地表水水质监测方案
地表水水质监测方案书
一. 监测目的及意义。
为了了解我校景观湖的水质现状,为景观湖的治理与保护,提供必要数据以及为了让我们熟悉水质监测方案的制定内容和评价内容,我组将进行校园景观湖(天承湖)的水质监测。
二. 天承湖环境信息1.天承湖位于承德石油高等专科学校的中间部分,2平均水深5米,最深处约7米,面积可以到800平方米,四周环树,大量乘凉椅,前接图书馆,后是“凤凰园”宿舍区,是承德石油高等专科学校区的标志景观之一,湖水清澈,灵气十足,湖内还养殖了大量的鲤鱼,风景宜人。
2.天承湖水源天承湖水源与承德市武烈河水是相通的,而且武烈河又称热河,既是承德避暑山庄,湖区的主要水源,又是承德人的主要引用水源,是承德人的母亲河3.主要污染源调查.天承湖湖水的污染来自于校园内的树叶,其他垃圾,再水,污水以及湖中鱼儿产生的污染物。
树叶和其他垃圾会通过风的作用被2刮入天承湖内,从而使得天承湖的上面会飘散着许多垃圾和树叶。
天承湖湖水中的鱼儿每天需要进行有氧呼吸,另外任辉会投大量的事物以供湖中鱼儿的需要,这样也会产生大量的垃圾,而对天承湖水造成一定的污染。
天承湖湖水来自于武烈河河水,在武烈河中下游的部,会有一些化工厂污水,制药厂污水,各个小区的生活污水等的排管道,导致湖水水质的污染更加严重三、水质监测方案制定1.监测项目:PH. 溶解氧.BOD.COD.总磷.色度.浊度. 高锰酸盐指数.氨氮2.布点方案。
断面位置区避开死水区,回水区,排污口处,尽量选择顺直河段,河床稳定,水比平稳,水面宽阔,死肌瘤,无浅难处。
天承湖湖区并没有明显功能区别,所我们布了5千米样点,分别是,岸边分为3个,有宿舍区,图书馆区,还有在去教学楼那边,另外两个,一个是湖心,另一个是天承湖入口。
3.采样方案天承湖湖水测定是利用质量表征方案,根据地表水采样中湖泊监测量,我的布设的规定,在一个监测断面上设采样容器为实验室的容量瓶。
采样时间为进行试验提作前进行取样,取样时把容量瓶洗净,采样时,用采样处的水润洗4.水样的保存和预处理。
地表水监测方案
地表水监测方案一、背景介绍地表水是指地球表面上的河流、湖泊、水库等自然水体及其汇集后形成的江河湖海等水系。
随着人口的增加和工业发展的加快,地表水的质量受到了日益严重的威胁。
为了保障公众的健康和生态环境的可持续发展,制定一套科学、高效的地表水监测方案势在必行。
二、监测目标与指标地表水监测的主要目标是对水体中的污染物进行及时、准确的检测,以评估水质的安全性和污染程度。
根据国家标准和环保法规,我们将监测以下指标:1. pH值:评估水体的酸碱度,判断是否符合水环境的生态要求;2. 溶解氧:反映水中的氧气含量,对水生态系统的生物生存至关重要;3. 化学需氧量(COD):用于检测水中有机物的含量,作为衡量水体污染的指标之一;4. 总氮和总磷:反映水体中营养盐的含量,对水生态环境的影响较大;5. 氨氮和硝酸盐氮:用于评估水体中的氨氮和硝酸盐含量,判断是否存在污染来源。
三、监测方法与频次为了确保监测结果的准确性和可靠性,我们将采用以下方法进行地表水的监测:1. 采样方法:选择合适的采样点,经过充分搅拌后取样,避免污染源的干扰;2. 仪器设备:使用符合国家标准的仪器设备,如多参数水质分析仪、紫外可见分光光度计等;3. 实验室测试:将采样的水样送往具备资质的实验室进行测试,确保结果的准确性;4. 监测频次:根据监测计划,定期进行监测,包括日常监测、季度性监测以及突发事件后的应急监测。
四、数据分析与报告监测完成后,我们将对数据进行分析和评估,以判断地表水质量的状况。
同时,我们将向相关部门、企事业单位提供监测结果报告,促使他们采取相应的环保措施,确保水质安全。
五、质量保证与持续改进为确保监测方案的科学性和有效性,在实施过程中我们将采取以下措施:1. 建立质量保证体系:制定监测操作规范、实验室质量控制规程等,确保监测过程的准确性和可比性;2. 培训与实施:定期对监测人员进行专业培训,提高他们的技术水平和操作能力;3. 仪器设备维护:定期对仪器设备进行检修和校准,确保其正常运行和准确性;4. 数据分析和评估:建立科学的数据分析方法,不断完善监测评估体系;5. 监测方案的持续改进:根据监测结果和相关要求,及时更新监测方案,提高监测效率和可信度。
地表水监测方案制定
地表水监测方案制定1. 引言地表水是指地球表面上的河流、湖泊、水库和水塘等自然界中的水体。
由于地表水对人类生活和生产的重要性,进行地表水监测是保障水资源安全、确保环境健康的重要手段。
