抽屉原理优秀教案

合集下载

抽屉原理教案14篇

抽屉原理教案14篇

抽屉原理教案14篇抽屉原理优质课教案篇一××老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。

1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。

此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。

在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。

这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。

在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。

在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。

2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。

让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。

另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。

3、注意渗透数学和生活的联系。

并在游戏中深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。

课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。

”这是为什么?学生很惊讶。

抽屉原理教案

抽屉原理教案

抽屉原理教案抽屉原理教案教学目标:1. 理解抽屉原理的基本概念和应用;2. 掌握使用抽屉原理解决问题的方法;3. 培养学生的逻辑思维和数学推理能力。

教学重点:1. 抽屉原理的定义和应用;2. 如何使用抽屉原理解决问题。

教学难点:如何将抽屉原理应用于实际问题的解决。

教学准备:1. 教师准备PPT和教学素材;2. 学生课前预习相关知识。

教学过程:Step 1 导入新课教师通过简单的引入问题激发学生思考,例如:如果班上有10个学生,分别是A、B、C、D、E、F、G、H、I、J,怎样保证至少有两个学生的名字首字母相同?Step 2 介绍抽屉原理教师通过PPT或板书介绍抽屉原理的定义和基本概念,解释抽屉原理是数学中一种常用的原理,也称为鸽巢原理。

简单介绍抽屉原理的应用领域。

Step 3 学习抽屉原理的应用方法教师通过多个具体例子,引导学生学习使用抽屉原理解决问题的方法。

例如:给出10个整数,证明至少存在两个整数的和能被10整除。

Step 4 练习与巩固教师出示如下问题:在一桶里有101个苹果,你要从中选出100个,那么至少会包含两个相同的苹果。

学生在思考一段时间后,教师逐步引导学生分析和解答问题,引导学生使用抽屉原理解决问题。

Step 5 拓展应用教师提供更复杂的问题,并鼓励学生在小组内合作讨论解决方法。

例如:如果地球上有7.8亿人口,那么至少有多少人的生日在同一天?Step 6 总结与布置作业教师通过总结课堂上所学的内容,强调抽屉原理的应用和重要性。

布置作业,要求学生进一步巩固和拓展抽屉原理的应用。

教学延伸:1. 学生可以结合自己生活中的问题,尝试利用抽屉原理解决;2. 学生可以通过查阅相关资料,了解抽屉原理在其他领域的应用案例。

《抽屉原理》教学设计精选7篇

《抽屉原理》教学设计精选7篇

《抽屉原理》教学设计精选7篇抽屉原理教学反思篇一抽屉原理教学反思《抽屉原理》是人教版六年级下册数学广角中的内容,这部分内容属于奥数知识范畴,首次被编入新课改教材,它的教学就是通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。

当我第一次接触到《抽屉原理》时,我很困惑:什么是抽屉原理?这么难的内容学生能理解吗?我的印象里《抽屉原理》是非常坚深难懂的(好像在上师范的时候学过,当时我都没学懂)。

时隔两年,再次教学《抽屉原理》心里还是觉得没底,不知能否讲清楚、讲明白。

为了上好这一内容,我搜集学习了很多资料,查阅了多篇教案,在“前辈”们的经验上,与本组成员相互探讨、研究,终于使我对“抽屉原理”有了新的认识,也终于理出了头绪。

抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。

通过本部分内容的教学,我有以下几点体会:一、重视集体研讨,集体的智慧是无穷的。

以前上这节课时,总是按照自己的理解来给学生讲,有时会拿一些名师的优秀教案生搬硬套,结果却总是讲着讲着不知道该怎么讲了,有时连自己也都被搅迷糊了,教学效果可想而知。

而今年上课之前,我们几位老师提前就开始讨论这节课,红晓老师还拿出了以前做的课件,讲了讲自己对这节课的理解,以及难点的突破方法,通过我们集体的研讨,原本觉得很难理解的内容也变得简单了,上课之前能够做到胸有成竹,就不愁讲不好这节课了。

二、要根据学生的实际进行教学设计。

以前上这节课时,我总以“学生的生日”为话题引入新课,学生们兴趣也比较高,这次上课,我依旧以此为话题引入新课,却没有出现以前那种效果。

课后反思一下,以前的班级最多42人,当老师猜测“我们班42人中,至少有4个人的生日在同一个月”之后,学生们都不相信,于是就很有兴趣地要进行验证。

由于人数少,比较好验证,而且基本上会出现1月生日的只有一、两个人,2月同样如此,这样学生就会面露得意之色,说老师猜的不对,直到3、4月或5、6月才发现真的有4个或4个以上的人在同一个月生日,这时还会有些学生不甘心,说有5个人在某一月生日,你说的是4人。

抽屉原理教案幼儿园

抽屉原理教案幼儿园

抽屉原理教案幼儿园
一、教学目标
1.了解抽屉原理的概念;
2.学习抽屉原理的具体应用;
3.培养幼儿的逻辑思维能力。

二、教学内容
1.抽屉原理的概念;
2.抽屉原理的应用案例;
3.数学实验中的抽屉原理。

三、教学重难点
1.抽屉原理的概念和应用;
2.数学实验中如何运用抽屉原理。

四、教学过程
1.教师进行简单的抽屉实验,让幼儿合作实验;
2.引导幼儿讨论实验结果和抽屉原理的概念;
3.播放动画视频,介绍抽屉原理的具体应用;
4.教师指导幼儿进行简单的数学实验,应用抽屉原理。

