第一章中点模型的构造

合集下载

全等三角形--中点模型的构

全等三角形--中点模型的构
B A F E
D
C
3、如图.∠C=90°,BE⊥AB且BE=AB,BD⊥BC且BD=BC, CB的延长线交DE于F (1)求证:点F是ED的中点; (2)求证: S△ ABC 2S△BEF
感谢您的聆听
请多指教
(二)自主探究,发现模型 2、如图2、在△ABC中,AD是△ABC的中线, AB=12、AC=8,求AD的取值范围。
(三)合作交流,展示模型
探究活动二 3、如图2,AD为△ABC的中线,BE⊥AD于E, CF⊥AD于F。求证:BE=CF
4、如图4、D为CE的中点,F为AD上一点, 且EF=AC,求证∠DFE=∠DAC.
(三)合作交流,展示模型
(四)归纳提升 总结模型
本节课中你掌握了什么?
倍长构全等
A A
2Leabharlann 2B1D
C B
D
C
1
E
E
倍长构全等
A
B
D
C
向中点所在直线做垂线构全等模型
.
(五)布置练习 运用模型
1、如图,在△ABC中,BD=DC,BF交AD、AC与E、F,若 AF=EF,求证:BE=AC 2、如图:AD为△ABC的中线,求证:AB+AC>2AD(两 种模型分别解决)
《巧借中点构全等》
---全等三角形专题复习课
天问国际学校 李皎
A
A C B C B D
O
D
(一)情景引入 初见模型
(一)情景引入 初见模型
请你添加一个或两个条件,让两个超级玛丽到旗杆底部距离 相等?
C
A N
B
(二)自主探究,发现模型
探究活动一 1、如图1,AD为△ABC的中线,延长AD至E,使 DE=AD,连CE. 求证AB=CE。

第1讲 中点模型(经典难题)

第1讲  中点模型(经典难题)

基础知识回顾
1. 倍长中线 已知任意三角形一边上的中点,可以连出过中点的线段并加倍延长, 从而达到构造全等三角形的目的,如图 B 倍长中线法构造全等三角形,可以得到一组平行且相等的边, 从而可知,倍长中线的本质是“构造平行四边形”
D A
D A
M
C
B
M E
C
几何辅助线秘诀拔高班·第1讲·学生版
E
F
B
【例2】 如图,点 D 、 E 三等分 △ ABC 的 BC 边.求证: AB AC AD AE .
A
D
C
B
D
E
C
2
几何辅助线秘诀拔高班·第1讲·学生版
【例3】 分别以 △ ABC 的边 AB ,AC 为边,向三角形的外侧作正方形 ABDE 和正方形 ACFG , M 为 BC 中点,求证: EG 2 AM .
A
A M C B
A 30
B
D
C
B
A
C
D
E
B 图
C
A O M N
B
版块一:倍长中线
典题精练
【例1】 ⑴ 如下图,已知在 △ ABC 中, AD 是 BC 边上的中线, E 是 AD 上一点,且 BE AC ,延长 BE 交 AC 于 F .求证: AF EF . ⑵ 已知 △ ABC 中, AB 12 , AC 30 ,求 BC 边上的中线 AD 的范围. A
A G F
D B
H E C
【例8】 如图 1 所示, P 是 △ ABC 内的一点, PAC PBC ,过点 P 分别作 PM AC 于点 M , PL BC 于点 L , D 为线段 AB 的中点,求证: DM DL .

中考数学中点四大模型专题知识解读

中考数学中点四大模型专题知识解读

中点四大模型专题知识解读【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行等的应用。

【方法技巧】模型1 :倍长中线法如图,在△ABC中,AD是BC边上的中线.当题中出现中线时,我们经常根据需要将AD延长,使延长部分和中线相等,这种方法叫做“倍长中线”.如下图:此时,易证△ACD≌EDB,进而得到AC=BE且AC//BE.模型2:平行线夹中点如图,AB//CD,点E是BC的中点.可延长DE交AB于点F.模型3:中位线如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:由中位线的性质可得,DE//BC且DE=1/2BC.模型4:连接直角顶点,构造斜中定理【典例分析】【模型1 倍长中线法】【典例1】【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC =BF.【变式1-1】(1)在△ABC中,AB=5,AC=3,求BC边上的中线AD的取值范围.(2)受到(1)启发,请你证明下面的问题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF.【变式1-2】如图,在△ABC中,已知:点D是BC中点,连接AD并延长到点E,连接BE.(1)请你添加一个条件使△ACD≌△EBD,并给出证明.(2)若AB=5,AC=3,求BC边上的中线AD的取值范围.【变式1-3】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.(1)延长DE到F,使得EF=DE;(2)作CG⊥DE于G,BF⊥DE于F交DE的延长线于F;(3)过点C作CF∥AB交DE的延长线于F.【模型2 平行线夹中点】【典例2】如图,已知AB=12,AB⊥BC,垂足为点B,AB⊥AD,垂足为点A,AD=5,BC =10,点E是CD的中点,求AE的长.【变式2-1】如图,AB∥CD,∠BCD=90°,AB=1,BC=4,CD=3,取AD的中点E,连结BE,则BE=.【变式2-2】如图,公园有一条“Z”字形道路AB﹣BC﹣CD,其中AB∥CD,在E、M、F 处各有一个小石凳,且BE=CF,M为BC的中点,连接EM、MF,请问石凳M到石凳E、F的距离ME、MF是否相等?说出你推断的理由.【变式2-3】如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,①请你用直尺(无刻度)作出一条线段与BE相等;并证明之;②求BE的长.【模型3 中位线】【典例3】如图,△ABC中,AD平分∠BAC,E是BC中点,AD⊥BD,AC=7,AB=4,则DE的值为()A.1B.2C.D.【变式3-1】如图,在△ABC中,D,E,F分别是边AB,BC,CA的中点,若△DEF的周长为10,则△ABC的周长为.【变式3-2】如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使,连接CD和EF.(1)求证:CD=EF;(2)四边形DEFC的面积为.【变式3-3】如图,在平行四边形ABCD中,点E在BC的延长线上,CE=DE=2BC.CD 的中点为F,DE的中点为G,连接AF,FG.(1)求证:四边形AFGD为菱形;(2)连接AG,若BC=2,,求AG的长.【模型4 连接直角顶点,构造斜中定】【典例4】用三种方法证明:直角三角形斜边上的中线等于斜边的一半.已知:如图,∠BCA =90°,AD=DB.求证:CD=AB.【变式4-1】直角三角形斜边上的中线长为10,则该斜边长为()A.5B.10C.15D.20【变式4-2】如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE 交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7B.C.8D.9【变式4-3】用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.证法1:如图2,在∠ACB的内部作∠BCE=∠B,CE与AB相交于点E.∵∠BCE=∠B,∴.∵∠BCE+∠ACE=90°,∴∠B+∠ACE=90°.又∵,∴∠ACE=∠A.∴EA=EC.∴EA=EB=EC,即CE是斜边AB上的中线,且CE=AB.又∵CD是斜边AB上的中线,即CD与CE重合,∴CD=AB.请把证法1补充完整,并用不同的方法完成证法2.专题02 中点四大模型在三角形中应用(知识解读)【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用。

圆中的重要模型之圆弧的中点模型(学生版)-初中数学

圆中的重要模型之圆弧的中点模型(学生版)-初中数学

圆中的重要模型之圆弧的中点模型当圆中出现弧的中点时,我们要注意考虑几个方面:三角形的中位线,垂径定理,圆周角定理,弦,弧,圆心角,圆周角的关系等等。

其关系复杂,在理解其做辅助线的方法和分析技巧的基础之上,还要注意各知识点之间的联系,才是形成稳固的解题思路以及推导模式的最佳选择,以便于最后才能突破复杂的综合题型以及压轴题型。

当圆中出现弦的中点或弧的中点时,我们联想到的是利用垂径定理以及圆周角定理进行思路的突破,这样的解决方式比较直接,而且能够提高大家解题的效率。

目录例题讲解模型模型1.与垂径定理相关的中点模型模型2.与圆周角定理相关的中点模型(母子模型)模型3.垂径定理与圆周角定理结合的中点模型模型4.与托勒密定理相关的中点模型习题练模型例题讲解模型模型1.与垂径定理相关的中点模型图1图2图31)条件:如图1,已知点P 是AB中点,连接OP ,结论:OP ⊥AB ;2)条件:如图2,已知点P 是AB 中点,过点P 作MN ∥AB ,结论:MN 是圆O 的切线;3)条件:如图3,点P 是AB中点,连接BP 、AP ,若∠BPN =∠A ,结论:MN 是圆O 切线。

