总复习•物理
第26页
高考一轮总复习•物理
第9页
2.如图所示,两个单匝线圈 a、b 的半径分别为 r 和 2r.圆形匀强磁场 B 的边缘恰好 与 a 线圈重合,则穿过 a、b 两线圈的磁通量之比为 ( )
A.1∶1 C.1∶4
B.1∶2 D.4∶1
答案
高考一轮总复习•物理
3.如图所示的各图所描述的物理情境中,没有产生感应电流的是( )
第22页
2.“三则一律”的应用技巧 (1)应用楞次定律,一般要用到安培定则. (2)研究感应电流受到的安培力时,一般先用右手定则确定电流方向,再用左手定则确 定安培力的方向,有时也可以直接用楞次定律的推广应用确定.
高考一轮总复习•物理
第23页
典例 2 (2024·山西太原模拟)(多选)如图所示装置中,ab、cd 杆垂直放置在导轨上,与 导轨接触良好,杆与导轨之间的摩擦力不计.原来 ab、cd 杆均静止,当 ab 杆做如下哪些运 动时,cd 杆将向左移动( )
解析
高考一轮总复习•物理
第12页
重难考点 全线突破
高考一轮总复习•物理
考点 感应电流方向的判断
1.楞次定律中“阻碍”的含义
第13页
高考一轮总复习•物理
2.应用楞次定律的思路
第14页
高考一轮总复习•物理
第15页
典例 1 如图所示,两匀强磁场的磁感应强度 B1 和 B2 大小相等、方向相反.金属圆环 的直径与两磁场的边界重合.下列变化会在环中产生顺时针方向感应电流的是( )

2023届高考物理一轮复习课件:第1节电磁感应现象 楞次定律(18张PPT)

2023届高考物理一轮复习课件:第1节电磁感应现象 楞次定律(18张PPT)

边有一如图所示的闭合电路。当 PQ 在一外力的作用
下运动时,MN 向右运动,则 PQ 所做的运动可能是( )
A.向右加速运动 C.向右减速运动
B.向左加速运动 D.向左减速运动
方法二 逆向推理法
磁化:是指在受磁场的作用下,由于材料中磁矩(即一个微小的磁场)排列时取向趋 于一致而呈现出一定的磁性的现象。
左手定则
姆指指运动方向 内容 四指感应电流
方向
直线电流 环行电流 通电螺线管
四指指电流方向 姆指指受力方向
条件 因“动”生 “电”
因“电”生 因“电”受
“磁”
“力”
实质 反映了磁场能 够产生电流
反映了电流 方向与磁场 方向的关系
反映了磁场的 基本性质
2. 楞次定律
9
感应电流具有这样的方向,即感应电流的磁场 总要阻碍引起感应电流的磁通量的变化.
1).阻碍原磁通量的变化或原磁场的变化,“增反减同”、“增缩减扩”.
2). 阻碍相对运动, 可理解为“来拒去留”.
3).阻碍原电流的变化(自感现象).
[解题技法] 分析二次感应问题的两种方法
方法一 程序法(正向推理法)
[例 4] (多选)如图所示,水平放置的两条光滑 轨道上有可自由移动的金属棒 PQ 、MN,MN 的左
第十章
DISHIZHANG
电磁感应
第1节 电磁感应现象 楞次定律
2018 2022

2





考 全 国
√ √











考点分来自布3产生感应电流的三种常见情况

高中物理楞次定律知识点总结

高中物理楞次定律知识点总结

高中物理楞次定律知识点总结高中物理中,楞次定律是非常重要的一个定律。

它在理解电磁学方面有着重要作用,在实际应用中也可以提供指导。

本文将对楞次定律的知识点进行总结,以帮助读者更好地理解和应用此定律。

一、楞次定律的基本概念楞次定律又称作法拉第电磁感应定律,是一个基本的电磁学定律。

它表明:当磁通量发生变化时,会在导体中产生感生电动势,这个电动势的方向会使感生电流的磁场阻碍这一磁通量变化。

楞次定律描述了电磁感应现象。

当磁场作用于导体时,会引起磁通量的变化,从而产生感生电动势。

这个电动势的大小取决于磁通量的变化率。

在导体中产生的感生电流会通过磁场产生反作用,在一定程度上阻碍磁通量的变化。

二、楞次定律的数学表达式楞次定律表明,在一个闭合线圈中,感生电动势的大小与变化率成正比,与线圈绕向和变化率之间的夹角成正比,即:ε = -dΦ / dt其中,ε为感生电动势,单位为伏特(V);Φ为磁通量,单位为韦伯(Wb);t为时间,单位为秒(s)。