五、教学后记
在幼儿的成长过程中,培养他们的逻辑思维能力对于孩子的发展至关重要。

通过本次的抽屉原理教学,让幼儿感受到抽屉原理在实际应用中的重要作用,并让孩子们在实验过程中体会到科学的魅力,同时也培养了幼儿的实验精神和团队协作意识。

希望通过本次教学,幼儿们能够对抽屉原理有一个更加深入的认识,同时也能够在今后的学习生活中更加喜欢和关注数学这门学科。

抽屉原理优秀教案

抽屉原理优秀教案

抽屉原理优秀教案
简介
抽屉原理(Pigeonhole Principle)是一种非常基础的组合数学原理,也是解决问题的常用思路。

在高中数学的课程中,抽屉原理也是非常重要的一部分。

下面将介绍一份优秀的抽屉原理教案,帮助老师更好地让学生掌握该原理。

教材准备
•白板、白板笔、橡皮擦、教材
•尺子、铅笔、草稿纸
教学目标
•理解抽屉原理的概念和应用条件;
•运用抽屉原理解决实际问题;
•提高学生的组合数学思维和解决问题的能力。

教学过程
1. 引入
1.1 翻译和解释抽屉原理的概念。

1.2 提示学生,抽屉原理能够帮助解决哪些问题,引出本课核心内容。

2. 案例练习
2.1 由老师出题,引导学生使用抽屉原理解决有关组合数学的实际问题。

2.2 根据题目难易程度逐步提高练习难度,帮助学生逐步掌握使用抽屉原理的方法。

3. 归纳
3.1 学生归纳抽屉原理的应用范围和方法,并在白板上进行讲解。

3.2 带领学生解决课堂上未完成的案例,检测学生对抽屉原理的掌握程度。

4. 课后练习
4.1 布置课后练习,让学生巩固抽屉原理的应用。

4.2 课后批改作业,对学生掌握程度进行检测和评价。

教学评估
•课堂互动表现
•课堂练习和课后作业完成情况
•学生对课程知识点的掌握和理解
小结
本教案针对高中生,以案例练习为主,教师通过引入案例和逐步讲解抽屉原理的方法,帮助学生掌握该原理的应用方法,提高学生的组合数学思维和解决问题的能力。

同时,通过课堂互动和课后练习等方式进行评估,帮助学生巩固和深化所学知识,从而达到提高教学质量的目的。

2024最新-抽屉原理教学设计8篇

2024最新-抽屉原理教学设计8篇

抽屉原理教学设计8篇作为一位杰出的老师,通常需要准备好一份教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么应当如何写教学设计呢?如下是勤劳的编辑帮大家收集整理的抽屉原理教学设计8篇,仅供借鉴,希望可以帮助到有需要的朋友。

六年级数学《抽屉原理》公开课教学设计篇一教学目标:1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:抽取问题。

教学难点:理解抽取问题的基本原理。

教学过程:一、创设情境,复习旧知1、出示复习题:师:老师这儿有一个问题,不知道哪位同学能帮助解答一下?2、课件出示:把3个苹果放进2个抽屉里,总有一个抽屉至少放2个苹果,为什么?3、学生自由回答。

二、教学例21、出示:盒子里有同样大小的红球和蓝球各4个。

要想摸出的球一定有2个同色的,最少要摸出几个球?(1)组织学生读题,理解题意。

教师:你们能猜出结果吗?组织学生猜一猜,并相互交流。

指名学生汇报。

学生汇报时可能会答出:只摸4个球就可以了,至少要摸出5个球……教师:能验证吗?教师拿出准备好的红球及蓝球,组织学生到讲台前来动手摸一摸,验证汇报结果的正确性。

(2)教师:刚才我们通过验证的方法得出了结论,联系前面所学的知识,这是一个什么问题?2、组织学生议一议,并相互交流。

再指名学生汇报。

教师:上面的问题是一个抽屉问题,请同学们找一找:“抽屉”是什么?“抽屉”有几个?组织学生议一议,并相互交流。

指名学生汇报,使学生明确:抽屉就是颜色数。

(板书)教师:能用例1的知识来解答吗?组织学生议一议,并相互交流。

指名学生汇报。

使学生明确:只要分的物体比抽屉多,就能保证总有一个抽屉至少放荡2个球,因此要保证摸出两个同色的球,摸出球的数量至少要比颜色的种数多一。

(3)组织学生对例题的解答过程议一议,相互交流,理解解决问题的方法。

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

抽屉原理教学设计(共8篇) - 副本

抽屉原理教学设计(共8篇) - 副本

抽屉原理教学设计(共8篇)篇:《抽屉原理》设计《抽屉原理》教学设计教学目标:1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、原理。

3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学过程:一、创设情景导入新课师:同学们喜欢玩游戏吗?讲台前面有6张凳子,请7位同学来抢凳子坐。

我不看同学们怎样坐,我敢肯定的说:这6张凳子中总有一张凳子至少有两个同学同坐,大家相信吗?(师生演示)师:想知道老师为什么能做出如此准确的判断吗?这其中蕴含一个有趣的数学原理——抽屉原理。

(板书课题)这节课我们就一起来研究这个数学原理。

师:通过今天的学习,你想知道些什么?二、自主操作探究新知(一) 活动1 课件出示:把4枝铅笔放到3个笔筒里,可以怎么放?师:你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的方式记录下来。

1、学生动手操作,师巡视,了解情况。

2、汇报交流说理活动① 师:有什么发现?谁能说说看?师根据学生的回答用数字在黑板上记录。

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1)师:你们是这样记录的吗?师:还可以用图记录。

我把用图记录的用课件展示出来。

师:还可以用表格记录。

师板书在黑板上。

② 再认真观察记录,还有什么发现?板书:不管怎样放,总有一个笔筒里至少有2枝铅笔。

③ 怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。

)板书:4÷3=1(枝)……1(枝)④ 师:这种方法是不是很快就能确定总有一个笔筒里至少有几枝铅笔呢?(学生交流)⑤ 把5枝铅笔放进4个笔筒里呢?还用摆吗?板书:5÷4=1(枝)……1(枝)⑥ 课件出示:把6枝铅笔放进5个笔筒呢?把7枝铅笔放进6个笔筒呢?把10枝铅笔放进9个笔筒呢?把100枝铅笔放进99个笔筒呢?板书:7÷6=1(枝)……1(枝)10÷9=1(枝)……1(枝)100÷99=1(枝)……1(枝)⑦ 观察这些算式你发现了什么规律?预设学生说出:至少数=商+余数师:是不是这个规律呢?我们来试一试吧!3、深化探究得出结论课件出示:5只鸽子飞回3个鸽笼,至少有两只鸽子要飞进同一个鸽笼里,为什么?① 学生活动② 交流说理活动预设:生1:题目的说法是错误的,用商加余数,应该至少有3只鸽子要飞进同一个鸽笼。

