七年级数学培优试卷 第14讲 线段与角(含答案)
最新成都七年级数学上期末专题培优练习:线段与角(B卷)含答案
成都七年级数学上期末专题培优练习:线段与角第Ⅰ卷(选择题)一.填空题(共21小题)1.一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m= ;(2)(m,n)是“相伴数对”,则代数式m﹣[n+(6﹣12n﹣15m)]的值为.2.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“站台”.3.已知关于x的方程2ax=(a+1)x+3的解是正整数,则正整数a= .4.已知m是系数,关于x、y的两个多项式mx2﹣2x+y与﹣3x2+2x+3y的差中不含二次项,则代数式m2+3m﹣1的值为.5.已知x为有理数,则|x+5|+|x﹣3|的最小值是.6.如图所示的几何体都是由棱长为1个单位的正方体摆成的,经计算可得第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位,…依次规律,则第(20)个几何体的表面积是个平方单位.7.已知:2(x+5)2+3|y﹣2|=0,则x y= .8.如图,直线AB、CD相交于点O,∠BOF=∠DOE=90°,∠DOF=58°,则∠BOE= ,∠AOC= .9.如图:四边形ABCD和四边形ECGF都是正方形,其边长分别为x、y(点B、C、G和点C、D、E分别在一条直线上)则图中阴影部分的面积为:(用含x、y的代数式表示,且按x降幂排列)10.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a,b,c,…,z(不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x为奇数时,密码对应的序号y=;当明码对应的序号x为偶数时,密码对应的序号y=+13.再由得到的新序号推出密码中的字母.按上述规定,将明码“love”译成密码是.11.如图,将一条长为60cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度有种可能.12.关于x的方程=x+1无解,则m的值为.13.数轴上线段AB的中点为C,当点A代表的数是M,点B代表的数是N,则点C代表的数是.14.设一列数a1、a2、a3、…a2012中任意三个相邻数之和都是30,已知a2=25,a99=2x,a2011=3﹣x,那么a2000= .15.若x+y=﹣2,|x|=4,则y= .16.如图,把正方形ABCD对折,折痕为MN.把顶点D折到MN上的一点P上,折痕为CE,再把顶点A折到MN上的同一点,折痕为BF,则∠CPB的度数是度.17.已知,|a|=﹣a,=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|= .18.如图,点C把AB分为2:3两段,点D分AB为1:4两段,若DC=5cm,则AD= cm,AB= cm.19.如图所示,线段AB=m,BC=n,点E、F分别是线段AB、BC的中点,则EF= (用含m、n的代数式表示).20.如果x、y都是不为0的有理数,则代数式的最大值是.21.在实数的原有运算法则中我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=﹣3时,代数式(﹣2★z)•z﹣(﹣4★z)的值为.第Ⅱ卷(非选择题)二.解答题(共19小题)22.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN 的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.23.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足:|a+6|+(b ﹣4)2=0(1)求线段AB的长;(2)如图1,点C在数轴上对应的数为x,且是方程x+1=x﹣5的根,在数轴上是否存在点P使PA+PB=BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(3)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣BN的值不变;②PM+BN的值不变,其中只有一个结论正确,请判断出正确的结论,并求出其值.24.已知OD是∠AOC的平分线,OE是∠BOC的平分线,OF是∠DOE的平分线,且∠AOC<∠AOB.(1)如图1,当∠AOB=90°,求∠DOF的度数;(2)如图2,当90°<∠AOB<180°时,试探究∠DOF与∠AOB之间满足的数量关系,并说明理由;(3)如图3,当90°<∠AOB<180°,且∠AOC在∠AOB的外侧时,(2)问中所得结论是否仍然成立?并说明理由.25.阅读理解,完成下列各题定义:已知A、B、C为数轴上任意三点,若点C到A的距离是它到点B的距离的2倍,则称点C是[A,B]的2倍点.例如:如图1,点C是[A,B]的2倍点,点D不是[A,B]的2倍点,但点D是[B,A]的2倍点,根据这个定义解决下面问题:(1)在图1中,点A是的2倍点,点B是的2倍点;(选用A、B、C、D表示,不能添加其他字母);(2)如图2,M、N为数轴上两点,点M表示的数是﹣2,点N表示的数是4,若点E是[M,N]的2倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,且PQ=m,一动点H从点Q出发,以每秒2个单位长度的速度沿数轴向左运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的2倍点?(用含m的代数式表示)26.将一副直角三角板按如图1 摆放在直线AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不动,将三角板MON 绕点O 以每秒8°的速度顺时针方向旋转t 秒.(1)如图2,当t= 秒时,OM 平分∠AOC,此时∠NOC﹣∠AOM= ;(2)继续旋转三角板MON,如图3,使得OM、ON 同时在直线OC 的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由(数量关系中不能含t);(3)直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2°的速度顺时针旋转,当OM 旋转至射线OD 上时,两个三角板同时停止运动.①当t= 秒时,∠MOC=15°;②请直接写出在旋转过程中,∠NOC 与∠AOM 的数量关系(数量关系中不能含t).27.点O为直线AB上一点,在直线AB上侧任作一个∠COD,使得∠COD=90°.(1)如图1,过点O作射线OE,当OE恰好为∠AOD的角平分线时,请直接写出∠BOD与∠COE之间的倍数关系,即∠BOD= ∠COE(填一个数字);(2)如图2,过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,求∠FOB+∠EOC的度数;(3)在(2)的条件下,若∠EOC=3∠EOF,求∠AOE的度数.28.如图是某景区的环形游览路线ABCDA,已知从景点C到出口A的两条道路CBA 和CDA均为1600米,现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形道路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车的速度均为200米/分,每一个游客的步行速度均为50米/分.(1)探究(填空):①当两车行驶分钟时,1、2号车第一次相遇,此相遇点到出口A的路程为米;②当1号车第二次恰好经过点C,此时两车行驶了分钟,这一段时间内1号车与2号车相遇了次.(2)发现:若游客甲在BC上K处(不与点C、B重合)候车,准备乘车到出口A,在下面两种情况下,请问哪种情况用时较少(含候车时间)?请说明理由.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.(3)决策:①若游客乙在DA上从D向出口A走去,游客乙从D出发时恰好2号车在C处,当步行到DA上一点P(不与A,D重合)时,刚好与2号车相遇,经计算他发现:此时原地(P点)等候乘1号车到出口与直接从P步行到达出口A这两种方式,所花时间相等,请求出D点到出口A的路程.②当游客丙逛完景点C后准备到出口A,此时2号车刚好在B点,已知BC路程为600米,请你帮助游客丙做一下决策,怎样到出口A所花时间最少,并说明理由.29.点A、B、C在数轴上表示的数a、b、c满足:(b+2)2+(c﹣24)2=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.(1)a的值为,b的值为,c的值为;(2)若数轴上有三个动点M、N、P,分别从点A、B、C开始同时出发,在数轴上运动;点M的速度为每秒1个单位长度、点N的速度为每秒7个单位长度、点P的速度为每秒3个单位长度;其中点M从点N开始向右运动,点P从点C开始向左运动,点N从点B开始先向左运动,遇到点M后再向右运动,遇到点P 后回头再向左移动,…,这样直到点P遇到点M时三点都停止运动,求点N 所走的路程.30.已知:O为直线AB上的一点,射线OA表示北方向,射线OC在北偏东m°的方向,射线OE在南偏东n°的方向,射线OF平分∠AOE,且2m+2n=180.(1)如图,∠COE= °,∠COF和∠BOE之间的数量关系为.(2)若将∠COE绕点O旋转至图2的位置,射线OF仍然平分∠AOE时,试问(1)中∠BOE和∠COF之间的数量关系?请说明理由.(3)若将∠COE绕点O旋转至图3的位置,射线OF仍然平分∠AOE时,则∠BOE 和∠COF之间的数量关系发生变化吗?如不变化,说明理由,如变化,写出新的数量关系并说明理由.31.将长为1,宽为a的长方形纸片如图那样折一下,剪下一个边长等于长方形的宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如些反复操作下去,若在第n次操作后剩下的长方形为正方形,则操作终止.(1)第一次操作后,剩下的长方形两边长分别为;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则求a的值,写出解答过程(3)若第三次操作后,剩下的长方形恰好是正方形,画出图形,试求a的值.32.某公司规定业务员的工资包括基本工资和业务工资两个部分,其中基本工资为3000元/月,业务工资是按业务员当月的业务总额的千分之五来计算的.又根据国家税务法规定,每月个人所得超过3500元的部分为应纳税所得额,需缴纳一定的个人所得税.上缴个人所得税是按下表累加计算的.(1)业务员甲为测算自己的业务工资,自己记录了2011年11月份连续五天的业务情况,以2500元为标准.超过的记正数,不足的记负数,记录如下:800.500.﹣200.1200.200;帮助业务员甲测算出这个月的工资(按1个月25个工作日计算).(2)公司业务员乙到银行取工资时发现他2011年11月份的工资比测算的工资少了95元,他先愣了一下,又知道是由于上缴了个人所得税的原因.聪明的同学,你能求出业务员乙2011年11月份的工资吗?(3)为年终促销,公司经理出台一奖励办法,办法规定:12月份起,若12月份业务总额不超过6万元的按原来规定计算当月业务工资,若月总额超过6万元但不超过10万元,则超过6万元的部分另加千分之二来计算当月业务工资,若月业务总额超过10万元,则其中的10万元按上面的两个规定,超过10万元的部分另加千分之五来计算当月的业务工资.出台了这一奖励办法之后,12月份营业员丙上缴个人所得税143元,那么他这个月的业务总额为多少万元?33.已知,求代数式的值.34.已知关于x的方程mx+2=2(m﹣x)的解满足|x﹣|﹣1=0,则m的值.35.已知数轴上三点A,O,B表示的数分别为6,0,﹣4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.36.如图是2015年12月月历.(1)如图,用一正方形框在表中任意框往4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是,,.(2)在表中框住四个数之和最小记为a1,和最大记为a2,则a1+a2= .(3)当(1)中被框住的4个数之和等于76时,x的值为多少?(4)在(1)中能否框住这样的4个数,它们的和等于92?若能,则求出x的值;若不能,则说明理由.37.在学习了第四章《基本的平面图形》的知识后,小明将自己手中的一副三角板的两个直角顶点叠放在一起拼成如下的图形1和图形2.(1)在图1中,当AD平分∠BAC时,小明认为此时AB也应该平分∠FAD,请你通过计算判断小明的结论是否正确.(2)小明还发现:只要AD在∠BAC的内部,当△ABC绕直角顶点A旋转时,总有∠FAB=∠DAC(见图2),请你判断小明的发现是否正确,并简述理由.(3)在图2中,当∠FAC=x,∠BAD=y,请你探究x与y的关系.38.某地移动公司推出了移动电话的两种计费方式(见下表)温馨提示:1、若选用方式甲,每月固定缴费58元,当主动打出电话月累计时间不超过150分钟,不再额外收费;当超过150分钟时,超过部分每分钟加收0.25元.2、电信计费中的主叫:甲打给乙,甲为主叫,乙为被叫,运营商在收费时只针对主叫计时收费,被叫免费接听.设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据上表中提供的信息回答下列问题:(1)用含t的式子填写下表:(2)当150<t≤350时,t是否有某个值使得两种计费方式费用相等,如果相等请求出t的值,如果没有请说明理由.(3)如果顾客A每月的使用电话的主叫时间t满足0<t≤350时,结合你在(2)中的解答,回答该顾客选用哪种计费方式省钱,并说明理由.39.如图,两个形状,大小完全相同的含有30°,60°的三角板如图①放置,PA,PB与直线MN重合,且三角板PAC与三角板PBD均可绕点P逆时针旋转.(1)试说明:∠DPC=90°;(2)如图②,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定度数,PF平分∠APD,PE平分∠CPD,求∠EPF.(3)如图③,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3°/s.同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/s,在两个三角板旋转过程中(PC转到与PM重合时,三角板都停止转运),问的值是否变化?若不变,求出其值,若变化,说明理由.40.已知A、B两点在数轴上表示的数为a和b,M、N均为数轴上的点,且OA<OB.(1)若A、B的位置如图所示,试化简:|a|﹣|b|+|a+b|+|a﹣b|.(2)如图,若|a|+|b|=8.9,MN=3,求图中以A、N、O、M、B这5个点为端点的所有线段长度的和;(3)如图,M为AB中点,N为OA中点,且MN=2AB﹣15,a=﹣3,若点P为数轴上一点,且PA=AB,试求点P所对应的数为多少?参考答案与试题解析一.填空题(共21小题)1.一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m= ﹣;(2)(m,n)是“相伴数对”,则代数式m﹣[n+(6﹣12n﹣15m)]的值为﹣3 .【解答】解:(1)根据题意得:+=,去分母得:15m+10=6m+6,移项合并得:9m=﹣4,解得:m=﹣;(2)由题意得:+=,即=,整理得:15m+10n=6m+6n,即9m+4n=0,则原式=m﹣n﹣3+6n+m=m+5n﹣3=(9m+4n)﹣3=﹣3,故答案为:(1)﹣;(2)﹣32.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“站台”.【解答】解:AB=﹣(﹣)=,AP=×=,P:﹣+=.故P站台用类似电影的方法可称为“站台”.故答案为:.3.已知关于x的方程2ax=(a+1)x+3的解是正整数,则正整数a= 2,4 .【解答】解:方程整理得:(a﹣1)x=3,解得:x=,由a为正整数,得到a=2,4,故答案为:2,44.已知m是系数,关于x、y的两个多项式mx2﹣2x+y与﹣3x2+2x+3y的差中不含二次项,则代数式m2+3m﹣1的值为﹣1 .【解答】解:根据题意列得:(mx2﹣2x+y)﹣(﹣3x2+2x+3y)=mx2﹣2x+y+3x2﹣2x﹣3y=(m+3)x2﹣4x﹣2y,∵结果不含二次项,∴m+3=0,解得:m=﹣3,则m2+3m﹣1=9﹣9﹣1=﹣1.故答案为:﹣1.5.已知x为有理数,则|x+5|+|x﹣3|的最小值是8 .【解答】解:当x在以﹣5、3为端点的线段上时,|x﹣3|+|x+5|最小=3﹣x+x+5=8.故答案是:8.6.如图所示的几何体都是由棱长为1个单位的正方体摆成的,经计算可得第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位,…依次规律,则第(20)个几何体的表面积是1260 个平方单位.【解答】解:结合图形,发现:第(20)个图形的表面积是(1+2+…+20)×6=1260个平方单位.故答案为:1260.7.已知:2(x+5)2+3|y﹣2|=0,则x y= 25 .【解答】解:根据题意得:x+5=0,y﹣2=0,解得:x=﹣5,y=2,则原式=52=25.8.如图,直线AB、CD相交于点O,∠BOF=∠DOE=90°,∠DOF=58°,则∠BOE= 58°,∠AOC= 32°.【解答】解:∵∠BOF=90°,∠DOF=58°,∴∠DOB=90°﹣58°=32°,∵∠DOE=90°,∴∠BOE=90°﹣32°=58°,∵∠DOB=32°,∴∠AOC=32°,故答案为:58°;32°.9.如图:四边形ABCD和四边形ECGF都是正方形,其边长分别为x、y(点B、C、G和点C、D、E分别在一条直线上)则图中阴影部分的面积为:(用含x、y的代数式表示,且按x降幂排列)【解答】解:由题意可得,图中阴影部分的面积为:=,故答案为:.10.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a,b,c,…,z(不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x为奇数时,密码对应的序号y=;当明码对应的序号x为偶数时,密码对应的序号y=+13.再由得到的新序号推出密码中的字母.按上述规定,将明码“love”译成密码是shxc .【解答】解:∵“l”、“o”、“v”、“e”所代表的数字分别为12,15,22,5,∴密码对应的序号分别为19,8,24,3,对应的字母为shxc.11.如图,将一条长为60cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度有 4 种可能.【解答】解:∵三段长度由短到长的比为1:2:3,∴三段长度分别为:10cm,20cm,30cm.①当剪切处右边上部分的长度为10cm,剪切处左边的卷尺为20cm时,折痕处为:10+=20cm;②当剪切处右边上部分的长度为10cm,剪切处左边的卷尺为30cm时,折痕处为:10+=25cm;③当剪切处右边上部分的长度为20cm,剪切处左边的卷尺为10cm时,折痕处为:20+=25cm;④当剪切处右边上部分的长度为20cm,剪切处左边的卷尺为30cm时,折痕处为:20+=35cm;⑤当剪切处右边上部分的长度为30cm,剪切处左边的卷尺为10cm时,折痕处为:30+=35cm;⑥当剪切处右边上部分的长度为30cm,剪切处左边的卷尺为20cm时,折痕处为:30+=40cm;综上所述,折痕对应的刻度有4种可能.故答案为:4.12.关于x的方程=x+1无解,则m的值为﹣2 .【解答】解:方程去分母得:|m|x+m=2x+2,整理得:(|m|﹣2)x=2﹣m,当m=2时,x有无数多个解,不符合题意,舍去;当m=﹣2时,方程无解.故答案为:﹣213.数轴上线段AB的中点为C,当点A代表的数是M,点B代表的数是N,则点C代表的数是.【解答】解:当AB同号,且A在B点左侧,则AB=N﹣M,故点C代表的数是:M+=,当AB同号,且A在B点右侧,则AB=M﹣N,故点C代表的数是:N+=,当AB异号,A在B点左侧,则AB=N﹣M,故点C代表的数是:M+=,当AB异号,A在B点右侧,则AB=M﹣N,故点C代表的数是:N+=,综上所述:点C代表的数是:.故答案为:.14.设一列数a1、a2、a3、…a2012中任意三个相邻数之和都是30,已知a2=25,a99=2x,a2011=3﹣x,那么a2000= 25 .【解答】解:由任意三个相邻数之和都是30可知:a1+a2+a3=30a2+a3+a4=30a3+a4+a5=30…a n+a n+1+a n+2=30可以推出:a1=a4=a7=…=a3n﹣2a2=a5=a8=…=a3n﹣1a3=a6=a9=…=a3n所以a99=a3a2011=a1,则25+2x+3﹣x=30,x=2,a3=4a1=3﹣x=1,因此a2000=a2=25.故答案为:25.15.若x+y=﹣2,|x|=4,则y= ﹣6或2 .【解答】解:∵|x|=4,∴x=±4∴①y=﹣2﹣x=4解得:y=﹣6②y=﹣2+4=2.故填﹣6或2.16.如图,把正方形ABCD对折,折痕为MN.把顶点D折到MN上的一点P上,折痕为CE,再把顶点A折到MN上的同一点,折痕为BF,则∠CPB的度数是60°度.【解答】解:∵四边形ABCD为正方形,∴CD=CB=BA,∵顶点D折到MN上的一点P上,折痕为CE,再把顶点A折到MN上的同一点,折痕为BF,∴PC=DC,PB=AB,∴PC=PB=BC,∴△PAB为等边三角形,∴∠CPB=60°.故答案为60°.17.已知,|a|=﹣a,=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|= ﹣2c .【解答】解:∵|a|=﹣a,=﹣1,|c|=c,∴a为非正数,b为负数,c为非负数,∴a+b≤0,a﹣c≤0,b﹣c≤0,则原式=﹣a﹣b+a﹣c+b﹣c=﹣2c,故答案为:﹣2c18.如图,点C把AB分为2:3两段,点D分AB为1:4两段,若DC=5cm,则AD= 5 cm,AB= 25 cm.【解答】解:∵点C把AB分为2:3两段,∴AC=AB,∵D分AB为1:4两段,∴AD=AB,∵AC﹣AD=AB﹣AB=AB=CD=5cm,∴AB=25cm,AD=5cm,故答案为:5,25.19.如图所示,线段AB=m,BC=n,点E、F分别是线段AB、BC的中点,则EF=(m+n)(用含m、n的代数式表示).【解答】解:∵点E、F分别是线段AB、BC的中点,∴BE=AB,BF=BC,∴EF=BE+BF=AB+BC=(AB+BC),∵AB=m,BC=n,∴EF=(m+n).故答案为:(m+n).20.如果x、y都是不为0的有理数,则代数式的最大值是 1 .【解答】解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的最大值是1.故答案为:1.21.在实数的原有运算法则中我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=﹣3时,代数式(﹣2★z)•z﹣(﹣4★z)的值为﹣7 .【解答】解:根据题中的新定义得:当z=﹣3时,原式=(﹣2)★(﹣3)×(﹣3)﹣(﹣4)★(﹣3)=9﹣16=﹣7,故答案为:﹣7二.解答题(共19小题)22.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN 的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.【解答】解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.23.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足:|a+6|+(b ﹣4)2=0(1)求线段AB的长;(2)如图1,点C在数轴上对应的数为x,且是方程x+1=x﹣5的根,在数轴上是否存在点P使PA+PB=BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(3)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣BN的值不变;②PM+BN的值不变,其中只有一个结论正确,请判断出正确的结论,并求出其值.【解答】解:(1)∵|a+6|+(b﹣4)2=0,∴a+6=0,b﹣4=0,∴a=﹣6,b=4,∴AB=|﹣6﹣4|=10.答:AB的长为10;(2)存在,∵2x+1=x﹣5,∴x=﹣8,∴BC=12.设点P在数轴上对应的数是m,∵PA+PB=BC+AB,∴|m+6|+|m﹣4|=×12+10,令m+6=0,m﹣4=0,∴m=﹣6或m=4.①当m≤﹣6时,﹣m﹣6+4﹣m=13,m=﹣7.5;②当﹣6<m≤4时,m+6+4﹣m=13,(舍去);③当m>4时,m+6+m﹣4=13,m=5.5.∴当点P表示的数为﹣7.5或5.5时,PA+PB=BC+AB;(3)设P点所表示的数为n,∴PA=n+6,PB=n﹣4.∵PA的中点为M,∴PM=PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣4),∴①PM﹣BN=×﹣×=(不变),②PM+BN=+×=n+1(随点P的变化而变化),即正确的结论为①PM﹣BN的值不变,其值为.24.已知OD是∠AOC的平分线,OE是∠BOC的平分线,OF是∠DOE的平分线,且∠AOC<∠AOB.(1)如图1,当∠AOB=90°,求∠DOF的度数;(2)如图2,当90°<∠AOB<180°时,试探究∠DOF与∠AOB之间满足的数量关系,并说明理由;(3)如图3,当90°<∠AOB<180°,且∠AOC在∠AOB的外侧时,(2)问中所得结论是否仍然成立?并说明理由.【解答】解:(1)∵OF是∠DOE的平分线,∴∠DOF=,∵OD是∠AOC的平分线,OE是∠BOC的平分线,∴∠DOC=∠AOC,∠COE=∠COB,∵∠DOF==(∠DOC+∠COE)=(+∠COB)=∠AOB==22.5°;(2)同理得:∠DOF==×∠AOB=∠AOB,(3)结论仍然成立,理由是:∠DOF==(∠COE﹣∠COD),=(∠BOC﹣∠AOC),=(∠AOB+∠AOC﹣∠AOC),=∠AOB.25.阅读理解,完成下列各题定义:已知A、B、C为数轴上任意三点,若点C到A的距离是它到点B的距离的2倍,则称点C是[A,B]的2倍点.