本文档旨在制定地表水监测方案,以保护和管理地表水资源。
2. 方案制定目的制定地表水监测方案的目的是为了:1.监测和评估地表水的质量和数量状况;2.指导地表水管理和保护工作;3.提供数据支持,为决策和政策制定提供科学依据。
3. 监测指标和参数地表水监测需要关注的指标和参数包括但不限于以下内容:1.水质指标:包括pH值、溶解氧含量、氨氮、总磷、总氮等;2.水量指标:包括水位、水体流速等;3.水温;4.悬浮物含量;5.水体透明度;6.重金属含量等。
4. 监测频次和地点选择地表水监测的频次和地点选择应根据实际情况进行合理确定。
一般而言,监测频次应包括以下几个方面:1.日常监测:每日对指定地点的地表水进行监测,以了解水质和水量的日常变化;2.季节性监测:按照季节变化对不同地点的地表水进行监测,以了解季节性变化;3.长期监测:对特定地点的地表水进行长期监测,以建立历史数据并分析长期趋势。
地点选择应涵盖地表水系统的整体情况,并考虑以下几个因素:1.水体来源:包括河流、湖泊、水库等;2.水体用途:包括生活供水、农业灌溉、工业用水等;3.水体受污染程度:选择污染程度较高的地点进行重点监测。
5. 监测方法和设备地表水监测方法和设备的选择应根据监测指标和参数的要求进行。
常见的监测方法和设备包括:1.野外监测装置:如水质自动监测站、水位计、流速计等;2.实验室设备:如PH计、溶解氧仪、光度计等;3.采样器具:包括水样采集瓶、滤纸等。
在选择监测方法和设备时,应考虑其准确性、稳定性和可操作性。
6. 数据处理与分析地表水监测数据的处理与分析是方案制定中重要的一环。
数据处理与分析的内容包括以下几个方面:1.数据录入与存储:将采集到的数据进行整理和录入,并建立数据库进行存储;2.数据质量控制:对采集到的数据进行质量控制,剔除异常数据和检查数据准确性;3.数据分析与报告:根据监测数据进行数据分析,生成数据报告,并提取有价值的信息和结论。
地表水水质检测方法
地表水水质检测方法
1. 物理检测方法,物理检测方法通常包括测量水体的温度、浊度、颜色、气味等指标。
这些指标可以通过使用温度计、浊度计、比色皿等设备进行测量。
2. 化学检测方法,化学检测方法用于测量水体中的化学成分,如溶解氧、pH值、氨氮、亚硝酸盐、硝酸盐、总磷、总氮等指标。
这些指标可以通过使用化学试剂和分析仪器进行测量。
3. 生物学检测方法,生物学检测方法主要用于评估水体中的生物多样性和生态系统健康状况,包括浮游生物、底栖生物和水生植物的种类和数量。
这些指标可以通过生物样品采集和显微镜观察等方法进行测量。
4. 水质综合评价,除了单项指标的检测外,还可以使用水质综合评价方法对地表水的水质进行综合评估。
这种方法通常使用水质综合污染指数、Trophic State Index等综合评价指标进行评估。
在实际工作中,通常会综合运用以上多种方法对地表水的水质进行全面检测和评估,以便及时发现水质问题并采取相应的环境保
护措施。
同时,不同国家和地区可能会有不同的标准和方法用于地表水水质检测,因此在进行水质监测时需要遵循当地的监测标准和规定。
地表水监测的优秀方案推荐_地表水监测方案
地表水监测的优秀方案推荐_地表水监测方案地表水监测需要人们时时进行管理与检查,及时发现问题并且改正才能共同进步与发展,接下来让我们来看看地表水监测的优秀方案推荐吧。
地表水监测方案一概述地表水自动监测系统可实现自动采样及预处理、在线测量、报表分析、数据传输、远程监控等功能,及时掌握水质状况、预警预报水质污染事故、保障公众用水安全等。
截止2021年我国已建设了972个水质自动监测站。
监测因子:常规监测因子包括:水温、ph、溶解氧、电导率、浊度、高锰酸盐指数、总有机碳、氨氮,湖泊水质自动监测站的监测项目还包括总氮和总磷。
部分站点进行挥发性有机物、生物毒性及叶绿素a的监测。
监测频次一般监测频次设为每4h监测一次(即每天6个监测数据)。
当发现水质状况明显变化或发生污染事故时,监测频率可调整为连续监测。
数据通过外网vpn方式传送到各监测站、省级监测中心站及中国环境监测总站。
系统组成:地表水自动监测站主要由采水单元、配水单元、分析仪器、控制系统组成。
采水单元:包括水泵、管路、供电等,为系统提供可靠、有效的水样。
可采用栈桥、浮筒、固定桩等方式。
配水单元:包括水样预处理装置、自动清洗装置及辅助部分,为各分析仪器提供其所需要压力和流量的水样。
