2013重庆高考数学

合集下载

2013重庆高考试卷

2013重庆高考试卷
试题注重与生活、生产的联系,注重使学生在现实生活背景中深入理解生物学的概念,考查学生理论联系实际,综合运用所学知识解决自然界和社会生活中的有关生物学问题。例如选择题4的注射青霉素过敏;7题Ⅰ的马拉松运动员长跑;7题Ⅱ的对某坡地的改造。
2013年重庆高考理综物理试题:层次分明难度适中1.试题总的印象
2013年重庆高考物理试题不偏不倚、堂堂正正。题目情景比较新颖,试题内容与生产、生活实际以及学生学习联系紧密,关注科技热点,很好地体现了新课程理念,倡导学生的探究学习,融入研究性学习的过程和方法,注重“知识与技能”、“过程与方法”、“情感态度与价值观”多方面检测考生的科学素养。试题难易适中,对学生能力的考查,对各个层次学生的区分做得相当好,体现教育评价的科学性,可以说是一套比较出彩的高考题。
3.体现了新课程理念,注重过程与方法,倡导学生的探究学习
如第4、5、6、7、8题,试题选材有伽利略斜面实验的多角度分析、我国科学家在实验上观察到的反常霍尔效应的量子化、舰载机着陆时阻拦索的研究性学习课题、电热毯故障检测的研究性学习课题、测量磁感应强度的研究性学习课题、关于“子母球”的研究性学习课题等等,这些素材来源于教材、学生生活和生产实践,注重物理学与科学技术与社会生活的联系,注重对学生建模能力的培养,提倡科学探究,注重学习中的过程与方法,回归了物理学研究的本源、物理学主要的研究方法以及研究精神等。在考查学生对物理知识的掌握的同时,了解物理学的发生与发展过程,恰当地体现了新课标要求。
4.试题层次分明,体现选拔功能
今年高考物理试题科学严谨,符合课标和考纲的要求。试题起点较低,层次分明,难易适中,整卷阶梯明显,有主要考查1个考点的简单题目,也有考查了多个考点的复杂题目,较复杂的题目又搭建了台阶,让考生易于入手,对不同层次的考生都有较好的区分度。这些题目既考查了学生进一步学习物理所必备的基础知识,同时又能考查学生学习物理的基本素养,充分体现了试题的选拔功能,有利于高等学校选拔人才,也有利于学校新课程改革的顺利推进。

高考数学热点专题突破讲练:三角恒等变换与解三角形(含新题详解)

高考数学热点专题突破讲练:三角恒等变换与解三角形(含新题详解)