例如:如图1,点C是[A,B]的2倍点,点D不是[A,B]的2倍点,但点D是[B,A]的2倍点,根据这个定义解决下面问题:(1)在图1中,点A是[C,D] 的2倍点,点B是[D,C] 的2倍点;(选用A、B、C、D表示,不能添加其他字母);(2)如图2,M、N为数轴上两点,点M表示的数是﹣2,点N表示的数是4,若点E是[M,N]的2倍点,则点E表示的数是2或10 ;(3)若P、Q为数轴上两点,点P在点Q的左侧,且PQ=m,一动点H从点Q出发,以每秒2个单位长度的速度沿数轴向左运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的2倍点?(用含m的代数式表示)【解答】解:(1)∵CA=2,DA=1,CA=2DA∴点A 是[C,D]的2倍点∵BD=2,BC=1,BD=2BC∴点B是[D,C]的2倍点.故答案为:[C,D][D,C](2)∵NM=4﹣(﹣2)=6当点E在线段MN上又∵点E是[M,N]的2倍点∴EM=MN=4∴点E 表示的数是2当点E在点N右侧∴EM=2NE∴MN=NE=6∴ME=12∴点E表示的数是10.故答案为:2或10;(3 )∵PQ=m,PH=2t,∴HQ=m﹣2t又∵点H 恰好是P和Q两点的2倍点∴点H是[P,Q]的2倍点或点H是[Q,P]的2倍点∴PH=2HQ 或HQ=2PH即:2×2t=m﹣2t或2t=2(m﹣2t)或2t=2(2t﹣m),解得t=m或t=m或t=m所以,当t=m或t=m或t=m时,点H恰好是P和Q两点的2倍点.26.将一副直角三角板按如图1 摆放在直线AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不动,将三角板MON 绕点O 以每秒8°的速度顺时针方向旋转t 秒.(1)如图2,当t= 2.25 秒时,OM 平分∠AOC,此时∠NOC﹣∠AOM= 45°;(2)继续旋转三角板MON,如图3,使得OM、ON 同时在直线OC 的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由(数量关系中不能含t);(3)直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2°的速度顺时针旋转,当OM 旋转至射线OD 上时,两个三角板同时停止运动.①当t= 3 秒时,∠MOC=15°;②请直接写出在旋转过程中,∠NOC 与∠AOM 的数量关系(数量关系中不能含t).【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM=∠AOC=22.5°,∴t=2.25,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)∠NOC﹣∠AOM=45°,∵∠AON=90°+8t,∴∠NOC=90°+8t﹣45°=45°+8t,∵∠AOM=8t,∴∠NOC﹣∠AOM=45°;(3)①∵∠AOB=2t,∠AOM=8t,∴∠AOC=45°+2t,∴45°+2t﹣8t=15°或8t﹣45°﹣2t=15°.解得t=5或10.②∠NOC﹣∠AOM=15°.∵∠AOB=2t,∠AOM=8t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+8t,∠AOC=∠AOB+∠BOC=45°+2t,∴∠NOC=∠AON﹣∠AOC=90°+8t﹣45°﹣2t=45°+6t,∴∠NOC﹣∠AOM=15°.故答案为:2.25,45;3.27.点O为直线AB上一点,在直线AB上侧任作一个∠COD,使得∠COD=90°.(1)如图1,过点O作射线OE,当OE恰好为∠AOD的角平分线时,请直接写出∠BOD与∠COE之间的倍数关系,即∠BOD= 2 ∠COE(填一个数字);(2)如图2,过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,求∠FOB+∠EOC的度数;(3)在(2)的条件下,若∠EOC=3∠EOF,求∠AOE的度数.【解答】解:(1)∠BOD=2∠COE;理由如下:∵∠COD=90°.∴∠BOD+∠AOC=90°,∵OE平分∠AOD,∴∠AOE=∠DOE=∠AOD,又∵∠BOD=180°﹣∠AOD,∴∠COE=∠AOE﹣∠AOC=∠AOD﹣(90°﹣∠BOD)=(180°﹣∠BOD)﹣90°+∠BOD=∠BOD,∴∠BOD=2∠COE;故答案为:2;(2)∵OC为∠AOE的角平分线,OF平分∠COD,∴∠AOC=∠COE,∠COF=∠DOF=45°,∴∠FOB+∠EOC=∠DOF+∠BOD+∠AOC=45°+90°=135°;(3)∵∠EOC=3∠EOF,设∠EOF=x,则∠EOC=3x,∴∠COF=4x,由(2)得:∠AOE=2∠COE=6x,∠DOF=4x,∵∠COD=90°,∴4x+4x=90°,解得:x=11.25°,∴∠AOE=6×11.25°=67.5°.28.如图是某景区的环形游览路线ABCDA,已知从景点C到出口A的两条道路CBA 和CDA均为1600米,现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形道路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车的速度均为200米/分,每一个游客的步行速度均为50米/分.(1)探究(填空):①当两车行驶 4 分钟时,1、2号车第一次相遇,此相遇点到出口A的路程为800 米;②当1号车第二次恰好经过点C,此时两车行驶了24 分钟,这一段时间内1号车与2号车相遇了3 次.(2)发现:若游客甲在BC上K处(不与点C、B重合)候车,准备乘车到出口A,在下面两。
人教版七年级上数学几何初步--线段与角的经典题(含答案)
几何初步--线段与角的经典题一.解答题(共45小题)1.如图,已知线段AB(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB,②延长线段BA到D,使AD=AC(不写画法,当要保留画图痕迹)(2)请直接回答线段BD与线段AC长度之间的大小关系(3)如果AB=2cm,请求出线段BD和CD的长度.2.已知线段MN=3cm,在线段MN上取一点P,使PM=PN;延长线段MN到点A,使AN=MN;延长线段NM到点B,使BN=3BM.(1)根据题意,画出图形;(2)求线段AB的长;(3)试说明点P是哪些线段的中点.3.如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有条.4.已知,如图B,C两点把线段AD分成3:5:4三部分,M为AD的中点,BM=9cm,求CM和AD的长5.如图,已知线段AB=16 cm,点M在AB上,AM:BM=1:3,P、Q分别以AM,AB的中点,求PQ的值.6.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..7.已知线段AB,在AB的延长线上取一点C,使BC=2AB,在BA的延长线上取一点D,使DA=AB,取AB中点E,若DE=7.5cm,求DC的长.8.如图,已知线段AB的长为x,延长线段AB至点C,使BC=AB.(1)用含x的代数式表示线段BC的长和AC的长;(2)取线段AC的中点D,若DB=3,求x的值.9.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.(1)若AB=12cm,则MN的长度是;(2)若AC=3cm,CP=1cm,求线段PN的长度.10.已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.11.如图,延长线段AB到点F,延长线BA到点E,点M、N分别是线段AE、BF 的中点,若AE:AB:BF=1:2:3,且EF=18cm,求线段MN的长.12.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.13.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD 的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.14.如图,已知线段AB和CD的公共部分为BD,且BD=AB=CD,线段AB、CD的中点E、F之间距离是20,求AB、CD的长.15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?并说明理由;16.如图所示,点A在线段CB上,AC=AB,点D是线段BC的中点.若CD=3,求线段AD的长.17.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.18.如图,点A、M、B、N、C在同一直线上顺次排列,点M是线段AB的中点,点N是线段MC的中点,点N在点B的右边.(1)填空:图中共有线段条;(2)若AB=6,MC=7,求线段BN的长;(3)若AB=a,MC=7,将线段BN的长用含a的代数式表示出来.19.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C 是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.20.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.21.已知数轴上有三点A、B、C,其位置如图1所示,数轴上点B表示的数为﹣40,AB=120,AC=2AB(1)图1中点C在数轴上对应的数是(2)如图2,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒,点P在点Q左侧运动时,经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度(3)如图3,若T点是A点右侧一点,点T在数轴上所表示的数为n,TB的中点为M,N为TA的4等分点且靠近于T点,若TM=2AN,求n的值.22.如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.23.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?25.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B 匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由26.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s 的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA 向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.27.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t >6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)28.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.29.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.24.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?30.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.31.如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F 分别是AC、BD的中点.(1)若AC=4cm,则EF=cm.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.32.点O 是直线AB上一点,∠COD 是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC 的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD 绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.33.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E 分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.34.如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.35.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.初步尝试:(1)如图1,若∠AOC=30°.求∠DOE的度数;类比探究:(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);解决问题:(3)如图2时,O是直线AB上的一点,∠COD是直角,OE平分∠BOC,探究∠AOC和∠DOE的度数之间的数量关系.直接写出你的结论.36.如图,∠AOB=100°,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=40°,求∠MON的度数;(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来;若不能,说明为什么?37.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.则∠MON的大小为;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.38.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?39.如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.(1)若∠COE=20°,则∠BOD=;若∠COE=α,则∠BOD=(用含α的代数式表示)(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE 与∠BOD之间有怎样的数量关系?并说明理由.40.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.41.阅读解答过程,回答问题:如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.解:过O作射线OM,使点M,O,A在同一直线上,因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=180°﹣∠MOD=180°﹣∠BOC=180°﹣30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.42.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O 在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.43.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB=;若∠ACB=130°,则∠DCE=;(2)猜想∠ACB与∠DCE大大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB 与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O 重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.44.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时针方向旋转,速度为12°/s.两射线OM、ON同时运动,运动时间为t秒.(本题出现的角均指小于平角的角)(1)图中一定有个直角;当t=2时,∠MON的度数为,∠BON 的度数为,∠MOC的度数为.(2)当0<t<12时,若∠AOM=3∠AON﹣60°,试求出t的值;(3)当0<t<6时,探究的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.45.已知,如图(1),∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD 的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β(1)如图(2),若α=90°,β=30°,则,∠MON=(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示)(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O 同时逆时针旋转,转速为1°/秒(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.线段与角的经典题一.解答题(共45小题)1.【解答】解:(1)如图所示,BC、AD即为所求;(2)由图可得,BD>AC;(3)∵AB=2cm,∴AC=2AB=4cm,∴AD=4cm,∴BD=4+2=6cm,∴CD=2AD=8cm.2.【解答】解:(1)如图所示:(2)∵MN=3cm,AN=MN,∴AN=1.5cm,∵BN=3BM,∴BM=MN=1.5cm,∴AB=BM+MN+AN=6cm;(3)∵点P在线段MN上,PM=PN,∴点P是线段MN 的中点,∵BM=AN=1.5cm,PM=PN=1.5cm,∴BP=AP=3cm,∴点P是线段AB 的中点.3.【解答】解:(1)当线段上有6个点时,线段共有=15条;(2)当线段(3)当n=100时,线段共有=4950上有n个点时,线段共有条;条;故答案为:15,,4950.4.【解答】解:设AB=3xcm,BC=5xcm,CD=4xcm,∴AD=AB+BC+CD=12xcm,∵M是AD的中点,∴AM=MD=AD=6xcm,∴BM=AM﹣AB=6x﹣3x=3xcm,∵BM=9 cm,∴3x=9,解得,x=3,∴CM=MD﹣CD=6x﹣4x=2x=2×3=6(cm),AD=12x=12×3=36(cm).5.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q 分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm.6.【解答】解:(1)①8﹣12=﹣4,8=12=20,∴数轴上点B表示的数﹣4或20,②动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,则点P表示的数8﹣6t;(2)分两种情况:当点B在点A的左侧时,点P运动追上点Q,即8﹣6t=﹣4﹣4t,解得t=6;当点B在点A的右侧时,点P运动追上点Q,即8﹣6t=20﹣4t,解得t=﹣6(舍去),∴点P运动6秒追上点Q;(3)∵M为AP的中点,∴M点表示的数为(8+8﹣6t)÷2=8﹣3t,∵N为PB的中点,∴N点表示的数为(﹣4+8﹣6t)÷2=2﹣3t,∴MN=8﹣3t﹣(2﹣3t)=6,∴点P在运动的过程中,MN的长度不会发生变化.7.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).8.【解答】解:(1)∵AB=x,BC=AB,∴BC=x,∵AC=AB+BC,∴AC=x+x= x.(2)∵AD=DC=AC,AC=x,∴DC=x,∵DB=3,BC=x,∵DB=DC﹣BC,∴3=x﹣x,∴x=12.9.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=(AC+BC)=AB=6cm.故答案为6cm;(2)∵AC=3cm,CP=1cm,∴AP=AC+CP=4cm,∵P是线段AB的中点,∴AB=2AP=8cm.∴CB=AB ﹣AC=5cm,∵N是线段CB的中点,CN=CB=2.5cm,∴PN=CN﹣CP=1.5cm.10.【解答】解:如图1所示,∵AP=2PB,AB=6,∴PB=AB=×6=2,AP=AB=×6=4;∵点Q为PB的中点,∴PQ=QB=PB=×2=1;∴AQ=AP+PQ=4+1=5.如图2所示,∵AP=2PB,AB=6,∴AB=BP=6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5或9.11.【解答】解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=18cm,∴6x=18,解得:x=3,∴MN=4x=12cm.12.【解答】解:∵AC=20cm,BC=3AB,∴BC=×20=15cm,∴AB=5cm,∵N为BC的中点,∴BN=CN=7.5cm,∵BM:MN=2:3,∴MN=×7.5=4.5cm.13.【解答】解:(1)①∵B是线段AD上一动点,沿A→D以2cm/s的速度运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)不变;∵AB 中点为E,C是线段BD的中点,∴EB=AB,BC=BD,∴EC=EB+BC=(AB+BD)=AD=×10=5cm.14.【解答】解:设BD=x,则AB=3x,CD=4x.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5x,CF=CD=2x,AC=AB+CD﹣BD=3x+4x﹣x=6x.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5x.∵EF=20,∴2.5x=20,解得:x=8.∴AB=3x=24,CD=4x=32.15.【解答】解:(1)∵点M、N分别是AC、BC的中点,AC=8cm,CB=6cm,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7cm,即线段MN的长是7cm;(2)∵点M、N分别是AC、BC的中点,AC+CB=acm,∴CM=AC,CN= BC,∴MN=CM+CN=AC+BC=(AC+BC)=acm,即线段MN的长是acm;(3)如图:MN=b,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=bcm,∴CM=AC,CN=BC,∴MN=CM ﹣CN=AC﹣BC=(AC﹣BC)=bcm,即线段MN的长是bcm.16.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=AB,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.17.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=m(m ﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行×45×(45﹣1)=990次握手.18.【解答】解:(1)图中共有线段1+2+3+4=10条;故答案为:10;(2)∵AB=6,点M是线段AB的中点,∴BM=AB=3,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣3=4,∴BN=BC﹣NC=4﹣3.5=0.5;(3)∵AB=a,点M是线段AB的中点,∴BM=AB=a,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣a,∴BN=BC﹣NC=7﹣a﹣3.5=3.5﹣a.19.【解答】解:(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综(2)①根据题意得:(1+2)t=15,解得:t=5.答:上所述:DP的长为5cm或10cm.当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.20.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.21.【解答】解:(1)∵AB=120,点B表示的数为﹣40,∴点A表示的数为80.∵AC=2AB,∴点C表示的数为80﹣120×2=﹣160.(2)设点R的速度为x个单位长度/秒,则点P的速度为3x个单位长度/秒,点Q的速度为(2x﹣5)个单位长度/秒,当点P在点Q左边时,P、R相遇时QP=QR,5(3x+x)=AC=240,解得x=12,2x﹣5=24﹣5=19,∴点Q的速度为19个单位长度/秒,(3)设AT=y,∵TB的中点为M,∴TM=TB=(120+y)=60+y,∵N为TA的4等分点且靠近于T点,∴AN=y,∵TM=2AN,∴60+y=y,解得x=60,∴n=80+60=140.故答案为:﹣160.22.【解答】解:(1)如图1,由题意得:AP=2t,则PB=12﹣2t,∵M为AP的中点,∴AM=t,由PB=2AM得:12﹣2t=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=BP=(2t﹣12)=t﹣6,①MN=PA﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.23.【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC 的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN= AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.24.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30;(2)∵OE 平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.25.