分析仪器:由一系列水质分析仪器、仪表组成,具有校准、测量、反控、自诊断等功能,并将测量结果发送到控制系统。
控制系统:用于控制整个系统自动完成采水、配水、分析测量、数据存储、数据传输、生成报表等功能,也可接受监控平台发送的指令,远程控制系统各部分。
站房及配套设施:包括站房主体、空调、供电、防雷、防火、给排水等。
对应仪器ph智能电极(amt-ph300)、溶解氧智能电极(amt-pr300)、电导率智能电极(amt-pd300)、浊度智能电极(amt-pz300)、多参数水质电极(amt-w400)、总有机碳水质分析仪(amt-zz300)、氨氮水质分析仪(amt-pa100)、总磷总氮水质分析仪(amt-1226)、生物毒性水质分析仪(amt-tox100)、紫外吸收水质分析仪(amt-0504)、全光谱水质电极(amt-0120)、叶绿素智能电极(amt-py300)、蓝绿藻智能电极(amt-pl300)。
地表水水质监测监测方案
地表水水质监测1.监测范围地表水监测断面以《“十三五”国家地表水环境质量监测网设置方案》(环监测〔2016〕30号)为准,监测范围为2050个国家考核断面,包括1940个地表水和195个入海控制断面,其中85个为地表水与入海河流双重考核断面。
新增国考地表水断面1646个。
2.监测项目(1)现场监测项目河流断面现场监测项目为水温、pH、溶解氧和电导率、浊度。
湖库点位现场监测项目为水温、pH、溶解氧、电导率、透明度和浊度。
入海河流控制断面现场监测项目为水温、pH、溶解氧、电导率、盐度和浊度。
(2)实验室分析项目河流断面实验室分析项目为高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂和硫化物。
湖库点位实验室分析项目为高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物和叶绿素a。
入海控制断面实验室分析项目为高锰酸盐指数、化学需氧量、五日生化需氧量、氨氮、总磷、总氮、铜、锌、氟化物、硒、砷、汞、镉、铬(六价)、铅、氰化物、挥发酚、石油类、阴离子表面活性剂、硫化物、硝酸盐氮和亚硝酸盐氮。
可选测硫酸盐、氯化物、铁、锰、硅酸盐项目。
(3)新增1646个国控断面监测项目按照水体类型,开展相关监测项目的水质监测。
断面属性为入海口的断面按照入海控制断面要求开展监测。
(4)245个国控省界断面按照《关于开展国控地表水部分省界断面流量监测工作的通知》(总站水字[2018]451号)的要求开展流量监测。
3.监测频次“十三五”国家考核断面已建设水质自动站,且稳定运行的断面,按季监测,每季的2、5、8、11月开展监测。
对于水质不稳定的,动态开展加密监测。
西藏、青海、新疆、海南4省(区)水质稳定的和国界等偏远的196个“十三五”国家考核断面,按季监测,即2、5、8、11月开展监测。
地表水监测方案编制
地表水监测方案编制一、引言地表水是人类生活和生产活动中不可或缺的重要资源,其质量状况直接关系到生态环境的平衡和人类的健康。
为了准确掌握地表水的水质状况,及时发现潜在的污染问题,科学合理地编制地表水监测方案至关重要。
二、监测目的地表水监测的主要目的包括以下几个方面:1、评估地表水的水质状况,确定其是否符合相关的环境质量标准和用水要求。
2、追踪和识别地表水污染的来源和迁移路径,为污染治理提供依据。
3、监测地表水水质的变化趋势,为环境保护和水资源管理提供决策支持。
三、监测范围和断面设置(一)监测范围根据监测目的和实际需求,确定监测的地表水体范围。
这可能包括河流、湖泊、水库等。
(二)断面设置1、对照断面:设置在河流进入监测区域之前,未受本区域污染源影响的地方,用于对比和评估监测区域内的水质变化。
2、控制断面:设置在污染源排放口下游,能反映污染对水体水质影响的位置。
3、消减断面:设置在污染物经治理或自然净化后浓度降低的位置,用于评估治理效果。
在设置断面时,要充分考虑水体的水文特征、污染源分布、功能区划分等因素,确保断面具有代表性和科学性。
四、监测项目(一)常规监测项目包括水温、pH 值、溶解氧、化学需氧量(COD)、五日生化需氧量(BOD5)、氨氮、总磷、总氮等。
(二)特征污染物监测项目根据监测区域内的污染源类型和潜在的污染风险,确定特征污染物监测项目。
例如,如果周边有化工企业,可能需要监测重金属、有机污染物等。
五、监测频率监测频率应根据地表水体的重要性、水质变化情况和管理需求来确定。