这个负号表明,感生电动势的方向与磁通量变化方向相反。

三、楞次定律的应用楞次定律是电磁场理论的重要基础,广泛应用于电机、变压器、感应加热器等电磁设备的设计和研发中。

1. 电动机原理电动机的工作原理就是利用电磁感应现象。

当通电后,电流在线圈中流动,产生旋转磁场,从而对转子上的导体产生电磁感应作用,产生电动势,使转子受到电磁力的作用,从而转动。

利用楞次定律可以计算出产生的感生电动势的大小。

2. 变压器原理变压器是利用电磁感应原理来实现电压变换的设备。

当一定电压的交流电流通过线圈,会产生交变磁通,从而在另一个线圈中产生感生电动势,进而产生电流。

楞次定律可以用来计算这个感生电动势的大小。

3. 感应加热原理感应加热是利用电磁感应产生的感生电流来加热物体的原理。

当物体置于交变磁场中时,就会在物体中产生感生电流,导致物体内部的电阻发热,从而实现加热。

四、楞次定律的应用示例下面列举一些应用楞次定律的实例。

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.(1)磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.(2)磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.(3)磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.产生的电流叫做感应电流。

2.产生感应电流的条件:表述1:闭合电路的一部分导体在磁场内做切割磁感线的运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件:穿过电路的磁通量发生变化。

理解:电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况)确定感应磁场(B 感方向)判断感应电流(I 感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS 计算磁通量及磁通量的变化应把握好以下几点: 1、此公式只适用于匀强磁场。

电磁感应知识点总结

电磁感应知识点总结

电磁感应知识点总结一、电磁感应现象1、磁通量定义:穿过某一面积的磁感线条数。

公式:Φ = BS(S 为垂直于磁场方向的面积)。

单位:韦伯(Wb)。

2、电磁感应现象定义:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就会产生感应电流的现象。

产生条件:穿过闭合回路的磁通量发生变化。

3、感应电流定义:由电磁感应产生的电流。

方向判断:楞次定律和右手定则。

二、楞次定律1、内容感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

2、理解“阻碍”不是“阻止”,只是延缓了磁通量的变化。

从磁通量变化的角度看,感应电流的磁场总是“增反减同”。

从相对运动的角度看,感应电流的磁场总是“来拒去留”。

三、右手定则1、内容伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。

2、适用范围适用于导体切割磁感线产生感应电流的情况。

四、法拉第电磁感应定律1、表达式E =nΔΦ/Δt (n 为线圈匝数)。

2、理解感应电动势的大小与磁通量的变化率成正比。

磁通量的变化率越大,感应电动势越大。

五、导体切割磁感线时的感应电动势1、公式E = BLv(B 为磁感应强度,L 为导体切割磁感线的有效长度,v 为导体切割磁感线的速度)。

2、方向判断用右手定则。

六、自感现象1、定义由于导体本身的电流变化而产生的电磁感应现象。

2、自感电动势大小:E =LΔI/Δt (L 为自感系数)。

作用:总是阻碍导体中原电流的变化。

3、自感系数决定因素:线圈的匝数、长度、横截面积、有无铁芯等。

单位:亨利(H)。

七、涡流1、定义块状金属在变化的磁场中,或者在磁场中运动时,金属块内产生的自成闭合回路的感应电流。

2、应用电磁炉、金属探测器、真空冶炼炉等。

3、防止变压器、电机的铁芯用硅钢片叠成,以减少涡流损失。

八、电磁感应中的电路问题1、电源:切割磁感线的导体或磁通量发生变化的回路相当于电源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理知识点总结复习 电磁感应现象 楞次定律26 知识要点:
一、电磁感应现象:
1、只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。

这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。

回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化∆φ可由面积的变化∆S 引起;可由磁感应强度B 的变化∆B 引起;可由B 与S 的夹角θ的变化∆θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。