【解答】解:(1)∵线段的长是线段中线长度的2倍,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6)①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s.26.【解答】解:(1)AC=AB﹣BC=20﹣8=12(cm),(2)20÷(2+1)=(s).故当x=s时,P、Q重合;(3)存在,①C是线段PQ的中点,得2x+20﹣x=2×12,解得x=4;②P为线段CQ的中点,得12+20﹣x=2×2x,解得x=;③Q为线段PC的中点,得2x+10=2×(20﹣x),解得x=7;综上所述:x=4或x=或x=7.故答案为:12;.27.【解答】解:(1)∵乙机器人从B点出发,以50米/分的速度行走9分钟到达C点,∴B、C两点之间的距离是50×9=450(米).∵在4≤t≤6分钟时,甲、乙两机器人之间的距离保持不变,∴在4≤t≤6分钟时,甲机器人的速度为50米/分.(2)设甲机器人前3分钟的速度为x米/分,则3x﹣50×3=90,解得x=80.答:甲机器人前3分钟的速度为80米/分.(3)当t=4时,两人相距80﹣50=30米,且4≤t≤6时,两人相距总是30米.分三种情况说明:①甲在AB间时,90﹣80t+50t=28,解得t=>,此情形不存在.②甲乙均在B右侧,且甲在乙后时,90+50t﹣80t=28,解得t=.③甲乙均在B右侧,且乙在甲后时,80t﹣90﹣50t=28,解得t=.答:两机器人前6分钟内出发分钟或分钟相距28米.(4)S=.故答案为:450,50;28.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.29.【解答】解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°.②当∠MON=90°时,n°+25°=90°,∴n=65°.(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.30.【解答】解:(1)①∵OD平分∠AOC,∠AOC=130°,∴∠AOD=∠DOC=∠AOC=×130°=65°,∴∠BOD=180°﹣∠AOD=180°﹣65°=115°;②∵∠DOE=90°,又∵∠DOC=65°,∴∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∵∠BOD=115°,∠DOE=90°,∴∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,∴∠COE=∠BOE,即OE平分∠BOC.(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∵∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°﹣40°=50°.31.【解答】解:(1)∵AB=20cm,CD=2cm,AC=4cm,∴DB=14cm,∵E、F分别是AC、BD的中点,∴CE=AC=2cm,DF=DB=7cm,∴EF=2+2+7=11cm,故答案为:11;(2)EF的长度不变.∵E、F分别是AC、BD的中点,∴EC= AC,DF=DB,∴EF=EC+CD+DF=AC+CD+DB===,∵AB=20cm,CD=2cm,∴EF==11cm;(3).理由:∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COE+∠COD+∠DOF=∠AOC+∠COD+∠BOD=(∠AOC+∠BOD)+∠COD=(∠AOB﹣∠COD)+∠COD=(∠AOB+∠COD).故答案为:.32.【解答】解:(1)①∵∠COD=90°,∠DOE=25°,∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,又∵OE平分∠BOC,∴∠BOC=2∠COE=130°,∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;②∵∠COD=90°,∠DOE=α,∴∠COE=∠COD﹣∠DOE=90°﹣α,又∵OE平分∠BOC,∴∠BOC=2∠COE=180°﹣2α,∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(2)∠DOE=∠AOC,理由如下:如图2,∵∠BOC=180°﹣∠AOC,又∵OE平分∠BOC∴∠COE=∠BOC=(180°﹣∠AOC)=90°﹣∠AOC,又∵∠COD=90°,∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=∠AOC.33.【解答】解:(1)∵AB=14cm,点D、E分别是AC和BC的中点,∴DE=DC+EC= AC+BC=AB=7cm故答案为:7;(2)∵AC=4cm,AB=14cm,∴BC=AB﹣AC=10cm,又∵D为AC中点,E为BC中点,∴CD=2cm,CE=5cm,∴DE=CD+CE=7cm;(3)∵AC=acm,∴BC=AB﹣AC=(14﹣a)cm,又∵D为AC 中点,E为BC中点,∴CD=acm,CE=(14﹣a)cm,∴DE=CD+CE=a+(14﹣a)=7cm,∴无论a取何值(不超过14)DE的长不变;(4)设∠AOC=α,∠BOC=120﹣α,∵OD平分∠AOC,OE平分∠BOC,∴∠COD=,∠COE=(120°﹣α),∴∠DOE=∠COD+∠COE=+(120°﹣α)=60°,∴∠DOE=60°,与OC位置无关.34.【解答】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°;(2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°﹣α,∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°+α,∴∠MON=∠MOC﹣∠COB+∠BON=45°+α﹣α+45°+=90°.35.【解答】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∠COD是直角,OE 平分∠BOC,∴∠DOE=∠COD﹣∠BOC=90°﹣×150°=15°.(2)由(1)知∠DOE=∠COD﹣∠BOC,∴∠DOE=90°﹣(180°﹣∠AOC)=90°﹣90°+∠AOC=∠AOC=α.(3)∠AOC=2∠DOE.理由如下:∵∠COD是直角,OE 平分∠BOC,∴∠COE=∠BOE,∠COB=2∠COE,∴∠AOC=180°﹣∠COB=180°﹣2∠COE=2(90°﹣∠COE),∵∠DOE=90°﹣∠COE,∴∠AOC=2∠DOE.36.【解答】解:(1)因为OM平分∠BOC,ON平分∠AOC所以∠MOC=∠BOC,∠NOC=∠AOC 所以∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(100°+40°﹣40°)=50°.(2)可以.同理,∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(∠BOA+∠AOC﹣∠AOC)=∠BOA=50°.37.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA 逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.38.【解答】解:(1)因为OB平分∠AOC,∠AOB=20°,所以∠AOC=40°,因为OD平分∠AOE,∠AOE=110°,所以∠AOD=55°,因为∠COD=∠AOD﹣∠AOC,所以∠COD=55°﹣40°=15°;(2)因为90°﹣55°=35°,所以射线OD的方位角是北偏东35°;(3)设经过x秒时,∠AOE=30°,①如图1所示,当OA未追上OE时,依题意,得5x﹣110=3x﹣30,解得,x=40;②如图2所示,当OA超过OE时,依题意,得5x﹣110=3x﹣305x﹣110=3x+30,解得,x=70.39.【解答】解:(1)若∠COE=20°,∵∠COD=90°,∴∠EOD=90°﹣20°=70°,∵OE平分∠AOD,∴∠AOD=2∠EOD=140°,∴∠BOD=180°﹣140°=40°;若∠COE=α,∴∠EOD=90﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∴∠BOD=180°﹣(180﹣2α)=2α;故答案为:40°;2α;(2)如图2,∠BOD=2∠COE,理由是:设∠BOD=β,则∠AOD=180°﹣β,∵OE平分∠AOD,∴∠EOD=∠AOD==90°﹣,∵∠COD=90°,∴∠COE=90°﹣(90°﹣)=,即∠BOD=2∠COE.40.【解答】解:(1)如图2,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°,∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON﹣∠MOB=35°;(2)分两种情况:①如图2,∵∠BOC=110°∴∠AOC=70°,当直线ON恰好平分锐角∠AOC 时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,5t=55°解得t=11(s);②如图3,当NO平分∠AOC时,∠NOA=35°,∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t=235°,解得t=47(s),综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;(3)∠AOM﹣∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°,故答案为:11或47;∴∠AOM=90°﹣∠AON,∠NOC=70°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(70°﹣∠AON)=20°,∴∠AOM与∠NOC的数量关系为:∠AOM﹣∠NOC=20°.41.【解答】解:(1)∵∠AOB=90°,∠BOC=60°.∴∠AOC=∠AOB﹣∠BOC=30°.∴∠AOD=∠AOC+∠COD=30°+90°=120°.若∠BOC=n°,则∠AOC=∠AOB﹣∠BOC=(90﹣n)°.∴∠AOD=∠AOC+∠COD=(90﹣n)°+90°=(180﹣n)°.(2)∵∠AOB=x°,∠AOD=y°.∴∠BOD=∠AOD﹣∠AOB=(y﹣x)°.∴∠BOC=∠DOC ﹣∠BOD=x°﹣(y﹣x)°=(2x﹣y)°.42.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD所以∠MOB=∠AOB,∠BON=∠BOD即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°;(2)因为OM平分∠AOC,ON平分∠BOD所以∠MOC=∠AOC,∠BON=∠BOD即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t为21秒.43.【解答】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.44.【解答】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°﹣30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°﹣12t°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(90°﹣12t°)﹣60°,解得t=;如图所示,当7.5<t<12时,∠AON=12t°﹣90°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(12t°﹣90°)﹣60°,解得t=10;综上所述,当∠AOM=3∠AON﹣60°时,t的值为s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=,①如图所示,当0<t<时,∠COM=90°﹣15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴==(不是定值),。
七年级数学培优竞赛训练 :线段 含答案
【知识纵横】 线段平面几何是研究平面图形(plane flgure)的性质的一门学科,主要是研究平面图形的形状、大小及位置关系.构成平面图形的基本元素是点和线,在线中,最简单、最常见的就是线段、射线或直线,它们 的概念、性质及画图是后续学习研究由线段所组成的比较复杂图形(如三角形、四边形等)的基础.几何中的线段、射线、直线等概念是从现实的相关形象中抽象而来,它们没有了实物中那些诸如宽度、硬度、颜色之类的性质,但却为现实问题的解决提供了有力的工具,使得许多问题的研究可以转化为直观、简明的几何图形研究.解决与线段相关的问题,常用到中点、代数化、枚举与分类讨论等相关概念与方法.【例题求解】例 1.平面内两两相交的 6 条直线,其交点个数最少为 个,最多为个.思路点拨 画图探求,从简单情形考虑,从特殊情形考虑.例 2.如图,已知 B 是线段 AC 上的一点,M 是线段 AB 的中点,N 是线段 AC 的中点,P 为 NA 的中点, Q 为 MA 的中点,则 MN :PQ 等于( ).A .1B .2C .3D .4思路点拨 利用中点,设法把 MN 、PQ 用含相同线段的代数式表示.例 3.如图,C 是线段 AB 的中点,D 是线段 AC 的中点,已知图中所有线段的长度之和为 23,求线段 AC 的长度.思路点拨 引人未知数,通过列方程求解.例 4.摄制组从 A 市到 B 市有一天的路程,计划上午比下午多走 100 千米到 C 市吃午饭,由于堵车, 中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了 400 千米,傍晚才停下来休息,司机说,再走从 C 市到这里路程的二分之一就到达目的地了,问 A 、B 两市相距多少千米?思路点拨 条件中只有路程,而没有给出时间与速度,所以应当集中注意于名段路程之间的关系, 画线段图分析,借助图形思考.例 5.(1)如图 a ,已知 A 、B 在直线 l 的两侧,在 l 上求一点 P ,使 PA+PB 最小;(2)如图 b ,已知 A 、B 在直线 l 的同侧,在 l 上求一点 P ,使 PA+PB 最小;(3)如图 c ,有一正方体的盒子 ABCD —A 1B 1C l D l ,在盒子内的顶点 A 处有一只蜘蛛,而在对角的顶点 C 处有一只苍蝇.蜘蛛应沿着什么路径爬行,才能在最短的时间内捕捉到苍蝇?(假设苍蝇在 C l 处不动)思路点拨 联想到“两点之间,线段最短”性质,通过对称、考察特殊点等方法,化曲为直.例 6.摄制组从且市到月市有一天的路程,计划上午比下午多走 100km 到 C 市吃午饭.由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一,过了小镇,汽车赶了 400km ,傍晚才停下来休息, 司机说,再走 C 市到这里路程的一半就到达目的地.问 A 、B 市相距多少千米?例 7.如图 13-7 所示,在一条河的两岸有两个村庄,现要在河上建一座小桥,桥的方向与河流垂直, 设河的宽度不变,试问:桥架在何处,才能使从 A 到 B 的距离最短?思路点拨 虽然 A 、B 两点在河两侧,但连结 AB 的线段不垂直于河岸.如图 13-8,关键在于使 AP+BD 最短,但 AP 与 BD 未连起来,要用线段公理就要想办使 P 与 D 重合起来,利用平行四边形的特征可以实现这一目的。
七年级数学培优竞赛训练 :角 含答案
角【知识纵横】角,既可以用静止的眼光来观察,也可以用运动的眼光来看待.具有公共端点的两条射线组成的图形或一条射线绕着端点从一个位置旋转到另一位置所成的图形,称为角.角也是几何学的基本图形之一,与角相关的知识有:周角、平角、直角、锐角、钝角、角平分线、数量关系角(如余角、补角)、位置关系角(如邻补角、对顶角)等概念及关系.解与角有关的问题,类似于解与线段相关的问题,常常用到重要概念、分类的思想、代数化的观点等知识与方法.【例题求解】例1.如图1 是一个3×3 的正方形,则图中∠1+∠2+∠3+…+∠9 的度数是.思路点拨除∠3=∠5=∠7=45°外,其他各角的度数无法求出,故不能顺序求和.考虑应用加法的交换律、结合律,关键是对图形进行恰当的处理.图1 图2例2.如图2.A、O、B 在一条直线上,∠1 是锐角,则∠1 的余角是( ).1 1 A.∠2 一∠l B.2 23∠2 一21∠1 C.21(∠2 一∠l)D.3(∠2+∠1)思路点拨∠1 的余角表示为90°一∠1,化简这个代数式,直至与选择项相符为止.1例 3.已知∠1 和∠2 互补,∠3 和∠2 互余,求证∠3=2(∠l 一∠2).思路点拨依据互补、互余的概念得到含∠l、∠2、∠3 的两个等式,盯住所要达到的目的,恰当处理两个等式.1 例4.如图3,已知∠AOB 与∠BOC 互为补角,OD 是∠AOB 的平分线,OE 在∠BOC 内,∠BOE= ∠2 EOC,∠DOE= 72°,求∠EOC 的度数.图3思路点拨设∠AOB=x 度,∠BOC= y 度,建立x、y 的方程组,用代数方法解几何问题是一种常用的方法.例 5.(1)如图4,已知∠AOB=90°,∠BOC=30°,OM 平分∠AOC,ON 平分之∠BOC,求∠MON 的度数.(2)如果(1)中∠AOB=α,其他条件不求,求∠MON 的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不求,求∠MON的度数.(4)从(1)、(2)、<3)的结果中能得出什么结论?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4)设计一道以线段为背景的计算题,写出其中的规律,并给出解答.图 4例 6.钟面上从2 点到4 点有几次时针与分针的夹角为60°?分别是几点几分?思路点拨:时钟问题的关键是将时针、分针、秒针转动的速度用角表示出来.时针转动的速度为 0.5°/分,分针为 6°/分,秒针为 360°/分.※巩固训练※1.一个角的补角与这个角的余角的度数比为3:l,则这个角是度.2.钟表时间是2 时15 分时,时针与分针的夹角是.3.由O 点引出的7 条射线如图,若OA⊥OE,OC⊥OC,∠BOC>∠FOC,则图中以O 为顶角的锐角共有个.4.如图,O 是直线AB 上一点,∠AOD=120°,∠AOC=90°,OE 平分∠BOD,则图中彼此互补的角有对.5.如图,∠AOB=180°,OD 是∠COB 的平分线,OE 是∠AOC 的平分线,设∠BOD=α,则与α的余角相等的角是( ).A.∠OOD B.∠ODE C.∠DOA D.∠COA6.如图,在一个正方体的2 个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于( ).A.60°B.75°C.90°D.135°注:解钟表上的问题,常用到以下知识:(1)钟表上相邻两个数宇之间有 5 个小格,每个小格表示 1 分钟,如与角度联系起来,每小格对应 6°.(2)秒钟每分钟转运 360°,分针每分钟转过 6°,时钟每分钟转过 0.5°.(3)画示意图把这类问题看成是行程问题中的追及问题来解决.7.将一长方形纸片按如图的方式折叠,BC、BD 为折痕,则∠CBD 的度数为( ).A.60°B.75°C.90°D.95°18.如图,∠1>∠2,那么∠2 与(∠1 一∠2)之间的关系是( ).2A.互补B.互余C.和为45°D.和为22.5°9.如图,已知A、O、E 三点在一条直线上,OB 平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD 与∠DOE 之间有怎样的关系?说明理由.10.(1)一副三角板由一个等腰直角三角形和一个含30°角的直角三角形组成.利用这副三角板构成15°角的方法很多,请你画出其中三种不同构成的示意图,并在图上作出必要的标注,不写作法.(2)一个长方形和一个正方形摆放如图,试找出除直角外的互余的角和互补的角.111.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ) 的值时,有三15位同学分别算出了23 °、24 °、25 °这三个不同的结果,其中确有一个是正确的答案,则α+β+γ.12.如图,O 是直线AB 上一点,∠AOE=∠FOD=90°,OB 平分∠COD,图中与∠DOE 互余的是,与∠DOE 互补的角是.13.以∠AOB 的顶点O 为端点引射线OC,使∠AOC:∠BOC=5:4,若∠AOB=15°,则∠AOC 的度数是.14.光线以图所示的角度α照射到平面镜I 上,然后在乎面镜I、Ⅱ之间来回反射,已知∠α=60°,∠β=50°,则∠γ=.4 15.若∠β与∠α互补,∠γ与∠α互余,且∠β与∠γ的和是3 1 个平角,则∠β是∠α的( ).A.25倍B.5 倍C.11 倍D.无法确定倍数16.4 点钟后,从时针到分针第二次成90°角,共经过( )分钟(答案四舍五入到整数) .A.60 B.30 C.40 D.3317.如图,从点 O 引出6 条射线OA、OB、OC、OD、OE、OF,且∠AOB=100°,OF 平分∠BOC,∠AOE =∠DOE,∠EOF=140°,求∠COD 的度数.18.过点 O 任作 7 条直线,求证:以 O 为顶点的角中必有一个小于 26°.19.(1)现有一个 19°的“模板”(如图),请你设计一种办法,只用这个“模板”和铅笔在纸上画出 1°的角来.(2)现有一个 17°的“模板”与铅笔,你能否在纸上画出一个 1°的角来?(3)用一个 21°的“模板”与铅笔,你能否在纸上画出一个 1°的角来?对于(2)、(3)两问,如果能,请你简述画法步骤;如果不能,请你说明理由.参考答案。
2019-2020年七年级上册线段和角(含答案).docx
2019-2020 年七年级上册线段和角(含答案)一、知构线段的比较和画法线段的中点线段线段性质两点间的距离直线直线性质平角直角锐角钝角角的分类周角射线角角的比较、度量和画法角平分线定义同角(或等角)相关角余角和补角的补角相等性质同角(或等角)的余角相等二、典型:(一)数段——数角——数三角形1、直上有n 个点,可以得到多少条段?分析:点段213 3 =1+246=1+2+3510=1+2+3+4615=1+2+3+4+5⋯⋯n1+2+3+ ⋯ +(n -1)= n n122.如,在∠AOB内部从O点引出两条射OC、OD,中小于平角的角共有( D )个(A) 3(B) 4(C) 5(D) 6拓展: 1、在∠AOB内部从O点引出 n 条射中小于平角的角共有多少个?射角1 3 =1+226=1+2+3310=1+2+3+4⋯⋯n1+2+3+⋯n 1 n 2 +(n+1)=2比:从O点引出n条射中小于平角的角共有多少个?射角213 3 =1+246=1+2+3510=1+2+3+4⋯⋯n1+2+3+⋯+(n-1)=n n12比想:如,可以得到多少三角形?(二)与段中点有关的段的中点定:文字言:若一个点把段分成相等的两部分,那么个点叫做段的中点AM B形言:几何言:∵ M 是段 AB的中点∴AM BM 1AB AB, 2AM 2BM2典型例:1.由下列条件一定能得到“P是段 AB 的中点”的是(D)(A ) AP= 1 A B( B ) AB = 2PB( C ) AP = PB( D ) AP = PB=1AB222.若点 B 在直线 AC 上,下列表达式:①AB1AC ;② AB=BC ;③ AC=2AB ;④ AB+BC=AC .2其中能表示 B 是线段 AC 的中点的有(A)A .1 个B .2个C .3 个D .4个3. 如果点 C 在线段 AB 上 , 下列表达式① AC= 1AB;②AB=2BC;③AC=BC;④AC+BC=AB 中 ,能表示2C 是 AB 中点的有 ( C )A.1 个B.2 个C.3个D.4个 4.已知线段 MN ,P 是 MN 的中点, Q 是 PN 的中点, R 是 MQ 的中点,那么 MR = ______ MN .分析:据题意画出图形MR PQ N设 QN=x ,则 PQ=x ,MP=2x , MQ=3x ,所以, MR=3x ,则MR3 x 3 2 2MN4 x 85 .如图所示, B 、C 是线段 AD 上任意两点, M 是 AB 的中点, N 是 CD 中点,若 MN=a ,BC=b ,则线段 AD 的长是()AMBCNDA 2 ( a-b )B 2a-bC a+bD a-b分析:不妨设 CN=ND=x , AM=MB=y因为 MN=MB+BC+CN所以 a=x+y+b因为 AD=AM+MN+ND所以 AD=y+a+x=a-b+a=2a-b(三)与角有关的问题1. 已知:一条射线 OA ,若从点 O 再引两条射线 OB 、OC ,使∠ AOB=600,∠ BOC =200,则∠ AOC =____80°或 40°________度( 分类讨论 )2. A 、O 、B 共线, OM 、 ON 分别为∠ AOC 、∠ BOC 的平分线,猜想∠MON 的度数,试证明M你的结论.C猜想: _90°______NA O B证明:因为OM、 ON分别为∠AOC 、∠ BOC的平分线所以∠ MOC=1∠AOC ,∠ CON=1∠COB22因为∠ MON=∠MOC+∠CON1∠AOC +11∠AOB=90°所以∠ MON=2∠COB=223.如图,已知直线AB和CD相交于O点,∠COE是直角,OF 平分∠AOE ,∠COF 34 ,求∠ BOD 的度数.分析:因为∠ COE 是直角,∠ COF34 ,所以∠ EOF=56°因为 OF 平分∠ AOE所以∠ AOF=56°因为∠ AOF=∠AOC+∠COF所以∠ AOC=22°因为直线 AB 和 CD 相交于 O 点所以∠ BOD =∠AOC=22°4.如图,BO、CO分别平分∠ABC和∠ACB,(1)若∠A = 60 °,求∠O;(2)若∠A =100°,∠O是多少?若∠A =120°,∠O又是多少?(3)由( 1)、( 2)你又发现了什么规律?当∠A的度数发生变化后,你的结论仍成立吗?(提示:三角形的内角和等于180°)答案:( 1)120°;( 2)140°、150°( 3)∠O=90°+1∠A25.如图,O是直线AB上一点,OC、OD、OE是三条射线, 则图中互补的角共有(B)对(A) 2(B) 3(C) 4(D) 56.互为余角的两个角(B)(A)只和位置有关(B)只和数量有关(C)和位置、数量都有关(D)和位置、数量都无关7.已知∠ 1、∠2 互为补角,且∠ 1>∠ 2,则∠2的余角是(C)A.1(∠ 1+∠ 2) B.1∠1 C.1(∠ 1-∠ 2) D.1∠2 2222分析:因为∠1+∠ 2=180°,所以1 (∠1+∠2)=90°290° - ∠2=1(∠ 1+∠ 2)- ∠2=1(∠ 1-∠ 2)22。