证明:1)根据垂径定理易得:OP ⊥AB ;2)由1)知:OP ⊥AB ,∵MN ∥AB ,∴OP ⊥MN ,∴MN 是圆O 的切线。

3)由1)知:OP ⊥AB ,∴∠BPO +∠ABP =90°,∵P 是AB 中点,∴AP =BP,∴∠ABP =∠BAP ,∵∠BPN =∠A ,∴∠BPN =∠ABP ,∴∠BPO +∠BPN =90°,∴MN 是圆O 的切线。

1.(2023·陕西西安·校考模拟预测)如图,△BCD 内接于⊙O ,点B 是CD的中点,CD 是⊙O 的直径.若∠ABC =30°,AC =4,则BC 的长为()A.5B.42C.43D.522.(2023·湖北十堰·九年级校考期中)如图,AB 是⊙O 的直径,C 是⊙O 上一点,D 是AC 的中点,BD交AC 于点E ,过点D 作DF ∥AC 交BA 的延长线于点F .(1)求证:DF 是⊙O 的切线;(2)若AF =2,FD =4,求△DFB 的面积.3.(2023春·福建福州·九年级统考期中)如图,点C 在以AB 为直径的半圆O 上(点C 不与A ,B 两点重合),点D 是AC的中点、DE ⊥AB 于点E ,连接AC 交DE 于点F ,连接OF ,过点D 作半圆O 的切线DP 交BA 的延长线于点P .(1)求证:AC ∥DP ;(2)求证:AC =2DE ;(3)连接CE ,CP ,若AE ∶EO =1∶2,求CE CP 的值.4.(2023·广东佛山·校联考一模)如图,在⊙O 中,AB 为⊙O 的直径,点E 在⊙O 上,D 为BE的中点,连接AE ,BD 并延长交于点C .连接OD ,在OD 的延长线上取一点F ,连接BF ,使∠CBF =12∠BAC .(1)求证:BF 为⊙O 的切线;(2)若AE =4,OF =92,求⊙O 的直径.模型2.与圆周角定理相关的中点模型(母子模型)1)条件:如图1,已知点P 是AB中点,点C 是圆上一点,结论:∠PCA =∠PCB .2)条件:如图2,已知点P 是半圆中点,结论:∠PCA =∠PCB =45°.3)条件:如图3,已知点P 是AB 中点,结论:∠PBA =∠PCA =∠PCB =∠P AB ;△PDA ∽△P AC ;△PDB ∽△PBC ;△CAP ∽△CDB ;△CAD ∽△CPB 。

中点模型

中点模型
∴△DAH是等边三角形,又∵点G是DH的中点 ∴AG⊥DG.∠DAG=1/2∠DAH=30° ∴AG=√3DG
15
(3)AG⊥DG,DG=AG×tan(α/2) 证明:延长DG与BC交于H,连接AH、AD,
16
∵四边形CDEF是菱形, ∴DE=DC,DE∥CF, ∴∠GBH=∠GED,∠GHB=∠GDE, ∵G是BE的中点,∴BG=EG, ∴△BGH≌△EGD(AAS), ∴BH=ED,HG=DG, ∴BH=DC, ∵AB=AC,∠BAC=∠DCF=α, ∴∠ABC=90°﹣α/2,∠ACD=90°﹣α/2, ∴∠ABC=∠ACD, ∴△ABH≌△ACD(SAS), ∴∠BAH=∠CAD,AH=AD, ∴∠BAC=∠HAD=α; ∴AG⊥HD,∠HAG=∠DAG=α/2, ∴tan∠DAG=tan(α/2), ∴DG=AGtan(α/2).
3
模型三 如图,在△ABC中,点D是AB边的中点.可作另一边AC 的中点,构造三角形中位线.如下图所示:由中位线的性 质可得,DE//BC且DE=1/2BC.
4
模型四:连接直角顶点,构造斜中定理
5
模型运用
6
例1、如图,在平行四边形ABCD中,AD=2AB,点E 是BC边的中点.连接AE,DE.求∠AED的度数.
19
小试身手 如图1,在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的 中点G,连接EG、CG.易证:EG=CG且EG⊥CG. (1)将△BEF绕点B逆时针旋转90°,如图2所示,则线段EG和CG有怎样的 数量和位置关系?请直接写出你的猜想. (2)将△BEF绕点B逆时针旋转180°,如图3所示,则线段EG和CG又有怎样 的数量和位置关系?请写出你的猜想,并加以证明. (3)将△BEF绕点B旋转一个任意角度α,如图4所示,则线段EG和CG有怎样 的数量和位置关系?请直接写出结论.

2024中考数学核心几何模型重点突破专题01 线段的中点模型(含解析)

2024中考数学核心几何模型重点突破专题01 线段的中点模型(含解析)

2024中考数学核心几何模型重点突破专题01线段的中点模型模型分析【理论基础】如图,已知点M 是线段AB 的中点⇒AB BM AM 21==【模型变式1】双中点求和型如图已知点M 是线段AB 上任意一点,点C 是AM 的中点,点D 是BM 的中点⇒AB CD 21=【证明】点C 是AM 的中点,点D 是BM 的中点MB MD AM CM 21,21==∴MD CM CD +=AB MB AM CD 212121=+=∴AB CD 21=∴【模型变式2】双中点求差型如图点M 是线段AB 延长线上任意一点,点C 是线段AM 的中点,点D 是线段BM 的中点⇒AB CD 21=【证明】点C 是线段AM 的中点,点D 是线段BM 的中点MB MD AM CM 21,21==∴MDCM CD -=)(212121MB AM MB AM CD -=-=∴AB CD 21=∴【模型总结】两中点之间的线段,等于原线段的一半。

