四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)

合集下载

成都2021届零诊数学答案

成都2021届零诊数学答案

成都2021届零诊数学答案篇一:四川省成都市2021届零诊考试数学(理)试题及答案四川省成都市2021届高三摸底(零诊)数学(理)试题本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟.注意事项1.答题前,务必将自己的姓名、考籍号填写在答题卡法规的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用椽皮撵擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在试卷规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I卷(选择题,共50分)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量a=(5,-3),b=(-6,4),则a+b= (A)(1,1)(B)(-1,-1)(C)(1,-1)(D)(-1,1) 2.设全集U={1,2,3,4},集合S={l,3},T={4},则(eUS)(A){2,4} (B){4}3.已知命题p:?x∈R,2=5,则?p为(A)?x?R,2=5(C)?x0∈R,2x0xxT等于(D){1,3,4}(C)?(B)?x?R,2?5 (D)?x0∈R,2(C)log63x0x=5 ≠54.计算21og63 +log64的结果是(A)log62 (B)2(D)3?x?0?5.已知实数x,y满足?y?0,则z=4x+y的最大值为?x?y?2?(A)10 (B)8 (C)2 (D)0 6.已知a,b是两条不同直线,a是一个平面,则下列说法正确的是(A)若a∥b.b??,则a//? (B)若a//?,b??,则a∥b(C)若a⊥?,b⊥?,则a∥b (D)若a⊥b,b⊥?,则a∥?7.PM2.5是指大气中会直径宽度小于或等于2.5微米的颗粒物,也称为可A肺颗粒物,般情况下PM2.5浓度越大,大气环境质量越差右边的则表示茎叶统计图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:?g/m3)则下列说法正确的是(A)这l0日内甲、乙监测站读数的极差相等(B)这10日内甲、乙监测站读数的中位数中,己的较大(C)这10日内乙监测站读数的众数与中位散相等(D)这10日内甲、乙监测站读数的平均数成正比8.已知函数f(x)?x?cos?x(??0)的图象与直线y= -2的两个相邻公共点之间的距离等于x,则f(x)的无趣递减区间是(A)?k?????6,k??2??,k∈z 3??4??,k∈z ?3?(B)?k?????3,k????6??,k∈z(C)?2k?????3,2k??(D)?2k?????12,2k??5??,k∈z ?12??x2,x?(?1,1)?9.已知定义在R上的偶函数(fx)满足(f4-x)=f(x),且当x∈??1,3?时,(fx)=??1?cosx,x??1,3???2则g(x)=f(x)-|1gx|的零点个数是(A)7 (B)8(C)9(D)10x22x2y210.如图,已知椭圆Cl:+y=1,双曲线C2:2?2=1(a>0,b>0),若以C1的长轴为直径的ab11圆与C2的一条渐近线相交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为(A)5(C(B(D第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上。

四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)

四川省成都市高2021届2020年高三零诊数学试卷(文科、理科)

数学【理科】一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{|02}A x x =<<,{|1}B x x =≥,则A B =(A){|0x x <≤1}(B){|01}x x << (C){|2x x <1≤} (D){|02}x x << 2.复数2i 2i z =-(i 为虚数单位)在复平面内对应的点位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限3.已知函数|1|,0()=ln ,0.x x f x x x -⎧⎨>⎩,≤则1(())e f f = (A)0 (B)1 (C)e 1- (D)24.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部、教育部、团中央等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”.某校高二(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日”宣传活动.已知随机数表中第6行至第7行的各数如下:16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 若从随机数表第6行第9列的数开始向右数,则抽取的第5名学生的学号是(A)17 (B)23 (C)35 (D)375.“3k =”是“直线2y kx =+与圆221x y +=相切”的(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件6.已知离心率为2的双曲线22221(0,0)x y a b a b -=>>与椭圆14822=+y x 有公共焦点,则双曲线的方程为 (A)112422=-y x (B) 141222=-y x (C)1322=-y x (D) 1322=-y x 7.执行如图所示的程序框图,则输出的结果S 为(A)1-(B)22 (C)0(D)212--8.设函数()f x 的导函数是()f x '.若2()()cos f x f x x '=π-,则()=6f π' (A)12- (B)12(C)32 (D)32- 9.如图是某几何体的三视图.若三视图中的圆的半径均为2,则该几何体的表面积为(A)14π (B)16π(C)18π (D)20π10.在平面直角坐标系xOy 中,已知直线:(1)l y k x =+与曲线1sin 2,:sin cos x C y θθθ=+⎧⎨=+⎩(θ为参数)在第一象限恰有两个不同的交点,则实数k 的取值范围为(A)(0,1) (B)1(0,)2 (C)2[,1)3 (D)21[,)32 11.已知函数()||ln||x x f x =.若)e (),3ln (),2(ln f c f b f a =-==,则c b a ,,的大小关系为 (A)a c b >> ( B)c a b >> (C)c b a >> (D)b c a >>12.已知关于x 的不等式ln(1()),x x kx k b b -++∈R ≤当x ∈(1,+∞)时恒成立,则11b k --的最小值是 (A)2e - (B)1e 1-+ (C)21e - (D)e 1--二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知呈线性相关的变量x ,y 之间的关系如下表:x1 2 3 4 y 1 3 4 6由表中数据得到的回归直线方程为ˆˆ1.6yx a =+.由此预测当8x =时,ˆy 的值为________. 14.函数2()2e 3x f x -=-+的图象在0=x 处的切线方程为________.15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”.如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是_______.16.已知点P 在椭圆22221(0)x y a b a b+=>>上,1F 是椭圆的左焦点,线段1PF 的中点在圆2222x y a b +=-上.记直线1PF 的斜率为k ,若1k ≥,则椭圆离心率的最小值为_______.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)2019年12月,《生活垃圾分类标志》新标准发布并正式实施.为进一步普及生活垃圾分类知识,了解居民生活垃圾分类情况,某社区开展了一次关于垃圾分类的问卷调查活动,并对随机抽取的1000人的年龄进行了统计,得到如下的各年龄段频数分布表和各年龄段人数频率分布直方图:各年龄段频数分布表 各年龄段人数频率分布直方图(Ⅰ)请补全频率分布直方图,并求出各年龄段频数分布表中n m ,的值;(Ⅱ)已知从年龄在[)30,40段中采用分层抽样的方法选出了5名代表参加垃圾分类知识交流活动.现从这5名代表中任选2名作为领队,求这两名领队中恰有1名年龄在[)35,40段中的概率.18. (本小题满分12分)已知函数32()21f x x ax bx a =+++-在1-=x 处取得极值0,其中,a b ∈R .(Ⅰ)求b a ,的值;(Ⅱ)当[1,1]x ∈-时,求)(x f 的最大值.组数分组 频数 第一组[25,30) 200 第二组 [30,35) 300 第三组[35,40) m 第四组[40,45) 150 第五组[45,50) n 第六组 [50,55]50 合计 1000如图①,在菱形ABCD 中,60A ∠=°且2=AB ,E 为AD 的中点.将△ABE 沿BE 折起使2=AD ,得到如图②所示的四棱锥A -BCDE .(Ⅰ)求证:平面ABE ⊥平面ABC ;(Ⅱ)若P 为AC 的中点,求二面角C BD P --的余弦值.图① 图②20.(本小题满分12分)在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换⎪⎩⎪⎨⎧='='y y x x 21:ϕ后,得到曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)设直线l 与曲线C 相交于B A ,两点,连接BO 并延长与曲线C 相交于点D ,且2||=AD .求△ABD 面积的最大值.已知函数()e ,.xf x x ax a =+∈R(Ⅰ)设()f x 的导函数为(),f x '试讨论()f x '的零点个数;(Ⅱ)设()ln ln (1).a g x ax x a x a x =++-当(1,x ∈+∞)时,若()()f x g x ≥恒成立,求a 的取值范围.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为1x y ⎧=⎪⎪⎨⎪=⎪⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 6=.(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)已知点)0,1(P .若直线l 与曲线C 相交于B A ,两点,求2211||||PA PB +的值.。

2021届四川省成都市普通高中高三毕业班上学期摸底测试(零诊)数学(理)试题(解析版)

2021届四川省成都市普通高中高三毕业班上学期摸底测试(零诊)数学(理)试题(解析版)

绝密★启用前四川省成都市普通高中2021届高三毕业班上学期摸底测试(零诊)数学(理)试题(解析版)本试卷分选择题和非选择题两部分。

第I 卷(选择题)1至2页,第Ⅱ卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|02}A x x =<<,{|1}B x x =≥,则A B =C(A)}10|{≤<x x (B)}10|{<<x x(C)}21|{<≤x x (D)}20|{<<x x解:{|12}A B x x =≤<,故选C2.复数i i i z (22-=为虚数单位)在复平面内对应的点位于B (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 解:22(2)24242(2)(2)555i i i i z i i i i +-+====-+--+,其在复平面内对应的点的坐标为24(,)55-,故选B 3.已知函数=)(x f ⎩⎨⎧>≤-.0,ln 0|,1|x x x x ,则1(())f f e =D (A)0 (B)1 (C)1-e (D)2 解:11()ln 1f e e ==-,1(())(1)|2|2f f f e=-=-=,故选D 4.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部,教育部,团中央等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”.某校高=(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日’’宣传活动.已知随机数表中第6行至第7行的各数如下:16 22 77 94 39 49 54 43 54 8217 37 93 23 78 87 35 20 96 4384 26 34 91 64 84 42 17 53 3157 24 55 06 88 77 04 74 47 6721 76 33 50 25 83 92 12 06 76若从随机数表第6行第9列的数开始向右读则抽取的第5名学生的学号是C(A)17 (B)23 (C)35 (D)37 解:读取的前5名学生的学号依次是:39,17,37,23,35, 故选C5. ‘‘3=k ”是“直线2+=kx y 与圆122=+y x 相切”的A(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件解:直线2+=kx y 与圆122=+y x 相切时1=,解得k =.故选A6.已知离心率为2的双曲线22221(0x y a a b -=>,)0>b 与椭圆22184x y +=有公共焦点,则双曲线的方程为C。

四川省成都市2020届高三数学第三次诊断性检测试题 理.doc

四川省成都市2020届高三数学第三次诊断性检测试题 理.doc

四川省成都市2021届高三数学第三次诊断性检测试题 理第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,}{0,,{02,4}A x B ==,若A B ,则实数x 的值为 (A)0或2 (B)0或4 (C)2或4 (D)0或2或42.若复数z 满足zi =2+5i (i 为虚数单位),则z 在复平面上对应的点的坐标为 (A)(2,5) (B)(2,-5) (C)(-5,2) (D)(5,-2) 3.命题“∃x 0∈R ,x 02-x 0+1≤0的否定是0(),A x ∃∈R x 02-x 0+1>0 (B)∀x ∈R ,x 2-x +1≤0(0)C x ∃∈R ,x 02-x 0+1≥0 (D) ∀x ∈R ,x 2-x +1>04.如图是某几何体的正视图和侧视图,则该几何体的俯视图不可能是5.已知函数2(2)f x x x --=,则()2log 3f = (A)2 (B)83 (C)3 (D)1036.已知实数x,y 满足10,20,50x x x y -≥⎧⎪-≥⎨⎪+-⎩则z =2x +y 的最大值为(A)4 (B)6 (C)8 (D)107.在等比数列{a n }中,已知19nn n a a +=,则该数列的公比是(A )-3 (B)3 (C )±3 (D)98.已知函数f (x )=x 3-3x ,则“a>-1”是“f (a )>f (-1)”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件9.已知F 1,F 2是双曲线()222210,0x y a b a b-=>>的左,右焦点,经过点F 2且与x 轴垂直的直线与双曲线的一条渐近线相交于点A ,且1264F AF ππ∠,则该双曲线离心率的取值范围是()A [5,13] ()B [5,3] (C) [3,13] (D)[7,3]10.为迎接大运会的到来,学校决定在半径为202m ,圆心角为π4的扇形空地OPQ 的内部修建一平行四边形观赛场地ABCD ,如图所示则观赛场地的面积最大值为 (A )200m 2()B 400(2-2)m 2(C)400(3-1)m 2(D)400(2-1)m 211.在三棱锥P ABC —中,,AB BC P ⊥在底面ABC 上的投影为AC 的中点D , DP = DC= 1, 有下列结论: ①三棱锥 P — A B C 的三条侧棱长均相等; ②∠PAB 的取值范围是(π4,π2)③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为2π3④若 A B = B C ,E 是线段PC 上一动点,则+DE BF 的最小值为6+22其中正确结论的个数是(A)1 (B)2 (C) 3 (D)4 12.已知函数()sin 10,01, )4f x A x A πωω⎛⎫=+-><< ⎪⎝⎭(588f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且f (x )在区间30,4π⎛⎫⎪⎝⎭上的最大值为2.若对任意的x 1,x 2∈[0,t ],都有()()122f x f x ≥成立,则实数t 的最大值是(A)3π4 (B)2π3 (C)712π (D)π2第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上13.已知向量(1,),(2,3),λ==a b 且,⊥a b 则实数λ的值为▲14.某实验室对小白鼠体内x ,y 两项指标进行研究,连续五次实验所测得的这两项指标数据如下表:已知y 与x 具有线性相关关系,利用上表中的五组数据求得回归直线方程为,y bx a =+若下一次实验中x =170,利用该回归直线方程预测得117,y =则b 的值为 ▲ 15.设数列{a n }的前n 项和为S n ,若a 1=1.S 5=35,112(211n n n S S S n n n n -+=+-+且且n +N ,∈则12231011111a a a a a a +++的值为 ▲ 16.已知点F 为抛物线y 2=2px (p >0)的焦点,经过点F 且倾斜角为02παα⎛⎫<<⎪⎝⎭的直线与抛物线相交于A ,B 两点,(OAB O ∆为坐标原点)的面积为2sin 2α,线段AB 的垂直平分线与x 轴相交于点M ,则|FM|的值为 ▲三、解答题:本大题共6小题,共70分解答应写出文字说明、证明过程或演算步骤。

2021届四川省成都市普通高中高三毕业班上学期摸底测试(零诊)数学(文)试题(解析版)

2021届四川省成都市普通高中高三毕业班上学期摸底测试(零诊)数学(文)试题(解析版)