第七讲 三角恒等变换与解三角形简单三角恒等变换差角余弦公式倍角公式和(差)角公式余弦定理正弦定理三角形面积公式解三角形应用举例1.(倍角公式)(2013·课标全国卷Ⅱ)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4=( ) A.16 B.13 C.12D.23【解析】 ∵sin 2α=23,∴cos 2⎝⎛⎭⎫α+π4=1+cos ⎝⎛⎭⎫2α+π 22 =1-sin 2α2=1-232=16.【答案】 A2.(正弦定理与和角公式)(2013·陕西高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【解析】 由正弦定理,及b cos C +c cos B =a sin A ,得 sin B cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A , ∴sin A =1,得A =π2(由于0<A <π),故△ABC 是直角三角形. 【答案】 A3.(正弦定理)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =________. 【解析】 在△ABC 中,AC sin B =BCsin A, ∴AC =BC ·sin B sin A=2 3.【答案】 2 3图2-2-14.(余弦定理的应用)(2013·福建高考)如图2-2-1,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.【解析】 ∵sin ∠BAC =sin(90°+∠BAD )=cos ∠BAD =223,∴在△ABD 中,有BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD , ∴BD 2=18+9-2×32×3×223=3,∴BD = 3. 【答案】35.(三角恒等变换)(2013·重庆高考改编)4cos 50°-tan 40°=________. 【解析】 4cos 50°-tan 40°=4sin 40°-sin 40°cos 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=sin 80°+sin (60°+20°)-sin (60°-20°)cos 40°=sin 80°+2cos 60°sin 20°cos 40°=sin 80°+sin 20°cos 40°=sin (50°+30°)+sin (50°-30°)cos 40°=2sin 50°cos 30°cos 40°=3·cos 40°cos 40°= 3.【答案】 3简单的三角恒等变换(2013·湖南高考)已知函数f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3,g (x )=2sin 2x 2.(1)若α是第一象限角,且f (α)=335, 求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合.【思路点拨】 (1)利用和(差)角、倍角公式将f (x )、g (x )化简,沟通二者联系;(2)由f (x )≥g (x ),化为“一角一名称”的三角不等式,借助三角函数的图象、性质求解.【自主解答】 f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3 =32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335得sin α=35.又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x , 即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎫x +π6≥12, 从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.1.(1)注意角之间的关系,灵活运用和(差)、倍角公式化为“同角x ”的三角函数,这是解题的关键;(2)重视三角函数图象,性质在求角的范围中的应用,由图象的直观性、借助周期性,整体代换可有效避免错误.2.进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.变式训练1 已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2. 求cos 2αsin (α-π4)的值.【解】 依题意得sin α-cos α=12,所以1-2sin αcos α=14,2sin αcos α=34.则(sin α+cos α)2=1+2sin αcos α=74.由0<α<π2,知sin α+cos α=72>0.所以cos 2αsin (α-π4)=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-142.正(余)弦定理(2013·山东高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a+c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值.【思路点拨】 (1)由余弦定理,得关于a ,c 的方程,与a +c =6联立求解;(2)依据正弦定理求sin A ,进而求cos A ,sin B ,利用两角差的正弦公式求值.