典例分析【例1】已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是()A .7cm B .3cm C .7cm 或3cm D .5cm【例2】如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,8AC =,5NB =,则线段MN =__________.【例3】如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?模型演练一、单选题1.(2021·内蒙古·中考真题)已知线段4AB =,在直线AB 上作线段BC ,使得2BC =.若D 是线段AC 的中点,则线段AD 的长为()A .1B .3C .1或3D .2或32.点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是()A .AC BC =B .AC BC AB +=C .2AB AC =D .12BC AB =3.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为()A .6cmB .7cmC .8cmD .9cm4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为()A .10B .12C .16D .18二、填空题5.如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =8cm ,则CD =___cm .6.在直线上取A ,B ,C 三点,使得AB =9cm ,BC =4cm ,如果O 是线段AC 的中点,则线段OA 的长为_____.7.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 的中点,若MN =7cm ,BC =3cm ,则AD 的长为_____cm .8.如图,C ,D 两点将线段AB 分为三部分,AC ∶CD ∶DB =3∶4∶5,且AC =6.M 是线段AB 的中点,N 是线段DB 的中点.则线段MN 的长为____________.三、解答题9.(2022·安徽·宣城市第六中学一模)如图所示,已知C ,D 是线段AB 上的两个点,点M 、N 分别为AC 、BD 的中点(1)若AB =16cm ,CD =6cm ,求AC +BD 的长和M ,N 的距离;(2)如果AB =m ,CD =n ,用含m ,n 的式子表示MN 的长10.已知线段AB 如图所示,延长AB 至C ,使BC =AB ,反向延长AB 至D ,使AD =BC .点M 是CD 的中点,点N 是AD 的中点.(1)依题意补全图形;(2)若AB 长为10,求线段MN 的长度.11.已知点B 、D 在线段AC 上,(1)如图,若20AC =,8AB =,点D 为线段AC 的中点,求线段BD 的长度;(2)如图,若1134BD AB CD ==,AE BE =,13EC =,求线段AC 的长度.12.如图,点C 为线段AB 上一点,AB =30,且AC -BC =10.(1)求线段AC 、BC 的长.(2)点P 从A 点出发,以1个单位/秒的速度在线段AB 上向B 点运动,设运动时间为t 秒(20t <),点D 为线段PB 的中点,点E 为线段PC 的中点,若CD =25DE ,试求点P 运动时间t 的值.(3)若点D 为直线AB 上的一点,线段AD 的中点为E ,且12AD BD CE -=,求线段AD 的长.13.如图,线段AB =20,BC =15,点M 是AC 的中点.(1)求线段AM 的长度;(2)在CB 上取一点N ,使得CN :NB =2:3.求MN 的长.14.如图,点C 在线段AB 上,8,6AC cm CB cm ==,点,M N 分别是AC BC ,的中点.()1求线段MN 的长;()2若C 为线段AB 上任一点,满足AC CB a +=,其它条件不变,猜想MN 的长度,并说明理由;()3若C 在线段AB 的延长线上,且满足,,AC BC b M N -=分别为AC BC ,的中点,猜想MN 的长度,请画出图形,写出你的结论,并说明理由;()4请用一句简洁的话,描述你发现的结论.参考答案与详细解析典例分析【例1】已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是()A .7cmB .3cmC .7cm 或3cmD .5cm【答案】D【分析】先根据题意画出图形,再利用线段的中点定义求解即可.【解析】解:根据题意画图如下:∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点,∴1115222MN MC CN AC BC AB cm =+=+==;∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点,∴1115222MN MC CN AC BC AB cm =-=-==.故选:D .【例2】如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,8AC =,5NB =,则线段MN =__________.【答案】4【分析】根据中点的性质可得BC 的长,根据线段的和差可得AB 的长,根据中点的性质可得BM 的长,再根据线段的和差可得MN 的长.【解析】由N 是CB 的中点,NB =5,得:BC =2NB =10.由线段的和差,得:AB =AC +BC =8+10=18.∵M 是AB 的中点,∴1118922MB AB ==⨯=,由线段的和差,得:MN =MB -NB =9-5=4,故答案为:4.【例3】如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?【答案】(1)10;(2)12a ;(3)12a ;(4)线段MN 的长度等于线段AB 的一半,与B 点的位置无关.【分析】(1)先求解,AC 再利用中点的含义求解,,MC NC 再利用线段的差可得答案;(2)先利用含a 的代数式,AC 再利用中点的含义,用含a 的代数式,,MC NC 再利用线段的差可得答案;(3)先利用含,a b 的代数式,AC 再利用中点的含义,用含,a b 的代数式,,MC NC 再利用线段的差可得答案;(4)由(1)(2)(3)总结出结论即可.【解析】解:(1)20,8AB BC ==,,M N 分别是,AC BC 的中点,1128,14,4,22AB BC AC MC AC NC BC ∴+======14410.MN MC NC ∴=-=-=(2),8AB a BC ==,,M N 分别是,AC BC 的中点,1118,4,4,222AB BC AC a MC AC a NC BC ∴+==+==+==1144.22MN MC NC a a ∴=-=+-=(3),AB a BC b ==,,M N 分别是,AC BC 的中点,11111,,,22222AB BC AC a b MC AC a b NC BC b ∴+==+==+==1111.2222MN MC NC a b b a ∴=-=+-=(4)由(1)(2)(3)的结果中可得:线段MN 的长度等于线段AB 的一半,与B 点的位置无关.模型演练一、单选题1.(2021·内蒙古·中考真题)已知线段4AB =,在直线AB 上作线段BC ,使得2BC =.若D 是线段AC 的中点,则线段AD 的长为()A .1B .3C .1或3D .2或3【答案】C【分析】先分C 在AB 上和C 在AB 的延长线上两种情况,分别画出图形,然后运用中点的定义和线段的和差进行计算即可.【解析】解:如图:当C 在AB 上时,AC =AB -BC =2,∴AD =12AC =1如图:当C 在AB 的延长线上时,AC =AB +BC =6,∴AD =12AC =3故选C .2.点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是()A .AC BC=B .AC BC AB +=C .2AB AC =D .12BC AB =【答案】B【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A 、C 、D 都可以确定点C 是线段AB 中点.【解析】解:A 、AC =BC ,则点C 是线段AB 中点;B 、AC +BC =AB ,则C 可以是线段AB 上任意一点;C 、AB =2AC ,则点C 是线段AB 中点;D 、BC =12AB ,则点C 是线段AB 中点.故选:B .3.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD的长为()A.6cm B.7cm C.8cm D.9cm 【答案】B【分析】利用线段和的定义和线段中点的意义计算即可.【解析】∵AB=AC+BC,且AB=10,BC=4,∴AC=6,∵D是线段AC的中点,∴AD=DC=12AC=3,∴BD=BC+CD=4+3=7,故选B.4.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=8,CD=4,则AB的长为()A.10B.12C.16D.18【答案】B【分析】由已知条件可知,EC+FD=EF-CD=8-4=4,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【解析】解:由题意得,EC+FD=EF-CD=8-4=4,∵E是AC的中点,F是BD的中点,∴AE=EC,BF=DF∴AE+FB=EC+FD=4,∴AB=AE+FB+EF=4+8=12.故选:B.二、填空题5.如图,点D是线段AB的中点,C是线段AD的中点,若AB=8cm,则CD=___cm.【答案】2【分析】由点D是线段AB的中点,C是线段AD的中点,可得14CD AB,即可求得答案.【解析】解:∵点D是线段AB的中点,∴12AD AB=,∵C是线段AD的中点,∴12CD AD=,∴1182cm44CD AB==⨯=,故答案为:2.6.在直线上取A,B,C三点,使得AB=9cm,BC=4cm,如果O是线段AC的中点,则线段OA的长为_____.【答案】2.5cm或6.5cm【分析】分两种情况:①当点C在线段AB上时,②当点C在线段AB的延长线上时,线求出AC,根据线段中点的定义求出OA.【解析】解:分两种情况:①当点C在线段AB上时,∵AB=9cm,BC=4cm,∴AC=AB-BC=9-4=5cm,∵O是线段AC的中点,∴1 2.52OA AC cm==;②当点C在线段AB的延长线上时,∵AB=9cm,BC=4cm,∴AC=AB+BC=9+4=13cm,∵O是线段AC的中点,∴1 6.52OA AC cm==;故答案为:2.5cm或6.5cm.7.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=7cm,BC=3cm,则AD的长为_____cm.【答案】11【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解析】解:∵MN=MB+BC+CN,MN=7cm,BC=3cm,∴MB+CN=7﹣3=4cm,∵M是AB的中点,N是CD的中点,∴AB=2MB,CD=2CN,∴AD=AB+BC+CD=2(MB+CN)+BC=2×4+3=11cm.故答案为:11.8.如图,C,D两点将线段AB分为三部分,AC∶CD∶DB=3∶4∶5,且AC=6.M是线段AB的中点,N是线段DB的中点.则线段MN的长为____________.【答案】7【分析】先根据已知条件求出CD,DB的长,再根据中点的定义求出BM,BN的长,进而可求出MN的长.【解析】解:∵AC∶CD∶DB=3∶4∶5,且AC=6,∴CD=6÷3×4=8,∴DB=6÷3×5=10,∴AB=6+8+10=24,∵M是线段AB的中点,∴MB=12AB=12×24=12,∵N是线段BD的中点,∴NB=12DB=12×10=5,∵MN=MB-NB,∴MN=12-5=7.故答案为:7.三、解答题9.(2022·安徽·宣城市第六中学一模)如图所示,已知C,D是线段AB上的两个点,点M、N分别为AC、BD的中点(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长【答案】(1)10cm ;11cm ;(2)2m n +.【分析】(1)根据AC +BD =AB -CD 列式进行计算即可求解,根据中点定义求出AM +BN 的长度,再根据MN =AB -(AM +BN )代入数据进行计算即可求解;(2)根据(1)的求解,把AB 、CD 的长度换成m 、n 即可【解析】(1)∵AB =16cm ,CD =6cm ,∴AC +BD =AB -CD =10cm ,∴MN =AB -(AM +BN )=AB -12(AC +BD )=16-5=11(cm );(2)∵AB =m ,CD =n ,∴AC +BD =AB -CD =m -n ,∴MN =AB -(AM +BN )=AB -12(AC +BD )=m -12(m -n )=2m n +.10.已知线段AB 如图所示,延长AB 至C ,使BC =AB ,反向延长AB 至D ,使AD =BC .点M 是CD 的中点,点N 是AD 的中点.(1)依题意补全图形;(2)若AB 长为10,求线段MN 的长度.【答案】(1)见解析(2)线段MN 的长度为10.【分析】(1)根据题意画出图形;(2)由图,根据线段中点的意义,根据线段的和与差进一步解决问题.【解析】(1)解:补全图形如图所示:;(2)解:由题意知可知AD =AB =BC ,且AB =10,∴AD =AB =BC =10,即CD =30,∵点M 是CD 的中点,点N 是AD 的中点,∴DM =12CD =15,DN =12AD =5,∴MN =DM -DN =10,∴线段MN 的长度为10.11.已知点B 、D 在线段AC 上,(1)如图,若20AC =,8AB =,点D 为线段AC 的中点,求线段BD 的长度;(2)如图,若1134BD AB CD ==,AE BE =,13EC =,求线段AC 的长度.【答案】(1)2;(2)16.【分析】(1)由20AC =,点D 为线段AC 的中点,求得AD=DC=10,由8AB =,可求BD=AD-AB=2;(2)由1134BD AB CD ==,推出34AB BD CD BD ==,,由AE BE =,可用BD 表示3=2AE BE BD =,表示EC=132BD =13,求出2BD =,再求AE=3=可求,AC=AE+EC=16.【解析】(1)∵20AC =,点D 为线段AC 的中点,∴AD=DC=11201022AC =⨯=,∵8AB =,∴BD=AD-AB=10-8=2;(2)∵1134BD AB CD ==,∴34AB BD CD BD ==,,∵AE BE =,∴13=22AE BE AB BD ==,∵EC=313422BE BD DC BD BD BD BD ++=++==13,∴2BD =,∴AE=33=2322BD ⨯=,∴AC=AE+EC=3+13=16.12.如图,点C 为线段AB 上一点,AB =30,且AC -BC =10.(1)求线段AC 、BC 的长.(2)点P 从A 点出发,以1个单位/秒的速度在线段AB 上向B 点运动,设运动时间为t 秒(20t <),点D 为线段PB 的中点,点E 为线段PC 的中点,若CD =25DE ,试求点P 运动时间t 的值.(3)若点D 为直线AB 上的一点,线段AD 的中点为E ,且12AD BD CE -=,求线段AD 的长.【答案】(1)20,10;(2)14t =或6t =;(3)AD 的长为:1609或160.【分析】(1)由30AC BC +=,10AC BC -=,再两式相加,即可得到AC ,再求解BC 即可;(2)以A 为原点画数轴,再利用数轴及数轴上线段的中点知识分别表示,,,,,A C B P D E 对应的数,由CD =25DE ,利用数轴上两点之间的距离公式建立绝对值方程,解方程可得答案;(3)以A 为原点画数轴,分三种情况讨论,当D 在A 的左侧,当D 在线段AB 上,当D 在B 的右侧,利用数轴与数轴上线段的中点知识,结合数轴上两点之间的距离分别表示,,AD BD CE ,再利用1,2AD BD CE -=建立方程,解方程即可得到答案.【解析】解:(1)AB =30,30AC BC ∴+=①又AC -BC =10②,①+②得:240,AC =20AC ∴=,10.BC ∴=(2)如图,以A 为原点画数轴,则,,,,A P C B 对应的数分别为:0,,20,30t ,点D 为线段PB 的中点,D ∴对应的数为:()1130+15,22t t =+点E 为线段PC 的中点,E ∴对应的数为:()1120+10,22t t =+1115205,22CD t t ∴=+-=-11111510151052222DE t t t ⎛⎫=+-+=+--= ⎪⎝⎭,CD =25DE ,1255,25t ∴-=152,2t ∴-=1522t ∴-=或152,2t -=-解得:14t =或6t =.由20t <,经检验:14t =或6t =都符合题意.(3)如图,以A 为原点画数轴,设D 对应的数为m ,当D 在A 的左侧时,AD BD -<0,12AD BD CE ∴-≠,舍去,当D 在AB 上时,线段AD 的中点为E ,E ∴对应的数为:()110,22m m +=此时E 在AC 上,,30,AD m BD m ∴==-120,2CE m =-1,2AD BD CE -=()113020,22m m m ⎛⎫∴--=- ⎪⎝⎭123010,4m m ∴-=-940,4m ∴=160,9m ∴=1609AD ∴=,当D 在B 的右侧时,如图,同理:,30,AD m BD m ==-120,2CE m =-1,2AD BD CE -=()113020,22m m m ∴--=-12060,2m ∴-=120602m ∴-=或12060,2m -=-解得:80m =-(舍去),160,m =160AD ∴=,综上:AD 的长为:1609或160.13.如图,线段AB =20,BC =15,点M 是AC 的中点.(1)求线段AM 的长度;(2)在CB 上取一点N ,使得CN :NB =2:3.求MN 的长.【答案】(1)52;(2)172【分析】(1)根据图示知AM =12AC ,AC =AB ﹣BC ;(2)根据已知条件求得CN =6,然后根据图示知MN =MC +NC .【解析】解:(1)线段AB =20,BC =15,∴AC =AB ﹣BC =20﹣15=5.又∵点M 是AC 的中点.∴AM =12AC =12×5=52,即线段AM 的长度是52.(2)∵BC =15,CN :NB =2:3,∴CN =25BC =25×15=6.又∵点M 是AC 的中点,AC =5,∴MC =12AC =52,∴MN =MC +NC =172,即MN 的长度是172.14.如图,点C 在线段AB 上,8,6AC cm CB cm ==,点,M N 分别是AC BC ,的中点.()1求线段MN 的长;()2若C 为线段AB 上任一点,满足AC CB a +=,其它条件不变,猜想MN 的长度,并说明理由;()3若C 在线段AB 的延长线上,且满足,,AC BC b M N -=分别为AC BC ,的中点,猜想MN 的长度,请画出图形,写出你的结论,并说明理由;()4请用一句简洁的话,描述你发现的结论.【答案】()17cm ;()22aMN =,证明解解析;()32bMN =,证明见解析;()4见解析【分析】()1根据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN CM CN =+即可求出MN 的长度即可;()2当C 为线段AB 上一点,且M ,N 分别是AC ,BC 的中点,则存在12MN a =;()3点在AB 的延长线上时,根据M 、N 分别为AC 、BC 的中点,即可求出MN 的长度;()4根据前面的结果解答即可.【解析】解:()1,M N 分别是,AC BC 的中点,8,6AC cm CB cm ==11,22MC AC CN BC ∴==()12MN MC CN AC BC =+=+Q ()18672MN cm \=+=()22aMN =,M N 分别是,AC BC 的中点11,22MC AC CN BC ∴==又MN MC CN =+Q ()122a MN AC BC ∴=+=()32bMN =∵AC BC b -=,∴C 在点B 的右边,如图示:,M N 分别是,AC BC 的中点,AC BC b -=11,22MC AC NC BC ∴==又NM MC NC =-()122b MN AC BC ∴=-=()4只要满足点C 在线段AB 所在直线上,点M N ,分别是AC BC ,的中点.那么MN 就等于AB 的一半。