绝密★启用前四川省成都市普通高中2021届高三毕业班上学期摸底测试(零诊)数学(文)试题(解析版)本试卷分选择题和非选择题两部分。

第Ⅰ卷(选择题)1至2页,第Ⅱ卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}20|{<<=x x A ,}1|{≥=x x B ,则=B A C(A)}10|{≤<x x (B)}10|{<<x x(C)}21|{<≤x x (D)}20|{<<x x解:{|12}A B x x =≤<,故选C2.复数i ii z (22-=为虚数单位)在复平面内对应的点位于B (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 解:22(2)24242(2)(2)555i i i i z i i i i +-+====-+--+,其在复平面内对应的点的坐标为24(,)55-,故选B 3.已知函数⎩⎨⎧>≤-=.0,ln 0|,1|)(x x x x x f ,则=))1((e f f D (A)0 (B)1 (C)1-e (D)2 解:11()ln 1f e e ==-,1(())(1)|2|2f f f e=-=-=,故选D 4.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部,教育部,团中央等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”.某校高-(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日’’宣传活动.已知随机数表中第6行至第7行的各数如下:16 22 77 94 39 49 54 43 54 8217 37 93 23 78 87 35 20 96 4384 26 34 91 64 84 42 17 53 3157 24 55 06 88 77 04 74 47 6721 76 33 50 25 83 92 12 06 76若从随机数表第6行第9列的数开始向右读,则抽取的第5名学生的学号是C(A)17 (B)23 (C)35 (D)37 解:读取的前5名学生的学号依次是:39,17,37,23,35, 故选C5.记函数)(x f 的导函数是)('x f .若2()cos x f x x π=-,则=)6('πf B (A)61- (B)65 (C)6332- (D)6332+ 解:2'()sin x f x x π=+,21156'()sin 66326f ππππ⨯=+=+=,故选B 6. “3=k ”是“直线2+=kx y 与圆122=+y x 相切”的A(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件。

2021届四川省成都七中高新校区高三零诊模拟考试 文科数学试题(含答案)

2021届四川省成都七中高新校区高三零诊模拟考试 文科数学试题(含答案)

成都七中高新校区高 2021届零诊模拟考试文科数学(满分 150 分,考试时间 120 分钟)一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题列出的四个选项中,只有一项是符合题目要求的)1.已知集合=>A x x {|log 1}2,集合=<B x {x |||3},则⋂=A B ( )A .<<x x {|23}B .-<<x x {|32}C .-<<x x {|33}D .>x x {|2}2.已知复数z 满足+=z i (1)|1|,其中i 为虚数单位,则在复平面内,z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3. “搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2019年9月到2020年2月这半年中,”高考数学改革”一词的搜索指数变化的走势图.根据该走势图,下列结论正确的是( )A .这半年中,网民对该关键词相关的信息关注度呈周期性变化B .这半年中,网民对该关键词相关的信息关注度不断减弱C .从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D .从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值4.成都七中高新校区高一、高二、高三年级的学生人数之比依次为6:5:7,高新防疫站欲对学生进行身体健康调查,用分层抽样的方法从学校高中三个年级的学生中抽取容量为n 的样本,样本中高三年级的学生有21人,则n 等于( )A .35B .45C .54D .635.已知等差数列a n {}的前n 项和为S n ,且+=+a a a 3476,则=S (9 )A .27B .227C .9D .36.在不等式组≥⎩⎪≥+-≤⎨⎪⎧-+y x y x y 020 10所表示的平面区域内随机地取一点M ,则点M 恰好落在第二象限的概率为15.已知锐角三角形ABCBC ||,且|AB|=3,|AC|=3,则|BC|=16.已知函数⎩⎪+≤⎨=⎪⎧->x x x f x x x x x 2,03ln 2,02)(,函数=-+g x f x kx 1)()(有四个零点,则实数k 的取值范围是 .三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答)17.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求实数a ,b 的值;(2)若=f x '()0存在两个不同的实数解,求实数a 的取值范围.18.《中国诗词大会》是中央电视台于2016年推出的大型益智类节目,中央电视台为了解该节目的收视情况,抽查北方与南方各5个城市,得到观看该节目的人数(单位:千人)如茎叶图所示,但其中一个数字被污损.(1)若将被污损的数字视为0~9中10个数字中的一个,求北方观众平均人数不超过南方观众平均人数的概率;(2)该节目的播出极大激发了观众学习诗词的热情,现在随机统计了4位观众每周学习诗词的平均时间y (单位:小时)与年龄x (单位:岁),并制作了对照表(如表所示):由表中数据分析,x 与y 呈线性相关关系,试求线性回归方程,并预测年龄为70岁的观众每周学习诗词的平均时间.参考公式:∑∑-=-==xn x b x y nx yi i n i i i n ()ˆ1221,=+y bx a ˆˆˆ.19.如图,在四棱柱中,底面是等腰梯形,,,,顶点在底面内的射影恰为点.(1)求证:平面;(2)若直线与底面所成的角为,求线段AD 1的长及B 点到平面AA D 1的距离. 20.设函数=--=-x e f x ax a lnx g x e x(),()12,其中∈a R ,=⋯e 2.71828为自然对数的底数. (1)讨论f x ()的单调性;(2)证明:当>x 1,>g x ()021.已知矩形EFMN,=EF ||,=FM ||1,以EF 的中点O 为原点,建立如图的平面直角坐标系,若椭圆Γ以E ,F 为焦点,且经过M ,N 两点.(1)求椭圆Γ方程;(2)直线=+l y x m :与Γ相交于A ,B 两点,在y 轴上是否存在点C ,使得△ABC 为正三角形,若存在,求出l 的方程;若不存在,说明理由.22.在平面直角坐标系xOy 中,直线l的参数方程为⎩⎪=⎪⎨⎪⎪=+⎧y x t 211(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线C 的极坐标方程为+=ρρθ3sin 12222.(1)求直线l 的普通方程和曲线C 的参数方程;(2)若P (1,0),直线l 与曲线C 交于M ,N 两点,求+PM PN ||||的值. -ABCD A B C D 1111ABCD AB CD //=AB 4==BC CD 2D 1ABCD C ⊥BC ACD 1DD 1ABCD π4的成都七中高新校区高 2021届零诊模拟考试文科数学答案1—12 A D D C AC A A B C A B 13. 21 14. 109215.317.解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意,得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根,所以Δ=4(1-a )2+12a (a +2)>0,即4a 2+4a +1>0,所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 18.解:(1)设污损的数字为x ,由北方观众平均人数不超过南方观众平均人数得+++++++++x 5578798281807377788680,解得:x 6,即=x 6,7,8,9, ∴北方观众平均人数不超过南方观众平均人数的概率为:=10542.(2)设线性回归方程为:==+++x 43520304050,==+++y 4 3.53 3.5 3.54, ∴∑=⨯+⨯+⨯+⨯==x y i i i 20330 3.540 3.550450514,∑=+++==x i i 400900160025005400124,-⨯==-⨯⨯b 54004350.03ˆ505435 3.52,=-⨯=a 3.50.0335 2.45ˆ, ∴=+yx 0.03 2.45ˆ,当=x 70时,=⨯+=y 0.0370 2.45 4.55ˆ.答:年龄为70岁的观众每周学习诗词的平均时间大约为4.55小时.19.解:(1)证明:如图,连接,则平面,平面,,在等腰梯形中,连接,过点作于点,,,,则,,,,因此满足,,又,平面,,平面.(2)解:由(1)平面,,,,D C 1⊥D C 1ABCD ⊂BC ABCD ∴⊥BC D C 1ABCD AC C ⊥CG AB G =AB 4==BC CD 2AB CD //=AG 3=BG1==CG∴===AG +==AC BC AB 16222∴⊥BC AC D C 1⊂AC AD C 1=D C A C C 1∴⊥BC AD C 1⊥D C 1ABCD ∴∠=πD DC 41∴==D C CD 21=--y x m 3,令=x 0,可得=-y m 3,即⎝⎭ ⎪-⎛⎫C m 30,.又因为=PC AB 2,=⨯23,即=33.解得=±m 5,满足<<m .故y 轴上存在点C 使得ABC 为等边三角形,此时=+l y x 5:或=-l y x 5:22.解:(1)直线l 的参数方程转换为普通方程为=y -=y 0。