【自主解答】 (1)由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ), 又b =2,a +c =6,cos B =79,所以ac =9,解得a =3,c =3.(2)在△ABC 中,sin B =1-cos 2B =429,由正弦定理得sin A =a sin B b =223.因为a =c ,所以A 为锐角. 所以cos A =1-sin 2A =13.因此sin(A -B )=sin A cos B -cos A sin B =10227.1.(1)本题求解的关键是运用正弦(余弦)定理完成边角转化;(2)求解易忽视判定A 的范围,错求cos A =±13,导致增解.2.以三角形为载体考查三角变换是近年高考的热点,要时刻关注它的两重性:一是作为三角形问题,它必然通过正弦(余弦)定理、面积公式建立关于边的方程,实施边角转化;二是它毕竟是三角变换,只是角的范围受到了限制,因此常见的三角变换方法和原则都是适用的.变式训练2 (2013·重庆高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+3bc .(1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值. 【解】 (1)由余弦定理得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32.又因为0<A <π,所以A =5π6.(2)由(1)得sin A =12.又由正弦定理及a =3得S =12bc sin A =12·a sin B sin A·a sin C =3sin B sin C , 因此,S +3cos B cos C =3(sin B sin C +cos B cos C )=3cos(B -C ). 所以,当B =C ,即B =π-A 2=π12时,S +3cos B cos C 取最大值3.解三角形及应用(2013·济南质检)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .【思路点拨】 (1)从要证的结论看,需将条件中角的三角函数化为边,因此需统一为正弦函数,然后运用三角变换公式化简.(2)由(1)的结论,联想余弦定理,求cos B ,进而求出△ABC 的面积.【自主解答】 (1)在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sin B (sin Acos A+sin C cos C )=sin A cos A ·sin Ccos C, 所以sin B (sin A cos C +cos A sin C )=sin A sin C . 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π, 所以sin(A +C )=sin B , 所以sin 2B =sin A sin C . 由正弦定理得b 2=ac , 即a ,b ,c 成等比数列. (2)因为a =1,c =2,所以b = 2. 由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34.因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.1.认真分析题设与要求结论的联系与区别,消除差异,从而找到解题的突破口,这是本题求解的关键.2.三角形中的边角计算是近年命题的重点,解决这类问题要抓住两点:(1)根据条件,恰当选择正弦、余弦定理完成边角互化;(2)结合内角和定理、面积公式,灵活运用三角恒等变换公式.变式训练3 已知三角形的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量m =(c -a ,b -a ),n =(a +b ,c ),且m ∥n .(1)求角B 的大小;(2)求sin A +sin C 的取值范围.【解】 (1)∵m ∥n ,∴c (c -a )=(b -a )(a +b ), ∴c 2-ac =b 2-a 2,则a 2+c 2-b 2=ac . 由余弦定理得cos B =a 2+c 2-b 22ac =12.又0<B <π,因此B =π3.(2)∵A +B +C =π,∴A +C =2π3,∴sin A +sin C =sin A +sin ⎝⎛⎭⎫2π3-A =sin A +sin2π3 cos A -cos 2π3sin A =32sin A +32cos A =3sin ⎝⎛⎭⎫A +π6, ∵0<A <2π3,∴π6<A +π6<5π6,∴12<sin ⎝⎛⎭⎫A +π6≤1,∴32<sin A +sin C ≤ 3. 故sin A +sin C 的取值范围是⎝⎛⎦⎤32,3正(余)弦定理的实际应用【命题要点】 ①实际问题中的距离,高度测量;②实际问题中角度、方向的测量;③实际行程中的速度、时间的计算.如图2-2-2所示,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间?图2-2-2【思路点拨】 由题设条件,要求该救援船到达D 点的时间,只需求出C 、D 两点间的距离,先在△ABD 中求BD ,再在△BDC 中求CD ,进而求出时间.【自主解答】 由题意知AB =5(3+3),∠DBA =90°-60°=30°,∠DAB =45°,∴∠ADB =105°.