初中数学中点模型的构造及应用(总6页)

初中数学中点模型的构造及应用(总6页)

初中数学中点模型的构造及应用-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中点模型的构造及应用一、遇到以下情况考虑中点模型:任意三角形或四边形中点或与中点有关的线段出现两个或三个中点考虑三角形中线定理已知直角三角形斜边中点,可以考虑构造斜边中线已知等边、等腰三角形底边中点,可以考虑与顶角连接用“三线合一”有些题目不直接给出中点,我们可以挖掘其中隐含中点,比如等腰三角形、等边三角形、直角三角形、平行四边形、圆中圆心是直径中点等可以出现中点的图形通常考虑用中点模型三角形中线的交点称为重心,它把中线分的线段比为2:1二、中点模型辅助线构造方法分类(一)倍长中线法(构造全等三角形,八字全等)当已知条件中出现中线时,常常将此中线倍长构造全等三角形解决问题。

如图,在∆ABC中,D为BC中点,延长AD到E使AD=DE,连接BE,则有:∆ADC≌∆EDB。

作用:转移线段和角。

(二)倍长类中线法(与中点有关线段,构造全等三角形,八字全等)当已知条件中出现类中线时,常常将此类中线倍长构造全等三角形解决问题。

如图,在∆ABC中,D为BC中点,延长ED到F使ED=DF,连接CF,则有:∆BED≌∆CFD。

作用:转移线段和角。

(三)直角三角形斜边中线法当已知条件中同时出现直角三角形和中点时,常构造直角三角形斜边中线,然后再利用直角三角形斜边的中线性质解决问题。

如下图,在Rt ∆ABC 中,ACB 90∠=︒,D 为AB 中点,则有:12CD AD BD AB === (四)等腰三角形三线合一当出现等腰三角形时,常隐含有底边中点,将其与顶角连接,可构成三线合一。