四川省成都市2021届高三数学零模考试试题 文(含解析).doc

四川省成都市2021届高三数学零模考试试题 文(含解析).doc

四川省成都市2021届高三数学零模考试试题 文(含解析)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1iz i =+(其中i 为虚数单位)的虚部是 ( ) A. 12- B. 12i C. 12D. 12i -【答案】C 【解析】 试题分析:(1)1111(1)(1)222i i i i z i i i i -+====+++-,则虚部为,故选. 考点:复数的运算、复数的实部与虚部.2.若集合{1234}A =,,,,{}260B x x x =--≤,则A B =( )A. {1}B. {12},C. {2,3}D. {12,3}, 【答案】D 【解析】{}60,23,1,2,3x x x A B --≤∴-≤≤⋂=,选D .3.如图是某赛季甲、乙两名篮球运动员9场比赛所得分数的茎叶图,则下列说法错误的是( )A. 甲所得分数的极差为22B. 乙所得分数的中位数为18C. 两人所得分数的众数相等D. 甲所得分数的平均数低于乙所得分数的平均数 【答案】D 【解析】 【分析】根据茎叶图,逐一分析选项,得到正确结果.【详解】甲的最高分为33,最低分为11,极差为22,A 正确;乙所得分数的中位数为18,B 正确;甲、乙所得分数的众数都为22,C 正确;甲的平均分为11151720222224323319699x ++++++++==甲,乙的平均分为8111216182022223116099x ++++++++==乙,甲所得分数的平均数高于乙所得分数的平均数,D 错误,故选D.【点睛】本题考查了根据茎叶图,求平均数,众数,中位数,考查基本概念,基本计算的,属于基础题型.4.若实数,x y 满足约束条件220,10,0.x y x y +-≤⎧⎪-≥⎨⎪≥⎩,则2z x y =-的最小值为()A. 0B. 2C. 4D. 6【答案】A 【解析】 【分析】画出约束条件所表示的区域,然后利用平移法求出z 的最大值.【详解】作出实数x ,y 满足约束条件220100x y x y +-⎧⎪-⎨⎪⎩表示的平面区域,如图所示.由2z x y =-可得1122y x z =-,则12z -表示直线1122y x z =-在y 轴上的截距,纵截距越大,z 越小.作直线20x y -=,然后把该直线向可行域平移,当直线经过点B 时,12z -最大,z 最小.由2201x y x +-=⎧⎨=⎩可得1(1,)2B ,此时0z =,故选A .【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键. 5.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A. 1 B. 3C. 6D. 9【答案】D 【解析】 【分析】首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知()6121267.....a a a a a =,最后计算67a a 的值.【详解】由3132312log log log 12a a a +++= ,可得31212log 12a a a =,进而可得()6121212673a a a a a == ,679a a ∴= .【点睛】本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.6.设函数()f x 的导函数为()f x ',若()1ln 1xf x e x x=+-,则()1f '=() A. 3e - B. 2e -C. 1e -D. e【答案】C 【解析】 【分析】先求出()f x ',即可求出()1f '的值.【详解】由题得()21=ln x xe f x e x x x '+-,所以()211==e 111e f '--. 故选C【点睛】本题主要考查函数求导,意在考查学生对这些知识的理解掌握水平和计算能力. 7.ABC △中,角A ,B ,C 的对边分别为,,a b c .若向量(),cos m a A =-,()cos n C c =-,且0m n ⋅=,则角A 的大小为()A.6π B.4π C.3π D.2π 【答案】B 【解析】 【分析】利用数量积结合正弦定理转化为三角函数问题,通过两角和的公式化简得到角A 的方程,得解.【详解】由0m n =得,0(,cos )(cos ,2)cos )cos a A C c a C c A =--=--,由正弦定理得,sin cos cos sin cos 0A C B A C A +=,化为sin()cos 0A C B A +=,即sin cos 0B B A =, 由于sin 0B ≠,∴cos A =()0,A π∈∴4A π=,故选B .【点睛】本题主要考查平面向量的数量积和正弦定理,考查和角的正弦公式的应用,意在考查学生对这些知识的理解掌握水平.8.执行如图所示的程序框图,则输出的m 的值为()A. 5B. 6C. 7D. 8【答案】B 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算S 的值并输出变量m 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】模拟程序的运行,可得 开始 0S =1m =① 1122100⨯=< 2m =② 12122210100⨯+⨯=< 3m = ③ 12312223234100⨯+⨯+⨯=< 4m = ④ 12341222324298100⨯+⨯+⨯+⨯=< 5m =⑤ 123451222324252258100⨯+⨯+⨯+⨯+⨯=>6m =故选B .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.若矩形ABCD 的对角线交点为O ',周长为410,四个顶点都在球O 的表面上,且3OO '=,则球O 的表面积的最小值为()A.3223πB.6423πC. 32πD. 48π【答案】C 【解析】 【分析】首先利用矩形求出外接圆的小圆半径,进一步利用基本不等式求出球的半径,进一步求出球的表面积的最小值.【详解】如图,设矩形ABCD 的两邻边分别为a ,b ,则210a b +=,且外接圆O '的半径22a b r +=.由球的性质得,OO '⊥平面ABCD ,所以球O 的半径2222(3)34a b R r +=++由均值不等式得,2222a ba b ++222()202a b a b++=, 所以222220(3)33844a b R r +=+++=,当且仅当10a b == 所以球O 的表面积的最小值为2432R ππ=, 故选C .【点睛】本题考查的知识要点:球的表面积公式的应用,基本不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 10.已知函数()()221xf x x a x e =++,则“2a =()f x 在-1x =处取得极小值”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A 【解析】 【分析】求出原函数的导函数,分析函数()f x 在1x =-处取得极小值时的a 的范围,再由充分必要条件的判定得答案.【详解】解:若()f x 在1x =-取得极小值,2222()[(2)1](1)(1)x x f x x a x a e x x a e '=++++=+++.令()0f x '=,得1x =-或21x a =--. ①当0a =时,2()(1)0xf x x e'=+.故()f x 在R 上单调递增,()f x 无最小值;②当0a ≠时,211a --<-,故当21x a <--时,()0f x '>,()f x 单调递增; 当211a x --<<-时,()0f x '<,()f x 单调递减; 当1x >-时,()0f x '>,()f x 单调递增. 故()f x 在1x =-处取得极小值.综上,函数()f x 在1x =-处取得极小值0a ⇔≠.∴“a =()f x 在1x =-处取得极小值”的充分不必要条件.故选A .【点睛】本题考查利用导数研究函数的极值,考查充分必要条件的判定,属于中档题.11.已知双曲线2222C :1(0,b 0)x y a a b-=>>的左、右焦点分别为()10F c-,,()20F c ,,点N 的坐标为23c,2b a ⎛⎫- ⎪⎝⎭.若双曲线C 左支上的任意一点M 均满足24MF MN b >+,则双曲线C 的离心率的取值范围为( )A. 3⎛ ⎝B.C. 131,(5,)3⎛⎫+∞ ⎪ ⎪⎝⎭D. (1,5)(13,)+∞【答案】C 【解析】 【分析】首先根据双曲线的定义,212MF MF a =+,转化为124MF MN a b ++>,即()1min24MFMNa b ++>,根据数形结合可知,当点1,,M F N 三点共线时,1MF MN+最小,转化为不等式23242b a b a+>,最后求离心率的范围.【详解】由已知可得212MF MF a -=,若2||4MF MN b +>,即1|||24MF MN a b ++>‖,左支上的点M 均满足2||4MF MN b +>, 如图所示,当点M 位于H 点时,1||MF MN +最小,故23242b a b a +>,即22348b a ab +>, 223840,(2)(23)0b ab a a b a b ∴-+>∴-->,23a b ∴>或222,49a b a b <∴>或22224,913a b c a <∴<或22135,1c c a a >∴<<或5,ca >∴双曲线C 的离心率的取值范围为131,(5,)⎛⎫+∞ ⎪ ⎪⎝⎭.【点睛】本题考查离心率的取值范围的问题,属于中档题型,意在考查化归和计算能力,关键是根据几何关系分析1|||MF MN +‖的最小值,转化为,a b 的代数关系,最后求ca的范围. 12.若关于x 的不等式ln 10x x kx k -++>在()1,+∞内恒成立,则满足条件的整数k 的最大值为() A. 0 B. 1 C. 2 D. 3【答案】C 【解析】 【分析】根据题意即可得出函数(1)y xlnx x =>的图象恒在直线(1)1y k x =--的上方,当直线(1)1y k x =--与函数(1)y xlnx x =>相切时,可设切点为0(x ,0)y ,从而可以得出()000000111y x lnx y k x lnx k =⎧⎪=--⎨⎪+=⎩①②③,联立三式即可得出01k x =-,根据01x >即可得出0k >,再根据③即可得出1k >,从而得出整数k 的最大值为2.【详解】关于x 的不等式10xlnx kx k -++>在(1,)+∞内恒成立, 即关于x 的不等式(1)1xlnx k x >--在(1,)+∞内恒成立, 即函数(1)y xlnx x =>的图象恒在直线(1)1y k x =--的上方.当直线(1)1y k x =--与函数(1)y xlnx x =>相切时,设切点为0(x ,0)y ,则()000000111y x lnx y k x lnx k =⎧⎪=--⎨⎪+=⎩①②③,由①②得,000(1)1x lnx k x =--,把③代入得00(1)(1)1x k k x -=--,化简得01x k =+.由01x >得,0k >. 又由③得011k lnx =+>.即相切时整数2k .因此函数(1)y xlnx x =>的图象恒在直线(1)1y k x =--的上方时,整数k 的最大值为2. 故选C .【点睛】本题主要考查基本初等函数的求导公式,积的导数的求导公式,考查直线和曲线的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.某公司一种新产品的销售额y 与宣传费用x 之间的关系如表:已知销售额y 与宣传费用x 具有线性相关关系,并求得其回归直线方程为9y bx =+,则b 的值为__________. 【答案】6.5 【解析】 【分析】由表中数据计算平均数,代入回归直线方程中求得回归系数. 【详解】由表中数据,计算0123425x ++++==,10152030351102255y ++++===,又归直线方程为ˆˆ9y bx =+过样本中心点(2,22)得, ˆ2229b=+, 解得13ˆ 6.52b ==. 故答案为6.5.【点睛】本题考查了线性回归方程过样本中心点的应用问题,是基础题. 14.已知曲线C :2cos sin x y θθ=⎧⎨=⎩(θ为参数).若点P 在曲线C 上运动,点Q 为直线l :20x y +-=上的动点,则PQ 的最小值为__________.【解析】 【分析】先表示出曲线C 上的点到直线距离,再利用三角函数的图像和性质求|PQ|的最小值. 【详解】表示曲线2cos ,:(sin x C y θθθ=⎧⎨=⎩为参数)上任意点(2cos ,sin )P θθ到直线:20l x y +-的距离d ==当sin()1θα+=时,||min min PQ d ===故答案为5【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,点到直线的距离公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.15.已知()f x 是定义在(),ππ-上的奇函数,其导函数为()f x ',4f π⎛⎫=⎪⎝⎭,且当()0,x π∈时,()()sin cos 0f x x f x x '+>.则不等式()sin 1f x x <的解集为__________.【答案】,44ππ⎛⎫- ⎪⎝⎭ 【解析】 【分析】令()()sin F x f x x =,根据据已知条件及导函数符号与函数单调性的关系判断出()sin f x x 的单调性,根据函数的单调性和奇偶性求出不等式的解集. 【详解】令()()sin (0)F x f x x x π=<<, 则()()sin ()cos 0(0)F x f x x f x x x π''=+><<,所以()()sin F x f x x =在(0,)π上为单调递增,且()()sin 1444F f πππ==,所以()()sin ()4F x f x x F π=<,解得04x π<<.