六年级数学《抽屉原理》公开课教学设计

六年级数学《抽屉原理》公开课教学设计

六年级数学《抽屉原理》公开课教学设计六年级数学《抽屉原理》公开课教学设计(精选5篇)抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。

它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。

它是组合数学中一个重要的原理。

接下来我们一起来看看六年级数学《抽屉原理》公开课教学设计(精选5篇)。

六年级数学《抽屉原理》公开课教学设计篇1教学内容:六年级数学下册70页、71页例1、例2。

教学目标:1、理解“抽屉原理”的一般形式。

2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。

4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。

教学重点:经历“抽屉原理”探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”的一般规律。

教学准备:相应数量的杯子、铅笔、课件。

教学过程:一、情景引入让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。

师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。

二、探究新知1、探究3根铅笔放到2个杯子里的问题。

师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。

2、教学例1(1)师:依此推下去,把4根铅笔放在3个杯子又怎么放呢?会有这种结论吗?让学生动手操作,做好记录,认真观察,看看有什么发现?(2)、学生汇报放结果,结合学具操作解释。

教师作相应记录。

(4,0,0) (3,1,0) (2,2,0) (2,1,1)(学生通过操作观察、比较不难发现有与上个问题同样结论。

)(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。

《抽屉原理》教学设计优秀7篇

《抽屉原理》教学设计优秀7篇

《抽屉原理》教学设计优秀7篇《抽屉原理》教学设计篇一一、教学设计1.教材分析《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。

这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。

2.学情分析“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。

教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。

六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。

3.教学理念激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。

特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

4.教学目标1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

5.教学重难点重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

6.教学过程一、课前游戏引入。

上课前,我们先来热身一下,一起来玩抢椅子的游戏。

这有4把椅子,请5位同学上来参加游戏,游戏规则是:在老师说开始时,5位同学绕着椅子走,当老师说停的,5位同学都要坐在椅子上。

为什么总有一张椅子至少坐两个同学?在这个游戏中蕴含着一个有趣的数学原理叫做抽屉理原,这节课我们就一起来研究抽屉理原。

《抽屉原理》教学设计【优秀5篇】

《抽屉原理》教学设计【优秀5篇】

《抽屉原理》教学设计【优秀5篇】《抽屉原理》教学设计篇一【教学内容】《义务教育课程标准实验教科书数学》六年级下册第68页。

【教学目标】1.经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。

3. 通过抽屉原理的灵活应用感受数学的魅力。

【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理。

【教学难点】理解抽屉原理,并对一些简单实际问题加以模型化。

【教具、学具准备】每组都有相应数量的盒子、铅笔、书。

【教学过程】一、课前游戏引入。

师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。

这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:不管怎么坐,总有一把椅子上至少坐两个同学我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

下面我们开始上课,可以吗?【点评】教师从学生熟悉的抢椅子游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。

二、通过操作,探究新知(一)教学例11.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0) (2,1)【点评】此处设计教师注意了从最简单的。