在∆ABC?中:(1)AC=BC?;(2)CD 平分ACB ∠;(3)AD=BD?,(4)CD AB ⊥ “知二得二”:比如由(2)(3)可得出(1)(4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出剩下两条。

八年级上角平分线、中垂线、中点模型专题

八年级上角平分线、中垂线、中点模型专题

第一章 中点模型的构造当已知条件中出现一个中点时,你首先想到的辅助线的解题方法是什么?如果已知两个中点呢?介绍以下方法:1) 倍长中线或类中线(与中点有关的线段)构造全等三角形; 2) 三角形中位线定理;3) 已知直角三角形斜边中点,可以考虑构造斜边中线;4) 已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”。

例1 已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,AF=EF ,求证:AC=BE.D BCA变式:如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 中点,EF//AD 交CA 的延长线于点F ,交AB 于点G ,若AD 为△ABC 的角平分线,求证:BG=CF.DE BCF例2.在Rt △ABC 中,∠BAC=90°,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED ⊥FD. 以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形,还是直角三角形,或者是钝角三角形?D BA第二章 角平分线模型的构造已知,P 是∠MON 平分线上一点,角平分线的四大基本模型: (1)若PA ⊥OM 于点A ,可过点P 作PB ⊥ON 于B ,则PB=PA; (2)若点A 是射线OM 上任意一点,可在ON 上截取OB=OA ,连接PB ,则构造了△OPB ≌△OPA ; (3)若AP ⊥OP 于点P ,可延长AP 交ON 于点B ,则构造了△AOB 是等腰三角形,且P 是AB 中点;(4)若过点P 作PQ//ON 交OM 于点Q ,则构造了△POQ 是等腰三角形。

M BOMM BOM(1) (2) (3) (4)例1 (1)如图,在△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,BC=8,BD=5,那么点D到AB的距离是()A.3 B.4 C.5 D.6(2)已知∠1=∠2,∠3=∠4,求证:AP平分∠BAC例2 (1)在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,请比较PB+PC与AB+AC的大小并说明理由.(2)如图,AD是△ABC中∠BAC的平分线,P是AD上的任意一点,且AB>AC,请比较PB-PC与AB-AC的大小并说明理由.例3 在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F . (1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;例4 (1)如图1,在△ABC 中,∠ABC 与∠ACB 的角平分线相交于点F ,过点F 作DE//BC ,交AC 于点E ,若BD+CE=9,则线段DE 的长为_________;(2)如图2,在△ABC 中,BD 、CD 分别平分∠ABC 和∠ACB ,DE//AB ,FD//AC ,如果BC=6,求△DEF 的周长.FE图1 图2例5 如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,连接AP、CP,若∠BPC=40°,求∠CAP的度数.B C第三章 弦图的构造及应用如以下图是弦图及其衍生图:例1 2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股弦方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为a ,较长直角边为b ,那么2)(b a +的值为___________________.例2 如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为 _______.例3 如图,四边形ABCD是正方形,直线l1,l2,l3分别通过A,B,C三点,且l1∥l2∥l3,若l1与l2的距离为5,l2与l3的距离为7,则正方形ABCD的面积为___________.例4 如图1,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.(1)试探究EP与FQ之间的数量关系,并证明你的结论.(2)若连接EF交GA的延长线于H,由(1)中的结论你能判断并证明EH与FH的大小关系吗?(3)图2中的△ABC与△AEF的面积相等吗?如果相等,请证明。

1初中数学《几何辅助线秘籍》中点模型的构造1(倍长中线法;构造中位线法).pptx

1初中数学《几何辅助线秘籍》中点模型的构造1(倍长中线法;构造中位线法).pptx
D
G E
A
B
F
C
2
ቤተ መጻሕፍቲ ባይዱ
奉爱树教育个性化辅导
7.如图所示,在 Rt△ABC 中,∠BAC=90°,点 D 为 BC 的中点,点 E、F 分别为 AB、AC 上的点, 且 ED⊥FD.以线段 BE、EF、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直 角三角形,或者是钝角三角形?
A
E F
B
D
A
B
D
E
C
F
3
奉爱树教育个性化辅导
做辅助线思路二:构造中位线法
经典例题 2:梯形 ABCD 中,AD∥BC,AD=12,BC=16,中位线 EF 与对角线分别相交于 H 和
G,则 GH 的长是
.
【课堂训练】 1.已知,如图,四边形 ABCD 中,AB=CD,E、F 分别是 AD、BC 的中点,BA、FE 的延长 线相交于点M,CD、FE 的延长线相交于点N.求证:∠AME=∠DNE.
1 别为 AF、CE 的中点.求证:(1)OM= CE;(2)OB= 2 OM.
2
4.如图,∠DBC=∠BCE=90°,M 为 DE 的中点,求证:MB=MC.




学生签名:
家长签名:
8
2.如图,在△ABC 中,BD⊥AC 于 D,CE⊥AB 于 E,点 M、N 分别是 BC、DE 的中点, 1 求证:MN⊥DE;
MN
2 连结 ME、MD,若∠A=60°,求 的值.
DE
7
奉爱树教育个性化辅导
3.如图,△ABC 中,AB=BC,∠ABC=90°,点 E、F 分别在 AB、AC 上,且 AE=EF,点 O、M 分

中点四大模型

中点四大模型

∴∠BME=∠CNE.
答图
华安一中· 数学(福建)
第一部分 教材同步复习
针对训练 3.如图,在△ABC中,∠ABC=90°,AB= BC,BD⊥AC于点D,CE平分∠ACB,交AB于点 E,交BD于点F. (1)求证:△BEF是等腰三角形;
华安一中· 数学(福建)
第一部分 教材同步复习
证明:在△ABC中,∵AB=BC,BD⊥AC, ∴∠ABD=∠CBD,AD=CD. ∵∠ABC=90°, ∴∠ACB=45°. ∵CE平分∠ACB, ∴∠ECB=∠ACE=22.5°, ∴∠BEF=∠CFD=∠BFE=67.5°, ∴BE=BF, ∴△BEF是等腰三角形.
【模型分析】在直角三角形中,当遇见斜边中点时,经常会作斜边 上的中线,利用直角三角形斜边上的中线等于斜边的一半来证明线段间 的数量关系,而且可以得到两个等腰三角形:△ACD和△BCD,该模型经 常会与中位线定理一起综合应用.
华安一中· 数学(福建)
第一部分 教材同步复习
例4 如图,在四边形ABCD中,AB⊥BC,AD⊥DC, P是AC的中点.求证:点P在BD的垂直平分线上.
华安一中· 数学(福建)
答图
第一部分 教材同步复习
(2)若BC=10,DE=6,求△MDE的面积. 解:∵BC=10,ED=6, ∴DM=21BC=5,DN=12DE=3. 由(1)可知∠MND=90°, ∴MN= DM2-DN2= 52-32=4, ∴S△MDE=12DE·MN=21×6×4=12.
华安一中· 数学(福建)
第一部分 教材同步复习
【解答】如答图,连接 BD,取 BD 的中点 H,连接 HE,HF. ∵E,F 分别是 BC,AD 的中点,
∴FH∥BM,FH=21AB,EH∥CN,EH=12CD, ∴∠BME=∠HFE,∠CNE=∠HEF.