由()f x 是定义在(,)ππ-上的奇函数得,()()sin()()sin F x f x x f x x f -=--=-⋅-=(x)sinx=F(x)所以()()sin F x f x x =在(,)ππ-为偶函数,且(0)(0)sin 00F f == 所以不等式()sin 1f x x <的解集为(),44ππ-,故答案为(),44ππ-.【点睛】本题主要考查不等式的求解,根据条件构造函数,求函数的导数,利用导数研究函数的单调性是解决本题的关键.16.已知抛物线C :20)2(y px p =>的焦点为F ,准线为l .过点F 作倾斜角为120︒的直线与准线l 相交于点A ,线段AF 与抛物线C 相交于点B ,且43AB =,则抛物线C 的标准方程为__________. 【答案】22y x = 【解析】 【分析】设出直线AF 的方程,与抛物线方程联立,消去x ,解方程求得p 的值,再写出抛物线C 的标准方程.【详解】由题得直线AF的方程为)2p y x =-,从而()2pA -;由22)2y pxp y x ⎧=⎪⎨=-⎪⎩消去x ,2220py +=,解得y p或y =(舍去),从而1()6B p p ; 由4||3AB =43, 解得1p =,所以抛物线C 的标准方程为22y x =.故答案为22y x =.【点睛】本题考查了直线与抛物线方程的应用问题,也考查了运算求解能力,是中档题. 三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知函数()32133f x x mx nx =+++,其导函数()f x '的图象关于y 轴对称,()213f =-.(Ⅰ)求实数,m n 的值;(Ⅱ)若函数()y f x λ=-的图象与x 轴有三个不同的交点,求实数λ的取值范围. 【答案】(Ⅰ)0m =,4n =-(Ⅱ)725,33⎛⎫- ⎪⎝⎭【解析】 【分析】(Ⅰ)根据导函数()f x '的图象关于y 轴对称求出m 的值,再根据()213f =-求出n 的值;(Ⅱ)问题等价于方程()f x λ=有三个不相等的实根,再求出函数f(x)的单调性和极值,分析得解.【详解】解:(Ⅰ)()22f x x mx n '=++.函数()f x '的图象关于y 轴对称,0m ∴=. 又()121333f n =++=-,解得4n =-. 0m ∴=,4n =-.(Ⅱ)问题等价于方程()f x λ=有三个不相等的实根时,求λ的取值范围. 由(Ⅰ),得()31433f x x x =-+.()24f x x '∴=-. 令()0f x '=,解得2x =±. 当2x <-或2x >时,()0f x '>,()f x ∴(),2-∞-,()2+∞,上分别单调递增. 又当22x -<<时,()0f x '<,()f x ∴在()2,2-上单调递减. ()f x ∴的极大值为()2523f -=,极小值为()723f =-. ∴实数λ的取值范围为725,33⎛⎫- ⎪⎝⎭.【点睛】本题主要考查利用导数研究函数的零点问题,数形结合思想是数学中的一种重要的思想,通过数形结合将本题转化为函数图象的交点,可以直观形象的解决问题.18.为践行“绿水青山就是金山银山”的发展理念,某城区对辖区内A ,B ,C 三类行业共200个单位的生态环境治理成效进行了考核评估,考评分数达到80分及其以上的单位被称为“星级”环保单位,未达到80分的单位被称为“非星级”环保单位.现通过分层抽样的方法获得了这三类行业的20个单位,其考评分数如下:A 类行业:85,82,77,78,83,87;B 类行业:76,67,80,85,79,81;C 类行业:87,89,76,86,75,84,90,82.(Ⅰ)计算该城区这三类行业中每类行业的单位个数;(Ⅱ)若从抽取的A 类行业这6个单位中,再随机选取3个单位进行某项调查,求选出的这3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率.【答案】(Ⅰ)A ,B ,C 三类行业中每类行业的单位个数分别为60,60,80.(Ⅱ)45【解析】 【分析】第一问利用分层抽样的概念直接计算即可;第二问是古典概率模型,先列出所有的基本事件,然后再找出3个单位都是“星级”环保单位或都是“非星级”环保单位所包含基本事件的个数,即可求出3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率. 【详解】(I)由题意,得抽取的A ,B ,C 三类行业单位个数之比为3:3:4. 由分层抽样的定义,有A 类行业的单位个数为32006010⨯=, B 类行业的单位个数为32006010⨯=,C 类行业的单位个数为42008010⨯=,故该城区A ,B ,C 三类行业中每类行业的单位个数分别为60,60,80.(Ⅱ)记选出的这3个单位中既有“星级”环保单位,又有“非星级”环保单位为事件M . 这3个单位的考核数据情形有{}85,82,77,{}85,82,78,{}85,82,83,{}85,82,87,{}85,77,78,{}85,77,83,{}85,77,87,{}85,78,83,{}85,78,87,{}85,83,87,{}82,77,78,{}82,77,83,{}82,77,87,{}82,78,83,{}82,78,87,{}82,83,87,{}77,78,83,{}77,78,87,{}77,83,87,{}78,83,87,共20种.这3个单位都是“星级”环保单位的考核数据情形有{}85,82,83,{}85,82,87,{}85,83,87,{}82,83,87,共4种,没有都是“非星级”环保单位的情形,故这3个单位都是“星级”环保单位或都是“非星级”环保单位的情形共4种, 故所求概率()441205P M =-=. 【点睛】本题主要考查分层抽样及古典概型问题,属基础题.19.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD =,AB AD =,PA PD ⊥,AD CD ⊥,60BAD ∠=,M ,N 分别为AD ,PA 的中点.(Ⅰ)证明:平面BMN 平面PCD ;(Ⅱ)若6AD =,求三棱锥P BMN -的体积. 【答案】(Ⅰ)证明见解析;93【解析】 【分析】第一问先证明BM ∥平面PCD ,MN ∥平面PCD ,再根据面面平行的判定定理证明平面BMN平面PCD .第二问利用等积法可得13P BMN B PMN PMN V V S BM --∆==⋅,分别求出PMN ∆的面积和BM 的长度即可解决问题.【详解】(Ⅰ)连接BD ,∴AB AD =,60BAD ∠=,∴ABD ∆为正三角形. ∵M 为AD 的中点,∴BM AD ⊥.∵AD CD ⊥,,CD BM ⊂平面ABCD ,∴BMCD .又BM ⊄平面PCD ,CD ⊂平面PCD ,∴BM ∥平面PCD . ∵M ,N 分别为AD ,PA 的中点,∴MNPD .又MN ⊄平面PCD ,PD ⊂平面PCD ,∴MN ∥平面PCD . 又,BM MN ⊂平面BMN ,BM MN M =,∴平面BMN平面PCD.(Ⅱ)在(Ⅰ)中已证BM AD ⊥.∵平面PAD ⊥平面ABCD ,BM ⊂平面ABCD ,∴BM ⊥平面PAD . 又6AD =,60BAD ∠=,∴33BM =在PAD ∆中,∵PA PD =,PA PD ⊥,∴2322PA PD AD ===∵M ,N 分别为AD ,PA 的中点, ∴PMN ∆的面积(21119324424PMNPAD S S ∆∆==⨯⨯=, ∴三棱锥P BMN -的体积13P BMN B PMN PMN V V S BM --∆==⋅19933334=⨯⨯=. 【点睛】本题主要考查线面、面面平行与垂直的判定和性质,等积法求三棱锥的体积问题,属中等难度题.20.已知椭圆C :22221(0)x y a b a b+=>>的左,右焦点分别为()13,0F -,)23,0F ,且经过点13,2A ⎫⎪⎭.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点0(4)B ,作一条斜率不为0的直线l 与椭圆C 相交于P Q ,两点,记点P 关于x 轴对称的点为P '.证明:直线P Q '经过x 轴上一定点D ,并求出定点D 的坐标.【答案】(Ⅰ)2214x y +=(Ⅱ)证明见解析,直线P Q '经过x 轴上定点D ,其坐标为()1,0【解析】 【分析】(Ⅰ)由已知结合椭圆定义求得a ,再求得b ,则椭圆方程可求;(Ⅱ)由题意,设直线l 的方程为4(0)x my m =+≠,再设1(P x ,1)y ,2(Q x ,2)y ,则1(P x ',1)y -.联立直线方程与椭圆方程,化为关于y 的一元二次方程,求出P Q '所在直线方程,取0y =求得x 值,即可证明直线P Q '经过x 轴上一定点D ,并求出定点D 的坐标. 【详解】解:(Ⅰ)由椭圆的定义,可知122a AF AF =+142==. 解得2a =. 又2221b a =-=,∴椭圆C 的标准方程为2214x y +=. (Ⅱ)由题意,设直线l 的方程为()40x my m =+≠. 设()11,P x y ,()22,Q x y ,则()11,P x y '-.由22414x my x y =+⎧⎪⎨+=⎪⎩,消去x ,可得()2248120m y my +++=. ()216120m ∆=->,212m ∴>. 12284m y y m -∴+=+,122124y y m =+. ()21212121P Q y y y y k x x m y y '++==--,∴直线P Q '的方程为()()211121y y y y x x m y y ++=--.令0y =,可得()211124m y y x my y y -=+++.121224my y x y y ∴=+=+22122244441884m m m m m m ⋅++=+=--+.()1,0D ∴. ∴直线P Q '经过x 轴上定点D ,其坐标为()1,0.【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.21.已知函数()1xxxf x ae e =--,其中0a >. (1)当2a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 有唯一零点,求a 的值.【答案】(1) 10x y -+=;(2) 1a = 【解析】 【分析】(1)根据题意求得切线的斜率和切点,由点斜式方程可得切线方程;(2)问题等价于关于x 的方程1(1)x x x a e e =+有唯一的解时,求a 的值.令1()(1)x xxg x e e =+,求得()g x 的导数,以及单调性和极值,结合图象和已知条件可得a 的值; 【详解】解:(1)当2a =时,()21xx xf x e e=--, 所以()12xx xf x e e-'=-, 所以()0211f '=-=. 又()0211f =-=,所以曲线()y f x =在点()()0,0f 处的切线方程为1y x -=, 即10x y -+=.(2)问题等价于关于x 的方程11x xx a e e ⎛⎫=+ ⎪⎝⎭有唯一的解时,求a 的值.令()11x x x g x e e ⎛⎫=+ ⎪⎝⎭,则()212xxx e g x e --'=.令()12xh x x e =--,则()20xh x e '=--<,()h x ∴在(),-∞+∞上单调递减.又()00h =,∴当(),0x ∈-∞时,()0h x >,即()0g x '>,()g x ∴在(),0-∞上单调递增;当()0,x ∈+∞时,()0h x <,即()0g x '<,()g x ∴在()0,∞+上单调递减. ()g x ∴的极大值为()01g =.∴当(],0x ∈-∞时,()(],1g x ∈-∞;当()0,x ∈+∞时,()()0,1g x ∈.又0a >,∴当方程11x x x a e e ⎛⎫=+ ⎪⎝⎭有唯一的解时,1a =.综上,当函数()f x 有唯一零点时,a 的值为1.【点睛】本题考查导数的运用:求切线方程和单调性、极值和最值,考查换元法和构造函数法,以及化简运算能力,属于中档题.22.在直角坐标系xOy 中,过点()1,1P 的直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=. (Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 相交于,A B 两点,求11||||PA PB +的最小值.【答案】(Ⅰ)2240x y x +-= 【解析】 【分析】(Ⅰ)直接利用转换关系式,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)将直线l 的参数方程代入曲线C 的方程,并整理得()22sin 2cos 20t t αα+--=,再利用直线参数方程t 的几何意义求出11||||PA PB +的最小值. 【详解】解:(Ⅰ)4cos ρθ=,24cos ρρθ∴=.由直角坐标与极坐标的互化关系222x y ρ=+,cos x ρθ=.∴曲线C 的直角坐标方程为2240x y x +-=.(Ⅱ)将直线l 的参数方程代入曲线C 的方程,并整理得()22sin 2cos 20t t αα+--=.()22sin 2cos 80αα∆=-+>,∴可设12,t t 是方程的两个实数根,则122cos 2sin t t αα+=-,1220t t =-<.11PA PB ∴+=121212121211t t t t t t t t t t +-+====≥=4πα=时,等号成立. 11PAPB∴+. 【点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,三角函数关系式的恒等变换,考查直线参数方程t 的几何意义,主要考察学生的运算能力和转换能力,属于基础题型.。