【同步培优】人教版2018年 七年级数学上册 三角形线段与角的关系 培优练习卷(含答案)
2018年七年级数学上册三角形线段与角的关系培优练习卷一、选择题:1、在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()A. B. C. D.2、下列说法正确的个数是()①由三条线段组成的图形是三角形②三角形的角平分线是一条射线③连接两边中点的线段是三角形的中线④三角形的高一定在其内部A.0个B.1个C.2个D.3个3、如图,在△ABC中,∠C=90°.若BD∥AE,∠DBC=20°,则∠CAE的度数是()A.40°B.60°C.70°D.80°4、三条线段a,b,c长度均为整数且a=3,b=5.则以a,b,c为边的三角形共有( )A.4个B.5个C.6个D.7个5、如图,CD⊥AB,垂足为D,AC⊥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有()A.1条B.3条C.5条D.7条6、如图,在△ABC中,D、E分别是BC上两点,且BD=DE=EC,则图中面积相等的三角形有()A.4对B.5对C.6对D.7对7、三角形两边长为6与8,那么周长的取值范围()A.2<<14B.16<<28C.14<<28D.20<<248、如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=( )A.40°B.30°C.20°D.10°9、如图是一个长方形和两个等边三角形,若∠3=50°,则∠1+∠2的值是()A.90°B.100°C.130°D.180°10、如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C.当A,B移动后,∠BAO=45°时,则∠C的度数是( )A.30°B.45°C.55°D.60°11、如图8,在△ABC中,AA′,BB′分别是△ABC的外角∠EAB,∠DBC的平分线,若AA′=BB′=AB,则∠BAC的度数为()A.25°B.30°C.12°D.18°12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依次类推,∠ABD4与∠ACD4 的角平分线交于点D5,则∠BD5C的度数是()A.24°B.25°C.30°D.36°13、如图,在△ABC中,已知点D、E、F分别是BC、AD、BE上的中点,且△ABC的面积为8cm2,则△BCF的面积为 cm2.14、三角形ABC中,∠ABC和∠ACB的角平分线相交于点P,连接AP,若∠BPC=130°,则∠BAP=15、把一副常用的三角板如图所示拼在一起,点B在AE上,那么图中∠ABC= .16、如图,已知∠AOD=30°,点C是射线OD上的一个动点.在点C的运动过程中,△AOC恰好是直角三角形,则此时∠A所有可能的度数为°.17、已知a、b、c为△ABC的三边,化简:|a+b﹣c|+|a﹣b﹣c|﹣|a﹣b+c|=______.18、如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别S、S1、S2,且S=24,则S1﹣S2= .19、如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′,利用网格点画图:(1)补全△A′B′C′;(2)画出△ABC的中线CD与高线AE;(3)△A′B′C′的面积为.20、已知a、b、c是三角形的三边长,①化简:|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|;②若a+b=11,b+c=9,a+c=10,求这个三角形的各边.21、【问题】如图①,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=80°,则∠BEC= ;若∠A=n°,则∠BEC=__ _.【探究】(1)如图②,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB.若∠A=n°,则∠BEC=;(2)如图③,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图④,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)22、已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.23、探究与发现:如图①,在Rt△ABC中,∠BAC=90°,AB=AC,点D在底边BC上,AE=AD,连结DE.(1)当∠BAD=60°时,求∠CDE的度数;(2)当点D在BC (点B、C除外)上运动时,试猜想并探究∠BAD与∠CDE的数量关系;(3)深入探究:若∠BAC≠90°,试就图②探究∠BAD与∠CDE的数量关系.24、如图1,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B;(1)求证:CD⊥AB,并指出你在证明过程中应用了哪两个互逆的真命题;(2)如图2,若AE平分∠BAC,交CD于点F,交BC于E.求证:∠AEC=∠CFE;(3)如图3,若E为BC上一点,AE交CD于点F,BC=3CE,AB=4AD,△ABC、△CEF、△ADF的面积分别为S△ABC、S△CEF、S△ADF,且S△ABC=36,则S△CEF﹣S△ADF= .(仅填结果)参考答案1、B2、A3、C4、C5、C6、A7、B8、D9、B.10、B11、C12、B13、答案为:2.14、答案为:4015、答案为:75;16、答案为:60°或90°.17、答案为:﹣a+3b﹣c.18、答案为:419、20、(1)∵a、b、c是三角形的三边长,∴a﹣b﹣c<0,b﹣c﹣a<0,c﹣a﹣b<0,∴|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a﹣b|=﹣a+b+c﹣b+c+a﹣c+a+b=a+b+c;(2)∵a+b=11①,b+c=9②,a+c=10③,∴由①﹣②,得a﹣c=2,④由③+④,得2a=12,∴a=6,∴b=11﹣6=5,∴c=10﹣6=4.21、解:∵∠A=80°,∴∠ABC+∠ACB=180°-∠A=180°-80°=100°,∵BE平分∠ABC,CE平分∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×100°=50°,∴∠BEC=180°-(∠EBC+∠ECB)=180°-50°=130°;由三角形的内角和定理得,∠ABC+∠ACB=180°-∠A=180°-n°,∵BE平分∠ABC,CE平分∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×(180°-n°)=90°-n°,∴∠BEC=180°-(∠EBC+∠ECB)=180°-(90°-n°)=90°+n°;探究:解:(1)由三角形的内角和定理得,∠ABC+∠ACB=180°-∠A=180°-n°,∵BD,BE三等分∠ABC,CD,CE三等分∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×(180°-n°)=120°-n°,∴∠BEC=180°-(∠EBC+∠ECB)=180°-(120°-n°)=60°+n°;(3)∵O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,∴∠OBC=(180°-∠ABC)=90°-∠ABC,∠OCB=(180°-∠ACB)=90°-∠ACB,在△OBC中,∠BOC=180°-∠OBC-∠OCB=180°-(90°-∠ABC)-(90°-∠ACB)=(∠ABC+∠ACB),由三角形的内角和定理得,∠ABC+∠ACB=180°-∠A,∴∠BOC=(180°-∠A)=90°-∠A. 22、解:∵在△ABC中,∠A:∠B:∠C=2:3:4,∠A+∠ACB+∠B=180°,∴∠A=×180°=40°,∠ACB=×180°=80°∵CD是∠ACB平分线,∴∠ACD=ACB=40°)∴∠CDB=∠A+∠ACD=40°+40°=80°23、(1)(1)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠BAD=60°,∴∠DAE=30°,∵AD=AE,∴∠AED=75°,∴∠CDE=∠AED=∠C=30°;(2)设∠BAD=x,∴∠CAD=90°﹣x,∵AE=AD,∴∠AED=45°+,∴∠CDE=x;即∠CDE=∠BAD(3)设∠BAD=x,∠C=y,∵AB=AC,∠C=y,∴∠BAC=180°﹣2y,∵∠BAD=x,∴∠DAE=y+x,∴x.即∠CDE=∠BAD24、(1)证明:∵∠ACB=90°,∴∠A+∠B=90°,∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC=90°,即CD⊥AB,(2)证明:∵AE平分∠BAC,∴∠CAE=∠BAE,∵∠CAE+∠AEC=90°,∠BAE+∠AFD=90°,∴∠AEC=∠AFD,∵∠AFD=∠CFE(对顶角相等),∴∠AEC=∠CFE;(3)解:∵BC=3CE,AB=4AD,∴S△ACD=S△ABC=×36=9,S△ACE=S△ABC=×36=12,∴S△CEF﹣S△ADF=S△ACE﹣S△ACD=12﹣9=3.故答案为:3.。
七年级数学培优试卷有答案(第14讲:线段与角)-(浙教版)
七年级数学培优试卷有答案(第14讲:线段与角)-(浙教版)第14讲 线段与角一、线段训练1.已知线段AB =6cm ,P 点在AB 上,且AP =4BP ,M 是AB 的中点,求PM 长.2.已知线段AB =8cm ,在直线AB 上画线段BC ,使它等于3cm ,并求线段AC 的长.3.已知线段AB =10cm ,直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,求AM 的长.4.在线段AB 的延长上取一点P ,使AB =4BP ,取线段AB 的中点R ,求BR 与BP 的长度之比.二、角度训练 5.如图,在括号内填上适当的角: (1)∠AOC =( )+( ); (2)∠AOD +∠DOE =∠AOB +( );(3)∠AOE -∠AOC =( ).6.如图,直线 AB 、CD 相交于点O ,OD 平分∠AOF ,OE 丄CD 于O ,∠EOA =50°,求∠BOC 、∠BOE 、∠BOF 的度数.BFDO EACDC B A O E7.如图所示,直线AB 、CD 相交O ,OE 平分∠AOD ,∠FOC =90°,∠1= 40°,求∠2和∠3的度数.231O FCDE B A8.如图,直线BE 、CF 相交于O ,且∠AOB =90°,∠COD =90°,∠EOF =30°,求∠AOD 的度数.30°CBDFEOA9.如图,OB 平分∠AOC ,且∠2 :∠3:∠4 = 2:5:3.求∠l 、∠2、∠3、∠4的度数.4321OCBA10.已知:∠AOE =150°,∠AOB :∠BOC =l :2;∠COD :∠DOE =2:1.求∠BOD .EDCBA O11.已知∠AOB 、∠COB 和∠COD 的度数之比是2:1:3且∠AOC +∠DOB =140°,求∠AOD 的度数.BCDOA12.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,∠COD =20°,求∠AOC 的度数.D CAOB13.如图,已知直线AB 、CD 交于O 点,OA 平分∠COE ,∠COE :∠EOD =4:5,求∠BOD 的度数.A E D BOC三、综合训练14.如图,公路上依次有A 、B 、C 三站,上午8时,甲骑自行车从A 、B 之间离A 站18km 的P 点出发,向C 站匀速前进,15分钟到达距离A 站22km 的某处. (1)设x 小时后,甲离A 站y km ,用含x 的代数表示y ;APBC(2)若A 、B 和B 、C 间的距离分别是30km 和20km ,则上午______到______的时间内,甲在B 、C 两站之间(不包括B 、C 两站).15.已知线段AB =6.(1)取线段AB 的三等分点,这些点连同线段AB 的两个端点可以组成多少条线段?求这些线段长度的和;BA(2)再在线段AB 上取两种点:第一种是线段AB 的四等分点;第二种是线段AB 的六等分点,这些点连同(1)中的三等分点和线段AB 的两个端点可以组成多少条线段?求这些线段长度的和.16.如图,直线AB 、及AB 上一点O ,自O 作射线OC 、OE 、OF ,且OE 平分∠AOC . (1)若OF 平分∠BOC ,试说明∠EOF 的大小与OC 的位置无关?E C FB OA(2)若∠MON =90°,试说明OF 与∠BOC 的关系?17.如图,直线AB 、CD 交于O ,OE 平分∠AOC . (1)OF 为OE 的反向延长线,试说明OF 平分∠BOD ;(2)若OF 平分∠BOD ,则F 、O 、E 在一条直线上吗?证明你的结论?18.如图,OD 平分∠BOC ,OE 平分∠AOC .(1)若∠BOC =60°,∠AOC =40°,求∠DOE 的度数度数; (2)若∠DOE =n °,求∠AOB 的度数;(3)若∠DOE +∠AOB =180°,求∠AOB 与∠DOE 的度数.ABCDEOA B CDEF O。
2019-2020年七年级上册线段和角(含答案)
2019-2020年七年级上册线段和角(含答案)一、知识结构图二、典型问题:(一)数线段——数角——数三角形问题1、直线上有n 个点,可以得到多少条线段? 分析: 点 线段2 13 3 =1+24 6=1+2+35 10=1+2+3+46 15=1+2+3+4+5 ……n 1+2+3+ … +(n -1)=问题2.如图,在∠AOB 内部从O 点引出两条射线OC 、OD ,则图中小于平角的角共有( D )个(A) 3 (B) 4 (C) 5 (D) 6拓展:1、在∠AOB内部从O点引出n条射线图中小于平角的角共有多少个?射线角1 3 =1+22 6=1+2+33 10=1+2+3+4……n 1+2+3+ … +(n+1)=类比:从O点引出n条射线图中小于平角的角共有多少个?射线角2 13 3 =1+24 6=1+2+35 10=1+2+3+4……n 1+2+3+ … +(n-1)=类比联想:如图,可以得到多少三角形?(二)与线段中点有关的问题线段的中点定义:文字语言:若一个点把线段分成相等的两部分,那么这个点叫做线段的中点图形语言:几何语言:∵ M是线段AB的中点∴ ,典型例题:1.由下列条件一定能得到“P是线段AB的中点”的是( D )(A)AP=AB (B)AB=2PB (C)AP=PB (D)AP=PB=AB 2.若点B在直线AC上,下列表达式:①;②AB=BC;③AC=2A B;④AB+BC=AC.其中能表示B是线段AC的中点的有( A )NA .1个B .2个C .3个D .4个3.如果点C 在线段AB 上,下列表达式①AC=AB;②AB=2BC;③AC=BC;④AC+BC=AB 中, 能表示C 是AB 中点的有( C )A.1个B.2个C.3个D.4个4.已知线段MN ,P 是MN 的中点,Q 是PN 的中点,R 是MQ 的中点,那么MR = ______ MN . 分析:据题意画出图形设QN=x ,则PQ=x ,MP=2x ,MQ=3x , 所以,MR=x ,则5.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN=a ,BC=b ,则线段AD 的长是( ) A 2(a-b ) B 2a-b C a+b D a-b 分析:不妨设CN=ND=x ,AM=MB=y 因为MN=MB+BC+CN 所以a=x+y+b因为AD=AM+MN+ND 所以AD=y+a+x=a-b+a=2a-b (三)与角有关的问题1. 已知:一条射线OA ,若从点O 再引两条射线OB 、OC ,使∠AOB=600,∠BOC =200,则∠AOC =____80°或40°________度(分类讨论)2. A 、O 、B 共线,OM 、ON 分别为∠ AOC 、∠ BOC 的平分线,猜想∠ MON 的度数,试证明你的结论. 猜想:_90°______证明:因为OM 、ON 分别为∠ AOC 、∠ BOC 的平分线 所以∠MOC=∠AOC ,∠CON=∠COB因为∠MON=∠MOC+∠CON所以∠MON=∠AOC +∠COB=∠AOB=90°ADBMCN3.如图,已知直线和相交于点,是直角,平分,,求的度数.分析:因为是直角,,所以∠EOF=56°因为平分所以∠AOF=56°因为∠AOF=∠AOC+∠COF所以∠AOC=22°因为直线和相交于点所以=∠AOC=22°4.如图,BO、CO分别平分∠ABC和∠ACB,(1)若∠A = 60°,求∠O;(2)若∠A =100°,∠O是多少?若∠A =120°,∠O又是多少?(3)由(1)、(2)你又发现了什么规律?当∠A的度数发生变化后,你的结论仍成立吗?(提示:三角形的内角和等于180°)答案:(1)120°;(2)140° 、150°(3)∠O=90°+∠A5.如图,O是直线AB上一点,OC、OD、OE是三条射线,则图中互补的角共有( B )对(A) 2 (B) 3 (C) 4 (D) 56.互为余角的两个角( B )(A)只和位置有关(B)只和数量有关(C)和位置、数量都有关(D)和位置、数量都无关7.已知∠1、∠2互为补角,且∠1>∠2,则∠2的余角是( C )A.(∠1+∠2)B.∠1C.(∠1-∠2)D.∠2分析:因为∠1+∠2=180°,所以(∠1+∠2)=90°90°-∠2= (∠1+∠2)-∠2= (∠1-∠2)。
七年级上册数学线段和角专项练习附答案强烈推荐(高频率考题)
七年级上册数学线段和角专项练习附答案强烈推荐(高频率考题)一.解答题(共25小题)1.如图所示,线段AB上的点数与线段的总数有如下关系:如果线段AB上有3个点时,线段总数共有3条,如果AB上有4个点时,线段总数共有6条,如果线段AB上有5个点时,线段总数共有10条,….(1)当线段AB上有6个点时,线段总数共有多少条?(2)当线段AB上有n个点时,线段总数共有多少条?(用含n的式子表示)(3)当n=100时,线段总数共有多少条?2.已知如图(1)如图(1),两条直线相交,最多有个交点.如图(2),三条直线相交,最多有个交点.如图(3),四条直线相交,最多有个交点.如图(4),五条直线相交,最多有个交点;(2)归纳,猜想,30条直线相交,最多有个交点.3.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.4.你会数线段吗?如图①线段AB,即图中共有1条线段,1=如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=思考问题:(1)如果线段AB上有3个点,则图中共有条线段;(2)如果线段AB上有9个点,则图中共有条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).9.(1)在∠AOB内部画1条射线OC,则图1中有个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.10.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说理由.11.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.12.已知,OM、ON分别是∠AOC,∠BOC的角平分线.(1)如图1,若∠AOB=120°,∠BOC=30°,则∠MON=.(2)如图1,若∠AOB=120°,∠BOC=β°,能否求出∠MON的度数?若能,求出其值,若不能,试说明理由;(3)如图2,若∠AOB=α°,∠BOC=β°,是否仍然能求出∠MON的度数,若能,求∠MON的度数(用含α或β的式子表示),并从你的求解过程中总结出你发现的规律.13.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.14.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?15.如图,∠AOB是平角,射线OD平分∠AOC,射线OE平分∠BOD,且∠BOC=4∠AOD,求∠COE的度数.16.如图所示,OE,OD分别平分∠AOC和∠BOC.(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律.17.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.18.已知一个角的余角比这个角的补角的一半还小20°,求这个角.19.一个角的补角与这个角的余角的和是平角的还多1°,求这个角.20.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外),理由是②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.21.(1)如图①,已知∠AOB=∠COD=90°.试写出两个与图①中角(直角除外)有关的结论:(ⅰ)∠=∠,(ⅱ)∠+∠=180°;(2)若将图①中∠AOB绕点O旋转到图②的位置,则(1)中的两个结论仍然成立吗?为什么?22.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是(把符合条件的角都填出来).(2)图中除直角相等外,还有相等的角,请写出三对:①;②;③.(3)①如果∠AOD=140°.那么根据,可得∠BOC=度.②如果,求∠EOF的度数.23.如图,∠AOC=∠BOD=90°,OE是∠AOB的平分线,且∠COE=75°,(1)∠AOE与∠DOC有什么关系?(2)求∠AOD的度数.24.如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,则∠DOE=,∠BOD=;(2)设∠COE=α,∠BOD=β,请探究α与β之间的数量关系.25.将一副三角尺按照如图的位置摆放,使得三角尺ACB的直角顶点C在三角尺DEF的直角边EF上.(1)求∠α十∠β的度数;(2)若∠β=32°,试问∠α的补角为多少度?七年级上册数学线段和角专项练习附答案强烈推荐(高频率考题一.解答题(共25小题)1.如图所示,线段AB上的点数与线段的总数有如下关系:如果线段AB上有3个点时,线段总数共有3条,如果AB上有4个点时,线段总数共有6条,如果线段AB上有5个点时,线段总数共有10条,….(1)当线段AB上有6个点时,线段总数共有多少条?(2)当线段AB上有n个点时,线段总数共有多少条?(用含n的式子表示)(3)当n=100时,线段总数共有多少条?【解答】解:(1)AB上有3个点时,线段总数共有3=条;AB上有4个点时,线段总数共有6=条;AB上有5个点时,线段总数共有10=条;…AB上有n个点时,线段总数共有:,故当线段AB上有6个点时,线段总数共有=15条;(2)当线段AB上有n个点时,线段总数共有:;(3)当n=100时,线段总数共有=4950条.2.已知如图(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点;(2)归纳,猜想,30条直线相交,最多有435个交点.【解答】解:(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点.…n条直线相交,最多有个交点;(2)∴30条直线相交,∴最多有=435个交点.3.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.【解答】解:4.你会数线段吗?如图①线段AB,即图中共有1条线段,1=如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=思考问题:(1)如果线段AB上有3个点,则图中共有10条线段;(2)如果线段AB上有9个点,则图中共有55条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).【解答】解:(1)1+2+3+4==10,故答案为:10.(2)1+2+3+4+5+6+7+8+9+10==55,故答案为:55.(3)1+2+3+4+…+n +1=,故答案为:.5.阅读:在直线上有n 个不同的点,则此图中共有多少条线段?通过分析、画图尝试得如下表格:图形直线上点的个数共有线段的条数两者关系210+1==1330+1+2==3460+1+2+3==6…………n问题:(1)把表格补充完整;(2)根据上述得到的信息解决下列问题:①某学校七年级共有20个班进行辩论赛,规定进行单循环赛(每两班赛一场),那么该校七年级的辩论赛共要进行多少场?②乘火车从A 站出发,沿途经过10个车站方可到达B 站,那么在A ,B 两站之间需要安排多少种不同的车票?【解答】解:(1)图形直线上点的个数共有线段的条数两者关系210+1==1330+1+2==3460+1+2+3==6…………n0+1+2+3+…+(n﹣1)==;(2)①把每一个班级看作一个点,则=190(场);②由题意可得:一共12个车站看作12个点,线段条数为=66(条),因为车票有起点和终点站之分,所以车票要2×66=132(种).6.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=4cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)①∵B是线段AD上一动点,沿A→D以2cm/s的速度运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)不变;∵AB中点为E,C是线段BD的中点,∴EB=AB,BC=BD,∴EC=EB+BC=(AB+BD)=AD=×10=5cm.7.如图所示,已知C、D是线段AB上的两个点,M、N分别为AC、BD的中点.(1)若AB=10cm,CD=4cm,求AC+BD的长及M、N的距离.(2)如果AB=a,CD=b,用含a、b的式子表示MN的长.