初中数学模型专题1:双中点模型

初中数学模型专题1:双中点模型

初中数学几何模型模型1 双中点模型模型展现类型:双中点型模型特点:点C 是线段AB 上任意一点,点的中点分别是线段BC AC P ,P 2,1 点C 是线段AB 延长线上任意一点,点的中点分别是线段BC AC P ,P 2,1 结论:AB p p 2121 双中点和型结论: P 1P 2=12AB证明:∵点P ₁,P ₂分别是线段AC,BC 的中点,∴P 1C =12AC,P 2C =12BC (中点的性质),∵ P ₁P ₂=P ₁C+P ₂C,∴P 1P 2=12AC +12BC =12AB.双中点差型结论: P 1P 2=12AB证明:∵点P ₁,P ₂分别是线段AC,BC 的中点,∴P 1C =12AC,P 2C =12BC,∵ P ₁P ₂=P ₁C-P ₂C,∴P 1P 2=12AC −12BC =12AB.巧学巧记 简记:“一半,一半又一半”.基础模型怎么用1.找模型共线的三个点组成的三条线段中,已知两条线段的中点时,考虑用“双中点模型”2.用模型中点将线段平分,利用线段的 12倍关系转换,是解决问题的关键例1 如图,A,B,C三点在同一直线上,点P₁,P₂分别为线段AB,BC的中点,(双中点)且AB=6,BC=4,则线段P₁P₂的长为( )(中点组成的线段)A.2B.4C.5D.6思路点拨:已知双中点P₁,P₂,且点B在线段AC上,则用双中点和型即可求解.例2 如图,已知点C是线段AB上一点,AC<BC,点M和N分别是AB和BC的中点,MN=4,BC=10,( 双中点)则线段AB的长为( )(已知双中点产生的新线段长,逆向考虑模型的应用)A.18B.10C.8D.5思路点拨:已知双中点M,N,且点B在线段AC的延长线上,则用双中点差型即可求解.例3 已知线段AB=4,在线段AB所在直线上作线段BC,使得BC=2,若点D是线段AB的中点,点E是线段BC的中点,则线段DE的长为( )(双中点)A.1B.2C.1或3D.1或2思路点拨:点C位置不确定,需分两种情况讨论:①点C在线段AB内;②点C在线段AB外.。

中点模型的构造

中点模型的构造

中点模型的构造中点专题——看到中点该想到什么?1.两条线段相等,为全等提供条件2.中线平分三角形的面积,并尝试做倍长中线3.等腰三角形的底边中垂线4.中位线5.斜边上的中线是斜边的一半例题1、(尝试用倍长中线和中位线两种方法)【例2】如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF 的中点,连结PGPC。

若∠ABC=∠BEF=60°,⑴探究PG与PC的位置关系及PGPC的值。

⑵将上图中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边在同一条直线上,原问题中的其他条件不变(如图)。

你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以证明。

练习1、如图所示,在△ABC中,AC>AB,M为BC的中点,AD是∠BAC的平分线,若CF⊥AD且交AD的延长线于F,求证:MF=12(AC-AB)。

【例3】如图所示,在△ABC中,AD是∠BAC的平分线,M是BC的中点,ME⊥AD且交AC的延长线于E,CD=2CE,求证:∠ACB=2∠B。

练习2、中点专题小结——看到中点该想到什么?1.两条线段相等,为全等提供条件2.中线平分三角形的面积3.倍长中线和类倍长中线4.中位线5.斜边上的中线是斜边的一半课后练习1、已知直角三角形ABC和直角三角形CDF,ABC和CDF都是直角,且B,C,D三点在一条直线上,联结AF,点M为AF的重点,分别联结BM,DM.试证明:BM=DMM FAB DC2、已知两个共一个顶点的等腰直角三角形ABC和CEF, <ABC和<CEF都是直角,连接AF,M 是AF的中点,连接ME,MF.证明:ME=MF。

3、已知如图,在△ABC中,AB>AC,AD平分∠BAC,BE垂直AD的延长线于E,M是BC的中点,求证:ME=)(21AC AB -4、已知如图,△ABC 的中线BD 、CE 相交于点O ,F 、EF 和DG 有何关系并证明;(2)求证:OGD S S △121=5、已知如图,在四边形ABCD 中,EF分别为AB 、CD 的中点; (1)求证:EF <)(21BD AC + (2)四边形ABCD 的周长不小于EF 的四倍(3)EF 交BD 、AC 分别于P 、Q ,若AC=BD ,求证:△OPQ 为等腰三角形。

中点模型的构造、等积模型

中点模型的构造、等积模型

几何综合题型一:中点模型的构造中点模型①中线(点):倍长(类)中线②两中点:中位线③等腰三角形底边中点:三线合一④直角三角形斜边中点:斜边中线=斜边一半构造两等腰⑤中垂线:中垂线上的点连两端点有些题目的中点没有直接给出,此时需要挖掘题目中隐含的中点条件,并适时添加辅助线.典题精练E,若/ EMD = 3 / MEA .求证:BC=2AB.【解析】证法一:如右图(a),延长EM交CD的长线于点E,连结CMT AB // CD ,•••/ ME'D = / MEA .又AM = DM,/ AME = / DME'•△ AFM 也厶DE M .•EM =EM•/ AB // CD , CE丄AB,•EC 丄CD .•CM是Rt△ ECE斜边EE的中线,•ME =MC .•ME D E CM ,•/ EMC=2 ME D =2 / AEM .•••/ EMD =3 / MEA ,•/ CMD=/DCM,•MD=CD .•/ AD = 2DM , AB=CD , AD=BC ,•BC=2AB .【例1】如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点(a)1 / 7证法二:如右图(b),过点M作MM // AB交BC于M,过点M作M E // ME交AB的延长线于点E,连接EM ••••点M 是BC 的中点,EE AB,E BM EAM,M E B MEA , M MD EAM E BM•••点M是Rt△ EBC斜边BC的中点,•M E BM , • BEM M BE ••- E BM 180 BEM ••••/ EMD = 3 / MEA , • M MD 2 MEA,• E BM 2 M EB1•- 180 BEM 2 M E B , M E B 90 — BEM •2• E EM E • • EM EE , • BM AB ••BC = 2AB.【例2】如图所示,分别以厶ABC的边AB、AC为边,向三角形的外侧作正方形ABDE和正方形ACFG,点M为BC中点,⑴ 求证:AM丄EG ;(2)求证:EG=2AM .【解析】⑴ 如图所示,延长AM到N,使MN= AM,延长MA交EG于点P,连接BN、NC.•/ BM = CM ,•四边形ABNC是平行四边形.•BN = AC = AG .•••/ EAG + / BAC = 180 ,/ ABN +/ BAC = 180 ,•/ EAG = / ABN.•/ AE = AB,•△EAG◎△ ABN. •/ AEG =Z BAN.又•••/ EAB = 90 ,•/ EAP + / BAN = 90 .•/ AEP + / EAP = 90 .•MA丄EG.⑵ 证明:T △ EAG^A ABN , • EG = AN = 2AM .FEF题型二:平移及等积变换3 / 7典题精练【例3】已知:如图,正方形ABCD中, ⑴求证:FG = DE .⑵求证:FD + BG > . '2FG .【解析】延长GC到点P,使得GP = DF,连接EP, DP . ⑴••• DF // GP , GP = DF•••四边形DFGP为平行四边形••• FG = DP, FG // DP又••• FG 丄DE ,• DP 丄DE•••/ ADE = / CDP在厶ADE和厶CDP中DAE DCPDA DCADE CDP•△ ADE ◎△ CDP•DE = DP = FG⑵由⑴知道△ DEP为等腰直角三角形• EP 2DE 2FG在厶EGP 中,EG + DF = EG + GP > PE = 2 FG当EG // FD时,取到等号【例4】如下图,过平行四边形ABCD内的一点P作边的平行线EF、GH,若△ PBD的面积为8平方分米,求平行四边形PHCF的面积比平行四边形PGAE的面积大多少平方分米?于求平行四边形BCFE的面积与平行四边形ABHG的面积差.E是AB上一点,FG丄DE于点H【解析】根据差不变原理,要求平行四边形PHCF的面积与平行四边形PGAE的面积差,相当如右图, 连接CP、AP.可得:BCP ADP1ABCD2ABPS^ BDP ADP—S ABC D2所以BCD S^ ABP S^ BDP题型三:旋转典题精练【例5】已知△ ABC和厶ADE都是等腰直角三角形,/ABC=Z ADE=90。

中点模型的构造

中点模型的构造

中点模型的构造中点专题——看到中点该想到什么?1两条线段相等,为全等提供条件2 •中线平分三角形的面积,并尝试做倍长中线3•等腰三角形的底边中垂线C例题1、(尝试用倍长中线和中位线两种方法)如图.已丸HBC中」15=虫?・CE是肋边上的中钱,延长肿到D,慢BD=AB:求讦:CD~2CE .【例2】如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF 的中点,连结PGPC。

若/ ABC =Z BEF = 60°⑴探究PG与PC的位置关系及匹的值。

PC⑵将上图中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边在同一条直线上,原问题中的其他条件不变(如图)。

你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以证明。

E 练习1、如图所示,在△ ABC中,AC>AB , M为BC的中点,AD是/ BAC的平分线,若CF丄AD且交AD的延长线于F,、1求证:MF = (AC —AB)。