2024届四川省成都市高三零诊模拟考试数学(文)试题【含答案】

2024届四川省成都市高三零诊模拟考试数学(文)试题【含答案】

高2024届零诊模拟考试数学试题(文科)一、单选题:共12道小题,每题5分,共60分.1.直线1l :210x y +-=与直线2l:20ax y ++=平行,则=a ()A.12B.12-C.2D.2-A【分析】由两直线平行得到方程和不等式,求出答案.【详解】由题意得1120120a a ⨯-=⎧⎨⨯+≠⎩,解得12a =.故选:A 2.设1i2i 1iz -=++,则z 的虚部为()A.i B.3iC.1D.3C【分析】利用复数的除法及加减运算求解作答.【详解】依题意,(1i)(1i)2i2i=2i i 2i i (1i)(1i)2z ---=++=-+=+-,所以复数z 的虚部为1.故选:C3.一组数据包括47、48、51、54、55,则这组数据的标准差为() A.10 B.52C.10D.50A【分析】根据平均数、方差公式计算可得.【详解】依题意这组数据的平均数为4748515455515++++=,所以方差为()()()()()22222147514851515154515551105⎡⎤-+-+-+-+-=⎣⎦,则标准差为10.故选:A4.已知函数()f x 在其定义域R 上的导函数为()f x ',当x ∈R 时,“()0f x '>”是“()f x 单调递增”的()A.充要条件B.既不充分也不必要条件C.必要不充分条件D.充分不必要条件D【分析】根据充分条件、必要条件的定义判断即可.【详解】因为函数()f x 在其定义域R 上的导函数为()f x ',若当x ∈R 时,()0f x '>,则()f x 单调递增,故充分性成立;若()f x 在R 上单调递增,则()0f x '≥,如()3f x x =,显然函数()f x 在R 上单调递增,但是()230f x x '=≥,故必要性不成立;故“()0f x '>”是“()f x 单调递增”的充分不必要条件.故选:D5.圆C :22(1)(1)1x y -+-=与直线l :143x y+=的位置关系为()A.相切 B.相交C.相离D.无法确定A【分析】求出圆心坐标与半径,再将直线方程化为一般式,根据圆心到直线的距离即可判断.【详解】圆C :22(1)(1)1x y -+-=的圆心为()1,1C ,半径1r =,直线l :143x y+=即34120x y +-=,则圆心到直线的距离223412134d r +-===+,所以直线l 与圆C 相切.故选:A6.如图所示的算法框图思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该算法框图,若输入的a 、b 分别为36、96,则输出的=a ()A.0B.8C.12D.24C【分析】根据题意,由程序框图,逐步运算,即可得出结果.【详解】第一步:初始值36a =,96b =;此时a b ¹;进入循环;第二步:3696a =<,计算963660b =-=,此时3660≠,进入循环;第三步:3660a =<,计算603624b =-=,此时3624≠,进入循环;第四步:3624a =>,计算362412a =-=,此时1224≠,进入循环;第五步:1224a =<,计算241212b =-=,此时1212=,结束循环,输出12a =.故选:C.本题主要考查循环程序框图求输出值,属于基础题型.7.直线2x =与抛物线()2:20C y px p =>交于D 、E 两点,若0OD OE ⋅=,其中O 为坐标原点,则C 的准线方程为()A.14x =- B.12x =-C.=1x -D.2x =-B【分析】求出点D 、E 的坐标,根据0OD OE ⋅=求出p 的值,即可得出抛物线C 的准线方程.【详解】不妨设点D 在第一象限,则点E 在第四象限,联立222x y px =⎧⎨=⎩可得22x y p=⎧⎪⎨±⎪⎩,则点()2,2D p 、()2,2E p -,所以,440OD OE p ⋅=-= ,解得1p =,因此,C 的准线方程为122p x =-=-.故选:B.8.函数lg y x =的图象经过变换10:2x xy y ϕ''=⎧⎨=+⎩后得到函数()y f x ''=的图象,则()f x =()A.1lg x -+ B.1lg x+ C.3lg x-+ D.3lg x+B【分析】由已知可得出102x x y y ''⎧=⎪⎨⎪=-⎩,代入lg y x =可得出()f x '的表达式,即可得出()f x 的表达式.【详解】由已知可得102x x y y ''⎧=⎪⎨⎪=-⎩,代入lg y x =可得2lg lg 110x y x '''-==-,则lg 1y x ''=+,即()lg 1f x x ''=+,因此,()lg 1f x x =+.故选:B.9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或是丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖了.”四位歌手的话只有两句是对的,则获奖歌手是()A.甲 B.乙C.丙D.丁C【分析】逐一验证即可.【详解】若甲是获奖的歌手,则都说假话,不合题意若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,不符合题意若丁是获奖的歌手,则甲、丁、丙都说假话,乙说真话,不符合题意故获奖的歌手是丙故选:C10.点A 、B 在以PC 为直径的球O 的表面上,且AB BC ⊥,2AB BC ==,已知球O 的表面积是12π,下列说法中正确的个数是()①BC ⊥平面PAB ;②平面PAC ⊥平面ABC ;③PB AC ⊥.A.0B.1C.2D.3C【分析】利用线面垂直的判定定理可判断命题①;取线段AC 的中点M ,连接OM ,利用球体的几何性质可得出OM ⊥平面ABC ,再利用中位线的性质结合面面垂直的判定定理可判断②;利用反证法可判断③.【详解】对于①,因为PC 为球O 的直径,B 为球O 上异于P 、C 的一点,所以,BC PB ⊥,又因为BC AB ⊥,PB AB B ⋂=,PB 、AB ⊂平面PAB ,所以,BC ⊥平面PAB ,①对;对于②,取线段AC 的中点M ,连接OM ,因为AB BC ⊥,则M 为ABC 外接圆的圆心,由球的几何性质可知OM ⊥平面ABC ,因为O 、M 分别为PC 、AC 的中点,则//OM PA ,则PA ⊥平面ABC ,又因为PA ⊂平面PAC ,因此,平面PAC ⊥平面ABC ,②对;对于③,因为PA ⊥平面ABC ,AC ⊂平面ABC ,所以,PA AC ⊥,若PB AC ⊥,且PA PB P = ,PA 、PB ⊂平面PAB ,则AC ⊥平面PAB ,因为AB ⊂平面PAB ,则AC AB ⊥,事实上,因为AB BC ⊥,且2AB BC ==,则ABC 为等腰直角三角形,且45BAC ∠= ,这与AC AB ⊥矛盾,假设不成立,故PB 与AC 不垂直,③错故正确命题为①②.故选:C.11.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请100名同学每人随机写下一个x ,y 都小于1的正实数对(),x y ;再统计两数能与1构成钝角三角形三边的数对(),x y 的个数m ;最后再根据统计数m 估计π的值,假如某次统计结果是28m =,那么本次实验可以估计π的值为().A.227B.4715C.7825D.5317C【分析】根据约束条件22110x y x y +>⎧⎨+-<⎩画出可行域,得到面积,根据几何概型得到答案.【详解】∵0101x y <<⎧⎨<<⎩而满足构成钝角三角形,则需22110x y x y +>⎧⎨+-<⎩画出图像:弓形面积:28π110042=-,∴78π25=.故选C本题考查了几何概型,画出图像是解题的关键,意在考查学生的综合应用能力.12.函数()25πlog sin f x x x =-零点个数为()A.4B.3C.2D.1B【分析】作出函数25πlogy x =、sin y x =的图象,观察两个函数图象的公共点个数,可得出结论.【详解】令()0f x =可得25πlog sin x x =,作出函数25πlogy x =、sin y x =的图象如下图所示:当5π2x >时,225π5π5πlog log 12x <=-,又因为1sin 1x -≤≤,所以,函数25πlog y x =、sin y x =在5π,2⎛⎫+∞ ⎪⎝⎭上的图象没有交点,观察图象可知,函数25πlogy x =、sin y x =的图象有三个交点,因此,函数()f x 的零点个数为3.故B.二、填空题:共4道小题,每题5分,共20分.13.命题“0x ∀>,tan x x >”的否定为________.00x ∃>,00tan x x ≤【分析】根据全称量词命题的否定为特称量词命题,即可得解.【详解】命题“0x ∀>,tan x x >”为全称量词命题,其否定为:00x ∃>,00tan x x ≤.故00x ∃>,00tan x x ≤14.函数()cos xf x x=的图象在πx =处的切线方程为________.0x y +=【分析】求出函数的导函数,即可求出切线的斜率,再利用点斜式求出切线方程.【详解】因为()cos xf x x=,则()πππcos πf ==-,2cos s ()cos in x x x x f x +'=,则()21cos si ππππc n os πf +'==-,所以切线方程为()()ππy x --=--,整理得0x y +=.故0x y +=15.某区为了解全区12000名高二学生的体能素质情况,在全区高二学生中随机抽取了1000名学生进行体能测试,并将这1000名的体能测试成绩整理成如下频率分布直方图.根据此频率分布直方图,这1000名学生平均成绩的估计值为________.80.5【分析】根据所有矩形面积之和为1求出a 的值,将每个矩形底边的中点值乘以对应矩形的面积,相加可得这1000名学生平均成绩.【详解】由于频率分布直方图中所有矩形面积之和为1,可得()0.0050.0220.04101a ++⨯+⨯=,解得0.015a =,由频率分布直方图可知,这1000名学生平均成绩的估计值为550.05650.15750.2850.4950.280.5⨯+⨯+⨯+⨯+⨯=分.故答案为80.516.双曲线H :22221(,0)x y a b a b -=>其左、右焦点分别为1F 、2F ,倾斜角为3π的直线2PF 与双曲线H 在第一象限交于点P ,设双曲线H 右顶点为A ,若226PF AF ≥,则双曲线H 的离心率的取值范围为________.5,24⎡⎫⎪⎢⎣⎭【分析】设2PF m =,则12PF a m =+,然后在12PF F △中利用余弦定理列方程可表示出m ,再由226PF AF ≥可求出离心率的范围【详解】设2PF m =,则12PF a m =+,因为直线2PF 的倾斜角为3π,所以212π3PF F ∠=,在12PF F △中,由余弦定理得2221212212212cos PF PF F F PF F F PF F =+-∠,2222π(2)(2)22cos3a m m c m c +=+-⋅,22224442a am m m c mc ++=++得22222c a m a c-=-,因为226PF AF ≥,所以22226()2c a c a a c-≥--得32c a a c +≥-,4502c aa c -≥-,所以(45)(2)020c a a c a c --≥⎧⎨-≠⎩,所以(45)(2)020e e e --≥⎧⎨-≠⎩,解得524e ≤<,即双曲线H 的离心率的取值范围为5,24⎡⎫⎪⎢⎣⎭故5,24⎡⎫⎪⎢⎣⎭关键点睛:此题考查求双曲线的离心率的范围,考查直线与双曲线的位置关系,解题的关键是根据题意在12PF F △中利用余弦定理表示出2PF ,然后代入已知条件中可求得结果,考查数学转化思想,属于较难题.三、解答题:共5道大题,共70分.17.设函数321(1)()2(1)34f f x x x x f '-=-+-,(1)求(1)f ¢-、(1)f 的值;(2)求()f x 在[0,2]上的最值.(1)(1)6f '-=,5(1)12f =(2)max 5()12=f x ,min 5()12=-f x 【分析】(1)求出函数的导函数,令=1x -求出(1)f ¢-,再令1x =求出()1f ;(2)由(1)可得32135()23212f x x x x =-+-,利用导数求出函数的单调性,即可求出函数的极值,再由区间端点的函数值,即可得解.【小问1详解】因为321(1)()2(1)34f f x x x x f '-=-+-,所以2(1)()22f f x x x '-'=-+,取=1x -,则有(1)(1)32f f '-'-=+,即(1)6f '-=;所以3213()2(1)32f x x x x f =-+-,取1x =,则有5(1)(1)6f f =-,即5(1)12f =.故(1)6f '-=,5(1)12f =.【小问2详解】由(1)知32135()23212f x x x x =-+-,[]0,2x ∈,则2()32(1)(2)f x x x x x '=-+=--,所以x 、()f x '与()f x ,[]0,2x ∈的关系如下表:x(0,1)1(1,2)2()f x '+-()f x 512-单调递增极大值512单调递减14故max 5()(1)12f x f ==,min 5()(0)12f x f ==-.18.如图1,E 、F 、G 分别是边长为4的正方形的三边AB 、CD 、AD 的中点,先沿着虚线段FG 将等腰直角三角形FDG 裁掉,再将剩下的五边形ABCFG 沿着线段EF 折起,连接AB 、CG 就得到了一个空间五面体,如图2.(1)若O 是四边形EBCF 对角线的交点,求证://AO 平面GCF ;(2)若2π3AEB ∠=,求三棱锥A BEF -的体积.(1)证明见解析(2)433【分析】(1)在图2中取线段CF 中点H ,连接OH 、GH ,证明出四边形AOHG 是平行四边形,可得出//AO HG ,再利用线面平行的判定定理可证得结论成立;(2)证明出EF ⊥平面ABE ,计算出ABE 的面积,利用锥体的体积公式可求得三棱锥A BEF -的体积.【小问1详解】证明:在图2中取线段CF 中点H ,连接OH 、GH ,如图所示:由图1可知,四边形EBCF 是矩形,且2CB EB =,因为O 是线段BF 与CE 的中点,所以,//OH BC 且12OH BC =,在图1中,//AG EF 且12AG EF =,而//EF BC 且EF BC =.所以在图2中,//AG BC 且12AG BC =,所以,//AG OH 且AG OH =,所以,四边形AOHG 是平行四边形,则//AO HG ,由于AO ⊄平面GCF ,HG ⊂平面GCF ,所以,//AO 平面GCF .【小问2详解】解:翻折前,EF AE ⊥,EF BE ⊥,翻折后,则EF AE ⊥,EF BE ⊥,AE 、BE ⊂面ABE ,AE BE E =I ,所以,EF ⊥平面ABE ,因为12π13sin 2232322ABE S AE BE =⋅⋅=⨯⨯⨯=△,所以114334333A BEF F ABE ABE V V S EF --==⋅=⨯⨯=,即三棱锥A BEF -的体积为433.19.信创产业即信息技术应用创新产业,是一条规模庞大、体系完整的产业链,是数字经济的重要抓手之一.在政府、企业等多方面的共同努力下,中国信创产业市场规模不断扩大,市场释放出前所未有的活力.下表为2018—2022年中国信创产业规模(单位:千亿元),其中2018—2022年对应的代码依次为1~5.年份代码x12345中国信创产业规模y /千亿元8.19.611.513.816.7(1)从2018—2022年中国信创产业规模中任取2个数据,求这2个数据都大于10的概率.(2)由上表数据可知,可用指数型函数模型x y a b =⋅拟合y 与x 的关系,请建立y 关于x 的回归方程(a ,b 的值精确到0.01),并预测2023年中国信创产业规模能否超过20千亿元.参考数据:v51i ii x v=∑ 1.919e 0.177e 61.192.4538.526.811192.84其中ln i i v y =,5115i i v v ==∑.参考公式:对于一组数据()11,u w ,()22,u w ,…,(),n n u w ,其回归直线 wu αβ=+的斜率和截距的最小二乘估计公式分别为 1221ni ii ni i u w nuwu nu β==-=-∑∑, w u αβ=+.(1)310(2) 6.811.19x y =⨯,不会超过20千亿元.【分析】(1)根据古典概型概率计算公式,利用列举法可得2个数据都大于10的概率为310;(2)将指数型函数模型x y a b =⋅两边取对数可得ln ln ln y a x b =+,即ln ln v a x b =+,再利用参考数据可得回归方程为 6.811.19x y =⨯,将2023年的年份代码6代入可得19.3420y ≈<$,即可得出结论.【小问1详解】从2018—2022年中国信创产业规模中任取2个数据有()8.1,9.6,()8.1,11.5,()8.1,13.8,()8.1,16.7,()9.6,11.5,()9.6,13.8,()9.6,16.7,()11.5,13.8,()11.5,16.7,()13.8,16.7,共10种情况.其中这2个数据都大于10的有()11.5,13.8,()11.5,16.7,()13.8,16.7,共3种情况,所以2个数据都大于10的概率310P =.【小问2详解】x y a b =⋅两边同时取自然对数,得()ln ln ln ln xy a ba xb =⋅=+,则ln ln v a x b =+.因为3x =, 2.45v =,52155ii x==∑,所以5152221538.5253 2.45ln 0.17755535i i i ii x v xvb xx==--⨯⨯===-⨯-∑∑,ln ln 2.450.1773 1.919a v x b =-⋅=-⨯=,所以 1.9190.177vx =+ ,即 ln 1.9190.177y x =+,所以 1.9190.177e 6.81 1.19x x y +==⨯$,即y 关于x 的回归方程为 6.811.19x y =⨯.2023年的年份代码为6,把6x =代入 6.811.19x y =⨯,得 66.811.19 6.81 2.8419.3420y =⨯=⨯≈<,所以预测2023年中国信创产业规模不会超过20千亿元.20.椭圆()2222:10x y C a b a b+=>>上顶点为B ,左焦点为F ,中心为O .已知T 为x 轴上动点,直线BT与椭圆C 交于另一点D ;而P 为定点,坐标为()2,3-,直线PT 与y 轴交于点Q .当T 与F 重合时,有PB PT = ,且2BT BP BQ =+.(1)求椭圆C 的标准方程;(2)设T 的横坐标为t ,且(0,1)t ∈,当DTQ △面积等于35时,求t 的取值.(1)22143x y +=(2)23【分析】(1)由2BT BP BQ =+结合平面向量的坐标运算可求得c 的值,由PB PT = 结合平面内两点间的距离公式可求出b 的值,进而可求得a 的值,由此可得出椭圆C 的标准方程;(2)将直线BT 的方程与椭圆C 的方程联立,求出点D 的纵坐标,写出直线PT 的方程,可得出点Q 的纵坐标,由()33DTQ Q D PTBS y y S ⋅-=⋅△△可得出22234DTQt t S t -=⋅+△,再结合DTQ △面积等于35可求得t 的值.【小问1详解】解:设(,0)F c -,由2BT BP BQ =+知2202c -=-+=-,即1c =,由PB PT =知2222(20)(3)[2(1)](30)b --+-=---+-,即3b =,则222a b c =+=,故椭圆C 的标准方程为22143x y +=.【小问2详解】解:直线BT 的方程为(3)3t x y =--,联立22(3)3143t x y x y ⎧=--⎪⎪⎨⎪+=⎪⎩联立可得()22224233120t y t y t +-+-=,且()()42212443121920t t t ∆=-+-=>,,所以,2231234D t y t -⋅=+,即()22344D t y t -=+,直线PT 的方程为22(3)3t x y ++=--,令0x =,可得32Q ty t =+,由()sin sin 33DTQ Q D PTBS y y QT DT DTQ QT DT S PT BT BTPPT BT⋅-⋅⋅∠⋅===⋅⋅∠⋅⋅△△知3Q D DTQ PTBy y S S =-△△,即22234DTQt t S t -=⋅+△,(0,1)t ∈,而2223345t t t -⋅=+,解得23t =,或1t =(舍去),故t 的取值为23.21.设函数()e x f x ax =-,其中R a ∈.(1)讨论函数()f x 在[1,)+∞上的极值;(2)若1a =,设()f x '为()f x 的导函数,当1t >时,有11(ln )(ln )ln f t f t tλλ+>+''-,求正实数λ的取值范围.(1)答案见解析(2)[1,)+∞【分析】(1)求出函数的导函数,分e a ≤、e a >两种情况讨论,分别求出函数的单调性,即可得到函数的极值;(2)依题意可得1111ln t t t t λλ+>+--,整理得(1)(1)ln 01t t t λλ+-->+,令(1)(1)()ln 1t F t t t λλ+-=-+,()1,t ∈+∞,求出函数的导函数,分1λ≥、01λ<<两种情况讨论,结合函数的单调性,即可得解.【小问1详解】由()e x f x ax =-知()e '=-x f x a ,①当e a ≤时,且有[1,)x ∈+∞,()0f x '≥,()f x 单调递增,故无极值;②当e a >时,有(1,ln )x a ∈,()0f x '<,()f x 单调递减,而(ln ,)x a ∈+∞,()0f x '>,()f x 单调递增,故()(ln )ln f x f a a a a ==-极小值,()f x 无极大值.综上,当e a ≤时,()f x 无极值;当e a >时,()f x 极小值为ln a a a -,()f x 无极大值.【小问2详解】当1a =时由(1)可知()e 1x f x '=-,即有1111ln t t t tλλ+>+--,由1t >整理可得(1)(1)ln 01t t t λλ+-->+,令(1)(1)()ln 1t F t t t λλ+-=-+,()1,t ∈+∞,所以()22221(1)1(1)()(1)(1)t t F t t t t t λλλλ--+'=-=++,①当1λ≥时,且(1,)t ∈+∞,有22(1)()0(1)t F t t t λ-'≥>+,()F t 单调递增,()(1)0F t F >=,满足题设;②当01λ<<时,且当211,t λ⎛⎫∈ ⎪⎝⎭,有()0F t '<,()F t 单调递减,()(1)0F t F <=,不满足题设;综上,λ的取值范围为[1,)+∞.22.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 和直线l 的极坐标方程分别为2sin 2cos a ρθθ=+和:πsin 24x ρ⎛⎫-= ⎪⎝⎭.且二者交于M ,N 两个不同点.(1)写出曲线C 和直线l 的直角坐标方程;(2)若点P 的极坐标为(2,π),||||52PM PN +=,求a 的值.(1)()()2221+1-+-=x a y a ,2y x =+(2)2或4-【分析】(1)利用极坐标与平面直角坐标方程互化公式进行求解;(2)先判断出P 的直角坐标为(2,0)-,在直线l 上,写出直线l 的标准参数方程,代入曲线的普通方程中,得到1a ≠,分1a >-且1a ≠,1a ≤-两种情况,列出方程,求出答案.【小问1详解】由2sin 2cos a ρθθ=+,得22sin 2cos a ρρθρθ=+,故曲线C 的直角坐标方程为2222x y y ax +=+,即222()(1)1x a y a -+-=+;由πsin 24ρθ⎛⎫-= ⎪⎝⎭,得sin cos 2ρθρθ-=,故直线l 的直角坐标方程为2y x =+.【小问2详解】因为π2,2sin π02cos =-=,所以点P 的直角坐标为(2,0)-,在直线l 上,而直线l 的标准参数方程为22222x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),将其代入2222x y y ax +=+,整理可得2(322)440t a t a -+++=.由题设知222(3)4(44)2(1)0a a a ∆=+-+=->,解得1a ≠.又12322t t a +=+,1244t t a =+.当1a >-,且1a ≠时,有1t ,20t >,则1212||||2(3)52PM PN t t t t a +=+=+=+=,解得2a =,满足要求;当1a ≤-时,有120t t ≤,则()()212122121||||21524PM PN t t t t t t t a t +=+==--+-==,解得4a =-,满足要求.故a 的值为2或4-.。