一般来说,对于重要的地表水体和水质容易变化的区域,监测频率应较高;对于水质相对稳定的区域,监测频率可以适当降低。
例如,对于主要河流的控制断面,每月监测一次;对于一般河流的控制断面,每季度监测一次。
在特殊情况下,如发生突发环境污染事件、雨季等,应增加监测频率。
六、监测方法选择合适的监测方法是确保监测数据准确可靠的关键。
监测方法应符合国家和行业的相关标准和规范。
地表水水质监测方案
地表水水质监测方案地表水是指地球表面上的湖泊、河流、水库等自然水体以及人工建设的水体。
地表水的水质一直是重要的关注点,因为它直接影响着人类的生活和健康。
为了保护和监测地表水的水质,各国纷纷制定了相应的监测方案。
一、监测目标和指标地表水水质监测方案首先需要确定监测的目标和指标。
监测目标可以是保护生态环境、保障饮用水安全等不同方面的要求。
监测指标包括了水质的化学指标、生物指标和物理指标等。
1. 化学指标:监测水体中的溶解氧、总磷、总氮、氨氮、铜、镉、汞等物质的浓度。
这些物质的浓度可以反映水体的富营养化程度、有机污染程度和重金属污染状况。
2. 生物指标:监测水体中的藻类、浮游动物和底栖动物的种类和数量。
这些生物的组成和数量反映了水体的营养状态和生态状况。
3. 物理指标:监测水体的色度、浊度、pH值、温度和电导率等。
这些指标可以反映水体的透明度、酸碱程度、温度变化和盐度等情况。
二、监测方法和频率地表水水质监测需要使用一定的方法和技术手段进行。
常见的监测方法包括现场监测和实验室分析。
1. 现场监测:使用便携式仪器进行监测,可以直接在采样点进行测量。
现场监测可以及时获取监测数据,并可针对特定情况做出调整。
现场监测常用于测量水体的温度、pH值、溶解氧等物理和化学指标。
2. 实验室分析:将采集到的水样送往实验室进行分析。
实验室可以通过精密的仪器和化学试剂来测量水体的各项指标。
实验室分析可以获得更准确的数据,并且可以扩展监测指标的范围。
监测频率是指监测的时间间隔和频繁程度。
监测频率的确定需要根据实际情况来决定,可以根据监测目标、水质状况和资源情况来进行选择。
通常,地表水水质监测需要定期进行,以便及时发现问题并采取相应的措施。
三、监测网络和站点选择为了全面监测地表水的水质状况,需要建立监测网络和选择监测站点。
监测网络的构建要考虑到地表水的流动特点和水体的分布情况。
通常,监测网络应覆盖不同地理区域、水体类型和环境状况。
地表水水质监测标准
地表水水质监测标准地表水是指地表流动的水体,包括江河湖泊、沟渠、水库等。
地表水的水质直接关系到人类的生活和健康,因此对地表水的水质进行监测是非常重要的。
地表水水质监测标准是对地表水水质进行评价和监测的依据,是保障地表水水质安全的重要手段。
一、监测项目。
地表水水质监测标准应包括对地表水中各种污染物质的监测项目,如有机物、重金属、细菌、氮、磷等。
这些项目是评价地表水水质的重要指标,监测这些项目可以全面了解地表水的水质状况。
二、监测方法。
地表水水质监测标准应规定监测方法和技术标准,确保监测结果的准确性和可比性。
监测方法应包括取样方法、样品处理方法、分析检测方法等,这些方法应科学合理,能够真实反映地表水的水质状况。
三、监测频次。
地表水水质监测标准应规定监测的频次和时段,以确保对地表水水质的全面监测。
监测频次应根据地表水的使用情况和水质状况确定,一般来说,地表水水质监测应定期进行,以及在重大污染事件发生后进行应急监测。
四、监测标准。
地表水水质监测标准应规定地表水水质的评价标准,包括各项监测项目的限值和评价方法。
这些标准应符合国家相关法律法规的要求,能够科学客观地评价地表水的水质状况。
五、监测报告。
地表水水质监测标准应规定监测结果的报告要求,监测报告应真实反映监测结果,包括监测项目、监测方法、监测频次、监测标准等内容。
监测报告应及时提交相关部门,并向社会公开,以保障公众知情权。
六、监测责任。
地表水水质监测标准应规定监测的责任主体和责任分工,明确相关部门和单位的监测职责和义务。
监测责任主体应按照标准要求进行监测,并对监测结果负责,确保地表水水质的安全。
七、监测管理。
地表水水质监测标准应规定监测管理的要求,包括监测设备的管理、监测人员的培训和管理、监测数据的管理等。
监测管理是保障地表水水质监测工作正常进行的基础。
结语。
地表水水质监测标准是保障地表水水质安全的重要保障,只有建立科学合理的监测标准,才能及时准确地了解地表水的水质状况,保护地表水资源,保障人民群众的饮用水安全。