2【例3】如图所示,在△ ABC中,AD是/ BAC的平分线,M是BC的中点,ME丄AD且交AC的延长线于E, CD = 2CE,求证:/ ACB = 2/ B。

练习2、已知;妇国,在二磁中,RE、CF分别为过月G 肋上射哥.D为方C的中豈.DM丄£F 于M求让:F^EM-E中点专题小结——看到中点该想到什么?1两条线段相等,为全等提供条件 2 •中线平分三角形的面积 3•倍长中线和类倍长中线 4. 中位线5•斜边上的中线是斜边的一半课后练习1、已知直角三角形 ABC 和直角三角形CDF , ABC 和<|CDF 都是直角,且B,C,D 三点在一条直线上,联结 AF ,点M 为AF 的重点,分别联结 BM , DM.试证明:BM=DM2、已知两个共一个顶点的等腰直角三角形ABC 和CEF, v ABC 和v CEF 都是直角,连接AF,M是AF 的中点,连接 ME,MF 证明:ME=M F3、已知如图,在△ ABC 中,AB > AC, AD 平分/ BAC, BE 垂直 AD 的延长线于 E , M 是BCD的中点,求证:ME=1(AB AC)24、已知如图,△ ABC 的中线BD CE 相交于点 O , F 、G 分别是OB 、OC 的中点,(1)判断5、已知如图,在四边形 ABCD 中,EF 分别为AB 、CD 的中点; (1) 求证:EF v ^(AC BD)2(2) 四边形ABCD 的周长不小于 EF 的四倍5、如图,已知 ADABC 的角平分线, AB V AC ,在AC 上截取 CE=AB M 、N 分别为BCEF 和DG 有何关系并证明;(2)求证:S A OGD—S 12△ ABC °(3) EF 交 BD AC 分别于 P 、Q ,若 AC=BD,4、在梯形 ABCD 中,AD// BC , AB=AD+BC E 为CD 的中点,求证: AE 丄 BE °DE6、如图,以△ ABC 的AB 、AC 边为斜边向形外作 Rt △ ABD ,和Rt A ACE,且使/ ABD=/ ACE= (1)求证:DM=ME ; (2)求/ DME 的度数。

中点模型知识点总结

中点模型知识点总结

中点模型知识点总结中点模型(Midpoint Model)是一种用于逻辑推理的模型,它可以帮助我们更好地理解和分析不同命题之间的关系。

中点模型常用于解决形式逻辑中的中介命题问题,以及对立和矛盾关系的描述。

本文将对中点模型的相关知识点进行总结,包括中点的定义、中点模型的构建方法、中点模型的应用、以及一些实际案例的分析等内容。

一、中点的定义中点是中点模型的基本概念,它表示在两个对立命题之间存在一个中介命题或者中间状态。

在形式逻辑中,中点通常用来描述两个互相对立的命题之间的关系。

例如,如果有两个命题A和B,它们彼此对立或者矛盾,那么中点就是A和B之间的一个中介状态或者中间命题。

中点的存在可以帮助我们更好地理解命题之间的关系,以及在逻辑推理中的应用。

在一些推理问题中,如果我们能够找到命题之间的中点,那么就可以通过中间状态来推导出结论,从而更快更准确地解决问题。

二、中点模型的构建方法在建立中点模型时,我们需要首先确定两个对立或者矛盾的命题,然后找到这两个命题之间的中点。

中点模型的构建方法通常包括以下几个步骤:1. 确定两个对立或者矛盾的命题,分别表示为A和B。

2. 分析A和B之间的关系,找出它们之间的共同点或者相似之处。

这一步通常需要对命题进行分解和分析,以便更好地理解它们之间的关系。

3. 找到A和B之间的中点,即中间状态或者中介命题。

中点通常是由A和B的共同特征或者相似之处推导而来,它同时与A和B都存在一定的关联性。

在构建中点模型时,我们需要注意命题之间的逻辑关系,尽量避免出现冲突或者矛盾的情况。

同时,中点模型的构建需要考虑到命题的多样性和复杂性,从而更好地反映出命题之间的关系。

三、中点模型的应用中点模型在形式逻辑、哲学、认知科学等领域都有着广泛的应用。

它可以帮助我们更好地理解和分析不同命题之间的关系,从而更好地进行逻辑推理和思维分析。

在形式逻辑中,中点模型常用于解决中介命题问题,以及对立和矛盾关系的描述。

初中数学常见辅助线的做法

初中数学常见辅助线的做法

初中数学常见辅助线的做法一、中点模型的构造1.已知任意三角形一边上的中点,可以考虑:(1)倍长中线或类中线(与中点有关的线段)构造全等三角形.如图1、图2所示.(2)三角形中位线定理.2.已知直角三角形斜边中点,可以考虑构造斜边中线.3.已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一二4.有些题目的中点不直接给出,此时需要我们挖掘题目中的隐含中点,例如:直角三角形中斜边中点, 等腰三角形底边上的中点,当没有这些条件的时候,可以用辅助线添加.二、角平分线模型的构造与角平分线有关的常用辅助线作法,即角平分线的四大基本模型.已知。

是4MON平分线上一点,(1)若以_L 0M于点4 ,如图1,可以过户点作PB1ON于点&则与二以.可记为“图中有角平分线, 可向两边作垂线”.(2)若点4是射线0M上任意一点,如图2,可以在ON上截取(用=0/1 ,连接/7人构造△()*?三△ /%.可记为“图中有角平分线,可以将图对折看,对称以后关系现二⑶若翼妆舔踹嚼鼠3耳以黠部交0N于点从周造A4 0H基尊健三角形/是底边4加勺中点.可记为“角平分线加垂线,三线合一试试看二(4)若过P点作PQ//0N交0M于点0,如图4,可以构造△P0Q是等腰三角形,可记为“角平分线+平行线,等腰三角形必呈现二三、轴对称模型的构造下面给出几种常见考虑要用或作轴对称的基本图形.(1 )线段或角度存在2倍关系的,可考虑对称.(2)有互余、互补关系的图形,可考虑对称.(3)角度和或差存在特殊角度的,可考虑对称.(4)路径最短问题,基本上运用轴对称,将分散的线段集中到两点之间,从而运用两点之间线段最短,来实现最短路径的求解.所以最短路径问题,需考虑轴对称.几何最值问题的儿种题型及解题作图方法如下表所示.四、圆中辅助线构造在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此, 灵活掌握作辅助线的一般规律和常见方法,对.提高学生分析问题和解决问题的能力是大有帮助的。

初中数学的中点模型地构造及的应用

初中数学的中点模型地构造及的应用
二、中点模型辅助线构造方法分类
(一)倍长中线法(构造全等三角形,八字全等) 当已知条件中出现中线时,常常将此中线倍长构造全等三角形解决问题。 如图,在 ABC中,D 为 BC中点,延长 AD 到 E 使 AD=DE,连接 BE,则有:
ADC≌ EDB。作用:转移线段和角。
(二)倍长类中线法(与中点有关线段,构造全等三角形,八字全等) 当已知条件中出现类中线时,常常将此类中线倍长构造全等三角形解决问
(五)中位线法 当已知条件中同时出现两个及以上中点时, 常考虑构造中位线; 或出现一个
中点,要求证明平行线段或线段倍分关系时也常考虑构造中位线。 如图,在 ABC中,D,E分别是 AB、 AC边中点,则有 DE BC , DE = 1 BC 。 2
三、练习
(一)倍长中线法 1.( 2014 秋 ?津南区校级期中) 已知:在△ ABC中, AD 是 BC边上的中线, E 是 AD 上一点,且 BE= AC,延长 BE交 AC于 F,求证: AF= EF.
精彩文案
实用标准文档
5.( 2017?贵阳 ,24)(1)阅读理解:如图①,在四边形 ABCD中, AB∥DC,E 是 BC的中点,若 AE 是∠ BAD的平分线,试判断 AB,AD,DC之间的等量关系. 解决此问题可以用如下方法: 延长 AE交 DC的延长线于点 F,易证△ AEB≌△ FEC, 得到 AB=FC,从而把 AB, AD, DC转化在一个三角形中即可判断. AB、AD、DC之间的等量关系为 ____________; ( 2)问题探究:如图②,在四边形 ABCD中, AB∥ DC, AF 与 DC 的延长线交于 点 F,E 是 BC的中点,若 AE 是∠ BAF的平分线,试探究 AB,AF,CF之间的等量 关系,并证明你的结论. ( 3)问题解决:如图③, AB∥CF, AE 与 BC 交于点 E,BE:EC= 2:3,点 D 在 线段 AE 上,且∠ EDF=∠ BAE,试判断 AB、 DF、CF 之间的数量关系,并证明你 的结论.