四川省成都市2020届高三第二次诊断性检测数学试题(文)(解析版)

四川省成都市2020届高三第二次诊断性检测数学试题(文)(解析版)

四川省成都市2020届高三第二次诊断性检测数学试题(文)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( ) A. iB. i -C.1- D. 1『答案』C『解析』由已知,22(1i)1i 1i (1i)(1i)z -===-++-,故z 的虚部为1-. 故选:C.2. 设全集,U R =集合{}{}1,||2M x x N x x =<=>,则()UM N ⋂=( )A. {}|2x x >B. {}|1x x ≥C. {}|12x x <<D. {}|2x x ≥『答案』A 『解析』由已知,{|1}UM x x =≥,又{}|2N x x =>,所以{|2}U M N x x ⋂=>.故选:A.3. 某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( ) A. 20B. 50C. 40D. 60『答案』B『解析』由题意,30=150015001000n⨯+,解得50n =.故选:B.4. 曲线3y x x =-在点()1,0处的切线方程为( ) A. 20x y -= B. 220x y +-= C. 220x y ++=D. 220x y --=『答案』D『解析』由已知,'231y x =-,故切线的斜率为12x y ='=,所以切线方程为2(1)y x =-, 即220x y --=. 故选:D.5. 已知锐角α满足2sin21cos2 ,αα=-则tan α=( ) A.12B. 1C.2D.4『答案』C『解析』由已知,24sin cos 2sin ααα=,因α为锐角,所以sin 0α≠,2cos sin αα=, 即tan α=2. 故选:C.6. 函数())cos lnf x x x =⋅在[1,1]-的图象大致为( )A. B.C. D.『答案』B『解析』因为())cos()lnf x x x =-=-⋅)cos lnx x ⋅+cos cos )()x x x f x =⋅=-=-,故()f x 为奇函数,排除C 、D ;又(1)cos11)0f =⋅<,排除A. 故选:B.7. 执行如图所示的程序框图,则输出S 的值为( )A. 16B. 48C. 96D. 128『答案』B『解析』第一次循环:12(11)4,2S i =+==;第二次循环:242(12)16,3S i =++==; 第三次循环:3162(13)48,4S i =++==,退出循环,输出的S 为48. 故选:B.8. 已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为( ) A. ,4x k k Z ππ=-∈B. +,4x k k Z ππ=∈C. 1,2x k k Z π=∈ D. 1+,24x k k Z ππ=∈ 『答案』C『解析』由已知,()cos2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈. 故选:C.9. 在正方体1111ABCD A B C D -中,点,P Q 分别为1111,A D D C 的中点,在平面ABCD 中,过AB 的中点M 作平面DPQ 的平行线交直线BC 于,N 则BNBC的值为( )A.13B.12C. 1D.23『答案』B 『解析』如图因为PQ ∥11A C ,11A C ∥AC ,故PQ ∥AC ,所以当N 为BC 中点时,MN ∥AC ,所以MN ∥PQ ,又MN ⊄平面DPQ ,PQ ⊂平面DPQ ,由线面平行的判定定理可知,MN ∥平面DPQ .此时12BN BC =. 故选:B.10. 如图,双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别是()()12,0,,0,F c F c -直线2bc y a =与双曲线C 的两条渐近线分别相交于,A B 两点.若12,3BF F π∠=则双曲线C 的离心率为( )A.2B.C.D.『答案』A『解析』由已知,得(,)22c bc B a -,过B 作x 轴的垂线,垂足为T ,故12cFT =, 又12,3BF F π∠=所以1tan 3BT FT π==,即22bcb ac a == 所以双曲线C的离心率2e ==.故选:A.11. 已知EF 为圆()()22111x y -++=的一条直径,点(),M x y 的坐标满足不等式组10,230,1.x y x y y -+≤⎧⎪++≥⎨⎪≤⎩则ME MF ⋅的取值范围为( ) A. 9,132⎡⎤⎢⎥⎣⎦B. []4,13C. []4,12D. 7,122⎡⎤⎢⎥⎣⎦『答案』D『解析』作出可行域如图所示设圆心为(1,1)T -,则()()ME MF MT TE MT TF ⋅=+⋅+=22()()MT TE MT TE MT TE +⋅-=-21MT =-,过T 作直线10x y -+=的垂线,垂足为B ,显然TB MT TA ≤≤,又易得(2,1)A -,所以MA ==2TB ==, 故ME MF ⋅271[,12]2MT =-∈. 故选:D.12. 已知函数()() ln ,x xf xg x xe x-==.若存在120,,,()x x R ∈∞∈+使得()()120f x g x =<成立,则12x x 的最小值为( )A.1-B. 2e- C. 22e-D. 1e-『答案』D『解析』()'21ln ,xf x x-=易知()f x 在(0,e)上单调递增,在(e,+)∞上单调递减,同理, ()'1ex xg x -=,易得()g x 在(,1)-∞上单调递增,在(1,+)∞上单调递减,又存在 120,,,()x x R ∈∞∈+使得()()120f x g x =<成立,则12(0,1),(,0)x x ∈∈-∞, 12ln 0,0x x <<,且12112ln 1 ln ln 0e ex x x x x x ==<,又()g x 在(,1)-∞上单调递增, 故12ln x x =,所以1211ln x x x x =,令()ln h x x x =,则'()ln 1h x x =+,易知,()h x 在1(0,)e 上单调递减,在1(,1)e上单调递增,故min 11()()e eh x h ==-. 故选:D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分)13. 已知函数()1,02,0x x f x x x ⎧>⎪=⎨⎪≤⎩,则()()1f f -=___________.『答案』2『解析』由已知,1(1)2f -=,()()11()22f f f -==.故答案为:2.14. 在ABC 中,内角,,A B C 的对边分别为,,a b c ,已知,2,3B a b π===则ABC的面积为___________.『解析』由余弦定理,得2222cos b a c ac B =+-,即2342c c =+-,解得1c =,故ABC ∆的面积1sin 2S ac B ==.故答案为:215. 设直线:1l y x =-与抛物线()220y px p =>相交于,A B 两点,若弦AB 的中点的横坐标为2,则p 的值为___________.『答案』1『解析』联立直线:1l y x =-与抛物线22y px =,得2220y py p --=,则122y y p +=,又12122422y y x x +=+-=-=,故22p =,1p =. 故答案为:1.16. 已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球O 的表面上.若球O 的表面积为28,π则该三棱柱的侧面积为___________.『答案』36『解析』由已知,2428R ππ=,解得R =,如图所示,设底面等边三角形中心为1O , 直三棱柱的棱长为x,则1O A x =,112O O x =,故2222117O A O O OA R +===,即22734x x +=,解得x =2336x =.故答案为:36.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知{}n a 是递增的等比数列,11,a =且23432,,2a a a 成等差数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设*21221,log log n n n b n N a a ++=∈⋅.求数列{}n b 的前n 项和n S解:()I 设数列{}n a 的公比为.q 由题意及11a =,知1q >.23432,,2a a a 成等差数列,34232a a a ∴=+. 2332q q q ∴=+,即2320-+=q q . 解得2q或1q =(舍去).2q ∴=.∴数列{}n a 的通项公式为12n na .()II ()21221111log log 11n n n b a a n n n n ++===-⋅++1111112231n S n n ⎛⎫⎛⎫⎛⎫∴=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭111n =-+ 1n n =+ 18. 如图,在四棱锥P ABCD -中,O 是边长为4的正方形ABCD 的中心,PO ⊥平面,,ABCD M E 分别为,AB BC 的中点.(Ⅰ)求证:平面PAC ⊥平面PBD ; (Ⅱ)若3,PE =求三棱锥B PEM -的体积. 解:()I ABCD 是正方形,AC BD ∴⊥PO ⊥平面ABCD ,AC ⊂平面ABCD .PO AC ∴⊥,OP BD ⊂平面,PBD且OP BD O ⋂=,AC ∴⊥平面 ,PBD又AC ⊂平面PAC∴平面PAC ⊥平面,PBD()II )设三棱锥P BEM -的高为h .1.3B PEM P BEM BEMV V Sh --∴==⨯连接OE ,PO ⊥平面ABCD ,OE ⊂平面ABCD ,PO OE ∴⊥.2,3OE PE ==,h OP ∴==111223323P BEM BEMV Sh -=⨯=⨯⨯⨯∴=19. 某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司2013年至2019年的年利润y 关于年份代号x 的统计数据如下表(已知该公司的年利润与年份代号线性相关):(Ⅰ)求y 关于x 的线性回归方程,并预测该公司2020年(年份代号记为8)的年利润; (Ⅱ)当统计表中某年年利润的实际值大于由()I 中线性回归方程计算出该年利润的估计值时,称该年为A 级利润年,否则称为B 级利润年.将()I 中预测的该公司2020年的年利润视作该年利润的实际值,现从2015年至2020年这6年中随机抽取2年,求恰有1年为A 级利润年的概率.参考公式:()()()121,niii nii x x y y b a y bx x x ==--==--∑∑解:()I 根据表中数据,计算可得()()714,43,140iii x y x x y y ===--=∑又()27128ii x x =-=∑()()()712715iii ii x x y y b x x ==--∴==-∑∑a y bx =- 435423a ∴=-⨯=y ∴关于x 的线性回归方程为523y x =+.将代8x =入,582363y ∴=⨯+=(亿元)∴该公司2020年的年利润的预测值为63亿元.()II 由()I 可知2015 年至2020年的年利润的估计值分别为38,43,48,53,58,63(单位:亿元), 其中实际利润大于相应估计值的有2年.故这6年中,被评为A 级利润年有2年,分别记为12,A A ; 评为B 级利润年的有4年,分别记为1234,,,B B B B从2015至2020年中随机抽取2年,总的情况分别为:121112131421222324121314,,,,,,,,,,,A A A B A B A B A B A B A B A B A B B B B B B B 232434,,B B B B B B ,共计15种情况.其中恰有一年为A 级利润年情况分别为:1112131421,,,,A B A B A B A B A B ,222324,,A B A B A B 共有8种情况.记“从2015至2020年这6年的年利润中随机抽取2年,恰有一年为A 级利润年”的概率为P ,.故所求概率815P =20. 已知椭圆()2222:10x y E a b a b+=>>的左,右焦点分别为()()121,0,1,0F F -,点(P 在椭圆E 上. (Ⅰ)求椭圆E 的标准方程;(Ⅱ)设直线:1()l x my m R =+∈与椭圆E 相交于,A B 两点,与圆222x y a +=相交于,C D两点,当2AB CD ⋅的值为l 的方程.解:()I 21,P ⎛ ⎝⎭在椭圆上, 122PF PF a ∴+=.又12,22PF PF ===12PF PF ∴+= ,则a =2221,,c b a c ==-1b ∴=故所求椭圆E 的标准方程为2212x y +=.()II 设()()1122,,,A x y B x y联立22122x my x y =+⎧⎨+=⎩消去x ,得()222210m y my ++-=. 2880,m ∴∆=+>12222m y y m +=-+,12212y y m =-+ )212212m AB y m +=-=+∴设圆222x y +=的圆心O 到直线l 的距离为d ,则d =CD ∴==))2222222121214122m m m AB CD m m m +++∴⋅=⋅⋅=+++2AB CD ⋅= )22212m m +∴=+解得1m =±.经验证1m =±符合题意.故所求直线l 的方程为10x y --=或10x y +-=. 21. 已知函数()2ln f x x mx m x =--,其中0m >.(Ⅰ)若1m =,求函数()f x 的极值; (Ⅱ)设()()g x f x mx =+.若()1g x x>在(1,)+∞上恒成立,求实数m 的取值范围. 解:()I 当1m =时,()2ln .f x x x x =--则()2'12121x x f x x x x--=--=,0x >令()'0,fx =解得112x =-(舍去),21x =. 当()0,1x ∈时,()'0f x <()f x ∴在()0,1上单调递减;当(1,)x ∈+∞时,()0f x '>()f x ∴在(1,)+∞上单调递增,()f x 的极小值为()10f =,无极大值.()II ()2ln g x x m x =-若()1g x x>在(1,)+∞上恒成立,即21ln 0x m x x-->在(1,)+∞上恒成立. 构造函数()21ln ,1G x x m x x x=-->, 则()3'221212m x mx G x x x x x -+=-+=令()321,1H x x mx x =-+>.()'26H x x m ∴=-()i 若6,m ≤可知()'0H x >恒成立.()H x ∴在(1,)+∞上单调递增. ()()13H x H m ∴>=-. ①当30,m -≥即03m <≤时,()0H x >在(1,)+∞上恒成立,即()'0G x >在(1,)+∞上恒成立. ()()10G x G ∴>=在(1,)+∞上恒成立,03m ∴<≤满足条件.②当30m <即36m <≤时,()()130,21720H m H m =-<=->,∴存在唯一的()01,2,x ∈使得()00H x =.当()01,x x ∈时,()0,H x <即()'0G x <()G x ∴在()01,x 单调递减.()()10G x G ∴<=,这与()0G x >矛盾.()ii 若6,m >由()'0,H x =可得1x =舍去),2x =易知()H x在⎛ ⎝上单调递减. ()()130H x H m ∴<=-<在⎛ ⎝上恒成立,即()'0G x <在⎛ ⎝上恒成立. ()G x ∴在⎛ ⎝上单调递减. ()()10G x G ∴<=在⎛ ⎝上恒成立,这与()0G x >矛盾.综上,实数m 的取值范围为(]0,3.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22. 在平面直角坐标系xOy 中,曲线C 的参数方程为22x m y m⎧=⎨=⎩(m 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin cos 10ρθρθ-+=. (Ⅰ)求直线l 的直角坐标方程与曲线C 的普通方程; (Ⅱ)已知点()2,1,P 设直线l 与曲线C 相交于,M N 两点,求11PM PN+的值. 解:()I 由cos ,sin ,x y ρθρθ== 可得直线l 的直角坐标方程为10.x y --= 由曲线C 的参数方程,消去参数,m 可得曲线C 的普通方程为24y x =.()II 易知点()2,1P 在直线l 上,直线l的参数方程为2212x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数). 将直线l 的参数方程代入曲线C的普通方程,并整理得2140t --=.设12,t t是方程2140t --=的两根,则有121214t t t t +==-.21222121111111t t t PM PN t t t t t t t +∴+=+===-47==23. 已知函数()13f x x x =-++. (Ⅰ)解不等式()6f x ≥;(Ⅱ)设()22,g x x ax =-+其中a 为常数.若方程()()f x g x =在(0,)+∞上恰有两个不相等的实数根,求实数a 的取值范围. 解:()I 原不等式即136x x -++≥.①当1≥x 时,化简得226x +≥.解得2x ≥;②当31x -<<时,化简得46≥.此时无解; ③当3x ≤-时,化简得226x --≥.解得4x ≤-.综上,原不等式的解集为(,4][2,)-∞-+∞()II 由题意()22,14,01x x f x x +≥⎧=⎨<<⎩, 设方程()()f x g x =两根为()1212,x x x x <.①当211x x >≥时,方程2222x ax x -+=+等价于方程222a x x=++.易知当51,2a ⎤⎥⎦∈,方程222a x x =++在(1,)+∞上有两个不相等的实数根.此时方程224x ax -+=在()0,1上无解.51,2a ⎤∴⎥⎦∈满足条件.②当1201x x 时,方程224x ax -+=等价于方程42a x x=+, 此时方程42a x x=+在()0,1上显然没有两个不相等的实数根.③当1201x x <<≤时,易知当5,2a ⎛⎫+∞ ⎝∈⎪⎭,方程42a x x=+在()0,1上有且只有一个实数根. 此时方程2222x ax x -+=+在[1,)+∞上也有一个实数根.5,2a ⎛⎫∴+∞ ⎝∈⎪⎭满足条件.综上,实数a 的取值范围为1,)+∞.。

四川省成都市2020届高三第二次诊断性检测数学试题(理)(解析版)

四川省成都市2020届高三第二次诊断性检测数学试题(理)(解析版)