地表水监测方案
地表水监测方案一、监测目的地表水监测的主要目的是及时、准确地掌握地表水环境质量状况及其变化趋势,为环境保护决策、水资源管理、水污染防治等提供科学依据。
通过对地表水的监测,可以了解水体中污染物的种类、浓度和分布情况,评估水体的生态健康状况,发现潜在的环境问题,并采取相应的措施加以解决,以保护水资源、维护生态平衡和保障公众健康。
二、监测范围监测范围应包括本地区主要河流、湖泊、水库等地表水体。
具体的监测断面应根据水体的功能、水文特征、污染源分布等因素进行合理设置。
对于河流,应在干流和主要支流的上、中、下游分别设置监测断面;对于湖泊和水库,应在入湖(库)口、湖心、出湖(库)口等位置设置监测断面。
同时,还应在重要的饮用水水源地、水功能区等敏感区域增加监测点位,以确保水质安全。
三、监测项目(一)必测项目1、水温、pH 值、溶解氧、电导率、浊度等物理指标。
2、化学需氧量(COD)、高锰酸盐指数、五日生化需氧量(BOD5)、氨氮、总磷、总氮等常规污染物指标。
3、重金属指标,如汞、镉、铅、铬、砷等。
(二)选测项目1、挥发酚、氰化物、石油类、阴离子表面活性剂等。
2、特定有机物,如多环芳烃、农药残留等。
3、水生生物指标,如藻类、浮游动物等。
监测项目的选择应根据水体的污染特征、环境管理需求以及监测能力等因素综合确定。
四、监测频次(一)河流1、对于国控、省控断面,每月监测一次。
2、对于市控断面,每季度监测一次。
3、对于重点河流或污染较重的河流,可根据实际情况增加监测频次,如每月监测两次或每周监测一次。
(二)湖泊、水库1、大中型湖泊、水库,每月监测一次。
2、小型湖泊、水库,每季度监测一次。
(三)饮用水水源地1、地表水饮用水水源地,每月监测一次常规项目,每年进行一次全分析监测(包括所有必测和选测项目)。
2、应急监测:在发生突发水污染事件或水质异常时,应立即启动应急监测,根据事件的严重程度和发展态势,确定监测频次和项目。
五、监测方法监测方法应采用国家或行业标准规定的方法,确保监测数据的准确性和可比性。
地表水监测方案
地表水监测方案地表水是指地球表面的水体,包括河流、湖泊、湿地和地下水体,对地表水进行监测是非常重要的,可以了解水体的质量、水文情况和生态系统的健康状况,为环境保护和水资源管理提供科学依据。
以下是一个地表水监测方案的设计。
一、目的和背景地表水监测旨在收集有关水体的重要数据,评估水体的状态,检测水质污染及时采取措施,提供保护生态系统的参考依据。
本方案将定期监测地表水的水质和水量情况,分析水资源的可持续使用性,为环境管理与决策提供科学依据。
二、监测内容1.水质分析:监测水体中的溶解氧、氨氮、总磷、总氮、COD 和BOD等指标,了解水体的富营养化程度、有机物污染和其他污染物的程度。
2.水量监测:定期测量水体的流量,包括流速、流态、输沙量等,了解水资源的供应和运动情况。
3.生态监测:通过采集水体的生物样本,了解水体中的生态环境和生物多样性情况,评估水体的健康状况。
三、监测方式和频率1.定点监测:选择具有代表性的监测点,对水质、水量和生态进行定期监测,以确保监测结果的代表性。
2.活动监测:在特定的事件或情况发生时,如雨季、污染事件等,加大对地表水的监测和分析。
3.实时监测:利用现代化的监测设备和技术,对水质和水量进行实时、自动化监测,提高监测数据的及时性和准确性。
四、数据收集和分析1.数据收集:建立数据库,收集监测数据和样本,包括水质数据、水量数据和生态数据等,确保监测数据的准确性和可靠性。
2.数据分析:对收集到的数据进行整理和分析,利用统计方法和模型评估水质状况、水资源使用效益和生态系统健康状况,形成监测报告,为环境管理和决策提供科学依据。
五、结果应用和保护措施1.监测结果应用:将监测结果与相关环境标准进行比较和评估,及时发现和预警水质异常情况,根据监测结果调整环境保护措施和管理措施。
2.保护措施:根据监测结果制定相应的保护措施,如加强污染源的治理,提高水体的净化和保护能力,维护生态系统的完整性。
六、预算和人力资源1.预算:编制监测项目的预算,在设备购置、样本分析和数据处理等方面进行合理配置,确保监测工作的顺利进行。
地表水水质监测的方案
地表水水质监测的方案地表水水质监测方案一、明确监测目的本方案的监测目的包括以下三个方面:1.对校园内各区域用水及水质进行监测,掌握校园水质情况。
2.进一步熟练掌握水质监测中的各项实验操作技术,掌握地表水中各项指标与污染物的测定方法。