数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。

3支笔放进2个盒子里呢?生:不管怎么放,总有一个盒子里至少有2枝笔?是:是这样吗?谁还有这样的发现,再说一说。

抽屉原理教学设计公开课教案教学反思

抽屉原理教学设计公开课教案教学反思

抽屉原理教学设计公开课教案教学反思一、教学目标:1. 让学生理解并掌握抽屉原理的基本概念和运用方法。

2. 培养学生运用抽屉原理解决实际问题的能力。

3. 提高学生逻辑思维和数学推理能力。

二、教学内容:1. 抽屉原理的基本概念和性质。

2. 抽屉原理在不同情境下的应用。

3. 抽屉原理与数论、概率论等相关领域的联系。

三、教学重点与难点:1. 抽屉原理的基本概念和性质。

2. 运用抽屉原理解决实际问题。

3. 抽屉原理在不同领域的应用。

四、教学方法与手段:1. 采用案例分析法,通过具体案例让学生理解和掌握抽屉原理。

2. 运用讨论法,引导学生探讨抽屉原理的适用范围和局限性。

3. 利用多媒体辅助教学,展示抽屉原理在不同领域的应用。

五、教学安排:1. 第一课时:介绍抽屉原理的基本概念和性质。

2. 第二课时:运用抽屉原理解决实际问题。

3. 第三课时:探讨抽屉原理在不同领域的应用。

4. 第四课时:进行课堂练习和总结。

5. 第五课时:教学反思和总结。

六、教学过程:1. 导入:通过引入日常生活中的实例,如分配物品到抽屉中,引发学生对抽屉原理的兴趣。

2. 新课导入:介绍抽屉原理的基本概念和性质,解释抽屉原理的含义和应用。

3. 案例分析:通过具体的案例,让学生运用抽屉原理解决问题,如分配房间号码、安排座位等。

4. 小组讨论:学生分组讨论抽屉原理的适用范围和局限性,分享各自的解题经验和策略。

5. 应用拓展:利用多媒体展示抽屉原理在不同领域的应用,如数论、概率论等。

6. 课堂练习:给学生提供一些实际问题,让学生运用抽屉原理解决,并进行解答和讨论。

7. 总结:对本节课的内容进行总结,强调抽屉原理的重要性和应用价值。

七、教学评价:1. 课堂参与度:观察学生在课堂上的积极参与程度,提问和回答问题的积极性。

2. 解题能力:评估学生在解决问题时运用抽屉原理的正确性和灵活性。

3. 小组讨论:评价学生在小组讨论中的合作能力和交流表达能力。

4. 课后作业:通过学生完成的课后作业,评估学生对抽屉原理的理解和掌握程度。

抽屉原理教案郑卫霞

抽屉原理教案郑卫霞

抽屉原理教案郑卫霞一、教学目标1. 让学生理解抽屉原理的基本概念和含义。

2. 培养学生运用抽屉原理解决实际问题的能力。

3. 提高学生逻辑思维和创新思维能力。

二、教学内容1. 抽屉原理的定义和基本性质2. 抽屉原理的应用举例3. 抽屉原理在不同学科领域的应用三、教学重点与难点1. 抽屉原理的定义和基本性质2. 运用抽屉原理解决实际问题四、教学方法1. 采用案例教学法,通过具体案例让学生理解抽屉原理的应用。

2. 采用问题驱动法,引导学生主动探索抽屉原理的规律。

3. 采用小组讨论法,培养学生的团队协作能力和沟通能力。

五、教学准备1. 准备相关案例和问题,用于引导学生思考和讨论。

2. 准备教学PPT,用于展示抽屉原理的应用。

【教学环节】1. 导入:通过一个具体案例,引出抽屉原理的概念。

2. 讲解:详细讲解抽屉原理的定义和基本性质。

3. 应用:举例说明抽屉原理在不同学科领域的应用。

4. 练习:给出一些练习题,让学生运用抽屉原理解决问题。

5. 总结:对本节课的内容进行总结,强调抽屉原理的重要性和应用价值。

6. 作业:布置一些作业题,让学生进一步巩固抽屉原理。

7. 拓展:给出一些拓展问题,激发学生的创新思维。

8. 反馈:收集学生对抽屉原理的理解和应用情况,为下一步教学做好准备。

六、教学过程1. 导入案例:讲解一个生活中的实际案例,如选举、分配等问题,引出抽屉原理的概念。

2. 讲解抽屉原理:详细讲解抽屉原理的定义、基本性质和证明方法。

3. 案例分析:分析导入案例中抽屉原理的应用,让学生理解抽屉原理的实际意义。

七、抽屉原理的应用1. 举例说明:给出一些具体的应用例子,如判断是否存在矛盾、优化资源分配等。

2. 问题解决:让学生尝试解决一些实际问题,运用抽屉原理进行分析和解答。

八、抽屉原理与数学关系1. 数学背景:介绍抽屉原理在数学中的地位和作用,如组合数学、图论等领域。

2. 数学应用:给出一些数学问题,让学生运用抽屉原理进行解决。

小学数学《抽屉原理》教案

小学数学《抽屉原理》教案

小学数学《抽屉原理》教案教学目标:1.了解抽屉原理的概念和应用;2.能够运用抽屉原理解决简单的问题;3.培养学生的逻辑思维和问题解决能力。

教学重点:掌握抽屉原理的基本概念及应用。

教学难点:能够熟练运用抽屉原理解决问题。

教学准备:1.教师准备黑板、粉笔、书籍等教学工具;2.学生准备笔、纸。

教学过程:一、导入(5分钟)教师可以通过一个简单的问题引导学生进入本节课的学习主题,例如:买了6个苹果和5个橙子,将这11个水果放进5个抽屉里,至少有几个抽屉里的水果相同?二、引入(10分钟)1.引导学生思考:为什么要学习抽屉原理?抽屉原理有什么应用?2.教师通过提出一个简单的问题,引入抽屉原理的概念。

例如:如果将12个苹果放进10个抽屉里,是否一定能保证至少有一个抽屉里放有2个或以上的苹果?3.引导学生观察,思考该问题的答案,并让学生表达自己的想法。

三、讲授(20分钟)1.教师介绍抽屉原理的概念:如果有n个物品要放进m个位置,那么必然存在一个位置至少放了⌈n/m⌉+1个物品。

2.教师通过具体的例子解释抽屉原理的应用,引导学生理解。

例如:将10个竹签放入3个盒子中,是否一定会有一个盒子中至少有4个竹签?3.教师讲解抽屉原理的证明方法,帮助学生深入理解。

4.教师通过几个简单的例题,让学生自己独立运用抽屉原理解决问题。

四、练习(25分钟)1.学生个体练习:学生独立完成作业本上的练习题,巩固抽屉原理的应用。

2.学生小组合作练习:将学生分成小组,根据老师提供的情景,设计难度适中的问题,让学生应用抽屉原理解决,鼓励学生积极互动。

五、总结(10分钟)1.教师引导学生回顾本节课所学内容,整理并总结抽屉原理的应用方法。

2.高手示范:鼓励有能力的学生上台演示利用抽屉原理解决问题的方法。

六、拓展(5分钟)教师给学生布置拓展问题,鼓励学生准备下节课的讨论和分享,引导学生积极思考问题以及找寻更多的应用情景。

七、作业(2分钟)布置本节课的课后作业,旨在巩固学生对抽屉原理的理解和应用。

抽屉原理教学设计 《抽屉原理》教学设计(5篇)

抽屉原理教学设计 《抽屉原理》教学设计(5篇)

抽屉原理教学设计《抽屉原理》教学设计(5篇)作为一名为他人授业解惑的教育工作者,常常需要准备教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么大家知道规范的教学设计是怎么写的吗?下面是勤劳的小编燕子给大伙儿整编的《抽屉原理》教学设计【较新5篇】,仅供参考。