三角形中的“中点模型”方法总结(重点知识)

三角形中的“中点模型”方法总结(重点知识)

三角形中的“中点模型”方法总结(重点知识)三角形是初中数学必考的重要知识点,学好三角形是学好初中几何的关键。

而在三角形相关题目中出现最多的就是中点和角平分线,今天我们来总结一下,遇到中点都有那些处理方法。

掌握了这几种方法,应对三角形相关题目时,同学们将得心应手!类型一倍长中线或类中线类型二遇等腰三角形,构造“三线合一”类型三遇RT三角形斜边的中点,构造斜边的中线类型四遇多个中点,构造中位线例题分析:1、遇到中点,常想倍长中线法例题分析:如图,在△ABC中,AB=10,AC=6,那么BC边上的中线AD的取值范围是。

解:延长AD到E,使DE=AD,连接BE.∵ BD=CD AD=DE ∠CDA=∠BDE∴ △ADC≌△EDB (两边及其夹角对应相等的两个三角形全等)∴ AC=BE (全等三角形的对应边相等)∵ AC=BE AC=6∴ BE=6∵ BE=6 AB=10 AB-BE<AE∴ 4<AE∵ BE=6 AB=10 AE<AB+BE∴ AE<16∵ 4<AE AE<16∴ 4<AE<16∵ 4<AE<16 AD=12×AE∴ 2<AD<82、遇等腰三角形,构造“三线合一”如图,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E. F分别是AB、AC边上的点,且DE⊥DF.请说明:DE=DF;证明:连接AD,∵等腰直角三角形ABC,∴∠C=∠B=45°,∵D为BC的中点,∴AD⊥BC,AD=BD=DC,AD平分∠BAC,∴∠DAC=∠B AD=45∘=∠B,∠ADC=90°,∵DE⊥DF,∴∠EDF=90°,∴∠ADF+∠FDC=90°,∠FDC+∠BDE=90°,∴∠BDE=∠ADF,在△BDE和△ADF中∠B=∠DAFBD=AD∠BDE=∠ADF,∴△BDE≌△ADF,∴DE=DF.3、遇多个中点,构造中位线如图,四边形ABCD中,AB与CD不平行,M,N分别是AD,BC的中点,AB=4,DC=2,则MN的长不可能是( )A. 3B. 2.5C. 2D. 1.5解:如图,连接BD,取BD的中点G,连接MG、NG,∵点M,N分别是AD、BC的中点,∴MG是△ABD的中位线,NG是△BCD的中位线,∴AB=2MG,DC=2NG,∴AB+DC=2(MG+NG),由三角形的三边关系,MG+NG>MN,∴AB+DC>2MN,∴MN<>∴MN<>故选:A.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中点模型的构造
技巧提炼:很多几何题会给出“点×是线段××的中点”这样的条件,那么看到“中点”我们应该想到什么
呢?“中点”有哪些作用呢?
1、已知任意三角形一边上的中点,可以考虑:
(1)倍长中线或类中线(与中点有关的线段)构造全等三角形。

如图
(2)三角形中位线定理。

2、已知直角三角形斜边中点,可以考虑构造斜边中线。

3、已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”。

4、有些题目的中点不直接给出,此时需要我们挖掘题目中的隐含中点,
例出直角三角形中斜边中点,等腰三角形底边上的中点,当没有这些条
件的时候,可以用辅助线添加。

典例精讲
例1如图所示,在△ABC中,AB=12,AC=20,求BC边上的中线AD的取值范围。

例2如图所示,已知在△ABC中,AD是BC边上的中线,E是AD上一点,连接BE并延长交AC于点F,AF=EF,
求证:AC=BE。

变式练习:
1、如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于点F,AF与EF相等吗,为什么?
2、如图,在△ABC中,AD交BC于点D,点E是BC中点,EF∥AD交CA的延长线交于点F,交AB于点G,若AD为
△ABC的角平分线,求证:BG=CF。

例3如图,在Rt△ABC中,∠BAC=90°,点D为BC的中点,点E、F分别为AB、AC上的点,且ED⊥FD,以线段BE、EF、FC为边能否构成一个三角形?若能,该三角形是锐角三角形,还是直角三角形,或者是钝角
三角形?
变式练习:
1、如图,已知M为△ABC中BC边上的中点,∠AMB、∠AMC的平分线分别交AB、AC于点E、F,连接EF。

求证:BE+CF>EF。

2、如图,在△ABC中,D是BC的中点,DM⊥DN,如果BM2+CN2=DM2+DN2,求证:AD2=1(AB2+AC2)。

4
例4已知,如图,在△ABC 中,BE、CF分别为边AC、AB的高,D为BC的中点,DM⊥EF于点M,求证:
FM=EM。

例5 △ABD 和△ACE 都是直角三角形,且
ABD= ∠ACE=90°,如图,连接DE,设M为DE 的中点,连接∠
MB、MC。

求证:MB=MC 。

例6问题一:如图(a),在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、AD 的延长线交于点M、N,求证:∠BME=∠CNE。

问题二:如图(b),在四边形ABCD中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,请直接写出结论。

问题三:如图(c),在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA 的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并证明。

例7如图,已知在△ABC中,AB=AC,CE是AB边上的中线,延长AB至点D,使BD=AB,求证:CD=2CE。

例8 问
题1:如图(a),三角

ABC 中,

D是AB 边的中点,AE⊥BC,BF⊥AC,垂足分别为点E、F,AE、
BF 交于

M,连接DE、DF,若DE=kDF,则k的值为。

问题2:如图(b),三角形 ABC中,CB=CA,点D是AB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作业ME⊥BC,MF⊥AC,垂足分别为点E、F,连接DE、DF。

求证DE=DF。

问题3:如图(c),若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究
间的数量关系,并证明你的结论。

DE 与DF 之
牛刀小试:
*1、如图,在等腰直角三角形AB于点E,交BC于点F,若ABC中,∠ABC
AE=4,FC=3。


中,∠ABC=90°,D
EF长。

为AC 边上中点,过

D作DE⊥DF,交
*2、如图,在△ABC中,D是BC延长线上一点,CD=BC,E是CA延长线上一点,AE=2AC,若AD=BE,求证:△ABC是直角三角形。

**3、如图,在正方形ABCD中,F是AB中点,连接CF,作DE⊥CF交BC于点E,交CF于点M,求证:AM=AD。

**4、如图,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:AM⊥CD。

**5、如图,在等腰梯形ABCD中,AB∥CD,AD=BC,AC与BD交于点O,∠AOB=60°,P、Q、R分别是OA、BC、OD的中点,求证:△PQR是正三角形。

**6、如图,在△ABC中,若∠B=2∠C,AD⊥BC,E为BC边的中点,求证:AB=2DE。

***7、如图,分别以△ ABC的边AB,AC 为边,向三角形的外侧作正方形ABDE 和正方形 ACFG,点M为BC
中点,
(1)求证:AM⊥EG;(2)求证:EG=2AM。

***8、如图,在△ABC的两边AB、AC向形外作正方形ABDE和ACFG,取BE、BC、CG的中点M、Q、N,判断△MNQ的形状并证明。

***9、如图,在五边形ABCDE中,∠ABC=∠AED=90°,∠BAC=∠EAD,点F为CD的中点,求证:BF=EF。

眺望中考:
数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:
在等腰△ABC DF⊥AB于点中,AB=ACF,
EG⊥AC
,分别以 AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图
于点G,M是BC的中点,连接MD和ME,则下列结论正确的是
1所示,其
中.(填序
号即可)①AF=AG= AB;②MD=ME ;③四边

AFMG 是菱形;④整个图形是轴对称图形;

MD⊥ME.
●数学思考:
在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图点,连接MD和ME,则MD和ME具有怎样的数量关系和位置关系?请给出证明过程;
●类比探索:
在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图中点,连接MD和ME,试判断△MED的形状.答:2所示,M
3所示,

M
BC的中
是BC的。

相关文档
最新文档