【解答】解:(1)∵AB=10cm,CD=4cm,∴AC+BD=AB﹣CD=10﹣4=6cm,∵M、N分别为AC、BD的中点,∴AM+BN=AC+BD=(AC+BD)=3cm,∴MN=AB﹣(AM+BN)=10﹣3=7cm;(2)根据(1)的结论,AM+BN=AC+BD=(AC+BD)=(a﹣b),∴MN=AB﹣(AM+BN)=a﹣(a﹣b)=(a+b).8.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵MN=MC+CN,AB=AC+BC,∴MN=AB=7cm;(2)MN=,∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,又∵MN=MC+CN,AB=AC+BC,∴MN=(AC+BC)=;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,又∵AB=AC﹣BC,NM=MC﹣NC,∴MN=(AC﹣BC)=;(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.9.(1)在∠AOB内部画1条射线OC,则图1中有3个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有6个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有10个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有66个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.【解答】解:(1)在∠AOB内部画1条射线OC,则图中有3个不同的角,故答案为:3.(2)在∠AOB内部画2条射线OC,OD,则图中有6个不同的角,故答案为:6.(3)在∠AOB内部画3条射线OC,OD,OE,则图中有10个不同的角,故答案为:10.(4)在∠AOB内部画10条射线OC,OD,OE,…,则图中有1+2+3+…+10+11=66个不同的角,故答案为:66.(5)在∠AOB内部画n条射线OC,OD,OE,…,则图中有1+2+3+…+n+(n+1)=个不同的角.故答案为:.10.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∠MON=α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=α+30°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=(α+30°)﹣30°=α.(3)如图3,∠MON=α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α即∠MON=α.11.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【解答】解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°(3分)∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°∠BOD=3∠DOE(6分)∴∠DOE=15°(8分)∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°(10分)故答案为75°.12.已知,OM、ON分别是∠AOC,∠BOC的角平分线.(1)如图1,若∠AOB=120°,∠BOC=30°,则∠MON=60°.(2)如图1,若∠AOB=120°,∠BOC=β°,能否求出∠MON的度数?若能,求出其值,若不能,试说明理由;(3)如图2,若∠AOB=α°,∠BOC=β°,是否仍然能求出∠MON的度数,若能,求∠MON的度数(用含α或β的式子表示),并从你的求解过程中总结出你发现的规律.【解答】解:(1)∵∠AOB=120°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=120°+30°=150°,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=75°﹣15°=60°,(2)当∠AOB=120°,∠BOC=β°时,∴∠MON=∠MOC﹣∠NOC=(120+β)°﹣°=60°;(3)由(1)(2)可知:∴∠MON=∠MOC﹣∠NOC=(α+β)°﹣β°=α°.∠MON的度数始终等于∠AOB角度的一半.13.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.【解答】解:∵∠COE是直角,∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.故答案为22°.14.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.15.如图,∠AOB是平角,射线OD平分∠AOC,射线OE平分∠BOD,且∠BOC=4∠AOD,求∠COE的度数.【解答】解:∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC,∵∠BOC=4∠AOD,∴∠BOC=2∠AOC,∵∠BOC+∠AOC=180°,∴3∠AOC=180°,∴∠AOC=60°,∴∠COD=∠AOC=30°,∠BOC=2∠AOC=120°∴∠BOD=150°,∵OE平分∠BOD,∴∠EOD=∠BOE=75°,∴∠COE=∠DOE﹣∠COD=75°﹣30°=45°.16.如图所示,OE,OD分别平分∠AOC和∠BOC.(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律.【解答】解:(1)∵∠AOB=90°,∠BOC=40°∴∠AOC=∠AOB+∠BOC=90°+40°=130°.又∵OE,OD分别平分∠AOC和∠BOC,∴∠COE=∠AOC=×130°=65°,∠COD=∠BOC=×40°=20°.∴∠DOE=∠COE﹣∠COD=65°﹣20°=45°;(2)∵∠AOB=α,∠BOC=β∴∠AOC=∠AOB+∠BOC=α+β.又∵OE,OD分别平分∠AOC和∠BOC,∴∠COE=∠AOC=(α+β),∠COD=∠BOC=β.∴∠DOE=∠COE﹣∠COD=(α+β)﹣β=α+β﹣β=α;(3)∠DOE的大小与∠BOC的大小无关,即∠DOE=∠AOB.17.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.【解答】解:∵OE是∠AOB的平分线,∠AOB=100°,∴∠BOE=∠AOB=50°.∵∠BOE+∠BOD=∠EOD=80°,∴∠BOD=∠EOD﹣∠BOE=80°﹣50°=30°.∵OD是∠BOC的平分线,∴∠BOC=2∠BOD=60°.18.已知一个角的余角比这个角的补角的一半还小20°,求这个角.【解答】解:设这个角为x°,根据题意得:90﹣x=(180﹣x)﹣20,解得:x=40.故这个角的度数为40°.19.一个角的补角与这个角的余角的和是平角的还多1°,求这个角.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),则(90°﹣x+180°﹣x)﹣×180°=1,x=67°.答:这个角为67°20.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外)∠AOD=∠BOC,理由是同角的余角相等②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45°,∠COD和∠AOB互余.【解答】解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.21.(1)如图①,已知∠AOB=∠COD=90°.试写出两个与图①中角(直角除外)有关的结论:(ⅰ)∠AOC=∠BOD,(ⅱ)∠AOD+∠COB=180°;(2)若将图①中∠AOB绕点O旋转到图②的位置,则(1)中的两个结论仍然成立吗?为什么?【解答】解:(1)(ⅰ)∠AOC=∠BOD,理由是:∵∠AOB=∠DOC=90°,∴∠AOB+∠COB=∠DOC+∠COB,∴∠AOC=∠DOB,故答案为:AOC,BOD.(ⅱ)∠BOC+∠AOD=180°,理由是:∵∠AOB=∠DOC=90°,∴∠BOC+∠AOD=360°﹣90°﹣90°=180°,故答案为:AOD,COB.(2)两个结论仍然成立,理由如下:(ⅰ)∵∠AOC+∠BOC=∠AOB=90°,∠BOD+∠BOC=∠COD=90°,∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,∴∠AOC=∠BOD.(ⅱ)∵∠BOC+∠AOD=∠BOC+∠AOC+∠COD=∠AOB+∠COD,又∵∠AOB=∠COD=90°,∴∠BOC+∠AOD=180°.22.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是∠AOC、∠EOF、∠BOD(把符合条件的角都填出来).(2)图中除直角相等外,还有相等的角,请写出三对:①∠AOC=∠EOF;②∠COE=∠BOF;③∠AOD=∠COB.(3)①如果∠AOD=140°.那么根据对顶角相等,可得∠BOC=140度.②如果,求∠EOF的度数.【解答】解:(1)根据图形可得:∠AOC、∠EOF、∠BOD都是∠AOF的余角;(2)∠AOC=∠EOF=∠BOD,∠COE=∠BOF,∠AOD=∠COB,∠AOF=∠DOE;(3)①对顶角相等,∠BOC=∠AOD=140°.②∠EOF=X°,则∠AOD=5x°,由∠EOF+∠DOE=90°,∠DOE+∠BOD=90°,∴∠BOD=∠EOF=x°,又∠AOD+∠BOD=180°,所以x+5x=180,解得x=30,∠EOF=30°23.如图,∠AOC=∠BOD=90°,OE是∠AOB的平分线,且∠COE=75°,(1)∠AOE与∠DOC有什么关系?(2)求∠AOD的度数.【解答】解:(1)∠AOE=∠DOC;∵∠AOC=∠BOD=90°,∴∠DOC=∠AOB,∵OE是∠AOB的平分线,∴∠AOE=∠AOB=∠DOC;(2)由(1)得,∠DOC=∠AOB=2∠AOE,∵∠AOC=90°,∠COE=75°,∴∠AOE=90°﹣75°=15°,∴∠DOC=2∠AOE=30°,∴∠AOD=∠AOC+DOC=90°+30°=120°.24.如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,则∠DOE=50°,∠BOD=40°;(2)设∠COE=α,∠BOD=β,请探究α与β之间的数量关系.【解答】解:(1)∵∠COE与∠EOD互余,∠COE=40°,∴∠EOD=90°﹣40°=50°,∵OE平分∠AOD,∴∠AOD=2∠AOE=100°,∴∠BOD=∠AOB﹣∠AOD=40°,故答案为:50°;40°;(2)∵∠COE=α,且∠COE与∠EOD互余,∴∠EOD=90°﹣α,∵OE平分∠AOD∴∠AOD=2(900﹣α),∴β+2(900﹣α)=1400解得,β=2α﹣40°.25.将一副三角尺按照如图的位置摆放,使得三角尺ACB的直角顶点C在三角尺DEF的直角边EF上.(1)求∠α十∠β的度数;(2)若∠β=32°,试问∠α的补角为多少度?【解答】解:(1)∠α+∠β=180°﹣∠ACB =180°﹣90°=90°;(2)∵∠β=32°,由(1)可得:∠α=90°﹣∠β=58°,则∠α的补角=180°﹣∠α=122°.。
七年级上册数学线段与角必做好题附答案详解
七年级上册数学线段与角必做好题附答案详解一.解答题(共25小题)1.如图所示,线段AB上的点数与线段的总数有如下关系:如果线段AB上有3个点时,线段总数共有3条,如果AB上有4个点时,线段总数共有6条,如果线段AB上有5个点时,线段总数共有10条,….(1)当线段AB上有6个点时,线段总数共有多少条?(2)当线段AB上有n个点时,线段总数共有多少条?(用含n的式子表示)(3)当n=100时,线段总数共有多少条?2.已知如图(1)如图(1),两条直线相交,最多有个交点.如图(2),三条直线相交,最多有个交点.如图(3),四条直线相交,最多有个交点.如图(4),五条直线相交,最多有个交点;(2)归纳,猜想,30条直线相交,最多有个交点.3.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.4.你会数线段吗?如图①线段AB,即图中共有1条线段,1=如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=思考问题:(1)如果线段AB上有3个点,则图中共有条线段;(2)如果线段AB上有9个点,则图中共有条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).9.(1)在∠AOB内部画1条射线OC,则图1中有个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.10.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说理由.11.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.12.已知,OM、ON分别是∠AOC,∠BOC的角平分线.(1)如图1,若∠AOB=120°,∠BOC=30°,则∠MON=.(2)如图1,若∠AOB=120°,∠BOC=β°,能否求出∠MON的度数?若能,求出其值,若不能,试说明理由;(3)如图2,若∠AOB=α°,∠BOC=β°,是否仍然能求出∠MON的度数,若能,求∠MON的度数(用含α或β的式子表示),并从你的求解过程中总结出你发现的规律.13.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.14.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?15.如图,∠AOB是平角,射线OD平分∠AOC,射线OE平分∠BOD,且∠BOC=4∠AOD,求∠COE的度数.16.如图所示,OE,OD分别平分∠AOC和∠BOC.(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律.17.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.18.已知一个角的余角比这个角的补角的一半还小20°,求这个角.19.一个角的补角与这个角的余角的和是平角的还多1°,求这个角.20.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外),理由是②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是;当α=°,∠COD和∠AOB互余.21.(1)如图①,已知∠AOB=∠COD=90°.试写出两个与图①中角(直角除外)有关的结论:(ⅰ)∠=∠,(ⅱ)∠+∠=180°;(2)若将图①中∠AOB绕点O旋转到图②的位置,则(1)中的两个结论仍然成立吗?为什么?22.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是(把符合条件的角都填出来).(2)图中除直角相等外,还有相等的角,请写出三对:①;②;③.(3)①如果∠AOD=140°.那么根据,可得∠BOC=度.②如果,求∠EOF的度数.23.如图,∠AOC=∠BOD=90°,OE是∠AOB的平分线,且∠COE=75°,(1)∠AOE与∠DOC有什么关系?(2)求∠AOD的度数.24.如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,则∠DOE=,∠BOD=;(2)设∠COE=α,∠BOD=β,请探究α与β之间的数量关系.25.将一副三角尺按照如图的位置摆放,使得三角尺ACB的直角顶点C在三角尺DEF的直角边EF上.(1)求∠α十∠β的度数;(2)若∠β=32°,试问∠α的补角为多少度?七年级上册数学线段与角必做好题附答案详解参考答案与试题解析一.解答题(共25小题)1.如图所示,线段AB上的点数与线段的总数有如下关系:如果线段AB上有3个点时,线段总数共有3条,如果AB上有4个点时,线段总数共有6条,如果线段AB上有5个点时,线段总数共有10条,….(1)当线段AB上有6个点时,线段总数共有多少条?(2)当线段AB上有n个点时,线段总数共有多少条?(用含n的式子表示)(3)当n=100时,线段总数共有多少条?【解答】解:(1)AB上有3个点时,线段总数共有3=条;AB上有4个点时,线段总数共有6=条;AB上有5个点时,线段总数共有10=条;…AB上有n个点时,线段总数共有:,故当线段AB上有6个点时,线段总数共有=15条;(2)当线段AB上有n个点时,线段总数共有:;(3)当n=100时,线段总数共有=4950条.2.已知如图(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点;(2)归纳,猜想,30条直线相交,最多有435个交点.【解答】解:(1)如图(1),两条直线相交,最多有1个交点.如图(2),三条直线相交,最多有3个交点.如图(3),四条直线相交,最多有6个交点.如图(4),五条直线相交,最多有10个交点.…n条直线相交,最多有个交点;(2)∴30条直线相交,∴最多有=435个交点.3.如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.【解答】解:4.你会数线段吗?如图①线段AB,即图中共有1条线段,1=如图②线段AB上有1个点C,则图中共有3条线段,3=1+2=如图③线段AB上有2个点C、D,则图中共有6条线段,6=1+2+3=思考问题:(1)如果线段AB上有3个点,则图中共有10条线段;(2)如果线段AB上有9个点,则图中共有55条线段;(3)如果线段AB上有n个点,则图中共有条线段(用含n的代数式来表示).【解答】解:(1)1+2+3+4==10,故答案为:10.(2)1+2+3+4+5+6+7+8+9+10==55,故答案为:55.(3)1+2+3+4+…+n+1=,故答案为:.5.阅读:在直线上有n个不同的点,则此图中共有多少条线段?通过分析、画图尝试得如下表格:图形直线上点的个数共有线段的条数两者关系210+1==1330+1+2==3460+1+2+3==6…………n问题:(1)把表格补充完整;(2)根据上述得到的信息解决下列问题:①某学校七年级共有20个班进行辩论赛,规定进行单循环赛(每两班赛一场),那么该校七年级的辩论赛共要进行多少场?②乘火车从A站出发,沿途经过10个车站方可到达B站,那么在A,B两站之间需要安排多少种不同的车票?【解答】解:(1)图形直线上点的个数共有线段的条数两者关系210+1==1 330+1+2==3460+1+2+3==6…………n 0+1+2+3+…+(n﹣1)==;(2)①把每一个班级看作一个点,则=190(场);②由题意可得:一共12个车站看作12个点,线段条数为=66(条),因为车票有起点和终点站之分,所以车票要2×66=132(种).6.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=4cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.【解答】解:(1)①∵B是线段AD上一动点,沿A→D以2cm/s的速度运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)不变;∵AB中点为E,C是线段BD的中点,∴EB=AB,BC=BD,∴EC=EB+BC=(AB+BD)=AD=×10=5cm.7.如图所示,已知C、D是线段AB上的两个点,M、N分别为AC、BD的中点.(1)若AB=10cm,CD=4cm,求AC+BD的长及M、N的距离.(2)如果AB=a,CD=b,用含a、b的式子表示MN的长.【解答】解:(1)∵AB=10cm,CD=4cm,∴AC+BD=AB﹣CD=10﹣4=6cm,∵M、N分别为AC、BD的中点,∴AM+BN=AC+BD=(AC+BD)=3cm,∴MN=AB﹣(AM+BN)=10﹣3=7cm;(2)根据(1)的结论,AM+BN=AC+BD=(AC+BD)=(a﹣b),∴MN=AB﹣(AM+BN)=a﹣(a﹣b)=(a+b).8.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵MN=MC+CN,AB=AC+BC,∴MN=AB=7cm;(2)MN=,∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,又∵MN=MC+CN,AB=AC+BC,∴MN=(AC+BC)=;(3)∵M、N分别是AC、BC的中点,∴MC=AC,NC=BC,又∵AB=AC﹣BC,NM=MC﹣NC,∴MN=(AC﹣BC)=;(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.9.(1)在∠AOB内部画1条射线OC,则图1中有3个不同的角;(2)在∠AOB内部画2条射线OC,OD,则图2中有6个不同的角;(3)在∠AOB内部画3条射线OC,OD,OE,则图3中有10个不同的角;(4)在∠AOB内部画10条射线OC,OD,OE…,则图中有66个不同的角;(5)在∠AOB内部画n条射线OC,OD,OE…,则图中有个不同的角.【解答】解:(1)在∠AOB内部画1条射线OC,则图中有3个不同的角,故答案为:3.(2)在∠AOB内部画2条射线OC,OD,则图中有6个不同的角,故答案为:6.(3)在∠AOB内部画3条射线OC,OD,OE,则图中有10个不同的角,故答案为:10.(4)在∠AOB内部画10条射线OC,OD,OE,…,则图中有1+2+3+…+10+11=66个不同的角,故答案为:66.(5)在∠AOB内部画n条射线OC,OD,OE,…,则图中有1+2+3+…+n+(n+1)=个不同的角.故答案为:.10.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∠MON=α,理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=α+30°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=(α+30°)﹣30°=α.(3)如图3,∠MON=α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α即∠MON=α.11.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.【解答】解:∵∠AOB=90°,OC平分∠AOB∴∠BOC=∠AOB=45°(3分)∵∠BOD=∠COD﹣∠BOC=90°﹣45°=45°∠BOD=3∠DOE(6分)∴∠DOE=15°(8分)∴∠COE=∠COD﹣∠DOE=90°﹣15°=75°(10分)故答案为75°.12.已知,OM、ON分别是∠AOC,∠BOC的角平分线.(1)如图1,若∠AOB=120°,∠BOC=30°,则∠MON=60°.(2)如图1,若∠AOB=120°,∠BOC=β°,能否求出∠MON的度数?若能,求出其值,若不能,试说明理由;(3)如图2,若∠AOB=α°,∠BOC=β°,是否仍然能求出∠MON的度数,若能,求∠MON的度数(用含α或β的式子表示),并从你的求解过程中总结出你发现的规律.【解答】解:(1)∵∠AOB=120°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=120°+30°=150°,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=75°﹣15°=60°,(2)当∠AOB=120°,∠BOC=β°时,∴∠MON=∠MOC﹣∠NOC=(120+β)°﹣°=60°;(3)由(1)(2)可知:∴∠MON=∠MOC﹣∠NOC=(α+β)°﹣β°=α°.∠MON的度数始终等于∠AOB角度的一半.13.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.【解答】解:∵∠COE是直角,∠COF=34°∴∠EOF=90°﹣34°=56°又∵OF平分∠AOE∴∠AOF=∠EOF=56°∵∠COF=34°∴∠AOC=56°﹣34°=22°则∠BOD=∠AOC=22°.故答案为22°.14.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.15.如图,∠AOB是平角,射线OD平分∠AOC,射线OE平分∠BOD,且∠BOC=4∠AOD,求∠COE的度数.【解答】解:∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC,∵∠BOC=4∠AOD,∴∠BOC=2∠AOC,∵∠BOC+∠AOC=180°,∴3∠AOC=180°,∴∠AOC=60°,∴∠COD=∠AOC=30°,∠BOC=2∠AOC=120°∴∠BOD=150°,∵OE平分∠BOD,∴∠EOD=∠BOE=75°,∴∠COE=∠DOE﹣∠COD=75°﹣30°=45°.16.如图所示,OE,OD分别平分∠AOC和∠BOC.(1)如果∠AOB=90°,∠BOC=40°,求∠DOE的度数;(2)如果∠AOB=α,∠BOC=β(α、β均为锐角,α>β),其他条件不变,求∠DOE;(3)从(1)、(2)的结果中,你发现了什么规律.【解答】解:(1)∵∠AOB=90°,∠BOC=40°∴∠AOC=∠AOB+∠BOC=90°+40°=130°.又∵OE,OD分别平分∠AOC和∠BOC,∴∠COE=∠AOC=×130°=65°,∠COD=∠BOC=×40°=20°.∴∠DOE=∠COE﹣∠COD=65°﹣20°=45°;(2)∵∠AOB=α,∠BOC=β∴∠AOC=∠AOB+∠BOC=α+β.又∵OE,OD分别平分∠AOC和∠BOC,∴∠COE=∠AOC=(α+β),∠COD=∠BOC=β.∴∠DOE=∠COE﹣∠COD=(α+β)﹣β=α+β﹣β=α;(3)∠DOE的大小与∠BOC的大小无关,即∠DOE=∠AOB.17.