3.学会应用环境质量标准评价校园环境,并提出改善校园水质的意见和建议。
二、基础资料的收集在___至生化楼实验区域的水域进行监测。
该河段属于珠江水系广州段,根据《广州市水文地质分析》,该水域的有关资料如下:1.地形地貌:广州市地处珠江三角洲的北部边缘,是三角洲平原与低山丘陵区的过渡带。
东北部是由花岗岩与变质岩组成的低山丘陵区,海拔标高一般在300米以下,地形高差250米左右,坡度15°~35°,水系呈树枝状,切割强烈。
西部是由河流堆积组成的冲积平原,南部为微向南倾斜的珠江三角洲平原,标高5~7米,其中分布零星的残丘和苔地。
2.气象:广州市地处南亚热带,属海洋性季风气候,年平均气温为21.4℃~21.9℃,最热是7~8月,平均气温28.0℃~28.7℃,绝对最高气温为38.7℃。
年平均降雨量1725.17毫米,相对集中在4~9月的雨季,占全年的82.1%,兼受台风的袭扰,年平均蒸发量1603.15毫米。
3.水文:珠江、东江和溪流河在本区交汇,经狮子洋入海,是区域地下水的最低排泄基准面。
冲积平原和三角洲平原,地势低平,地表水系发达,水网密布,分布有大中小河流34条。
根据水资源航空遥感调查,地表水体类别有:库唐、涌溪、干流河道,全区水域面积平方千米,占广州市区面积的10.8%。
据黄埔潮汐站资料,珠江平均水位为0.72米,平均低潮水位为-0.88米,涨潮最大朝差2.56米,落潮最大潮差3.00米。
4.监测河段概况:经实地考察,此河段是珠江至校园图书馆中心湖之间的河段,全长约400米,宽约4.5米,水深约1.5米,流经生化实验楼和工程实验楼,水质受到这两处污染源的影响。
地表水监测方案
地表水监测方案一、监测目的地表水监测的主要目的是为了及时、准确地掌握地表水体的水质状况,为水资源保护、水污染防治、水环境管理以及生态环境保护等提供科学依据和技术支持。
通过对地表水的监测,可以了解水体中污染物的种类、浓度、时空分布特征,评估水体的污染程度和生态健康状况,为制定合理的环境保护政策和措施提供决策依据。
二、监测范围监测范围应涵盖区域内的主要河流、湖泊、水库等地表水体。
根据当地的水系分布、污染源分布以及环境保护的重点区域,确定具体的监测断面和监测点位。
对于河流,应在干流和主要支流的上、中、下游设置监测断面,包括出入境断面、城市河段断面、重要功能区断面等。
对于湖泊和水库,应在主要入湖(库)口、湖心、出湖(库)口等位置设置监测点位。
三、监测项目1、物理指标水温、色度、浊度、透明度、电导率等。
2、化学指标pH 值、溶解氧(DO)、化学需氧量(COD)、生化需氧量(BOD)、氨氮(NH₃N)、总磷(TP)、总氮(TN)、重金属(如汞、镉、铅、铬等)、石油类、挥发酚等。
3、生物指标叶绿素 a、浮游生物、底栖生物等。
4、其他指标流量、流速等水文参数。
四、监测频次1、河流对于重点河流的出入境断面、城市河段断面等,每月监测不少于 1 次;对于一般河流的监测断面,每季度监测不少于 1 次。
在丰水期、平水期和枯水期应适当增加监测频次。
2、湖泊、水库对于重要的湖泊和水库,每月监测不少于 1 次;对于一般的湖泊和水库,每季度监测不少于 1 次。
在水体水质变化较大或发生突发环境事件时,应及时进行加密监测。
五、监测方法1、水样采集按照相关标准和规范要求,选择合适的采样器具和采样方法。
采样时应注意避免搅动水底沉积物,保证水样的代表性。
对于不同的监测项目,可能需要采集不同类型的水样,如瞬时水样、混合水样、综合水样等。
2、现场测定对于一些能够在现场测定的物理指标和化学指标,如水温、pH 值、溶解氧等,应在采样现场进行测定,并记录测定结果。
地表水水质监测方案
地表水水质监测方案地表水是指地表自然水体中的水,包括江河湖泊、水库、运河等。
地表水水质监测是为了保护和管理地表水资源,保障人民群众的饮用水安全,维护生态环境的重要手段。
因此,建立科学合理的地表水水质监测方案至关重要。
一、监测目标。
地表水水质监测的首要目标是保障人民群众的饮用水安全。
其次,还包括保护水生态环境,维护水资源的可持续利用。
监测目标的明确性是制定监测方案的基础。
二、监测内容。
地表水水质监测内容主要包括水体的理化指标和生物学指标。
理化指标包括水质的透明度、浊度、PH值、溶解氧、化学需氧量等。
生物学指标包括水中微生物、浮游生物和底栖生物的种类和数量。
三、监测频次。
地表水水质监测的频次应根据监测目标和监测内容确定。