六年级数学《抽屉原理》公开课教学设计篇一教学目标:1、初步了解“抽屉原理”。

2、引导学生用操作枚举或假设的方法探究“抽屉原理”的一般规律。

3、会用抽屉原理解决简单的实际问题。

4、经历从具体的抽象的探究过程,初步了解抽屉原理,提高学生又根据有条理的进行思考和推理的能力,体会比较的'学习方法。

教学重点:抽屉原理的理解和简单应用。

教学难点:找出实际问题与抽屉原理的内在联系。

教学过程:一、开展小游戏,引入新课。

师:在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人须都坐下,好吗?(好)。

这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两位同学”我说得对吗?生:对!师:想知道老师为什么会做出如此准确的判断吗?其实这里面蕴含着一个有趣的数学原理——抽屉原理。

二、实验探索一步:研究4枝铅笔放进3个文具盒,有哪些不同的放法?你们又能从这些方法中发现什么有趣的现象?1、(出示)师:把4枝笔放进3个文具盒,有哪些不同的放法?(请一生榜样)你们又能从这些放法中发现什么有趣的现象?2、师:接下来,就请同学们以小组为单位进行实验操作,并把放法和发现填在记录卡上。

3、小组汇报交流。

(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)生:不管怎么放,总有1个文具盒里至少有2枝铅笔。

师:“总有”是什么意思?生:一定有。

《抽屉原理》教学设计

《抽屉原理》教学设计

《抽屉原理》教学设计教学目标:1.学生能够理解和应用抽屉原理的概念和公式。

2.学生能够解决与抽屉原理相关的实际问题。

教学重点:1.抽屉原理的概念和公式。

2.应用抽屉原理解决问题的方法和步骤。

教学难点:应用抽屉原理解决实际问题。

教学准备:黑板、彩色粉笔、PPT、计算器等辅助工具。

教学过程:一、导入(5分钟)1.引入课题,提出抽屉原理的概念。

2.通过生活中的例子解释抽屉原理。

二、讲授(10分钟)1.介绍抽屉原理的定义和公式。

2.解释抽屉原理的基本原理和应用。

3.通过数学示例说明抽屉原理的应用。

三、练习(15分钟)1.展示一些实际问题,要求学生运用抽屉原理解答。

2.辅导学生解题过程,引导学生理解解题思路。

四、巩固(15分钟)1.小组合作讨论解决抽屉原理问题。

2.通过小组展示和点评,加深学生对抽屉原理的理解。

五、拓展(20分钟)1.展示一些抽屉原理相关的数学难题,引导学生思考解决方法。

2.让学生自己设计一道关于抽屉原理的问题,交换并解答。

六、总结(10分钟)1.总结抽屉原理的概念、公式和应用。

2.提醒学生在解决实际问题时运用抽屉原理的思维方式。

七、作业布置(5分钟)布置相关的练习题,巩固学生对抽屉原理的掌握。

教学反思:1.教学过程中,通过生活中的例子引入,能够促使学生更好地理解抽屉原理。

2.设计了多种练习形式,增加了学生的动手实践和思考能力。

3.拓展环节可以激发学生的兴趣,培养他们独立思考和解决问题的能力。

4.在总结环节中,重点强调了运用抽屉原理解决实际问题的方法和步骤。

5.通过布置作业,巩固学生对抽屉原理的理解和应用能力。

数学广角《抽屉原理》教案

数学广角《抽屉原理》教案

数学广角《抽屉原理》教案第一章:引言1.1 教学目标让学生了解抽屉原理的基本概念和实际应用。

培养学生对数学问题的探究和思考能力。

1.2 教学内容抽屉原理的定义和基本思想。

抽屉原理在实际生活中的应用举例。

1.3 教学方法通过生活中的实例引入抽屉原理的概念。

引导学生通过小组讨论和思考,理解抽屉原理的基本思想。

1.4 教学评估观察学生在小组讨论中的参与程度和理解程度。

学生能够正确解释和应用抽屉原理解决问题。

第二章:抽屉原理的基本概念2.1 教学目标让学生理解抽屉原理的基本概念和数学表达式。

培养学生对数学概念的理解和记忆能力。

2.2 教学内容抽屉原理的数学表达式和证明过程。

抽屉原理在不同情况下的应用举例。

2.3 教学方法通过数学证明和例题来加深学生对抽屉原理的理解。

引导学生通过自主学习和合作交流,掌握抽屉原理的应用。

2.4 教学评估检查学生对抽屉原理数学表达式的记忆和理解。

学生能够运用抽屉原理解决简单的数学问题。

第三章:抽屉原理的实际应用3.1 教学目标让学生了解抽屉原理在实际生活中的应用。

培养学生将数学知识应用到实际问题中的能力。

3.2 教学内容抽屉原理在排序、分配和优化问题中的应用举例。

抽屉原理在其他学科和领域中的应用。

3.3 教学方法通过实际例子和问题解决引导学生了解抽屉原理的应用。

引导学生通过小组讨论和思考,探索抽屉原理在其他领域的应用。

3.4 教学评估观察学生在小组讨论中的参与程度和应用能力。

学生能够运用抽屉原理解决实际问题。

第四章:抽屉原理的综合应用4.1 教学目标让学生综合运用抽屉原理解决复杂的数学问题。

培养学生解决实际问题的能力和创新思维。

4.2 教学内容抽屉原理在复杂问题中的应用举例。

抽屉原理与其他数学知识的综合应用。

4.3 教学方法通过复杂问题和案例引导学生综合运用抽屉原理和其他知识。

引导学生通过自主学习和合作交流,探索抽屉原理的综合应用。

4.4 教学评估观察学生在解决问题中的参与程度和创新能力。

第五单元数学广角——《抽屉的原理》教案

第五单元数学广角——《抽屉的原理》教案
五、教学反思