如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.【解答】解:∵OE是∠AOB的平分线,∠AOB=100°,∴∠BOE=∠AOB=50°.∵∠BOE+∠BOD=∠EOD=80°,∴∠BOD=∠EOD﹣∠BOE=80°﹣50°=30°.∵OD是∠BOC的平分线,∴∠BOC=2∠BOD=60°.18.已知一个角的余角比这个角的补角的一半还小20°,求这个角.【解答】解:设这个角为x°,根据题意得:90﹣x=(180﹣x)﹣20,解得:x=40.故这个角的度数为40°.19.一个角的补角与这个角的余角的和是平角的还多1°,求这个角.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),则(90°﹣x+180°﹣x)﹣×180°=1,x=67°.答:这个角为67°20.已知∠AOC=∠BOD=α(0°<α<180°)(1)如图1,若α=90°①写出图中一组相等的角(除直角外)∠AOD=∠BOC,理由是同角的余角相等②试猜想∠COD和∠AOB在数量上是相等、互余、还是互补的关系,并说明理由;(2)如图2,∠COD+∠AOB和∠AOC满足的等量关系是互补;当α=45°,∠COD和∠AOB互余.【解答】解:(1)①∵∠AOC=∠BOD=90°,∴∠AOD+∠AOB=∠BOC+∠AOB=90°,∴∠AOD=∠BOC;②∵∠AOD=∠BOD﹣∠AOB=90°﹣∠AOB,∴∠COD=∠AOD+∠AOC=90°﹣∠AOB+90°,∴∠AOB+∠COD=180°,∴∠COD和∠AOB互补;(2)由(1)可知∠COD+∠AOB=∠BOD+∠AOC=α+α=2α,所以,∠COD+∠AOB=2∠AOC,若∠COD和∠AOB互余,则2∠AOC=90°,所以,∠AOC=45°,即α=45°.故答案为:(1)AOD=∠BOC,同角的余角相等;(2)互补,45.21.(1)如图①,已知∠AOB=∠COD=90°.试写出两个与图①中角(直角除外)有关的结论:(ⅰ)∠AOC=∠BOD,(ⅱ)∠AOD+∠COB=180°;(2)若将图①中∠AOB绕点O旋转到图②的位置,则(1)中的两个结论仍然成立吗?为什么?【解答】解:(1)(ⅰ)∠AOC=∠BOD,理由是:∵∠AOB=∠DOC=90°,∴∠AOB+∠COB=∠DOC+∠COB,∴∠AOC=∠DOB,故答案为:AOC,BOD.(ⅱ)∠BOC+∠AOD=180°,理由是:∵∠AOB=∠DOC=90°,∴∠BOC+∠AOD=360°﹣90°﹣90°=180°,故答案为:AOD,COB.(2)两个结论仍然成立,理由如下:(ⅰ)∵∠AOC+∠BOC=∠AOB=90°,∠BOD+∠BOC=∠COD=90°,∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,∴∠AOC=∠BOD.(ⅱ)∵∠BOC+∠AOD=∠BOC+∠AOC+∠COD=∠AOB+∠COD,又∵∠AOB=∠COD=90°,∴∠BOC+∠AOD=180°.22.如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是∠AOC、∠EOF、∠BOD(把符合条件的角都填出来).(2)图中除直角相等外,还有相等的角,请写出三对:①∠AOC=∠EOF;②∠COE=∠BOF;③∠AOD=∠COB.(3)①如果∠AOD=140°.那么根据对顶角相等,可得∠BOC=140度.②如果,求∠EOF的度数.【解答】解:(1)根据图形可得:∠AOC、∠EOF、∠BOD都是∠AOF的余角;(2)∠AOC=∠EOF=∠BOD,∠COE=∠BOF,∠AOD=∠COB,∠AOF=∠DOE;(3)①对顶角相等,∠BOC=∠AOD=140°.②∠EOF=X°,则∠AOD=5x°,由∠EOF+∠DOE=90°,∠DOE+∠BOD=90°,∴∠BOD=∠EOF=x°,又∠AOD+∠BOD=180°,所以x+5x=180,解得x=30,∠EOF=30°23.如图,∠AOC=∠BOD=90°,OE是∠AOB的平分线,且∠COE=75°,(1)∠AOE与∠DOC有什么关系?(2)求∠AOD的度数.【解答】解:(1)∠AOE=∠DOC;∵∠AOC=∠BOD=90°,∴∠DOC=∠AOB,∵OE是∠AOB的平分线,∴∠AOE=∠AOB=∠DOC;(2)由(1)得,∠DOC=∠AOB=2∠AOE,∵∠AOC=90°,∠COE=75°,∴∠AOE=90°﹣75°=15°,∴∠DOC=2∠AOE=30°,∴∠AOD=∠AOC+DOC=90°+30°=120°.24.如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.(1)若∠COE=40°,则∠DOE=50°,∠BOD=40°;(2)设∠COE=α,∠BOD=β,请探究α与β之间的数量关系.【解答】解:(1)∵∠COE与∠EOD互余,∠COE=40°,∴∠EOD=90°﹣40°=50°,∵OE平分∠AOD,∴∠AOD=2∠AOE=100°,∴∠BOD=∠AOB﹣∠AOD=40°,故答案为:50°;40°;(2)∵∠COE=α,且∠COE与∠EOD互余,∴∠EOD=90°﹣α,∵OE平分∠AOD∴∠AOD=2(900﹣α),∴β+2(900﹣α)=1400解得,β=2α﹣40°.25.将一副三角尺按照如图的位置摆放,使得三角尺ACB的直角顶点C在三角尺DEF的直角边EF上.(1)求∠α十∠β的度数;(2)若∠β=32°,试问∠α的补角为多少度?【解答】解:(1)∠α+∠β=180°﹣∠ACB =180°﹣90°=90°;(2)∵∠β=32°,由(1)可得:∠α=90°﹣∠β=58°,则∠α的补角=180°﹣∠α=122°.。
七年级数学培优竞赛训练 :角 含答案
角【知识纵横】角,既可以用静止的眼光来观察,也可以用运动的眼光来看待.具有公共端点的两条射线组成的图形或一条射线绕着端点从一个位置旋转到另一位置所成的图形,称为角.角也是几何学的基本图形之一,与角相关的知识有:周角、平角、直角、锐角、钝角、角平分线、数量关系角(如余角、补角)、位置关系角(如邻补角、对顶角)等概念及关系.解与角有关的问题,类似于解与线段相关的问题,常常用到重要概念、分类的思想、代数化的观点等知识与方法.【例题求解】例1.如图1 是一个3×3 的正方形,则图中∠1+∠2+∠3+…+∠9 的度数是.思路点拨除∠3=∠5=∠7=45°外,其他各角的度数无法求出,故不能顺序求和.考虑应用加法的交换律、结合律,关键是对图形进行恰当的处理.图1 图2例2.如图2.A、O、B 在一条直线上,∠1 是锐角,则∠1 的余角是( ).1 1 A.∠2 一∠l B.2 23∠2 一21∠1 C.21(∠2 一∠l)D.3(∠2+∠1)思路点拨∠1 的余角表示为90°一∠1,化简这个代数式,直至与选择项相符为止.1例 3.已知∠1 和∠2 互补,∠3 和∠2 互余,求证∠3=2(∠l 一∠2).思路点拨依据互补、互余的概念得到含∠l、∠2、∠3 的两个等式,盯住所要达到的目的,恰当处理两个等式.1 例4.如图3,已知∠AOB 与∠BOC 互为补角,OD 是∠AOB 的平分线,OE 在∠BOC 内,∠BOE= ∠2 EOC,∠DOE= 72°,求∠EOC 的度数.图3思路点拨设∠AOB=x 度,∠BOC= y 度,建立x、y 的方程组,用代数方法解几何问题是一种常用的方法.例 5.(1)如图4,已知∠AOB=90°,∠BOC=30°,OM 平分∠AOC,ON 平分之∠BOC,求∠MON 的度数.(2)如果(1)中∠AOB=α,其他条件不求,求∠MON 的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不求,求∠MON的度数.(4)从(1)、(2)、<3)的结果中能得出什么结论?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4)设计一道以线段为背景的计算题,写出其中的规律,并给出解答.图 4例 6.钟面上从2 点到4 点有几次时针与分针的夹角为60°?分别是几点几分?思路点拨:时钟问题的关键是将时针、分针、秒针转动的速度用角表示出来.时针转动的速度为 0.5°/分,分针为 6°/分,秒针为 360°/分.※巩固训练※1.一个角的补角与这个角的余角的度数比为3:l,则这个角是度.2.钟表时间是2 时15 分时,时针与分针的夹角是.3.由O 点引出的7 条射线如图,若OA⊥OE,OC⊥OC,∠BOC>∠FOC,则图中以O 为顶角的锐角共有个.4.如图,O 是直线AB 上一点,∠AOD=120°,∠AOC=90°,OE 平分∠BOD,则图中彼此互补的角有对.5.如图,∠AOB=180°,OD 是∠COB 的平分线,OE 是∠AOC 的平分线,设∠BOD=α,则与α的余角相等的角是( ).A.∠OOD B.∠ODE C.∠DOA D.∠COA6.如图,在一个正方体的2 个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于( ).A.60°B.75°C.90°D.135°注:解钟表上的问题,常用到以下知识:(1)钟表上相邻两个数宇之间有 5 个小格,每个小格表示 1 分钟,如与角度联系起来,每小格对应 6°.(2)秒钟每分钟转运 360°,分针每分钟转过 6°,时钟每分钟转过 0.5°.(3)画示意图把这类问题看成是行程问题中的追及问题来解决.7.将一长方形纸片按如图的方式折叠,BC、BD 为折痕,则∠CBD 的度数为( ).A.60°B.75°C.90°D.95°18.如图,∠1>∠2,那么∠2 与(∠1 一∠2)之间的关系是( ).2A.互补B.互余C.和为45°D.和为22.5°9.如图,已知A、O、E 三点在一条直线上,OB 平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD 与∠DOE 之间有怎样的关系?说明理由.10.(1)一副三角板由一个等腰直角三角形和一个含30°角的直角三角形组成.利用这副三角板构成15°角的方法很多,请你画出其中三种不同构成的示意图,并在图上作出必要的标注,不写作法.(2)一个长方形和一个正方形摆放如图,试找出除直角外的互余的角和互补的角.111.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ) 的值时,有三15位同学分别算出了23 °、24 °、25 °这三个不同的结果,其中确有一个是正确的答案,则α+β+γ.12.如图,O 是直线AB 上一点,∠AOE=∠FOD=90°,OB 平分∠COD,图中与∠DOE 互余的是,与∠DOE 互补的角是.13.以∠AOB 的顶点O 为端点引射线OC,使∠AOC:∠BOC=5:4,若∠AOB=15°,则∠AOC 的度数是.14.光线以图所示的角度α照射到平面镜I 上,然后在乎面镜I、Ⅱ之间来回反射,已知∠α=60°,∠β=50°,则∠γ=.4 15.若∠β与∠α互补,∠γ与∠α互余,且∠β与∠γ的和是3 1 个平角,则∠β是∠α的( ).A.25倍B.5 倍C.11 倍D.无法确定倍数16.4 点钟后,从时针到分针第二次成90°角,共经过( )分钟(答案四舍五入到整数) .A.60 B.30 C.40 D.3317.如图,从点 O 引出6 条射线OA、OB、OC、OD、OE、OF,且∠AOB=100°,OF 平分∠BOC,∠AOE =∠DOE,∠EOF=140°,求∠COD 的度数.18.过点 O 任作 7 条直线,求证:以 O 为顶点的角中必有一个小于 26°.19.(1)现有一个 19°的“模板”(如图),请你设计一种办法,只用这个“模板”和铅笔在纸上画出 1°的角来.(2)现有一个 17°的“模板”与铅笔,你能否在纸上画出一个 1°的角来?(3)用一个 21°的“模板”与铅笔,你能否在纸上画出一个 1°的角来?对于(2)、(3)两问,如果能,请你简述画法步骤;如果不能,请你说明理由.参考答案。
【核心考点突破】2023学年七年级数学上册精选专题培优讲与练(人教版)线段和角的计算-解析版
线段和角的计算(解析版)◎类型一 线段的和与差1.(2020·山东淄博·期中)如图所示 点C 在线段AB 的延长线上 且2BC AB = D 是AC 的中点.若2cm AB = 则BD 的长为( )A .1cmB .2cmC .3cmD .4cmAC 在同一条直线上 点B 在A 、C 之间 此时AB 、AC 的中点M 、N 之间的距离为( ) A .13cm B .6cmC .3cmD .1.5cm【答案】C【分析】首先根据题意 结合中点的性质 分别算出AN 、AM 的长 然后再根据线段之间的数量关系进行计算 即可得出结果. 【详解】解:如图 ∵16AC =cm 又∵AC 的中点为N ∵8cm AN = ∵10AB =cm ∵AB 的中点为M ∵5cm AM =∵853cm MN AN AM =-=-=.故选:C【点睛】本题考查了中点的性质、线段的和、差关系 解本题的关键在充分利用数形结合思想解决问题.3.(2022·安徽合肥·七年级期末)如图 已知线段AB =4 cm 延长AB 至点C 使AC =11 cm .点D 是AB 的中点 点E 是AC 的中点 则DE 的长为( )A .3 cmB .3.5 cmC .4 cmD .4.5 cm使BC =2cm 则线段AC 的长为( ) A .4cm B .8cmC .6cmD .8cm 或4cm【答案】D【分析】分情况讨论 点C 在线段AB 上或点C 在线段AB 的延长线上. 【详解】解:当点C 在线段AB 上∵AB =6cm BC =2cm ∵AC =AB -BC =6-2=4(cm ); 当点C 在线段AB 的延长线上∵AB =6cm BC =2cm ∵AC =AB +BC =6+2=8(cm ); 综上 线段AC 的长为4cm 或8cm . 故选:D .【点睛】本题考查两点间的距离 注意根据题意 分情况讨论 要画出正确的图形 结合图形进行计算.◎类型二 线段中点的有关计算5.(2022·全国·七年级专题练习)如图 D 为BC 的中点 则下列结论不正确的是( )A .AC =AB +2BD B .AD =AB +CDC .BC =AB +BD D .BD =AC -AD【答案】C【分析】根据线段中点的性质 对各选项逐个进行判断即可; 【详解】解:A∵BD =CD ∵BC =2BD ∵AC =AB +2BD 故正确; B∵BD =CD ∵AD =AB +BD =AB +CD 故正确;C∵BC =BD +CD AB BD ≠ ∵BC AB BD ≠+ 故错误; D∵BD =CD CD =AC -AD ∵BD =AC -AD 故正确; 综上 故选C ;【点睛】本题考查了线段的组成 涉及了线段中点等知识 掌握并熟练使用相关知识 同时注意解题中需注意的事项是本题的解题关键.6.(2022·山东淄博·期末)在直线l 上顺次取A B C 三点 使得4cm AB = 3cm BC =.如果点O 是线段AC 的中点 那么线段OB 的长度是( ) A .0.5cm B .1cmC .2.5cmD .3.5cm【答案】A【分析】根据题意求出AC 根据线段中点的性质求出OC 计算即可.故选:A .12BC AB =.若D 是AC 的中点 则线段AD 的长为( ) A .13cm 2B .11cm 2C .9cm 2D .7cm 2是线段AB 的中点 N 是线段AC 的中点 P 为AN 的中点 Q 为AM 的中点 则BC :PQ 等于( )A .2B .3C .4D .5◎类型三 线段n 等分点的有关计算9.(2021·湖北·公安县教学研究中心七年级阶段练习)如图 将数轴上6-与6两点间的线段六等分 这五个等分点所对应数依次为1a 2a 3a 4a 5a 则下列结论不正确的是( )A .40a >B .134a a a +=C .12450a a a a +++=D .140a a +<故选:B.【点睛】本题考查了数轴两点间的距离求出1a2a3a4a5a表示的数是解题的关键.10.(2022·河北唐山·七年级期末)如图所示长为12cm的线段AB的中点为M C将线段MB MC MB=则线段AC的长为()分为MC和CB且:1:3A.10B.9C.8D.7AC的三等分点则线段BD的长为()A.2cm或4cm B.8cm C.10cm D.8cm或10cm213AP PB = 从P 处把绳子剪断 若剪断后的三段绳子中最长的一段为24cm 则绳子的原长为( ) A .32cm B .64cmC .32cm 或64cmD .64cm 或128cm1维的严密性 在今后解决类似的问题时 要防止漏解.◎类型四与线段有关的动点问题13.(2021·山东枣庄东方国际学校七年级阶段练习)如图数轴上的点O和点A分别表示0和10 点P是线段OA上一动点.点P沿O A O→→以每秒2个单位的速度往返运动1次B 是线段OA的中点设点P运动时间为t秒(t不超过10秒).若点P在运动过程中当2PB=时则运动时间t的值为()A.32秒或72秒B.32秒或72秒或132或172秒C.3秒或7秒D.3秒或132或7秒或172秒此时点P运动的路程OP=OB-PB=3此时点P运动的路程OP=OB+PB=7此时点P运动的路程为OA+AP=OA+AB-PB=13此时点P运动的路程为OA+AP=OA+AB+PB=17比BC的14多5 P Q两点分别从A B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动运动时间为t秒M为BP的中点N为QM的中点以下结论:∵BC=2AC;∵AB=4NQ;∵当PB=12BQ时t=12 其中正确结论的个数是()A.0B.1C.2D.3【点睛】本题考查两点间的距离解题的关键是求出P到达B点时的时间以及点P与QAB是一动点点D是线段AC的中点点E是线段BD的中点在点C从点A向点B运动的过程中当点C刚好为线段DE的中点时线段AC的长为()A.3.2B.4C.4.2D.16 7【答案】A【分析】根据题意设AD=x,根据中点的定义得到CD,CE,BE的长再根据AB=8求出x即可求解.【详解】根据题意设AD=x,∵点D是线段AC的中点∵CD=AD=x,∵C刚好为线段DE的中点∵CD=CE=x∵点E是线段BD的中点∵BE=DE=2x∵AB=8∵x+x+x+2x=8解得x=1.6∵AC=2x=3.2.故选A.【点睛】此题主要考查线段的中点解题的关键是熟知中点的定义及列方程的关系. 16.(2016·江苏扬州·九年级阶段练习)电子跳蚤游戏盘是如图所示的∵ABC AB=6 AC =7 BC=8.如果跳蚤开始时在BC边的P0处BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处且BP3=BP2;……;跳蚤按上述规则一直跳下去第n次落点为P n(n为正整数)则点P2013与P2016之间的距离为()A.1B.2C.3D.4【答案】C【详解】试题解析:根据规律:CP1=CP0=8-2=6 AP1=AP2=7-6=1BP2=BP3=6-1=5 CP3=CP4=8-5=3 AP4=AP5=7-3=4 …由此可得P0P3=CP0-CP3=6-3=3P1P4=AP4-AP1=4-1=3P2P5=AP5-AP2=4-1=3…∵P2013P2016=3.故选C.考点:规律型:图形的变化类.◎类型五 与方向角有关的计算题17.(2022·福建泉州·七年级期末)如图 OA 是表示北偏东x ︒的一条射线 OB 是表示北偏西()90y -︒的一条射线 若AOC AOB ∠=∠ 则OC 表示的方向是( )A .北偏东()903x -︒B .北偏东()90x y +-︒C .北偏东()902x y +-︒D .北偏东()90x y --︒ 【答案】C【分析】根据题意求得∵AOB 的度数 根据角的和差以及AOC AOB ∠=∠ 可得∵DOC 的度数 即可得出结论.【详解】解:如图∵OA 是表示北偏东x ︒的一条射线 OB 是表示北偏西()90y -︒的一条射线∵(),90AOD x DOB y ∠=︒∠=-︒∵()90AOB y x ∠=-+︒∵AOC AOB ∠=∠()90AOC y x ∴∠=-+︒AOD x ∠=︒DOC AOD AOC ∴∠=∠+∠()90x y x =+-+︒()902y x =-+︒.故选C .【点睛】本题考查了方位角的表示 几何图形中角度的计算 数形结合是解题的关键. 18.(2022·山东东营·期末)如图 海上有两艘军舰A 和B 由A 测得B 的方向是( )A.北偏西30B.北偏西60︒C.南偏东30D.南偏东60︒【答案】D【分析】根据方向角的分类及已知角度即可求解.【详解】解:由图可得A在B的北偏西60︒的方向上故B在A的南偏东60︒的方向上.故选:D.【点睛】本题考查了方向角的分类及表示熟练掌握方向角的概念及分类是解题的关键.19.(2022·上海理工大学附属初级中学期末)如图点B在点A的()方向.A.北偏东35°B.北偏东55°C.北偏西35°D.北偏西55°【答案】C【分析】先求出55°的余角再根据方向角的定义即可解答.【详解】解:由题意得:90°﹣55°=35°∵如上图点B在点A的北偏西35°方向故选:C.【点睛】本题考查了方向角熟练掌握方向角的定义是解题的关键.20.(2022·陕西·西安高新一中实验中学七年级期末)如图OB是北偏西50°方向的一条射线若∵AOB=90° 则射线OA的方向是()A .西偏北50°B .东偏北40°C .北偏东40°D .北偏西40° 【答案】C【分析】利用∵AOB 的度数减去50°进行计算 即可解答.【详解】解:由题意得:90°-50°=40°∵射线OA 的方向是:北偏东40°故选:C .【点睛】本题考查了方向角 根据题目的已知条件并结合图形分析是解题的关键.◎类型六 三角板中角度的有关计算问题21.(2022·山东济南·七年级期末)如图 将一副三角尺的两个直角项点O 按如图方式叠放在一起 若∵AOC =130° 则∵BOD =( )A .45°B .50°C .55°D .60° 【答案】B【分析】根据题意可得90AOB DOC ∠=∠=︒ 推算出AOD ∠的度数 即可得出BOD ∠的度数.【详解】解:由题可知 90AOB DOC ∠=∠=︒∵∵AOC =130°∵1309040AOD AOC DOC ∠=∠-∠=︒-︒=︒∵904050BOD AOB AOD ∠=∠-∠=︒-︒=︒故选B .【点睛】本题考查了角度的和差计算 推理出角度之间的关系是本题的关键.22.(2022·山东烟台·期中)如图 将一副三角板AOB 与COD 的直角顶点O 重合在一起 若4AOD BOC ∠=∠ OE 为BOC ∠的平分线 则DOE ∠的度数为( )A .72°B .73°C .75°D .76°若4AOD BOC ∠=∠ OE 为BOC ∠的平分线 则DOE ∠的度数为( )A .36︒B .45︒C .60︒D .72︒合于O 点 已知∵AOB =160° 则∵COD 的度数为( )A .20°B .30°C .40°D .50°【答案】A【分析】先根据直角三角板的性质得出180AOC DOB ∠+∠=︒ 进而可得出COD ∠的度数.【详解】解:AOD ∆ BOC ∆是一副直角三角板 180AOD COB ∴∠+∠=︒9090180AOB COD DOB AOD COD COB AOD ∴∠+∠=∠+∠+∠=∠+∠=︒+︒=︒160AOB ∠=︒180********COD AOB ∴∠=︒-∠=︒-︒=︒故选:A .【点睛】本题考查的是角的计算 余角 解题的关键是熟知直角三角板的特点.◎类型七 几何图形中的有关角度的计算问题25.(2022·广东·丰顺县东海中学八年级开学考试)已知4AOB BOC ∠=∠ 若20BOC ∠=︒ 则AOC ∠=( )A .60︒B .80︒或60︒C .80︒D .100︒或60︒ 【答案】D【分析】根据题意可得此题要分两种情况 一种是OC 在∵AOB 内部 另一种是在∵AOB 外部 分别计算即可求得.【详解】解:∵4AOB BOC ∠=∠ 20BOC ∠=︒∵420=80AOB ∠=⨯︒︒∵如图1 当OC 在∵AOB 外部时8020100AOC AOB BOC ∠=∠+∠=︒+︒=︒∵如图2 当OC 在∵AOB 内部时802060AOC AOB BOC ∠=∠-∠=︒-︒=︒故AOC ∠的度数为100︒或60︒故选:D【点睛】此题主要考查了角的计算 关键是注意此题分两种情况.26.(2021·山东省商河实验中学七年级阶段练习)平面内 有两个角∵AOB =50° ∵AOC =20° OA 为两角的公共边 则∵BOC 为( )A .30°B .70°C .30°或70°D .70°或 40°【答案】C【分析】分两种情况进行讨论 分别画出图形 根据角的和差关系解决此题即可.【详解】解:当OC 在∵AOB 内部时 如图所示:此时∵BOC=∵AOB−∵AOC=50°−20°=30°;当OC在∵AOB外部时如图所示:此时∵BOC=∵AOB+∵AOC=50°+20°=70°;综上分析可知:∵BOC=30°或70°故选:C.【点睛】本题主要考查角的和差关系进行分类讨论是解决本题的关键.27.(2022·全国·七年级专题练习)如图将一副三角板叠在一起使它们的直角顶点重合于O点下列说法错误的是()A.∵AOD=∵BOC B.∵AOD>∵BOD C.∵AOC=∵BOD D.∵AOC>∵COD【答案】D【分析】根据角的加减方法逐个计算即可得到答案;【详解】解:A:∵AOD=∵BOC=90° 故正确;B:∵∵AOD=∵BOC=90° ∵BOD=∵BOC-∵COD=∵AOD-∵COD∵AOD BOD∠>∠故正确;C:∵∵AOD=∵BOC=90° ∵AOC=∵AOD-∵COD∵BOD=∵BOC-∵COD∵∵AOC=∵BOD 故正确;D:根据已知条件无法比较∵AOC和∵COD的大小故错误;综上故选D;【点睛】本题考查了角的加减 涉及了直角三角形等知识 掌握并熟练使用相关知识 同时注意解题中需注意的事项是本题的解题关键.28.(2022·河南郑州·七年级期末)如图 若90AOB COD EOF ∠=∠=∠=° 且4530DOF AOE ∠=︒∠=︒, 求BOC ∠的度数为( )A .15︒B .20︒C .25︒D .30 【答案】A【分析】先根据角的和差可得45COF ∠=︒ 又根据角的和差可得45EOC ∠=︒ 再根据BOC AOB EOC AOE ∠=∠-∠-∠即可得.【详解】解:90COD ∠=︒ 45DOF ∠=︒45COF COD DOF ∴∠=∠-∠=︒90EOF ∠=︒45EOC EOF COF ∴∠=∠-∠=︒又90AOB ∠=︒ 30AOE ∠=︒15BOC AOB EOC AOE ∴∠=∠-∠-∠=︒故选:A .【点睛】本题考查了几何图形中的角度计算 正确找出图形中的角之间的联系是解题关键.◎类型八 实际问题中的角度计算29.