一般来说,对于重点保护水域,监测频次应该较高,而对于一般水域,监测频次可以适当降低。
监测频次的确定需要考虑到监测成本、监测数据的时效性等因素。
四、监测方法。
地表水水质监测方法包括野外采样和实验室分析两个环节。
野外采样要求采样点的选择具有代表性,采样方法应当规范,避免外界因素的干扰。
实验室分析要求分析方法准确可靠,分析设备和仪器的维护保养要到位。
五、监测数据处理与评价。
监测数据的处理应当科学规范,要进行数据质量控制和质量评价。
监测数据的评价应当结合当地的水质标准和相关法律法规,对水质状况进行科学客观的评价。
六、监测结果应用。
地表水水质监测结果应当及时向社会公开,为政府决策和公众参与提供科学依据。
同时,监测结果还应当用于水资源管理和环境保护工作中,为改善水质状况提供技术支撑。
七、监测方案的完善与改进。
地表水水质监测方案应当不断完善和改进,结合实际情况进行调整和优化。
同时,应当加强监测技术和方法的研究,提高监测数据的准确性和可靠性。
总结:地表水水质监测是保障人民群众饮用水安全和维护生态环境的重要手段,建立科学合理的监测方案对于实现这一目标至关重要。
监测方案的制定需要明确监测目标和内容,确定监测频次和方法,科学处理和评价监测数据,充分应用监测结果,并不断完善和改进监测方案。
怎样制定地表水监测方案
怎样制定地表水监测方案引言地表水是指地表水域中的水,如河流、湖泊、水库等。
地表水的质量直接关系到社会经济的发展和人民的生活需求,因此制定有效的地表水监测方案至关重要。
本文将介绍如何制定地表水监测方案,以保障地表水的质量和可持续利用。
1. 监测目标的确定在制定地表水监测方案之前,首先需要确定监测的目标。
这包括监测参数、监测地点和监测频率等方面的内容。
1.1 监测参数监测参数是指需要测量和监控的特定指标,用以评估地表水质量。
常见的监测参数包括水质指标(如pH值、溶解氧、浊度等)、营养物质(如氨氮、总磷、总氮等)和污染物(如重金属、有机物等)等。
根据地表水的使用目的和监测目标,合理选择监测参数。
1.2 监测地点监测地点的选择应综合考虑地表水的水系特征、使用目的和可能受到的污染源等因素。
一般来说,应选取代表性的监测点,包括不同水质状况、不同污染源类型和不同人类活动程度的地区。
监测点的数量和位置要能充分反映地表水的整体状况。
1.3 监测频率监测频率是指监测在一定时间内进行的次数。
监测频率要根据监测参数的变化规律、监测目的和资源条件来确定。
对于重要的监测点和关键指标,应进行更为频繁的监测,以及在特定时段或事件发生时进行额外的监测。
2. 监测方法的选择制定地表水监测方案时,还需要选择合适的监测方法。
根据监测目标和资源条件,可以采用以下几种常见的监测方法:2.1 野外实地监测野外实地监测是指在地表水的采样点进行取样、测试和监测。
这种方法可以获得实时、直接的监测数据,适用于对特定地点的深入监测。
常见的野外实地监测技术包括水样采集、现场测试和仪器测量等。
2.2 室内实验室分析室内实验室分析是指将采集的地表水样品带回实验室进行详细的化学、物理和生物学分析。
这种方法可以获得较为准确和全面的监测结果,适用于对特定指标的分析和研究。
常见的室内实验室分析技术包括光谱分析、色谱分析、电化学分析等。
2.3 远程遥感监测远程遥感监测是指利用卫星、无人机等遥感技术对地表水进行观测和监测。
地表水监测方案
地表水监测方案一、监测目的地表水监测的主要目的是及时、准确地掌握地表水环境质量状况及其变化趋势,为水资源保护、水污染防治和水环境管理提供科学依据。
通过监测,可以了解地表水的物理、化学和生物特性,评估水体的污染程度,确定主要污染物及其来源,预测水体质量的发展趋势,为制定合理的环境保护政策和措施提供支持。
二、监测范围本次地表水监测范围包括_____地区内的主要河流、湖泊、水库等水体。
具体监测点位将根据水体的功能、规模、水流特征以及周边污染源分布等因素进行合理布设。
三、监测项目(一)物理指标1、水温:使用水温计或热敏电阻传感器进行测量,了解水体的热状况。
2、色度:通过目视比色法或分光光度法测定,反映水体的颜色程度。
3、浊度:采用浊度仪测量,表征水体中悬浮物质的含量。
(二)化学指标1、 pH 值:使用 pH 计直接测量,反映水体的酸碱性。
2、溶解氧(DO):采用碘量法或溶解氧测定仪测定,是评估水体自净能力和水生生物生存状况的重要指标。
3、化学需氧量(COD):常用重铬酸钾法或快速消解分光光度法测定,反映水体中有机物的污染程度。