在本次教学过程中,我发现学生们对于抽屉原理的基本概念掌握得还算不错,能够在简单的例子中理解并应用这一原理。然而,我也注意到,在将抽屉原理应用到更复杂的实际问题中时,部分学生仍然存在一定的困难。这让我意识到,在今后的教学中,我们需要加强以下几个方面:
首先,要注重培养学生的逻辑思维能力。通过设计更多具有挑战性的问题,让学生在思考和解决问题的过程中,逐步提高逻辑推理能力。此外,可以鼓励学生们多进行小组讨论,互相启发,共同进步。
3.重点难点解析:在讲授过程中,我会特别强调至少数和最多数的计算方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与抽屉原理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,让学生们亲自分配物品,体验抽屉原理的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了抽屉原理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对抽屉原理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,要注重教学方法的多样性。在讲授过程中,我采用了理论介绍、案例分析、实验操作等多种教学方法,旨在激发学生的学习兴趣。但从教学效果来看,还可以尝试更多有趣的教学手段,如游戏、竞赛等,以提高学生的学习积极性。
最后,及时进行教学反思。本次教学结束后,我会认真总结经验教训,针对存在的问题调整教学策略,力求在今后的教学中取得更好的效果。
(3)让学生掌握抽屉原理的表述方法,能清晰地阐述问题及解决过程。

抽屉原理教学设计教案参考

抽屉原理教学设计教案参考

抽屉原理教学设计教案参考第一章:引言1.1 课程背景在本节课中,我们将学习一种重要的数学原理——抽屉原理。

抽屉原理在实际生活中有着广泛的应用,通过学习本节课,学生将能够理解并运用抽屉原理解决实际问题。

1.2 教学目标(1)了解抽屉原理的基本概念及其数学表达式。

(2)学会用抽屉原理分析问题、解决问题。

(3)培养学生的逻辑思维能力和解决实际问题的能力。

第二章:抽屉原理的基本概念2.1 抽屉原理的定义抽屉原理又称鸽巢原理,是指如果有n个抽屉和n+1个物品,至少有一个抽屉里至少有两个物品。

2.2 抽屉原理的数学表达式设n个抽屉分别为A1,A2,A3,……,An,m个物品分别为B1,B2,B3,……,Bm,如果每个物品都要放入这n个抽屉中,至少有一个抽屉里至少有两个物品,可以用数学表达式表示为:m ≥n + 1第三章:抽屉原理的应用3.1 整数拆分问题问题:将一个正整数n拆分成若干个正整数之和,这些正整数不重复,且拆分的方法最多有几种?分析:根据抽屉原理,我们可以把这个问题转化为求解n个正整数之和的最大可能值。

假设这n个正整数分别为a1,a2,a3,……,an,根据抽屉原理,我们有:n ≥a1 + a2 + a3 + …+ an我们需要找到一种拆分方式,使得这n个正整数之和最大,从而得到拆分的方法数。

3.2 分配问题问题:有n个人分配m个物品,每个人至少得到一件物品,分配的方法最多有几种?分析:同样地,我们可以利用抽屉原理解决这个问题。

设这n个人分别为A1,A2,A3,……,An,m个物品分别为B1,B2,B3,……,Bm,根据抽屉原理,我们有:m ≥n这意味着至少有一个物品要被分配给两个人,从而得到分配的方法数。

第四章:案例分析4.1 案例一:学校运动会报名问题:某学校举行运动会,共有n个班级,m个项目,每个班级至少有一个项目报名,报名的方法最多有几种?分析:根据抽屉原理,我们可以得到:m ≥n报名的方法最多有m种。

抽屉原理优秀教案

抽屉原理优秀教案

《数学广角——抽屉原理》六年级下册# # 镇中学# # #2015年4月17日《数学广角——抽屉原理》【教学内容】:我讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材68页的例1。

【教学目标】:知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律,渗透“建模”思想。

过程与方法:经历从具体到抽象的探究过程,提高学生类比推理能力,形成比较抽象的数学思维。

情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

【教学重点】:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

【教学难点】:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教法和学法】:以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。

【教学准备】:多媒体课件、扑克牌、一定数量的笔、笔筒、练习纸。

【教学过程】:一、游戏激趣,初步体验师:同学们,你们玩过扑克牌吗?生齐:玩过。

师:好,下面我们用扑克牌来玩个游戏。

大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗?生齐:对。

师:如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“这5张扑克牌至少有2张是同一种花色的,你们相信吗?部分生说:信。