(2022·陕西咸阳·七年级期末)钟面上3点20分时 时针与分针的夹角度数是( ) A .20︒B .25︒C .30D .35︒ 【答案】A【分析】时针走一分钟是0.5° 分针走一分钟是6° 利用角度之间数量关系进行求解即可.【详解】解:由题意 得(6-0.5)×20°-90°=110°-90°=20°故选:A .【点睛】本题考查钟面角问题 熟知时针和分针所走的度数 找出角度之间的关系是解决问题的关键.30.(2022·湖南娄底·九年级期中)入射光线和平面镜的夹角为40° 转动平面镜 使入射角减小20° 反射光线与入射光线的夹角和原来相比较将( )A.减小40°B.增大40°C.减小20°D.不变【答案】A【分析】分别求出平面镜转动前后反射光线与入射光线的夹角再对两者进行比较即可得到解答.【详解】解:入射光线与平面镜的夹角是40° 所以入射角为90°−40°=50°.根据光的反射定律反射角等于入射角反射角也为50°所以入射光线与反射光线的夹角是100° .入射角减小20° 变为50°−20°=30° 所以反射角也变为30°此时入射光线与反射光线的夹角为60°.则反射光线与入射光线间的夹角和原来比较将减小40°.故选:A.【点睛】本题考查角度与光反射的综合应用熟练掌握光的反射规律及角度的计算方法是解题关键.31.(2022·四川绵阳·七年级期末)钟表在8:30时时针与分针的夹角度数是()A.45B.30C.60D.75度位置是时钟整点时时针(短针)位置根据图中时针和分针(长针)位置该时钟显示时间是()~点A.1011点B.78点C.56点D.23由此确定此时是10点48分;◎类型九 角度的四则运算33.(2022·河北·石家庄市栾城区教育局教研室七年级期末)下面等式成立的是( ) A .83.58350'︒=︒B .905723'27''3237'33''︒-︒=︒C .1548'36''3727'59''5216'35''︒+︒=︒D .41.254115'︒=︒【答案】D【分析】根据角度制的换算和运算法则逐一判断即可.【详解】解:A 、83.58330'︒=︒ 计算错误 不符合题意;B 、905723'27''3236'33''︒-︒=︒ 计算错误 不符合题意;C 、1548'36''3727'59''5316'35''︒+︒=︒ 计算错误 不符合题意;D 、41.254115'︒=︒ 计算正确 符合题意;故选D .【点睛】本题主要考查了角度制的换算和角度制的四则运算 熟知角度制的进率以及相关计算法则是解题的关键.34.(2022·河北邯郸·七年级期末)下列运算正确的是( )A .3112'36''31.21︒=︒B .885723'27''3037'33''︒-︒=︒C .1548'36''3727'59''5216'35''︒+︒=︒D .63.56350'︒=︒ 【答案】A【分析】按角的运算进制计算即可. 【详解】解:进行度、分、秒的转化运算 注意以60为进制.A 、31°12′36″=31.21° 正确 该选项符合题意;B 、88°−57°23'27''=87°59'60''−57°23'27''=30°36'33'' 原计算错误 该选项不符合题意;C 、15°48'36''+37°27'59''=52°75'95''=53°16'35'' 原计算错误 该选项不符合题意;D 、63.5°=63°30' 原计算错误 该选项不符合题意;故选:A .【点睛】本题考查角度的运算 度、分、秒的互化 相对比较简单 注意以60为进制.35.(2022·山东菏泽·七年级期末)下列度、分、秒运算中 正确的是( )A .4839673111510'''︒+︒=︒B .9070392021''︒-︒=︒C .14586'︒=.D .180005''=︒. 【答案】D【分析】根据1°=60′ 1′=60″ 计算时先从小的 再到大单位 逐项计算可判定求解.【详解】解:A 、4839673111610︒+︒=︒'''原计算错误 不符合题意;B 、9070391921'-︒=︒'︒原计算错误 不符合题意;C 、1.4587'︒=原计算错误 不符合题意;D 、1800300.5'''==︒正确 符合题意;故选:D .【点睛】本题主要考查度分秒的换算 1°=60' 1'=60''是解题的关键.36.(2021·河北邢台·七年级期中)计算:72°22′+50°40′30″的结果是( )A .122°62′30″B .123°2′30″C .122°2′30″D .123°12′30″ 【答案】B【分析】把原式化为70+50+22+40+30''︒︒'' 再满60进1 即可得到答案.【详解】解:72°22′+50°40′30″ 1226230123230.=︒='︒'''''故选B【点睛】本题考查的是角度的四则运算 注意角度的单位与进位 掌握“满60进1”是解题的关键.◎类型十 角n 分线的有关计算37.(2014·河南·中考真题)如图 直线AB CD 相交于点O 射线OM 平分∵AOC ON ∵OM若∵AOM=35° 则∵CON的度数为()A.35°B.45°C.55°D.65°【答案】C【分析】根据角平分线的定义得出∵MOC=35° 再根据题意得出∵MON=90° 然后再根据角的关系计算即可得出∵CON的度数.【详解】解:∵射线OM平分∵AOC∵AOM=35°∵∵MOC=35°∵ON∵OM∵∵MON=90°∵∵CON=∵MON﹣∵MOC=90°﹣35°=55°.故选:C【点睛】本题主要考查了角平分线的定义和垂线的定义解决本题的关键在正确找出角的关系.38.(2021·云南·文山市薄竹镇乐诗冲中心学校七年级期末)已知∵AOB=70° ∵BOC=30° OM平分∵AOB ON平分∵BOC则∵MON=()A.50°B.20°C.20°或50°D.不能确定【点睛】此题主要考查了角平分线的定义 角的和差计算 正确进行分类讨论是解题的关键. 39.(2022·安徽·合肥市第六十八中学七年级期末)如图 若∵AOB =x ° OC 是∵AOB 的平分线 1OC 是∵AOC 的平分线 2OC 是1AOC ∠的平分线 n OC 是1n AOC -∠的平分线 则20212021AOC ∠与20222022AOC ∠大小关系是( )A .=B .<C .>D .无法确定x AOC ∠即有∠xx 2112x x ⎛⎫⨯= ⎪⎝⎭ 3112x x ⎛⎫⨯= ⎪⎝⎭2n AOC -12DOE AOD ∠=∠ 则AOE ∠=( )A .10°B .15°C .20°D .25° ∠∠。
最新成都七年级数学上期末专题培优练习:线段与角(B卷)含答案
成都七年级数学上期末专题培优练习:线段与角第Ⅰ卷(选择题)一.填空题(共21小题)1.一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m= ;(2)(m,n)是“相伴数对”,则代数式m﹣[n+(6﹣12n﹣15m)]的值为.2.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“站台”.3.已知关于x的方程2ax=(a+1)x+3的解是正整数,则正整数a= .4.已知m是系数,关于x、y的两个多项式mx2﹣2x+y与﹣3x2+2x+3y的差中不含二次项,则代数式m2+3m﹣1的值为.5.已知x为有理数,则|x+5|+|x﹣3|的最小值是.6.如图所示的几何体都是由棱长为1个单位的正方体摆成的,经计算可得第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位,…依次规律,则第(20)个几何体的表面积是个平方单位.7.已知:2(x+5)2+3|y﹣2|=0,则x y= .8.如图,直线AB、CD相交于点O,∠BOF=∠DOE=90°,∠DOF=58°,则∠BOE= ,∠AOC= .9.如图:四边形ABCD和四边形ECGF都是正方形,其边长分别为x、y(点B、C、G和点C、D、E分别在一条直线上)则图中阴影部分的面积为:(用含x、y的代数式表示,且按x降幂排列)10.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a,b,c,…,z(不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x为奇数时,密码对应的序号y=;当明码对应的序号x为偶数时,密码对应的序号y=+13.再由得到的新序号推出密码中的字母.按上述规定,将明码“love”译成密码是.11.如图,将一条长为60cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度有种可能.12.关于x的方程=x+1无解,则m的值为.13.数轴上线段AB的中点为C,当点A代表的数是M,点B代表的数是N,则点C代表的数是.14.设一列数a1、a2、a3、…a2012中任意三个相邻数之和都是30,已知a2=25,a99=2x,a2011=3﹣x,那么a2000= .15.若x+y=﹣2,|x|=4,则y= .16.如图,把正方形ABCD对折,折痕为MN.把顶点D折到MN上的一点P上,折痕为CE,再把顶点A折到MN上的同一点,折痕为BF,则∠CPB的度数是度.17.已知,|a|=﹣a,=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|= .18.如图,点C把AB分为2:3两段,点D分AB为1:4两段,若DC=5cm,则AD= cm,AB= cm.19.如图所示,线段AB=m,BC=n,点E、F分别是线段AB、BC的中点,则EF= (用含m、n的代数式表示).20.如果x、y都是不为0的有理数,则代数式的最大值是.21.在实数的原有运算法则中我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=﹣3时,代数式(﹣2★z)•z﹣(﹣4★z)的值为.第Ⅱ卷(非选择题)二.解答题(共19小题)22.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN 的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.23.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足:|a+6|+(b ﹣4)2=0(1)求线段AB的长;(2)如图1,点C在数轴上对应的数为x,且是方程x+1=x﹣5的根,在数轴上是否存在点P使PA+PB=BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(3)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣BN的值不变;②PM+BN的值不变,其中只有一个结论正确,请判断出正确的结论,并求出其值.24.已知OD是∠AOC的平分线,OE是∠BOC的平分线,OF是∠DOE的平分线,且∠AOC<∠AOB.(1)如图1,当∠AOB=90°,求∠DOF的度数;(2)如图2,当90°<∠AOB<180°时,试探究∠DOF与∠AOB之间满足的数量关系,并说明理由;(3)如图3,当90°<∠AOB<180°,且∠AOC在∠AOB的外侧时,(2)问中所得结论是否仍然成立?并说明理由.25.阅读理解,完成下列各题定义:已知A、B、C为数轴上任意三点,若点C到A的距离是它到点B的距离的2倍,则称点C是[A,B]的2倍点.例如:如图1,点C是[A,B]的2倍点,点D不是[A,B]的2倍点,但点D是[B,A]的2倍点,根据这个定义解决下面问题:(1)在图1中,点A是的2倍点,点B是的2倍点;(选用A、B、C、D表示,不能添加其他字母);(2)如图2,M、N为数轴上两点,点M表示的数是﹣2,点N表示的数是4,若点E是[M,N]的2倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,且PQ=m,一动点H从点Q出发,以每秒2个单位长度的速度沿数轴向左运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的2倍点?(用含m的代数式表示)26.将一副直角三角板按如图1 摆放在直线AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不动,将三角板MON 绕点O 以每秒8°的速度顺时针方向旋转t 秒.(1)如图2,当t= 秒时,OM 平分∠AOC,此时∠NOC﹣∠AOM= ;(2)继续旋转三角板MON,如图3,使得OM、ON 同时在直线OC 的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由(数量关系中不能含t);(3)直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2°的速度顺时针旋转,当OM 旋转至射线OD 上时,两个三角板同时停止运动.①当t= 秒时,∠MOC=15°;②请直接写出在旋转过程中,∠NOC 与∠AOM 的数量关系(数量关系中不能含t).27.点O为直线AB上一点,在直线AB上侧任作一个∠COD,使得∠COD=90°.(1)如图1,过点O作射线OE,当OE恰好为∠AOD的角平分线时,请直接写出∠BOD与∠COE之间的倍数关系,即∠BOD= ∠COE(填一个数字);(2)如图2,过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,求∠FOB+∠EOC的度数;(3)在(2)的条件下,若∠EOC=3∠EOF,求∠AOE的度数.28.如图是某景区的环形游览路线ABCDA,已知从景点C到出口A的两条道路CBA 和CDA均为1600米,现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形道路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车的速度均为200米/分,每一个游客的步行速度均为50米/分.(1)探究(填空):①当两车行驶分钟时,1、2号车第一次相遇,此相遇点到出口A的路程为米;②当1号车第二次恰好经过点C,此时两车行驶了分钟,这一段时间内1号车与2号车相遇了次.(2)发现:若游客甲在BC上K处(不与点C、B重合)候车,准备乘车到出口A,在下面两种情况下,请问哪种情况用时较少(含候车时间)?请说明理由.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.(3)决策:①若游客乙在DA上从D向出口A走去,游客乙从D出发时恰好2号车在C处,当步行到DA上一点P(不与A,D重合)时,刚好与2号车相遇,经计算他发现:此时原地(P点)等候乘1号车到出口与直接从P步行到达出口A这两种方式,所花时间相等,请求出D点到出口A的路程.②当游客丙逛完景点C后准备到出口A,此时2号车刚好在B点,已知BC路程为600米,请你帮助游客丙做一下决策,怎样到出口A所花时间最少,并说明理由.29.点A、B、C在数轴上表示的数a、b、c满足:(b+2)2+(c﹣24)2=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.(1)a的值为,b的值为,c的值为;(2)若数轴上有三个动点M、N、P,分别从点A、B、C开始同时出发,在数轴上运动;点M的速度为每秒1个单位长度、点N的速度为每秒7个单位长度、点P的速度为每秒3个单位长度;其中点M从点N开始向右运动,点P从点C开始向左运动,点N从点B开始先向左运动,遇到点M后再向右运动,遇到点P 后回头再向左移动,…,这样直到点P遇到点M时三点都停止运动,求点N 所走的路程.30.已知:O为直线AB上的一点,射线OA表示北方向,射线OC在北偏东m°的方向,射线OE在南偏东n°的方向,射线OF平分∠AOE,且2m+2n=180.(1)如图,∠COE= °,∠COF和∠BOE之间的数量关系为.(2)若将∠COE绕点O旋转至图2的位置,射线OF仍然平分∠AOE时,试问(1)中∠BOE和∠COF之间的数量关系?请说明理由.(3)若将∠COE绕点O旋转至图3的位置,射线OF仍然平分∠AOE时,则∠BOE 和∠COF之间的数量关系发生变化吗?如不变化,说明理由,如变化,写出新的数量关系并说明理由.31.将长为1,宽为a的长方形纸片如图那样折一下,剪下一个边长等于长方形的宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如些反复操作下去,若在第n次操作后剩下的长方形为正方形,则操作终止.(1)第一次操作后,剩下的长方形两边长分别为;(用含a的代数式表示)(2)若第二次操作后,剩下的长方形恰好是正方形,则求a的值,写出解答过程(3)若第三次操作后,剩下的长方形恰好是正方形,画出图形,试求a的值.32.某公司规定业务员的工资包括基本工资和业务工资两个部分,其中基本工资为3000元/月,业务工资是按业务员当月的业务总额的千分之五来计算的.又根据国家税务法规定,每月个人所得超过3500元的部分为应纳税所得额,需缴纳一定的个人所得税.上缴个人所得税是按下表累加计算的.(1)业务员甲为测算自己的业务工资,自己记录了2011年11月份连续五天的业务情况,以2500元为标准.超过的记正数,不足的记负数,记录如下:800.500.﹣200.1200.200;帮助业务员甲测算出这个月的工资(按1个月25个工作日计算).(2)公司业务员乙到银行取工资时发现他2011年11月份的工资比测算的工资少了95元,他先愣了一下,又知道是由于上缴了个人所得税的原因.聪明的同学,你能求出业务员乙2011年11月份的工资吗?(3)为年终促销,公司经理出台一奖励办法,办法规定:12月份起,若12月份业务总额不超过6万元的按原来规定计算当月业务工资,若月总额超过6万元但不超过10万元,则超过6万元的部分另加千分之二来计算当月业务工资,若月业务总额超过10万元,则其中的10万元按上面的两个规定,超过10万元的部分另加千分之五来计算当月的业务工资.出台了这一奖励办法之后,12月份营业员丙上缴个人所得税143元,那么他这个月的业务总额为多少万元?33.已知,求代数式的值.34.已知关于x的方程mx+2=2(m﹣x)的解满足|x﹣|﹣1=0,则m的值.35.已知数轴上三点A,O,B表示的数分别为6,0,﹣4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.36.如图是2015年12月月历.(1)如图,用一正方形框在表中任意框往4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是,,.(2)在表中框住四个数之和最小记为a1,和最大记为a2,则a1+a2= .(3)当(1)中被框住的4个数之和等于76时,x的值为多少?(4)在(1)中能否框住这样的4个数,它们的和等于92?若能,则求出x的值;若不能,则说明理由.37.在学习了第四章《基本的平面图形》的知识后,小明将自己手中的一副三角板的两个直角顶点叠放在一起拼成如下的图形1和图形2.(1)在图1中,当AD平分∠BAC时,小明认为此时AB也应该平分∠FAD,请你通过计算判断小明的结论是否正确.(2)小明还发现:只要AD在∠BAC的内部,当△ABC绕直角顶点A旋转时,总有∠FAB=∠DAC(见图2),请你判断小明的发现是否正确,并简述理由.(3)在图2中,当∠FAC=x,∠BAD=y,请你探究x与y的关系.38.某地移动公司推出了移动电话的两种计费方式(见下表)温馨提示:1、若选用方式甲,每月固定缴费58元,当主动打出电话月累计时间不超过150分钟,不再额外收费;当超过150分钟时,超过部分每分钟加收0.25元.2、电信计费中的主叫:甲打给乙,甲为主叫,乙为被叫,运营商在收费时只针对主叫计时收费,被叫免费接听.设一个月内使用移动电话主叫的时间为t分(t为正整数),请根据上表中提供的信息回答下列问题:(1)用含t的式子填写下表:(2)当150<t≤350时,t是否有某个值使得两种计费方式费用相等,如果相等请求出t的值,如果没有请说明理由.(3)如果顾客A每月的使用电话的主叫时间t满足0<t≤350时,结合你在(2)中的解答,回答该顾客选用哪种计费方式省钱,并说明理由.39.如图,两个形状,大小完全相同的含有30°,60°的三角板如图①放置,PA,PB与直线MN重合,且三角板PAC与三角板PBD均可绕点P逆时针旋转.(1)试说明:∠DPC=90°;(2)如图②,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定度数,PF平分∠APD,PE平分∠CPD,求∠EPF.(3)如图③,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3°/s.同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/s,在两个三角板旋转过程中(PC转到与PM重合时,三角板都停止转运),问的值是否变化?若不变,求出其值,若变化,说明理由.40.已知A、B两点在数轴上表示的数为a和b,M、N均为数轴上的点,且OA<OB.(1)若A、B的位置如图所示,试化简:|a|﹣|b|+|a+b|+|a﹣b|.(2)如图,若|a|+|b|=8.9,MN=3,求图中以A、N、O、M、B这5个点为端点的所有线段长度的和;(3)如图,M为AB中点,N为OA中点,且MN=2AB﹣15,a=﹣3,若点P为数轴上一点,且PA=AB,试求点P所对应的数为多少?参考答案与试题解析一.填空题(共21小题)1.一般情况下不成立,但有些数可以使得它成立,例如:m=n=0时,我们称使得成立的一对数m,n为“相伴数对”,记为(m,n).(1)若(m,1)是“相伴数对”,则m= ﹣;(2)(m,n)是“相伴数对”,则代数式m﹣[n+(6﹣12n﹣15m)]的值为﹣3 .【解答】解:(1)根据题意得:+=,去分母得:15m+10=6m+6,移项合并得:9m=﹣4,解得:m=﹣;(2)由题意得:+=,即=,整理得:15m+10n=6m+6n,即9m+4n=0,则原式=m﹣n﹣3+6n+m=m+5n﹣3=(9m+4n)﹣3=﹣3,故答案为:(1)﹣;(2)﹣32.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“站台”.【解答】解:AB=﹣(﹣)=,AP=×=,P:﹣+=.故P站台用类似电影的方法可称为“站台”.故答案为:.3.已知关于x的方程2ax=(a+1)x+3的解是正整数,则正整数a= 2,4 .【解答】解:方程整理得:(a﹣1)x=3,解得:x=,由a为正整数,得到a=2,4,故答案为:2,44.已知m是系数,关于x、y的两个多项式mx2﹣2x+y与﹣3x2+2x+3y的差中不含二次项,则代数式m2+3m﹣1的值为﹣1 .【解答】解:根据题意列得:(mx2﹣2x+y)﹣(﹣3x2+2x+3y)=mx2﹣2x+y+3x2﹣2x﹣3y=(m+3)x2﹣4x﹣2y,∵结果不含二次项,∴m+3=0,解得:m=﹣3,则m2+3m﹣1=9﹣9﹣1=﹣1.故答案为:﹣1.5.已知x为有理数,则|x+5|+|x﹣3|的最小值是8 .【解答】解:当x在以﹣5、3为端点的线段上时,|x﹣3|+|x+5|最小=3﹣x+x+5=8.故答案是:8.6.如图所示的几何体都是由棱长为1个单位的正方体摆成的,经计算可得第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位,…依次规律,则第(20)个几何体的表面积是1260 个平方单位.【解答】解:结合图形,发现:第(20)个图形的表面积是(1+2+…+20)×6=1260个平方单位.故答案为:1260.7.已知:2(x+5)2+3|y﹣2|=0,则x y= 25 .【解答】解:根据题意得:x+5=0,y﹣2=0,解得:x=﹣5,y=2,则原式=52=25.8.如图,直线AB、CD相交于点O,∠BOF=∠DOE=90°,∠DOF=58°,则∠BOE= 58°,∠AOC= 32°.【解答】解:∵∠BOF=90°,∠DOF=58°,∴∠DOB=90°﹣58°=32°,∵∠DOE=90°,∴∠BOE=90°﹣32°=58°,∵∠DOB=32°,∴∠AOC=32°,故答案为:58°;32°.9.如图:四边形ABCD和四边形ECGF都是正方形,其边长分别为x、y(点B、C、G和点C、D、E分别在一条直线上)则图中阴影部分的面积为:(用含x、y的代数式表示,且按x降幂排列)【解答】解:由题意可得,图中阴影部分的面积为:=,故答案为:.10.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a,b,c,…,z(不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x为奇数时,密码对应的序号y=;当明码对应的序号x为偶数时,密码对应的序号y=+13.再由得到的新序号推出密码中的字母.按上述规定,将明码“love”译成密码是shxc .【解答】解:∵“l”、“o”、“v”、“e”所代表的数字分别为12,15,22,5,∴密码对应的序号分别为19,8,24,3,对应的字母为shxc.11.如图,将一条长为60cm的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度有 4 种可能.【解答】解:∵三段长度由短到长的比为1:2:3,∴三段长度分别为:10cm,20cm,30cm.①当剪切处右边上部分的长度为10cm,剪切处左边的卷尺为20cm时,折痕处为:10+=20cm;②当剪切处右边上部分的长度为10cm,剪切处左边的卷尺为30cm时,折痕处为:10+=25cm;③当剪切处右边上部分的长度为20cm,剪切处左边的卷尺为10cm时,折痕处为:20+=25cm;④当剪切处右边上部分的长度为20cm,剪切处左边的卷尺为30cm时,折痕处为:20+=35cm;⑤当剪切处右边上部分的长度为30cm,剪切处左边的卷尺为10cm时,折痕处为:30+=35cm;⑥当剪切处右边上部分的长度为30cm,剪切处左边的卷尺为20cm时,折痕处为:30+=40cm;综上所述,折痕对应的刻度有4种可能.故答案为:4.12.关于x的方程=x+1无解,则m的值为﹣2 .【解答】解:方程去分母得:|m|x+m=2x+2,整理得:(|m|﹣2)x=2﹣m,当m=2时,x有无数多个解,不符合题意,舍去;当m=﹣2时,方程无解.故答案为:﹣213.数轴上线段AB的中点为C,当点A代表的数是M,点B代表的数是N,则点C代表的数是.【解答】解:当AB同号,且A在B点左侧,则AB=N﹣M,故点C代表的数是:M+=,当AB同号,且A在B点右侧,则AB=M﹣N,故点C代表的数是:N+=,当AB异号,A在B点左侧,则AB=N﹣M,故点C代表的数是:M+=,当AB异号,A在B点右侧,则AB=M﹣N,故点C代表的数是:N+=,综上所述:点C代表的数是:.