∴sin 105°=sin 45°·cos 60°+sin 60°·cos 45° =22×12+32×22=2+64. 在△ABD 中,由正弦定理得: BD sin ∠DAB =ABsin ∠ADB,∴BD =AB ·sin ∠DAB sin ∠ADB =5(3+3)·sin 45°sin 105°=5(3+3)×222+64=103(1+3)1+3=10 3.又∠DBC =180°-60°-60°=60°,BC =203, 在△DBC 中,由余弦定理得 CD 2=BD 2+BC 2-2·BD ·BC ·cos 60° =300+1 200-2×103×203×12=900.∴CD =30(海里),∴救援船需要的时间t =3030=1(小时).1.该题求解的关键是借助方位角构建三角形,要把需求量转化到同一个三角形(或相关三角形)中,运用正(余)弦定理沟通边角关系.2.应用解三角形知识解决实际问题需要下列三步: (1)根据题意,画出示意图,并标出条件.(2)将所求问题归结到一个或几个三角形中,通过合理运用正、余弦定理等有关知识正确求解.(3)检验解出的结果是否符合实际意义,得出正确答案.变式训练4 如图2-2-3,A 、C 两岛之间有一片暗礁,一艘小船于某日上午8时从A 岛出发,以10海里/小时的速度沿北偏东75°方向直线航行,下午1时到达B 处.然后以同样的速度沿北偏东15°方向直线航行,图2-2-3下午4时到达C 岛. (1)求A 、C 两岛之间的距离; (2)求∠BAC 的正弦值.【解】 (1)在△ABC 中,由已知,得AB =10×5=50(海里),BC =10×3=30(海里), ∠ABC =180°-75°+15°=120°,由余弦定理,得AC 2=502+302-2×50×30 cos 120°=4 900, 所以AC =70(海里).故A 、C 两岛之间的距离是70海里. (2)在△ABC 中,由正弦定理,得BC sin ∠BAC =ACsin ∠ABC,所以sin ∠BAC =BC ·sin ∠ABC AC =30sin 120°70=3314.故∠BAC 的正弦值是3314.从近两年的高考命题看,正弦定理、余弦定理是高考命题的热点,不仅是用来解决一些简单的三角形边角计算问题;且常与三角函数、向量、不等式交汇命题,灵活考查学生分析解决问题的能力,多以解答题的形式出现,属中低档题目.以三角形为载体的创新交汇问题(12分)已知△ABC 是半径为R 的圆内接三角形,且2R ·(sin 2A -sin 2C )=(2a -b )sin B .(1)求角C ;(2)试求△ABC 的面积S 的最大值. 【规范解答】 (1)由2R (sin 2A -sin 2C ) =(2a -b )sin B ,得a sin A -c sin C =2a sin B -b sin B , ∴a 2-c 2=2ab -b 2,4分由余弦定理得cos C =a 2+b 2-c 22ab =22,又0<C <π,∴C =π4.6分(2)∵csin C=2R , ∴c =2R sin C =2R . 由(1)知c 2=a 2+b 2-2ab , ∴2R 2=a 2+b 2-2ab .8分又a 2+b 2≥2ab (当且仅当a =b 时取“=”), ∴2R 2≥2ab -2ab , ∴ab ≤2R 22-2=(2+2)R 2.10分∴S △ABC =12ab sin C =24ab ≤2+12R 2. 即△ABC 面积的最大值为2+12R 2. 12分【阅卷心语】易错提示 (1)不能灵活运用正弦定理化简等式,致使求不出角C ,究其原因是不能深刻理解正弦定理的变形应用.(2)对求△ABC 的面积的最大值束手无策,想不到利用等式求ab 的最大值. 防范措施 (1)利用a =2R sin A ,b =2R sin B ,c =2R sin C ,可实施边角转化.(2)对于“已知一边及其对角”的三角形,常用余弦定理,得到其他两边的关系,再利用基本不等式便可求三角形面积的最值.1.已知函数f (x )=sin(x +7π4)+cos(x -3π4),x ∈R . (1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求f (β)的值. 【解】 (1)∵f (x )=sin ⎝⎛⎭⎫x +74π-2π+sin ⎝⎛⎭⎫x -34π+π2 =sin(x -π4)+sin(x -π4)=2sin(x -π4). ∴T =2π,f (x )的最小值为-2.(2)由cos(β-α)=45,cos(β+α)=-45得 cos βcos α+sin βsin α=45, cos βcos α-sin βsin α=-45. 两式相加得2cos βcos α=0.∵0<α<β≤π2,∴β=π2. ∴f (β)=2sin ⎝⎛⎭⎫π2-π4=2sin π4= 2. 2.△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.【解】 (1)由已知及正弦定理得sin A =sin B cos C +sin C sin B ,①又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4. (2)△ABC 的面积S =12ac sin B =24ac . 由已知及余弦定理得4=a 2+c 2-2ac cos π4. 又a 2+c 2≥2ac ,故ac ≤42-2, 当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为2+1.。