四川省成都市2020届高三第二次诊断性检测数学试题(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( ) A. iB. i -C.1- D. 1『答案』C『解析』由已知,22(1i)1i 1i (1i)(1i)z -===-++-,故z 的虚部为1-. 故选:C.2. 设全集,U R =集合{}{}1,||2M x x N x x =<=>,则()UM N ⋂=( )A. {}|2x x >B. {}|1x x ≥C. {}|12x x <<D. {}|2x x ≥『答案』A 『解析』由已知,{|1}UM x x =≥,又{}|2N x x =>,所以{|2}U M N x x ⋂=>.故选:A.3. 某中学有高中生1500人,初中生1000人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为n 的样本.若样本中高中生恰有30人,则n 的值为( ) A. 20B. 50C. 40D. 60『答案』B『解析』由题意,30=150015001000n⨯+,解得50n =.故选:B.4. 曲线3y x x =-在点()1,0处的切线方程为( ) A. 20x y -=B. 220x y +-=C. 220x y ++=D. 220x y --=『答案』D『解析』由已知,'231y x =-,故切线的斜率为12x y ='=,所以切线方程为2(1)y x =-, 即220x y --=. 故选:D.5. 已知锐角α满足2sin21cos2 ,αα=-则tan α=( ) A.12B. 1C.2D.4『答案』C『解析』由已知,24sin cos 2sin ααα=,因α为锐角,所以sin 0α≠,2cos sin αα=, 即tan α=2. 故选:C.6. 函数())cos lnf x x x =⋅在[1,1]-的图象大致为( )A. B.C. D.『答案』B『解析』因为())cos()lnf x x x =-=-⋅)cos lnx x ⋅+cos cos )()x x x f x =⋅=-=-,故()f x 为奇函数,排除C 、D ;又(1)cos11)0f =⋅<,排除A. 故选:B.7. 执行如图所示的程序框图,则输出S 的值为( )A. 16B. 48C. 96D. 128『答案』B『解析』第一次循环:12(11)4,2S i =+==;第二次循环:242(12)16,3S i =++==; 第三次循环:3162(13)48,4S i =++==,退出循环,输出的S 为48. 故选:B.8. 已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为( ) A. ,4x k k Z ππ=-∈B. +,4x k k Z ππ=∈C. 1,2x k k Z π=∈ D. 1+,24x k k Z ππ=∈ 『答案』C『解析』由已知,()cos2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈. 故选:C.9. 如图,双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别是()()12,0,,0,F c F c -直线2bc y a =与双曲线C 的两条渐近线分别相交于,A B 两点.若12,3BF F π∠=则双曲线C 的离心率为( )A.2B.3C.D.『答案』A『解析』由已知,得(,)22c bc B a -,过B 作x 轴的垂线,垂足为T ,故12cFT =, 又12,3BF F π∠=所以1tan 3BT FT π==,即22bcb ac a == 所以双曲线C的离心率2e ==.故选:A.10. 在正方体1111ABCD A B C D -中,点P 、Q 分别为AB 、AD 的中点,过点D 作平面α使1//B P 平面α,1//A Q 平面α若直线11B D ⋂平面M α=,则11MD MB 的值为( ) A.14B.13C.12D.23『答案』B『解析』如下图所示:设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,四边形ABCD 为正方形,P 、G 分别为AB 、CD 的中点,则//BP CG 且BP CG =,∴四边形BCGP 为平行四边形,//PG BC ∴且PG BC =,11//B C BC 且11B C BC =,11//PG B C ∴且11PG B C =,则四边形11B C GP 为平行四边形, 11//B P C G ∴,1//B P 平面α,则存在直线a ⊂平面α,使得1//B P a ,若1C G ⊂平面α,则G ∈平面α,又D ∈平面α,则CD ⊂平面α, 此时,平面α为平面11CDD C ,直线1A Q 不可能与平面α平行, 所以,1C G ⊄平面α,1//C G a ∴,1//C G ∴平面α,1C G ⊂平面11CDD C ,平面11CDD C 平面DF α=,1//DF C G ∴,1//C F DG ,所以,四边形1C GDF 为平行四边形,可得1111122C E DG CD C D ===,F ∴为11C D 的中点,同理可证E 为11A D 的中点,11B D EF M =,11111124MD D N B D ∴==,因此,1113MD MB =. 故选:B.11. 已知EF 为圆()()22111x y -++=的一条直径,点(),M x y 的坐标满足不等式组10,230,1.x y x y y -+≤⎧⎪++≥⎨⎪≤⎩则ME MF ⋅的取值范围为( )A. 9,132⎡⎤⎢⎥⎣⎦B. []4,13C. []4,12D. 7,122⎡⎤⎢⎥⎣⎦『答案』D『解析』作出可行域如图所示设圆心为(1,1)T -,则()()ME MF MT TE MT TF ⋅=+⋅+=22()()MT TE MT TE MT TE +⋅-=-21MT =-,过T 作直线10x y -+=的垂线,垂足为B ,显然TB MT TA ≤≤,又易得(2,1)A -,所以MA ==TB ==故ME MF ⋅271[,12]2MT =-∈. 故选:D.12. 已知函数()ln x f x x=,()xg x xe -=.若存在()10,x ∈+∞,2x R ∈使得()()()120f x g x k k ==<成立,则221k x e x ⎛⎫⎪⎝⎭的最大值为( )A. 2eB. eC24e D.21e 『答案』C.『解析』()ln x f x x =,()()ln xx x x x e g x f e e e===,由于()111ln 0x f x k x ==<,则11ln 001x x <⇒<<,同理可知,20x <, 函数()y f x =的定义域为()0,∞+,()21ln 0xf x x -'=>对()0,1x ∀∈恒成立,所以,函数()y f x =在区间()0,1上单调递增,同理可知,函数()y g x =在区间(),0-∞上单调递增,()()()212x f x g x f e ∴==,则21x x e =,()22221x x x g x k x e ∴===,则2221k k x e k e x ⎛⎫= ⎪⎝⎭, 构造函数()2kh k k e =,其中k 0<,则()()()222kkh k k k e k k e '=+=+.当2k <-时,()0h k '>,此时函数()y h k =单调递增;当20k -<<时,()0h k '<,此时函数()y h k =单调递减. 所以,()()2max 42h k h e=-=. 故选:C.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分)13. ()41+x 的展开式中2x 的系数为________________.『答案』6『解析』()41+x 的展开式的通项为414r rr T C x -+=⋅,令422r r -=⇒=,因此,()41+x 的展开式中2x 的系数为246C =. 故答案为:6.14. 在ABC 中,内角,,A B C 的对边分别为,,a b c ,已知,2,3B a b π===则ABC的面积为___________.『解析』由余弦定理,得2222cos b a c ac B =+-,即2342c c =+-,解得1c =,故ABC ∆的面积1sin 2S ac B ==.15. 已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球O 的表面上.若球O 的表面积为28,π则该三棱柱的侧面积为___________.『答案』36『解析』由已知,2428R ππ=,解得R =,如图所示,设底面等边三角形中心为1O ,直三棱柱的棱长为x ,则1O A x =,112O O x =,故2222117O A O O OA R +===,即22734x x +=,解得x =2336x =.故答案为:36.16. 经过椭圆2212x y +=中心的直线与椭圆相交于M 、N 两点(点M 在第一象限),过点M 作x 轴的垂线,垂足为点E .设直线NE 与椭圆的另一个交点为P .则cos NMP ∠的值是________________.『答案』0『解析』设点()()0000,0,0M x y x y >>,则()00,N x y --、()0,0E x ,设点()11,P x y ,则220022111212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()2222101002x x y y -+-=,即2210221012y y x x -=--, 即221010102210101012MP NPy y y y y y k k x x x x x x -+-=⋅==--+-, 由斜率公式得000011222NP NE MN y y k k k x x ===⋅=,111222MP NP MP MN MN MP k k k k k k ⎛⎫∴-==⋅= ⎪⎝⎭,1MN MP k k ∴=-,故MN MP ⊥, 因此,cos 0NMP ∠=. 故答案为:0.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知{}n a 是递增的等比数列,11a =,且22a 、332a 、4a 成等差数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设21231log log n n n b a a ++=⋅,n *∈N ,求数列{}n b 的前n 项和n S .解:(Ⅰ)设数列{}n a 的公比为q ,由题意及11a =,知1q >.22a 、332a 、4a 成等差数列成等差数列,34232a a a ∴=+,2332q q q ∴=+,即2320-+=q q ,解得2q或1q =(舍去),2q ∴=.∴数列{}n a 的通项公式为1112n n n a a q --==;(Ⅱ)()212311111log log 222n n n b a a n n n n ++⎛⎫===- ⎪⋅++⎝⎭,11111111111232435112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()()13113232212442123111212n n n n n n n ⎛⎫=-=⎭+⎛-+ +⎫-=- ⎪+++⎝⎭⎝++⎪. 18. 如图,在四棱锥P ABCD -中,O 是边长为4的正方形ABCD 的中心,PO ⊥平面ABCD ,E 为BC 的中点.(Ⅰ)求证:平面PAC ⊥平面PBD ;(Ⅱ)若3PE =,求二面角D PE B --的余弦值. (Ⅰ)证明:ABCD 是正方形,AC BD ∴⊥,PO ⊥平面ABCD ,AC ⊂平面ABCD ,.PO AC ∴⊥OP 、BD ⊂平面PBD ,且OP BD O ⋂=,AC ∴⊥平面 PBD ,又AC ⊂平面PAC ,∴平面PAC ⊥平面PBD ; (Ⅱ)解:取AB 的中点M ,连接OM 、OE ,ABCD 是正方形,易知OM 、OE 、OP 两两垂直,以点O 为坐标原点,以OM 、OE 、OP所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系O xyz -,在Rt POE ∆中,2OE =,3PE=,PO ∴=()2,2,0B ∴、()2,2,0D --、(P 、()0,2,0E ,设平面PBE 的一个法向量()111,,m x y z =,()2,0,0BE =-,(0,2,PE =,由00m BE m PE ⎧⋅=⎨⋅=⎩,得111020x y =⎧⎪⎨=⎪⎩,令1y =10x =,12z =,()0,5,2m ∴=.设平面PDE 的一个法向量()222,,n x y z =,()2,4,0DE =,(0,2,PE =,由00n DE n PE ⎧⋅=⎨⋅=⎩,得222224020x y y +=⎧⎪⎨=⎪⎩,取2y =,得22z =,2x =-,得()25,5,2n =-. 329cos ,m n m n m n⋅∴<>==⋅,二面角D PE B --为钝二面角,∴二面角D PE B --的余弦值为19. 某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司2013年至2019年的年利润y 关于年份代号x 的统计数据如下表(已知该公司的年利润与年份代号线性相关).(Ⅰ)求y 关于x 的线性回归方程,并预测该公司2020年(年份代号记为8)的年利润; (Ⅱ)当统计表中某年年利润的实际值大于由(Ⅰ)中线性回归方程计算出该年利润的估计值时,称该年为A 级利润年,否则称为B 级利润年.将(Ⅰ)中预测的该公司2020年的年利润视作该年利润的实际值,现从2013年至2020年这8年中随机抽取2年,求恰有1年为A 级利润年的概率.参考公式:()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-.解:(Ⅰ)根据表中数据,计算可得4x =,43y =,()()71140iii x x y y =--=∑,又()21728ii x x =-=∑,()()()717215iii ii x x y y b x x ==--∴==-∑∑,435423a y bx =-=-⨯=,y ∴关于x 的线性回归方程为523y x =+.将8x =代入回归方程得582363y =⨯+=(亿元),∴该公司2020年的年利润的预测值为63亿元.(Ⅱ)由(Ⅰ)可知2013年至2020年的年利润的估计值分别为28、33、38、43、48、53、58、63(单位:亿元),其中实际利润大于相应估计值的有3年. 故这8年中被评为A 级利润年的有3年,评为B 级利润年的有5年.记“从2013年至2020年这8年的年利润中随机抽取2年,恰有1年为A 级利润年”的概率为P ,1153281528C C P C ∴==. 20. 已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别为()11,0F -、()21,0F ,点P 在椭圆E 上,212PF F F ⊥且213PF PF =. (Ⅰ)求椭圆E 的标准方程;(Ⅱ)设直线():1l x my m R =+∈与椭圆E 相交于A 、B 两点,与圆222x y a +=相交于C 、D 两点,求2AB CD ⋅的取值范围.解:(Ⅰ)P 在椭圆上, 122PF PF a +=∴,123PF PF =,22a PF ∴=,132aPF =, 212PF F F ⊥,2212212PF F F PF ∴+=,又12 2F F =,22a ∴=,1c =,1b ∴==,∴椭圆E 的标准方程为2212x y +=;(Ⅱ)设点()11,A x y 、()22,B x y ,联立22122x my x y =+⎧⎨+=⎩消去x ,得()222210m y my ++-=,2880m ∴∆=+>,则12222m y y m +=-+,12212y y m =-+,)212212m AB y m +=-=+∴ 设圆222x y +=的圆心O 到直线l 的距离为d ,则d =CD ∴==))22222222121213422122m m m AB CD m m m m +++⎫∴⋅=⋅⋅==-⎪++++⎭,233022m <≤+,2132222m ∴≤-<+,2AB CD ∴⋅<2AB CD ∴⋅的取值范围为⎡⎣.21. 已知函数()()22ln 1f x x x m x =+-+,其中m R ∈.(Ⅰ)若0m >,求函数()f x 的单调区间; (Ⅱ)设()()1xg x f x e=+.若()11g x x >+在()0,∞+上恒成立,求实数m 的最大值. 解:(Ⅰ)函数()()22ln 1f x x x m x =+-+的定义域为()1,-+∞.当0m >时,()()2212211x m m f x x x x +-'=+-=++.令()0f x '=,解得111x =-<-(舍去),211x =>-.当1,12x ⎛⎫ ⎪ ⎪⎝-⎭∈-时,()0f x '<,所以,函数()y f x =在1,12⎛⎫⎪ -⎝⎭-⎪上单调递减;当1,2x ∈-+∞⎛⎫ ⎪ ⎪⎝⎭时,()0f x '>,所以,函数()y f x =在1,2⎛⎫⎪ ⎝-+⎭∞⎪上单调递增.因此,函数()y f x =的单调递减区间为1,12⎛⎫⎪ -⎝⎭-⎪,单调递增区间为1,2⎛⎫ ⎪ ⎝-+⎭∞⎪;(Ⅱ)由题意,可知()2112ln 11x x x m x x e+-+>-+在()0,∞+上恒成立. (i )若0m ≤,()ln 10x +>,()ln 10m x -+≥∴,()2211112ln 1211x x x x m x x x x e x e∴+-+-+≥+-+++, 构造函数()21121x G x x x x e=+-++,0x >,则()()211221x G x x e x '=++-+,0x ,101xe ∴<<,110x e ∴-<-<. 又()21222221x x x ++>+>+,()'0G x ∴>在()0,∞+上恒成立.所以,函数()y G x =在()0,∞+上单调递增,()()00.G x G =∴> ∴当0m ≤时,()2112ln 101x x x m x x e∴+-+-+>+在()0,∞+上恒成立. (ii )若0m >,构造函数()1xH x e x =--,0x >.()10x H x e '=->,所以,函数()y H x =在()0,∞+上单调递增.()()00H x H ∴>=恒成立,即10x e x >+>,111x x e ∴>+,即1101x x e->+. 由题意,知()111x f x x e>-+在()0,∞+上恒成立. ()()2210f x x x mln x ∴=+-+>在()0,∞+上恒成立.由(Ⅰ)可知()()min12f x f x f ⎛⎫==- ⎪ ⎪⎝⎭极小值,又()00f =10->,即2m >时,函数()y f x =在10,2⎛-⎫ ⎪ ⎪⎝⎭上单调递减,()1002f f ⎛⎫ ⎪ ⎪<⎭-=⎝,不合题意,102-≤,即02m <≤. 此时()()()22111112ln 122ln 1111x x g x x x m x x x x x e x e x -=+-++-≥+-++-+++ 构造函数()()21122ln 11xP x x x x e x =+-++-+,0x >. ()()22112211x P x x x e x '∴=+--+++, 111x e x ->-+,11x +>, ()()()222113122221111x P x x x x e x x x '∴=+--+>+-+++++ ()()()()()()()()322222131121311210111x x x x x x x x x +-+++-+++=>=>+++,()'0P x ∴>恒成立,所以,函数()y P x =在(0,)+∞上单调递增,()()00P x P ∴>=恒成立.综上,实数m 的最大值为2.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22. 在平面直角坐标系xOy 中,曲线C 的参数方程为22x m y m⎧=⎨=⎩(m 为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin cos 10ρθρθ-+=. (Ⅰ)求直线l 的直角坐标方程与曲线C 的普通方程; (Ⅱ)已知点()2,1,P 设直线l 与曲线C 相交于,M N 两点,求11PM PN+的值. 解:()I 由cos ,sin ,x y ρθρθ==可得直线l 的直角坐标方程为10.x y --= 由曲线C 的参数方程,消去参数,m 可得曲线C 的普通方程为24y x =.()II 易知点()2,1P 在直线l 上,直线l的参数方程为2212x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数). 将直线l 的参数方程代入曲线C的普通方程,并整理得2140t --=. 设12,t t是方程2140t --=的两根,则有121214t t t t +==-.21222121111111t t t PM PN t t t t t t t +∴+=+===-47==23. 已知函数()13f x x x =-++. (Ⅰ)解不等式()6f x ≥;(Ⅱ)设()22,g x x ax =-+其中a 为常数.若方程()()f x g x =在(0,)+∞上恰有两个不相等的实数根,求实数a 的取值范围.解:()I 原不等式即136x x -++≥.①当1≥x 时,化简得226x +≥.解得2x ≥;②当31x -<<时,化简得46≥此时无解;③当3x ≤-时,化简得226x --≥解得4x ≤-.综上,原不等式的解集为(,4][2,)-∞-+∞()II 由题意()22,14,01x x f x x +≥⎧=⎨<<⎩, 设方程()()f x g x =两根为()1212,x x x x <..①当211x x >≥时,方程2222x ax x -+=+等价于方程222a x x=++.易知当51,2a ⎤⎥⎦∈,方程222a x x =++在(1,)+∞上有两个不相等的实数根.此时方程224x ax -+=在()0,1上无解.51,2a ⎤∴⎥⎦∈满足条件.②当1201x x 时,方程224x ax -+=等价于方程42a x x=+, 此时方程42a x x=+在()0,1上显然没有两个不相等的实数根. ③当1201x x <<≤时,易知当5,2a ⎛⎫+∞ ⎝∈⎪⎭,方程42a x x=+在()0,1上有且只有一个实数根. 此时方程2222x ax x -+=+在[1,)+∞上也有一个实数根.5,2a ⎛⎫∴+∞ ⎝∈⎪⎭满足条件.综上,实数a 的取值范围为1,)+∞.。