故答案为:.14.设一列数a1、a2、a3、…a2012中任意三个相邻数之和都是30,已知a2=25,a99=2x,a2011=3﹣x,那么a2000= 25 .【解答】解:由任意三个相邻数之和都是30可知:a1+a2+a3=30a2+a3+a4=30a3+a4+a5=30…a n+a n+1+a n+2=30可以推出:a1=a4=a7=…=a3n﹣2a2=a5=a8=…=a3n﹣1a3=a6=a9=…=a3n所以a99=a3a2011=a1,则25+2x+3﹣x=30,x=2,a3=4a1=3﹣x=1,因此a2000=a2=25.故答案为:25.15.若x+y=﹣2,|x|=4,则y= ﹣6或2 .【解答】解:∵|x|=4,∴x=±4∴①y=﹣2﹣x=4解得:y=﹣6②y=﹣2+4=2.故填﹣6或2.16.如图,把正方形ABCD对折,折痕为MN.把顶点D折到MN上的一点P上,折痕为CE,再把顶点A折到MN上的同一点,折痕为BF,则∠CPB的度数是60°度.【解答】解:∵四边形ABCD为正方形,∴CD=CB=BA,∵顶点D折到MN上的一点P上,折痕为CE,再把顶点A折到MN上的同一点,折痕为BF,∴PC=DC,PB=AB,∴PC=PB=BC,∴△PAB为等边三角形,∴∠CPB=60°.故答案为60°.17.已知,|a|=﹣a,=﹣1,|c|=c,化简|a+b|﹣|a﹣c|﹣|b﹣c|= ﹣2c .【解答】解:∵|a|=﹣a,=﹣1,|c|=c,∴a为非正数,b为负数,c为非负数,∴a+b≤0,a﹣c≤0,b﹣c≤0,则原式=﹣a﹣b+a﹣c+b﹣c=﹣2c,故答案为:﹣2c18.如图,点C把AB分为2:3两段,点D分AB为1:4两段,若DC=5cm,则AD= 5 cm,AB= 25 cm.【解答】解:∵点C把AB分为2:3两段,∴AC=AB,∵D分AB为1:4两段,∴AD=AB,∵AC﹣AD=AB﹣AB=AB=CD=5cm,∴AB=25cm,AD=5cm,故答案为:5,25.19.如图所示,线段AB=m,BC=n,点E、F分别是线段AB、BC的中点,则EF=(m+n)(用含m、n的代数式表示).【解答】解:∵点E、F分别是线段AB、BC的中点,∴BE=AB,BF=BC,∴EF=BE+BF=AB+BC=(AB+BC),∵AB=m,BC=n,∴EF=(m+n).故答案为:(m+n).20.如果x、y都是不为0的有理数,则代数式的最大值是 1 .【解答】解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的最大值是1.故答案为:1.21.在实数的原有运算法则中我们定义一个新运算“★”如下:x≤y时,x★y=x2;x>y时,x★y=y.则当z=﹣3时,代数式(﹣2★z)•z﹣(﹣4★z)的值为﹣7 .【解答】解:根据题中的新定义得:当z=﹣3时,原式=(﹣2)★(﹣3)×(﹣3)﹣(﹣4)★(﹣3)=9﹣16=﹣7,故答案为:﹣7二.解答题(共19小题)22.如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN 的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.【解答】解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.23.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足:|a+6|+(b ﹣4)2=0(1)求线段AB的长;(2)如图1,点C在数轴上对应的数为x,且是方程x+1=x﹣5的根,在数轴上是否存在点P使PA+PB=BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(3)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣BN的值不变;②PM+BN的值不变,其中只有一个结论正确,请判断出正确的结论,并求出其值.【解答】解:(1)∵|a+6|+(b﹣4)2=0,∴a+6=0,b﹣4=0,∴a=﹣6,b=4,∴AB=|﹣6﹣4|=10.答:AB的长为10;(2)存在,∵2x+1=x﹣5,∴x=﹣8,∴BC=12.设点P在数轴上对应的数是m,∵PA+PB=BC+AB,∴|m+6|+|m﹣4|=×12+10,令m+6=0,m﹣4=0,∴m=﹣6或m=4.①当m≤﹣6时,﹣m﹣6+4﹣m=13,m=﹣7.5;②当﹣6<m≤4时,m+6+4﹣m=13,(舍去);③当m>4时,m+6+m﹣4=13,m=5.5.∴当点P表示的数为﹣7.5或5.5时,PA+PB=BC+AB;(3)设P点所表示的数为n,∴PA=n+6,PB=n﹣4.∵PA的中点为M,∴PM=PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣4),∴①PM﹣BN=×﹣×=(不变),②PM+BN=+×=n+1(随点P的变化而变化),即正确的结论为①PM﹣BN的值不变,其值为.24.已知OD是∠AOC的平分线,OE是∠BOC的平分线,OF是∠DOE的平分线,且∠AOC<∠AOB.(1)如图1,当∠AOB=90°,求∠DOF的度数;(2)如图2,当90°<∠AOB<180°时,试探究∠DOF与∠AOB之间满足的数量关系,并说明理由;(3)如图3,当90°<∠AOB<180°,且∠AOC在∠AOB的外侧时,(2)问中所得结论是否仍然成立?并说明理由.【解答】解:(1)∵OF是∠DOE的平分线,∴∠DOF=,∵OD是∠AOC的平分线,OE是∠BOC的平分线,∴∠DOC=∠AOC,∠COE=∠COB,∵∠DOF==(∠DOC+∠COE)=(+∠COB)=∠AOB==22.5°;(2)同理得:∠DOF==×∠AOB=∠AOB,(3)结论仍然成立,理由是:∠DOF==(∠COE﹣∠COD),=(∠BOC﹣∠AOC),=(∠AOB+∠AOC﹣∠AOC),=∠AOB.25.阅读理解,完成下列各题定义:已知A、B、C为数轴上任意三点,若点C到A的距离是它到点B的距离的2倍,则称点C是[A,B]的2倍点.例如:如图1,点C是[A,B]的2倍点,点D不是[A,B]的2倍点,但点D是[B,A]的2倍点,根据这个定义解决下面问题:(1)在图1中,点A是[C,D] 的2倍点,点B是[D,C] 的2倍点;(选用A、B、C、D表示,不能添加其他字母);(2)如图2,M、N为数轴上两点,点M表示的数是﹣2,点N表示的数是4,若点E是[M,N]的2倍点,则点E表示的数是2或10 ;(3)若P、Q为数轴上两点,点P在点Q的左侧,且PQ=m,一动点H从点Q出发,以每秒2个单位长度的速度沿数轴向左运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的2倍点?(用含m的代数式表示)【解答】解:(1)∵CA=2,DA=1,CA=2DA∴点A 是[C,D]的2倍点∵BD=2,BC=1,BD=2BC∴点B是[D,C]的2倍点.故答案为:[C,D][D,C](2)∵NM=4﹣(﹣2)=6当点E在线段MN上又∵点E是[M,N]的2倍点∴EM=MN=4∴点E 表示的数是2当点E在点N右侧∴EM=2NE∴MN=NE=6∴ME=12∴点E表示的数是10.故答案为:2或10;(3 )∵PQ=m,PH=2t,∴HQ=m﹣2t又∵点H 恰好是P和Q两点的2倍点∴点H是[P,Q]的2倍点或点H是[Q,P]的2倍点∴PH=2HQ 或HQ=2PH即:2×2t=m﹣2t或2t=2(m﹣2t)或2t=2(2t﹣m),解得t=m或t=m或t=m所以,当t=m或t=m或t=m时,点H恰好是P和Q两点的2倍点.26.将一副直角三角板按如图1 摆放在直线AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不动,将三角板MON 绕点O 以每秒8°的速度顺时针方向旋转t 秒.(1)如图2,当t= 2.25 秒时,OM 平分∠AOC,此时∠NOC﹣∠AOM= 45°;(2)继续旋转三角板MON,如图3,使得OM、ON 同时在直线OC 的右侧,猜想∠NOC与∠AOM 有怎样的数量关系?并说明理由(数量关系中不能含t);(3)直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC也绕点O 以每秒2°的速度顺时针旋转,当OM 旋转至射线OD 上时,两个三角板同时停止运动.①当t= 3 秒时,∠MOC=15°;②请直接写出在旋转过程中,∠NOC 与∠AOM 的数量关系(数量关系中不能含t).【解答】解:(1)∵∠AOC=45°,OM平分∠AOC,∴∠AOM=∠AOC=22.5°,∴t=2.25,∵∠MON=90°,∠MOC=22.5°,∴∠NOC﹣∠AOM=∠MON﹣∠MOC﹣∠AOM=45°;(2)∠NOC﹣∠AOM=45°,∵∠AON=90°+8t,∴∠NOC=90°+8t﹣45°=45°+8t,∵∠AOM=8t,∴∠NOC﹣∠AOM=45°;(3)①∵∠AOB=2t,∠AOM=8t,∴∠AOC=45°+2t,∴45°+2t﹣8t=15°或8t﹣45°﹣2t=15°.解得t=5或10.②∠NOC﹣∠AOM=15°.∵∠AOB=2t,∠AOM=8t,∠MON=90°,∠BOC=45°,∵∠AON=90°+∠AOM=90°+8t,∠AOC=∠AOB+∠BOC=45°+2t,∴∠NOC=∠AON﹣∠AOC=90°+8t﹣45°﹣2t=45°+6t,∴∠NOC﹣∠AOM=15°.故答案为:2.25,45;3.27.点O为直线AB上一点,在直线AB上侧任作一个∠COD,使得∠COD=90°.(1)如图1,过点O作射线OE,当OE恰好为∠AOD的角平分线时,请直接写出∠BOD与∠COE之间的倍数关系,即∠BOD= 2 ∠COE(填一个数字);(2)如图2,过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,求∠FOB+∠EOC的度数;(3)在(2)的条件下,若∠EOC=3∠EOF,求∠AOE的度数.【解答】解:(1)∠BOD=2∠COE;理由如下:∵∠COD=90°.∴∠BOD+∠AOC=90°,∵OE平分∠AOD,∴∠AOE=∠DOE=∠AOD,又∵∠BOD=180°﹣∠AOD,∴∠COE=∠AOE﹣∠AOC=∠AOD﹣(90°﹣∠BOD)=(180°﹣∠BOD)﹣90°+∠BOD=∠BOD,∴∠BOD=2∠COE;故答案为:2;(2)∵OC为∠AOE的角平分线,OF平分∠COD,∴∠AOC=∠COE,∠COF=∠DOF=45°,∴∠FOB+∠EOC=∠DOF+∠BOD+∠AOC=45°+90°=135°;(3)∵∠EOC=3∠EOF,设∠EOF=x,则∠EOC=3x,∴∠COF=4x,由(2)得:∠AOE=2∠COE=6x,∠DOF=4x,∵∠COD=90°,∴4x+4x=90°,解得:x=11.25°,∴∠AOE=6×11.25°=67.5°.28.如图是某景区的环形游览路线ABCDA,已知从景点C到出口A的两条道路CBA 和CDA均为1600米,现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形道路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车的速度均为200米/分,每一个游客的步行速度均为50米/分.(1)探究(填空):①当两车行驶 4 分钟时,1、2号车第一次相遇,此相遇点到出口A的路程为800 米;②当1号车第二次恰好经过点C,此时两车行驶了24 分钟,这一段时间内1号车与2号车相遇了3 次.(2)发现:若游客甲在BC上K处(不与点C、B重合)候车,准备乘车到出口A,在下面两。
第14天:角-2020-2021学年七年级数学上下册衔接培优练习(人教版)(解析版)
第14天:角一、单选题1.下面四个图形中,能判断∠1>∠2的是( )A .B .C .D .【答案】D【分析】根据图象,利用排除法求解.【解答】A .∠1与∠2是对顶角,相等,故本选项错误;B .根据图象,∠1<∠2,故本选项错误;C .∠1是锐角,∠2是直角,∠1<∠2,故本选项错误;D .∠1是三角形的一个外角,所以∠1>∠2,故本选项正确.故选D .【点评】本题考查了学生识图能力和三角形的外角性质.2.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对【答案】C【分析】根据题意画出图形,利用数形结合即可得出结论.【解答】解:如图所示: .故选C.【点评】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.3.如图.∠AOB =∠COD ,则( )A.∠1>∠2 B.∠1=∠2C.∠1<∠2 D.∠1与∠2的大小无法比较【答案】B【解析】∵∠AOB=∠COD,∴∠AOB-∠BOD=∠COD-∠BOD,∴∠1=∠2;故选B.【点睛】考查了角的大小比较,培养了学生的推理能力.4.如图,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,且∠DOE=60°,∠BOE=13∠EOC,则下列四个结论正确的个数有()①∠BOD=30°;②射线OE平分∠AOC;③图中与∠BOE互余的角有2个;④图中互补的角有6对.A.1个B.2个C.3个D.4个【答案】D【分析】根据题意首先计算出∠AOD的度数,再计算出∠AOE、∠EOC、∠BOE、∠BOD的度数,然后再分析即可.【解答】解:由题意设∠BOE=x,∠EOC=3x,∵∠DOE=60°,OD平分∠AOB,∴∠AOD=∠BOD =60°-x,根据题意得:2(60°-x)+4x=180°,解得x=30°,∴∠EOC=∠AOE=90°,∠BOE=30°,∴∠BOD=∠AOD=30°,故①正确;∵∠BOD=∠AOD=30°,∴射线OE平分∠AOC,故②正确;∵∠BOE=30°,∠AOB=60°,∠DOE=60°,∴∠AOB+∠BOE=90°,∠BOE+∠DOE=90°,∴图中与∠BOE互余的角有2个,故③正确;∵∠AOE=∠EOC=90°,∴∠AOE+∠EOC=180°,∵∠EOC=90°,∠DOB=30°,∠BOE=30°,∠AOD=30°,∴∠COD+∠AOD=180°,∠COD+∠BOD=180°,∠COD+∠BOE=180°,∠COB+∠AOB=180°,∠COB+∠DOE=180°,∴图中互补的角有6对,故④正确,正确的有4个,故选:D.【点评】本题主要考查角平分线以及补角和余角,解答的关键是正确计算出图中各角的度数.5.如图,点O在直线AB上且OC⊥OD,若∠COA=36°则∠DOB的大小为()A.36°B.54°C.64°D.72°【答案】B【解析】∵OC⊥OD,∴∠COD=90°,又∵∠AOC+∠COD+∠DOB=180°,∴∠DOB=180°-36°-90°=54°.故选B.二、填空题6.如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.【答案】53°【解析】由∠BOE 与∠AOF 是对顶角,可得∠BOE=∠AOF ,又因为∠COD 是平角,可得∠1+∠2+∠AOF=180°,将∠1=95°,∠2=32°代入,即可求得∠AOF 的度数,即∠BOE 的度数.7.若∠B 的余角为57.12°,则∠B=_____°_____’_____”【答案】32 52 48【分析】根据互为余角列式,再进行度分秒换算,求出结果.【解答】57.12°='''57712︒ 根据题意得:∠B=90°-'''57712︒ ='''895960︒-'''57712︒=()8957︒-()'597-''(60-12) ='''325248︒故答案为'''325248︒.【点评】本题考查余角的定义,正确进行角度的计算是解题的关键.8.在9点至10点之间的某时刻,钟表的时针与分针构成的夹角是110°,则这时刻是9点__________分. 【答案】4011或32011【分析】设分针转的度数为x ,则时针转的度数为12x ,根据题意列方程即可得到结论. 【解答】解:设分针转的度数为x ,则时针转的度数为12x , 当9011012x x ︒︒+-=时,24011x ︒=, ∴2404061111︒︒÷=当()9018011012x x ︒︒︒+--=时,192011x ︒⎛⎫= ⎪⎝⎭ ∴192032061111÷= 故答案为:4011或32011 【点评】本题考查了一元一次方程的应用----钟面角,正确的理解题意是解题的关键.9.若1∠与2∠互补,2∠的余角是36︒,则1∠的度数是________.【答案】126︒【分析】首先根据∠1与∠2互补可得∠1+∠2=180°,再表示出∠1的余角90°-(180°-∠2),即可得到结论.【解答】∵2∠的余角是36︒,∴2903654︒︒︒∠=-=.∵1∠与2∠互补,∴118054126︒︒︒∠=-=.故答案为126°.【点评】本题考查了余角和补角,关键是掌握余角和补角的定义.10.如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.【答案】112︒【分析】根据角平分线的性质计算出2AOC COE ∠=∠,2BOC COF ∠=∠,再根据角的关系,即可求解.【解答】∵OE 平分AOC ∠,OF 平分BOC ∠,∴2AOC COE ∠=∠,2BOC COF ∠=∠,∴2()2248AOC BOC COE COF EOF ︒∠+∠=∠+∠=∠=,∴360248112AOB ︒︒︒∠=-=.【点评】本题考查了角的平分线定义及性质,熟练掌握角平分线的意义是解本题的关键.三、解答题11.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数; (3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.【答案】(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解;(3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【解答】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒, OM 是AOC ∠的平分线,11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP ∠与AOM ∠互余,90BOP AOM ∴∠+∠=︒,90904050BOP AOM ∴∠=︒-∠=︒-︒=︒,①当射线OP 在BOC ∠内部时(如图3-1),1005050COP BOC BOP∠=∠-∠=︒-︒=︒;②当射线OP在BOC∠外部时(如图3-2),10050150COP BOC BOP∠=∠+∠=︒+︒=︒.综上所述,COP∠的度数为50︒或150︒.【点评】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.12.已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.【答案】∠BHF=115° .【分析】由AB∥CD得到∠AGE=∠CFG,由此根据邻补角定义可得∠GFD的度数,又FH平分∠EFD,由此可以先后求出∠GFD,∠HFD,继而可求得∠BHF的度数.【解答】∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=12∠EFD=65°;∵AB∥CD,∴∠BHF=180°-∠HFD=115°.【点评】本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.13.如图,已知直线AD与BE相交于点O,∠DOE与∠COE互余,∠COE=62°,求∠AOB的度数.【答案】28°. 【分析】根据余角的关系,可得∠EOD ,根据对顶角,可得答案.【解答】由余角的定义,得:∠EOD =90°﹣∠EOC =90°﹣62°=28°,由对顶角的性质,得:∠AOB =∠EOD =28°.【点评】本题考查了对顶角与余角,利用余角的定义、对顶角的性质是解题的关键.14.如图,O ,D ,E 三点在同一直线上,∠AOB=90°.(1)图中∠AOD 的补角是_____,∠AOC 的余角是_____;(2)如果OB 平分∠COE ,∠AOC=35°,请计算出∠BOD 的度数.【答案】∠AOE ∠BOC【解析】【分析】(1)结合图形,根据补角和余角的定义即可求得;(2)由∠AOC=35°,∠AOB=90°可求得∠BOC 的度数,再根据角平分线的定义求得∠BOE 的度数,再根据邻补角的定义即可求得∠BOD 的度数.【详解】(1)图中∠AOD 的补角是∠AOE ,∠AOC 的余角是∠BOC ,故答案为 ∠AOE , ∠BOC ;(2)∵∠AOC=35°,∠AOB=90°,∴∠BOC=∠AOB-∠AOC=90°-35°=55°,∵OB 平分∠COE ,∴∠BOE=∠BOC=55°,∴∠BOD=180°-∠BOE=180°﹣55°=125°. 【点睛】本题考查了余角和补角的定义、角平分线的定义等,熟练掌握相关的内容是解题的关键. 15.如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.【答案】(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【分析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则∠COE =20°;(2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可;(3)分别用∠COE 及∠AOD 的式子表达∠COD ,进行列式即可.【解答】解:(1)∵90DOE ∠=︒,70AOC ∠=︒∴907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)∵OC 平分AOE ∠,70AOC ∠=︒,∴70COE AOC ∠=∠=︒,∵90DOE ∠=︒,∴907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)∵90COD DOE COE COE =∠-∠=︒-∠∠, 70COD AOC AOD AOD =∠-∠=︒-∠∠ ∴9070COE AOD ︒-∠=︒-∠∴20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【点评】本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第14讲 线段与角
一、线段训练
1.已知线段AB =6cm ,P 点在AB 上,且AP =4BP ,M 是AB 的中点,求PM 长.
2.已知线段AB =8cm ,在直线AB 上画线段BC ,使它等于3cm ,并求线段AC 的长.
3.已知线段AB =10cm ,直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,求AM 的长.
4.在线段AB 的延长上取一点P ,使AB =4BP ,取线段AB 的中点R ,求BR 与BP 的长度之比.
二、角度训练 5.如图,在括号内填上适当的角: (1)∠AOC =( )+( ); (2)∠AOD +∠DOE =∠AOB +( );
(3)∠AOE -∠AOC =( ).
6.如图,直线 AB 、CD 相交于点O ,OD 平分∠AOF ,OE 丄CD 于O ,∠EOA =50°,求∠BOC 、∠BOE 、∠BOF 的度数.
B
F
D
O E
A
C
D
C B A O E
7.如图所示,直线AB 、CD 相交O ,OE 平分∠AOD ,∠FOC =90°,∠1= 40°,求∠2和∠3的度数.
2
31
O F
C
D
E B A
8.如图,直线BE 、CF 相交于O ,且∠AOB =90°,∠COD =90°,∠EOF =30°,求∠AOD 的度数.
30°
C
B
D
F
E
O
A
9.如图,OB 平分∠AOC ,且∠2 :∠3:∠4 = 2:5:3.求∠l 、∠2、∠3、∠4的度数.
4
3
21O
C
B
A
10.已知:∠AOE =150°,∠AOB :∠BOC =l :2;∠COD :∠DOE =2:1.求∠BOD .
E
D
C
B
A O
11.已知∠AOB 、∠COB 和∠COD 的度数之比是2:1:3且∠AOC +∠DOB =140°,求∠AOD 的度数.
B
C
D
O
A
12.如图,已知∠BOC =2∠AOC ,OD 平分∠AOB ,∠COD =20°,求∠AOC 的度数.
D C
A
O
B
13.如图,已知直线AB 、CD 交于O 点,OA 平分∠COE ,∠COE :∠EOD =4:5,求∠BOD 的度数.
A E D B
O
C
三、综合训练
14.如图,公路上依次有A 、B 、C 三站,上午8时,甲骑自行车从A 、B 之间离A 站18km 的P 点出发,向C 站匀速前进,15分钟到达距离A 站22km 的某处. (1)设x 小时后,甲离A 站y km ,用含x 的代数表示y ;
A
P
B
C
(2)若A 、B 和B 、C 间的距离分别是30km 和20km ,则上午______到______的时间内,甲在B 、C 两站之间(不包括B 、C 两站).
15.已知线段AB =6.
(1)取线段AB 的三等分点,这些点连同线段AB 的两个端点可以组成多少条线段?求这些线段长度的和;
B
A
(2)再在线段AB 上取两种点:第一种是线段AB 的四等分点;第二种是线段AB 的六等分点,这些点连同(1)中的三等分点和线段AB 的两个端点可以组成多少条线段?求这些线段长度的和.
16.如图,直线AB 、及AB 上一点O ,自O 作射线OC 、OE 、OF ,且OE 平分∠AOC . (1)若OF 平分∠BOC ,试说明∠EOF 的大小与OC 的位置无关?
E C F
B O
A
(2)若∠MON =90°,试说明OF 与∠BOC 的关系?
17.如图,直线AB 、CD 交于O ,OE 平分∠AOC . (1)OF 为OE 的反向延长线,试说明OF 平分∠BOD ;
(2)若OF 平分∠BOD ,则F 、O 、E 在一条直线上吗?证明你的结论?
18.如图,OD 平分∠BOC ,OE 平分∠AOC .
(1)若∠BOC =60°,∠AOC =40°,求∠DOE 的度数度数; (2)若∠DOE =n °,求∠AOB 的度数;
(3)若∠DOE +∠AOB =180°,求∠AOB 与∠DOE 的度数.
A
B
C
D
E O
A B C
D
E F O。