部分生说:不信。

师:那我们就来验证一下。

师先请一位同学洗牌(把牌混合均匀),然后请5名同学各抽一张,验证至少有两张牌是同一种花色的。

师:如果再请五位同学来抽,我还敢这样肯定地说:抽取的这5张牌中至少有两张是同一花色的,你们相信吗?生齐:相信。

师再找5位同学各抽一张,进一步验证至少有两张牌是同一种花色的。

师:其实这里面蕴藏着一个非常有趣的数学原理,大家想不想研究啊?生齐:想。

进入主题。

【设计意图:在课前进行的游戏激趣,一是使教师和学生进行自然的沟通交流;二是激发学生的兴趣,引起探究的愿望;三是为今天的探究埋下伏笔。

抽屉原理优秀教案

抽屉原理优秀教案

抽屉原理优秀教案抽屉原理是数学中的一个重要概念,许多初中或高中的数学课程都会涉及到这个内容。

下面是一份关于抽屉原理的优秀教案,供参考。

主题:抽屉原理目标:理解抽屉原理的基本概念和应用,培养学生的逻辑思维和数学推理能力。

一、引入(10分钟)1.引导学生回忆并讨论常见的日常行为中的例子,例如房间里有几架椅子,是否可能有两名以上的人坐在同一把椅子上等。

2.引入抽屉原理的概念:当N个物体放入M个容器中,若N>M,则至少有一个容器中会有两个或两个以上的物体。

二、抽屉原理的理论讲解(20分钟)1.定义抽屉原理,并分析它的逻辑思路和推理过程。

2.通过图表和实例,结合具体的数学问题,讲解抽屉原理的应用。

三、抽屉原理的具体应用(40分钟)1.数学问题探索:以给定条件,探索如何应用抽屉原理求解问题。

-例如:10个苹果放入9个抽屉,至少有一个抽屉中会有两个或两个以上的苹果。

2.实际应用案例:以生活中的实际问题为例,让学生体会并应用抽屉原理。

-例如:一个班级有30个学生,每个学生至少会选择一个兴趣课程;学校开设了10门兴趣课程,那么至少有一门兴趣课程的选课人数多于3人。

3.与组合数学的关联:介绍抽屉原理与组合数学的关系,加深学生对抽屉原理的理解。

-例如:讨论抽屉原理在排列组合问题中的应用。

四、巩固与拓展(20分钟)1.练习题训练:提供一些抽屉原理的练习题,让学生通过解题巩固理解。

2.拓展应用:引导学生思考抽屉原理的更多应用领域,例如密码学、图论等。

五、总结与反思(10分钟)1.总结抽屉原理的概念、应用和推理过程。

2.引导学生回顾学习过程,自我评价学习情况,并提出问题和建议。

六、课后拓展1.作业:布置一些抽屉原理的练习题,以巩固学生的知识。

2.拓展资料:提供相关的书籍或网站链接,供学生进一步拓展学习。

通过以上的教案设计,学生可以在理解抽屉原理的基础上,学会抽象思维和逻辑推理,提高他们的数学解决问题的能力。

同时,激发学生对数学的兴趣和对数学在实际生活中的应用的好奇心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

讲课教案《数学广角——抽屉原理》六年级下册# # 镇中学# # #2015年4月17日《数学广角——抽屉原理》【教学内容】:我讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材68页的例1。

【教学目标】:知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律,渗透“建模”思想。

过程与方法:经历从具体到抽象的探究过程,提高学生类比推理能力,形成比较抽象的数学思维。

情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

【教学重点】:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

【教学难点】:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教法和学法】:以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。

【教学准备】:多媒体课件、扑克牌、一定数量的笔、笔筒、练习纸。

【教学过程】:一、游戏激趣,初步体验师:同学们,你们玩过扑克牌吗?生齐:玩过。

师:好,下面我们用扑克牌来玩个游戏。

大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗?生齐:对。

师:如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“这5张扑克牌至少有2张是同一种花色的,你们相信吗?部分生说:信。

部分生说:不信。

师:那我们就来验证一下。

师先请一位同学洗牌(把牌混合均匀),然后请5名同学各抽一张,验证至少有两张牌是同一种花色的。

师:如果再请五位同学来抽,我还敢这样肯定地说:抽取的这5张牌中至少有两张是同一花色的,你们相信吗?生齐:相信。

师再找5位同学各抽一张,进一步验证至少有两张牌是同一种花色的。

师:其实这里面蕴藏着一个非常有趣的数学原理,大家想不想研究啊?生齐:想。

进入主题。

【设计意图:在课前进行的游戏激趣,一是使教师和学生进行自然的沟通交流;二是激发学生的兴趣,引起探究的愿望;三是为今天的探究埋下伏笔。

】二、操作探究,发现规律1、教师演示实验,学生初步感知课件呈现:将三支铅笔放入两个笔筒中,有几种放法呢?师演示每一种可能的情况,演示过程中给大家逐一的解释操作的步骤,并讨论。

去掉重复的情况以后,师生共同总结出两种放法:数对表示第一种情况(3,0)第二种情况(0,3)进一步用课件演示放法,提示大家观察,共同总结出:其中一个笔筒至少有两支铅笔。

【设计意图:一是教师的示范作用性;二是刻意的渗透平均分为学生下一步自己操作奠定基础。

】2、小组合作,自主探究课件呈现:把四根铅笔放入三个笔筒中有几种放法?你能得到什么结论呢?师:下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快?(1)、学生动手操作,讨论交流,老师巡视,指导;(2)、全班交流。

师:哪个小组愿意汇报一下你们的研究成果?找一名同学展示,一名同学板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。

师:老师也是这样摆的,我们一起看一下(课件演示)数对表示第一种情况(4,0,0)第二种情况(3,1,0)第三种情况(2,2,0)第四种情况(1,1,2)观察这几种放法,你能得到什么结论?学生思考并交流后得出结论。

课件出示:不管怎么放,总有一个文具盒中至少有2枝铅笔。

方法一:列举法师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?【设计意图:通过让学生自己动手操作,用列举法找出四枝铅笔放入三个盒子的所有方法,观察总结概括出四种方法的共同点,即总有一个盒子里至少有2枝铅笔,让学生充分理解“总有”、“至少”的含义。

】3、逐步深入,探究根源探究:把5枝笔放在4个笔筒里,还是不管怎么放,总有一个笔筒里至少放进了2枝笔吗?生思考片刻后答:是。

师:为什么会有这样的结果呢?除了把所有可能的情况都列举出来,还有没有别的方法也可以证明这句话是正确的?生:我是这样想的,先假设每一个笔筒放1支,这样还剩1支。

这时不论放到哪个笔筒,那个笔筒中就是2支了。

所以我认为是对的。

师:你为什么要先在每一个笔筒中放1支呢?生:因为总共只有5支,平均分,每个笔筒这时都能分到1支。

师:你为什么一开始就要去平均分呢?(出示:平均分)生:平均分,就可以使每一个笔筒尽可能的少一点,也就有可能找到和题目不一样的情况。

师:我明白了。

但是这样只能证明总有一个笔筒中肯定会有2支笔,怎么能证明至少有2支呢?生:平均分已经是每个笔筒中的比尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