四川省成都市第七中学2021年高三零诊模拟数学(理)试题

四川省成都市第七中学2021年高三零诊模拟数学(理)试题
直线OP与平面A6。所成的角为a,则sina的取值范围是(
12.函数/(力=5111£(485--1)的最小正周期是()
A. -B. —C.乃D.24
33
12.如图,已知AA5C,其内部有一点0满足ZOAB=ZOAC=ZOBC=ZOCA= 8,命题〃:©最大值有可能超过36度;命题“:若三边长对应分别为。*,c,则/ 二儿: 则正确的选项为()
川省成都市第七中学
学校:姓名:班级:考号:
一、单选题
1.已知集合4 ={刈工一1]<1},B = {x|x2-1<0},则AU6=()
A. (-1,1)B. (-1,2)C. (1,2)D. (0,1)
2.若二^ =1 + 2,,则及数〃=()
2 + i
A.-5-iB. -5 + /C. 5-ZD. 5 + i
过定点,如果是,请求出定点坐标,如果不是,请说明理由.
21.设函数/(x) = e*L(2x+l) — o¥,其中
(1)当4 = 0时,/(X)的零点个数;
(2)若/(x)<0的整数解有且唯一,求。的取值范胤
22.在极坐标系下,已知圆。:夕=cos,+sin。和直线
C.12.0万元D. 12.2万元
。为AO边上靠近点A的三等分点,则()
B.BO = -AB--AC62
D.BO = --AB + -AC66
6.执行如图的程序框图,则输出工的值是(
7
8.等差数列{%}中的〃?、是函数/(力=1/一4/ + 61一1的两个极值点,则
lOg?(见,^2017 ・ 〃4032 )=(
9.以下三个命题正确的个数有()个.①若标+N工5,则。W1或/?02;②定义

2020成都市高三零诊考试数学文科试题及详细解析

2020成都市高三零诊考试数学文科试题及详细解析

2020成都市高三零诊考试数学试题(文科)第I卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数z=1ii+(i为虚数单位)的虚部是()A 12B -12C12i D -12i【解析】【考点】①复数的定义与代数表示法;②虚数单位的定义与性质;③复数运算的法则与基本方法;④复数虚部的定义与确定的基本方法。

【解题思路】运用复数运算的法则与基本方法,虚数单位的性质,结合问题条件通过运算得到复数z的代数表示式,利用复数虚部确定的基本方法求出复数z的虚部就可得出选项。

【详细解答】 z=1ii+=(1(1(1i ii i-+-)))=221i ii--=12i+=12+12i,∴复数z的虚部为12,⇒A正确,∴选A。

2、已知集合A={1,2,3,4},B={x|2x-x-6<0},则A B=()A {2}B {1,2}C {2,3}D {1,2,3} 【解析】【考点】①集合的表示法;②一元二次不等式的定义与解法;③集合交集的定义与运算方法。

【解题思路】运用一元二次不等式的解法,结合问题条件化简集合B,利用几何交集运算的基本方法通过运算求出A B就可得出选项。

【详细解答】B={x|2x-x-6<0}={x|-2<x<3},A={1,2,3,4},∴A B={1,2},⇒B正确,∴选B。

3、如图,是某赛季甲,乙两名篮球运动员9场比赛甲乙所得分数的茎叶图,则下列说法错误的是() 0 8A 甲所得分数的极差为22B 乙所得分数的 7 5 1 1 1 2 6 8 中位数为18C 两人所得分数的众数线段 4 2 2 0 2 0 2 2D 甲所得分数的平均数低于乙所得分数的平均数 3 2 3 1【解析】【考点】①茎叶图的定义与性质;②极差的定义与求法;③中位数的定义与求法;④众数的定义与求法;⑤平均数的定义与求法。

2021届四川省成都市高三理数零诊考试试卷及答案

2021届四川省成都市高三理数零诊考试试卷及答案

高三理数零诊考试试卷一、单项选择题1.设全集,集合,那么〔〕A.B.C.D.2.函数那么〔〕3.某校为增强学生垃圾分类的意识,举行了一场垃圾分类知识问答测试,总分值为100分.如以下列图的茎叶图为某班20名同学的测试成绩(单茎位:分).那么这组数据的极差和众数分别是〔〕A.20,88B.30,88C.20,82D.30,914.假设实数,满足约束条件,那么的最大值为〔〕5.双曲线的一个焦点到其中一条渐近线的距离为,那么该双曲线的渐近线方程为〔〕A.B.C.D.6.记函数的导函数为.假设,那么〔〕7. 为圆上一动点,那么点到直线的距离的最大值是〔〕A.B.C.D.8.直线,.那么“ 〞是“ 〞的〔〕如以下列图的程序框图,那么输出的的值是〔〕A.B.C.D.10.在三棱锥中,平面,,,假设该三棱锥的顶点都在同一个球面上,那么该球的外表积为〔〕A.B.C.D.11.函数,.假设对任意,且,都有,那么实数的取值范围是〔〕A.B.C.D.12.设抛物线的焦点为,准线为,过抛物线上一点作的垂线,垂足为,设,与相交于点.假设,且的面积为,那么点到准线的距离是〔〕A.B.C.D.二、填空题13.设复数( 为虚数单位),那么________.14.一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见不是红灯亮的概率为________.15.关于,的一组数据:1 3 4 5根据表中这五组数据得到的线性回归直线方程为,那么的值为________.16. 是定义在上的奇函数,当时,有以下结论:①函数在上单调递增;②函数的图象与直线有且仅有2个不同的交点;③假设关于的方程恰有4个不相等的实数根,那么这4个实数根之和为8;④记函数在上的最大值为,那么数列的前项和为.其中所有正确结论的编号是________.三、解答题17.函数,其中.假设函数的图象在点处的切线与直线平行.〔1〕求的值;〔2〕求函数的极值.18.“2021年全国城市节约用水宣传周〞已于5月9日至15日举行.成都市围绕“贯彻新开展理念,建设节水型城市〞这一主题,开展了形式多样,内容丰富的活动,进一步增强全民保护水资源,防治水污染,节约用水的意识.为了解活动开展成效,某街道办事处工作人员赴一小区调查住户的节约用水情况,随机抽取了300名业主进行节约用水调查评分,将得到的分数分成6组:,,,,,,得到如以下列图的频率分布直方图.〔1〕求的值,并估计这300名业主评分的中位数;〔2〕假设先用分层抽样的方法从评分在和的业主中抽取5人,然后再从抽出的这5位业主中任意选取2人作进一步访谈,求这2人中至少有1人的评分在的概率.19.如图,在四棱锥中,,,为棱的中点,,.〔1〕求证:平面;〔2〕假设平面平面,是线段上的点,且,求二面角的余弦值.20.椭圆的左,右焦点分别为,,点在椭圆上,,,且椭圆的离心率为.〔1〕求椭圆的方程;〔2〕设直线与椭圆相交于,两点,为坐标原点.求面积的最大值.21.函数,其中.〔1〕讨论函数的单调性;〔2〕当时,假设满足,证明:.22.在直角坐标系中,曲线的参数方程为( 为参数),以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,〔1〕求曲线的普通方程和直线的直角坐标方程;〔2〕在曲线上任取一点,保持纵坐标不变,将横坐标伸长为原来的倍得到曲线.设直线与曲线相交于,两点,点,求的值.答案解析局部一、单项选择题1.【解析】【解答】因为,,所以.故答案为:B.【分析】根据补集的概念即可求出答案。

四川省成都市新都区2020届高三数学诊断测试试题文(含解析)

四川省成都市新都区2020届高三数学诊断测试试题文(含解析)

5.已知定义在 R 上的函数 f x在 (0, , ) 单调递减,且满足对 x R ,都有
f (x) f (x) 0 ,则符合上述条件的函数是( )
f x x2 x 1
A.
B.
f
(
x)
1 2
x
f x ln x 1
C.
f x cos x
D.
【答案】B
【解析】
【分析】
由题意可知函数要满足为偶函数且在 (0, , ) 单调递减,对解析式进行逐个验证.
所以 2 a1 4d a1 5d a1 2d a1 3d 2 a4 2 ,
所以 2S7 2 7a4 28 .
故选:D.
【点睛】本题考查等差数列通项公式、前 n 项和公式,考查基本运算求解能力.
sin cos 2
4.已知
3 ,则 sin 2 (
7 A. 9
2 B. 9
【答案】A

2 C. 9
7 D. 9
【解析】 【分析】
直接对等式两边平方,利用倍角公式得 sin 2 的值.
sin cos 2
【详解】因为
3,
(sin cos )2 ( 2 )2 1 2sin cos 2 sin 2 7
所以
3
9
9.
故选:A.
【点睛】本题考查同角三角函数的基本关系、倍角公式,考查基本运算求解能力.
因为函数
f
x
2
x2, x 0,1 x2, x 1, 0,函数
y
kx
的图象如图所示:
观察图象,当直线的斜率为 k 1时,两个函数图象有且仅有两个交点,
结合选项和图象分析,所以实数 k 的取值集合是{1,1} .
故选:C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学【理科】
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{|02}A x x =<<,{|1}B x x =≥,则A B =
(A){|0x x <≤1}
(B){|01}x x << (C){|2x x <1≤} (D){|02}x x << 2.复数2i 2i z =-(i 为虚数单位)在复平面内对应的点位于 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
3.已知函数|1|,0()=ln ,0.
x x f x x x -⎧⎨>⎩,≤则1(())e f f = (A)0 (B)1 (C)e 1- (D)2
4.为了加强全民爱眼意识,提高民族健康素质,1996年,卫生部、教育部、团中央等12个部委联合发出通知,将爱眼日活动列为国家节日之一,并确定每年的6月6日为“全国爱眼日”.某校高二(1)班有40名学生,学号为01到40,现采用随机数表法从该班抽取5名学生参加“全国爱眼日”宣传活动.已知随机数表中第6行至第7行的各数如下:
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 若从随机数表第6行第9列的数开始向右数,则抽取的第5名学生的学号是
(A)17 (B)23 (C)35 (D)37
5.“3k =”是“直线2y kx =+与圆221x y +=相切”的
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件
6.已知离心率为2的双曲线22221(0,0)x y a b a b -=>>与椭圆14
82
2=+y x 有公共焦点,则双曲线的方程为 (A)112422=-y x (B) 14
122
2=-y x (C)1322=-y x (D) 1322=-y x 7.执行如图所示的程序框图,则输出的结果S 为
(A)1-
(B)2
2 (C)0
(D)212--
8.设函数()f x 的导函数是()f x '.若2()()cos f x f x x '=π-,则()=6f π' (A)12- (B)12
(C)32 (D)32- 9.如图是某几何体的三视图.若三视图中的圆的半径均为2,
则该几何体的表面积为
(A)14π (B)16π
(C)18π (D)20π
10.在平面直角坐标系xOy 中,已知直线:(1)l y k x =+与曲线1sin 2,:sin cos x C y θθθ=+⎧⎨
=+⎩(θ为参数)在第一象限恰有两个不同的交点,则实数k 的取值范围为
(A)(0,1) (B)1(0,)
2 (C)2[,1)
3 (D)21[,)32 11.已知函数()||ln||
x x f x =.若)e (),3ln (),2(ln f c f b f a =-==,则c b a ,,的大小关系为 (A)a c b >> ( B)c a b >> (C)c b a >> (D)b c a >>
12.已知关于x 的不等式ln(1()),x x kx k b b -++∈R ≤当x ∈(1,+∞)时恒成立,则
11b k --的最小值是 (A)2e - (B)1e 1-+ (C)21e - (D)e 1--
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.
13.已知呈线性相关的变量x ,y 之间的关系如下表:
x
1 2 3 4 y 1 3 4 6
由表中数据得到的回归直线方程为ˆˆ1.6y
x a =+.由此预测当8x =时,ˆy 的值为________. 14.函数2()2e 3x f x -=-+的图象在0=x 处的切线方程为________.
15.已知甲,乙,丙三个人中,只有一个人会中国象棋.甲说:“我会”;乙说:“我不会”;丙说:“甲不会”.如果这三句话只有一句是真的,那么甲,乙,丙三个人中会中国象棋的是_______.
16.已知点P 在椭圆22
221(0)x y a b a b
+=>>上,1F 是椭圆的左焦点,线段1PF 的中点在圆2222x y a b +=-上.记直线1PF 的斜率为k ,若1k ≥,则椭圆离心率的最小值为_______.
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分12分)
2019年12月,《生活垃圾分类标志》新标准发布并正式实施.为进一步普及生活垃圾分类知识,了解居民生活垃圾分类情况,某社区开展了一次关于垃圾分类的问卷调查活动,并对随机抽取的1000人的年龄进行了统计,得到如下的各年龄段频数分布表和各年龄段人数频率分布直方图:
各年龄段频数分布表 各年龄段人数频率分布直方图
(Ⅰ)请补全频率分布直方图,并求出各年龄段频数分布表中n m ,的值;
(Ⅱ)已知从年龄在[)30,40段中采用分层抽样的方法选出了5名代表参加垃圾分类知识交流活动.现从这5名代表中任选2名作为领队,求这两名领队中恰有1名年龄在
[)35,40段中的概率.
18. (本小题满分12分)
已知函数32()21f x x ax bx a =+++-在1-=x 处取得极值0,其中,a b ∈R .
(Ⅰ)求b a ,的值;
(Ⅱ)当[1,1]x ∈-时,求)(x f 的最大值.
组数
分组 频数 第一组
[25,30) 200 第二组 [30,35) 300 第三组
[35,40) m 第四组
[40,45) 150 第五组
[45,50) n 第六组 [50,55]
50 合计 1000
如图①,在菱形ABCD 中,60A ∠=°且2=AB ,E 为AD 的中点.将△ABE 沿BE 折起使2=
AD ,得到如
图②所示的四棱锥A -BCDE .
(Ⅰ)求证:平面ABE ⊥平面ABC ;
(Ⅱ)若P 为AC 的中点,求二面角C BD P --的余弦值.
图① 图②
20.(本小题满分12分)
在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换⎪⎩
⎪⎨⎧='='y y x x 21:ϕ后,得到曲线C . (Ⅰ)求曲线C 的方程;
(Ⅱ)设直线l 与曲线C 相交于B A ,两点,连接BO 并延长与曲线C 相交于点D ,且2||=AD .求△ABD 面积
的最大值.
已知函数()e ,.x
f x x ax a =+∈R
(Ⅰ)设()f x 的导函数为(),f x '试讨论()f x '的零点个数;
(Ⅱ)设()ln ln (1).a g x ax x a x a x =++-当(1,x ∈+∞)时,若()()f x g x ≥恒成立,求a 的取值范围.
22.(本小题满分10分)选修4-4:坐标系与参数方程
在平面直角坐标系xOy 中,直线l
的参数方程为1x y ⎧=⎪⎪⎨⎪=⎪⎩,(t 为参数).以坐标原点O 为极点,x 轴的正
半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρcos 6=.
(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;
(Ⅱ)已知点)0,1(P .若直线l 与曲线C 相交于B A ,两点,求2211||||PA PB +的值.。

相关文档
最新文档