4、生化需氧量(BOD):通过稀释与接种法测量,用于评估水体中可生物降解有机物的含量。
5、氨氮:采用纳氏试剂分光光度法或水杨酸次氯酸盐分光光度法测定,是反映水体受氮污染的重要指标。
6、总磷:使用钼酸铵分光光度法测量,表征水体中磷元素的含量。
7、总氮:通过碱性过硫酸钾消解紫外分光光度法测定,反映水体中氮元素的总量。
8、重金属:包括铜、锌、铅、镉、汞、铬等,采用原子吸收分光光度法、原子荧光光谱法或电感耦合等离子体质谱法进行检测。
(三)生物指标1、浮游植物:通过显微镜观察和计数,了解水体中藻类的种类和数量。
2、浮游动物:同样通过显微镜观察和分类计数,评估水生生态系统的结构和功能。
四、监测频率根据水体的类型和功能,以及污染状况的不同,确定相应的监测频率。
1、对于主要河流,每月监测一次。
2、重点湖泊和水库,每季度监测一次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地表水水质监测方案
1.引言
地表水是指地球表面上湖泊、河流和水库等水体的总称。
随着人口
的增加和经济的快速发展,地表水的水质问题日益突出。
为了保护和
管理地表水资源,制定一个科学合理的地表水水质监测方案至关重要。
2.目的
地表水水质监测方案的目的是为了及时了解地表水的水质状况,准
确评估水体的健康状况,并为保护和恢复水质提供科学依据。
具体目
的包括但不限于:
2.1 监测地表水中的主要污染物含量,如悬浮物、有机物、重金属等;
2.2 评估地表水的生态系统健康状况;
2.3 监测污染源的排放情况,制定相应的环境保护措施;
2.4 提供水质数据支撑,为政府决策提供科学依据。
3.监测内容
根据地表水的特点和国家相关标准,地表水水质的监测内容应包括
以下方面:
3.1 水样采集:按照规定的监测站点和频次采集地表水样品,并注
意采样方法的标准化和一致性。
3.2 化学指标分析:对地表水样品进行化学指标分析,包括pH值、
溶解氧、浊度、总固体、COD、BOD5、氨氮、硝态氮、磷酸盐等参数的测量。
3.3 生物学指标监测:通过对水样中的浮游生物、底栖生物和水生
植物等进行采样和分析,评估水生态系统的健康状况。
3.4 污染物监测:对地表水中的主要污染物进行监测,包括悬浮物、有机物、重金属等。
可以采用分析仪器和实验室分析方法进行定量检测。
3.5 监测数据管理:建立水质监测数据管理系统,对收集到的监测
数据进行归档、整理和分析,确保数据的准确性和可靠性。
4.监测方法与技术
在地表水水质监测中,应采用科学合理的监测方法和先进的监测技术,以提高监测效率和数据质量。
常用的监测方法和技术包括:
4.1 传统监测方法:包括实地采样、化学分析等,可以获得较准确
的水质数据,适用于常规监测工作。
4.2 在线监测技术:利用现代传感器和仪器设备,对地表水中的水
质参数进行实时或定时监测,可以实现自动化监测和远程数据传输。
4.3 遥感技术:利用遥感卫星或飞机对地表水进行遥感影像获取,
通过图像处理和分析,可以获得水体的水质信息。
4.4 生物监测技术:基于生物学指标对地表水进行监测和评估,可
以综合考虑水生态系统的整体健康状况。
5.质量控制
地表水水质监测过程中的质量控制至关重要,以确保监测数据的准
确性和可比性。
质量控制应包括以下方面:
5.1 标准操作规程:制定标准的操作规程和方法,保证监测工作的
一致性和标准化。
5.2 质量保证体系:建立完善的质量保证体系,包括内部审核、外
部审核以及认证机构的评估等。
5.3 仪器校准和维护:定期对使用的仪器设备进行校准和维护,确
保其测量结果的准确性和稳定性。
5.4 平行样测定:对同一水样进行多次重复测定,评估分析结果的
可靠性和重复性。
6.监测报告与应用
根据监测数据,编制详尽的监测报告,报告应包括以下内容:
6.1 水质评估:根据监测数据进行水质评估,包括水质级别、污染
状况、生态风险等方面的评估。
6.2 污染源追踪:通过污染物的监测,确定主要污染源的排放情况,为制定相应的环境保护措施提供依据。
6.3 环境效应分析:分析污染物对水生态系统及周边环境的影响,
并提出相应的环境管理建议。
6.4 水质改善建议:根据评估结果,提出地表水水质改善的建议和
措施。
地表水水质监测方案的制定和实施,有助于保护和管理地表水资源,维护生态平衡和人类健康。
各级政府部门、科研机构和企事业单位应
加强合作,共同推动地表水水质监测工作的开展,以确保地表水资源
的可持续利用。