下列各图中,回路中的磁通量是怎么的变化,我们把回路中磁场方向定为磁通量方向(只是为了叙述方便),则各图中磁通量在原方向是增强还是减弱。

(1)图:由弹簧或导线组成回路,在匀强磁场B 中,先把它撑开,而后放手,到恢复原状的过程中。

(2)图:裸铜线ab 在裸金属导轨上向右匀速运动过程中。

(3)图:条形磁铁插入线圈的过程中。

(4)图:闭合线框远离与它在同一平面内通电直导线的过程中。

(5)图:同一平面内的两个金属环A、B,B中通入电流,电流强度I在逐渐减小的过程中。

(6)图:同一平面内的A、B回路,在接通K的瞬时。

(7)图:同一铁芯上两个线圈,在滑动变阻器的滑键P向右滑动过程中。

(8)图:水平放置的条形磁铁旁有一闭合的水平放置线框从上向下落的过程中。

2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。

3、产生感应电动势、感应电流的条件:导体在磁场里做切割磁感线运动时,导体内就产生感应电动势;穿过线圈的磁量发生变化时,线圈里就产生感应电动势。

如果导体是闭合电路的一部分,或者线圈是闭合的,就产生感应电流。

从本质上讲,上述两种说法是一致的,所以产生感应电流的条件可归结为:穿过闭合电路的磁通量发生变化。

二、楞次定律:
1、1834年德国物理学家楞次通过实验总结出:感应电流的方向总是要使感应电流的磁场阻碍引起感应电流的磁通量的变化。

即磁通量变化
产生
−→
−−感应电流建立
−→
−−感应电流磁场阻碍
−→
−−磁通量变化。

2、当闭合电路中的磁通量发生变化引起感应电流时,用楞次定律判断感应电流的方向。

楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。

楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。

按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。

我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。

因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。

所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。

从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。

要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。

更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。

正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来达到“阻碍”原
磁通的“变化”即减或增。

楞次定律所反映提这样一个物理过程:原磁通变化时(φ原变),产
生感应电流(I感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁
场(φ感),这就是电流的磁效应问题;而且I感的方向就决定了φ感的方向(用安培右手螺旋定则判定);φ感阻碍φ原的变化——这正是楞次定律所解决的问题。

这样一个复杂的过程,可以用图表理顺如下:
楞次定律也可以理解为:感应电流的效果总是要反抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:(1)阻碍原磁通的变化(原始表速);
(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:若产生感应电流的回路或其某些部分可以自由运动,则它会以它的运动来阻碍穿过路的磁通的变化;若引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,则回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;
(3)使线圈面积有扩大或缩小的趋势;
(4)阻碍原电流的变化(自感现象)。

利用上述规律分析问题可独辟蹊径,达到快速准确的效果。

如图1所示,在O点悬挂一轻质导线环,拿一条形磁铁沿导线环的轴线方向突然向环内插入,判断在插入过程中导环如何运动。

若按常规方法,应先由楞次定律判断出环内感应电流的方向,再由安培定则确定环形电流对应的磁极,由磁极的相互作用确定导线环的运动方向。

若直接从感应电流的效果来分析:条形磁铁向环内插入过程中,环内磁通量增加,环内感应电流的效果将阻碍磁通量的增加,由磁通量减小的方向运动。

因此环将向右摆动。

显然,用第二种方法判断更简捷。

应用楞次定律判断感应电流方向的具体步骤:
(1)查明原磁场的方向及磁通量的变化情况;
(2)根据楞次定律中的“阻碍”确定感应电流产生的磁场方向;
(3)由感应电流产生的磁场方向用安培表判断出感应电流的方向。

3、当闭合电路中的一部分导体做切割磁感线运动时,用右手定则可判定感应电流的方向。

运动切割产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的特例。

用右手定则能判定的,一定也能用楞次定律判定,只是不少情况下,不如用右手定则判定的方便简单。

反过来,用楞次定律能判定的,并不是用右手定则都能判定出来。

如图2所示,闭合图形导线中的磁场逐渐增强,因为看不到切割,用右手定则就难以判定感应电流的方向,而用楞次定律就很容易判定。

要注意左手定则与右手定则应用的区别,两个定则的应用可简单总结为:“因电而动”用右手,“因动而电”用右手,因果关系不可混淆。

相关文档
最新文档