师:看来解决这个问题时,用平均分的方法比较简便。

方法二:假设法师:到现在为止,我们可以得出什么结论?生(齐):把5枝笔放在4个笔筒里,还是不管怎么放,总有一个笔筒里至少放进了2枝笔。

【设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在列举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法,渗透平均分的思想。

】三、提升思维,构建模型1、加深感悟师:方才我们通过不同的方法验证了这句话的正确性。

现在老师把题目改一改,你们看还对不对,为什么?师(口述):6枝笔放在5个笔筒里,还是不管怎么放,总有一个笔筒里至少放进了2枝笔?学生口答。

教师让学生继续思考:10支铅笔放到9个笔筒呢?50支放进49个笔筒呢?(教师引导学生说理,学生逐步都采用假设的思路熟练地来表达。

)师:我们为什么都采用假设的方法来分析,而不是画图或举例呢?(引导学生对两种方法进行比较,体会列举方法的优越性和局限性,感悟假设方法更具一般性的特点。

)师:我把题目再给大家改一下,看还有这样的结论吗?课件出示:10枝笔放在6个笔筒里,还是不管怎么放,总有一个笔筒里至少放进了2枝笔。

生思考后回答:是。

【设计意图:让学生在这个连续的过程中初步感知方法的优劣,发展了学生的类推能力,形成比较抽象的数学思维,并通过更多的例子总结发现规律的存在性。

】2、建立模型师:通过刚才的分析,你有什么发现?生:只要铅笔的数量比笔筒的数量多1倍多,那么总有一个笔筒至少要放进2支笔。

师:对的。

铅笔放进笔筒我们会解释了,那么下面这两句话你能得出什么结论呢?课件呈现:5个苹果放进4个抽屉里;7只鸽子飞回5个鸽舍里。

学生口答。

师:以上这些问题有什么相同之处呢?生:其实都是一样的,鸽巢、抽屉就相当于笔筒,鸽子、苹果就相当于铅笔。

师:像这样的数学问题,我们就叫做“鸽巢问题”或“抽屉问题”,他们里面蕴含的这种数学原理,我们就叫做“鸽巢原理”或“抽屉原理”。

到此为止,正式揭题。

【设计意图:通过对不同具体情况的判断,初步建立“物体”、“抽屉”的模型,发现简单的抽屉原理。

研究的问题来源于生活,还要还原到生活中去,所以请学生对课前的游戏的解释,也是一个建模的过程,让学生体会“抽屉”不一定是看得见,摸得着。

】3、揭开课题同学们真了不起!不知不觉中你们已经发现了一个很伟大的数学原理,也就是我们今天研究的抽屉原理(板书课题)一起来看大屏幕,(出示抽屉原理资料介绍)找生读。

抽屉原理一:只要物体数量是抽屉数量的1倍多,总有一个抽屉里至少放进2个的物体。

简介:“抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄利克雷原理”。

抽屉原理最经典的两个案例,一个是把10个苹果放进9个抽屉中,总有一个至少放2个苹果,所以叫“抽屉原理”;另一个是6只鸽子飞进5个鸽巢,总有一个鸽巢至少飞进2只鸽子,所以也称为“鸽巢原理”。

【设计意图:感受数学的魅力,让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。

】四、巩固应用,解决问题。

师:利用这个狄里克雷原理我们看都能解决什么问题?1、引言再现一副扑克牌(除去大小王)52张中有四种花色,从中随意抽5张牌,无论怎么抽,总有一种花色至少有2张牌.你能说明其中的道理吗?解析:我们把4种花色当作4个抽屉,把5张扑克牌放进4个抽屉中,必有一个抽屉至少有2张扑克牌,即至少有2张是同花色的。

【设计意图:让学生感受如何从具体问题转化数学模型,感受数学来源于生活,生活中渗透着数学的道理。

】2、小试身手(1)、如果把7个苹果放入6个抽屉中,至少有几个放到同一个抽屉里呢?(2)、如果把100个苹果放入99个抽屉中,至少有几个放到同一个抽屉里呢?(3)、如果把6个苹果放入4个抽屉中,至少有几个苹果被放到同一个抽屉里呢?(4)、如果把8个苹果放入5个抽屉中,至少有几个苹果被放到同一个抽屉里呢?【设计意图:从比较简单的有具体模型的例子出发,巩固本节课所学内容,感知抽屉原理的应用。

】3、拓展提高(1)、3个小朋友同行,其中必有2个小朋友性别相同,想一想,为什么?问:谁是物体?谁是抽屉?引导:隐藏条件2种性别当抽屉,3个小朋友当物体。

解析:我们把2种性别当作2个抽屉,把3个小朋友当苹果,放进4个抽屉中,必有一个抽屉至少有2个苹果,即至少有2个小朋友性别相同。

(2)、从电影院中任意找来16个观众,至少有两个人属相相同。

小组内相互说一说,找一生回答。

解析:我们把12种属相当作12个抽屉,把16个观众当苹果,放进12个抽屉中,必有一个抽屉至少有2个苹果,即至少有2个观众属相相同。

4、小结:看来,我们利用抽屉原理解决问题时,我们一定要是找准谁是抽屉,谁是物体。

(课件出示)【设计意图:对规律的认识是循序渐进的,用抽屉原理解决具体问题进行建模,让学生体会抽屉的形式是多种多样的。

】四、课堂总结:今天你学到了什么新知识?通过这节课的学习,大家对数学学习有什么改变或者感想和启发吗?【设计意图:对本节课所学内容进行总结,让学生把思想的收获转化成语言,更进一步转化为行动】五、布置作业:必做题:1.课本68页:做一做2.课本71页:第1题、第4题【设计意图:对本节课所学内容进行巩固提高】范文大全思考题:8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍。

为什么?【设计意图:给学生留悬念,引导学生对下一节的内容进行预习】页脚内容10。

相关文档
最新文档