2013年高考重庆卷理科数学试题及答案

2013年高考重庆卷理科数学试题及答案

2013年普通高等学校招生全国统一考试理科数学(重庆卷)一、选择题1.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )等于( ) A .{1,3,4} B .{3,4} C .{3}D .{4}答案 D解析 因为A ∪B ={1,2,3},全集U ={1,2,3,4},所以∁U (A ∪B )={4},故选D. 2.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 20≥0 D .存在x 0∈R ,使得x 20<0 答案 D解析 由于“对任意x ∈R ”的否定为“存在x 0∈R ”,对“x 2≥0”的否定为“x 2<0”,因此选D.3.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9B.92C .3D.322答案 B 解析 因为(3-a )(a +6)=18-3a -a 2=-⎝⎛⎭⎫a +322+814, 所以当a =-32时,(3-a )(a +6)的值最大,最大值为92.4.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5 B .5,5C .5,8D .8,8答案 C解析 由于甲组中有5个数,比中位数小的有两个数为9,12,比中位数大的也有两个数24,27,所以10+x =15,x =5.又因9+15+10+y +18+245=16.8,所以y =8,故选C.5.某几何体的三视图如图所示,则该几何体的体积为( )A.5603B.5803 C .200 D .240 答案 C解析 由三视图还原的几何体为两底面为梯形的直棱柱,梯形的面积为12(2+8)×4=20,所以棱柱的体积为20×10=200.6.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案 A解析 由于a <b <c ,所以f (a )=0+(a -b )(a -c )+0>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.因此有f (a )·f (b )<0,f (b )·f (c )<0,又因f (x )是关于x 的二次函数,函数的图象是连续不断的曲线,因此函数f(x)的两零点分别位于区间(a,b)和(b,c)内,故选A. 7.已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.52-4 B.17-1C.6-2 2 D.17答案 A解析两圆心坐标分别为C1(2,3),C2(3,4).C1关于x轴对称的点C1′的坐标为(2,-3),连接C2C1′,线段C2C1′与x轴的交点即为P点.(|PM|+|PN|)min=|C2C1′|-R1-R2(R1,R2分别为两圆的半径)=(3-2)2+(4+3)2-1-3=50-4=52-4.故选A.8.执行如图所示的程序框图,如果输出s=3,那么判断框内应填入的条件是()A.k≤6 B.k≤7C.k≤8 D.k≤9答案 B解析当k=2时,s=log23,当k=3时,s=log23·log34,当k=4时,s=log23·log34·log45.由s=3,得lg 3lg 2×lg 4lg 3×lg 5lg 4×…×lg(k+1)lg k=3,即lg(k+1)=3lg 2,所以k=7.再循环时,k=7+1=8,此时输出s,因此判断框内应填入“k≤7”.故选B. 9.4cos 50°-tan 40°等于()A. 2B.2+32C. 3 D .22-1答案 C解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=2sin (50°+30°)-sin 40°cos 40°=3sin 50°+cos 50°-sin 40°cos 40°=3sin 50°cos 40°= 3.10.在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( ) A.⎝⎛⎦⎤0,52 B.⎝⎛⎦⎤52,72 C.⎝⎛⎦⎤52,2D.⎝⎛⎦⎤72,2 答案 D解析 设B 1(cos α,sin α),B 2(cos β,sin β),A (x ,y ),O (0,0).由AB 1→⊥AB 2→,得cos(α-β)-x (cos α+cos β)-y (sin α+sin β)+x 2+y 2=0① OP →=OA →+AP →=OA →+AB 1→+AB 2→=(cos α+cos β-x ,sin α+sin β-y ). 而|OP →|<12,则0≤|OP →|2<14,整理得0≤x 2+y 2+2+2cos(α-β)-2x (cos α+cos β)-2y (sin α+sin β)<14,②将①代入②,得0≤x 2+y 2+2-2(x 2+y 2)<14,即0≤2-(x 2+y 2)<14,整理得74<x 2+y 2≤2.所以|OA →|2∈⎝⎛⎦⎤74,2,即|OA →|∈⎝⎛⎦⎤72,2. 二、填空题11.已知复数z =5i1+2i (i 是虚数单位),则|z |=________.答案5解析 |z |=⎪⎪⎪⎪⎪⎪5i 1+2i =|5i||1+2i|=55= 5.12.已知{a n }是等差数列,a 1=1,公差d ≠0,S n 为其前n 项和,若a 1,a 2,a 5成等比数列,则S 8=________. 答案 64解析 因为a 1,a 2,a 5成等比数列,则a 22=a 1·a 5,即(1+d )2=1×(1+4d ),d =2.所以a n =1+(n -1)×2=2n -1,S 8=(a 1+a 8)×82=4×(1+15)=64. 13.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________.(用数字作答) 答案 590解析 利用直接法分类求解.一脑一内三骨的选法有C 14C 15C 33=20种,一脑二内二骨的选法有C 14C 25C 23=120种,一脑三内一骨的选法有C 14C 35C 13=120种,二脑一内二骨的选法有C 24C 15C 23=90种,二脑二内一骨的选法有C 24C 25C 13=180种,三脑一内一骨的选法有C 34C 15C 13=60种,满足题意的选法共20+120+120+90+180+60=590(种).14.如图,在△ABC 中,∠C =90°,∠A =60°,AB =20,过C 作△ABC 的外接圆的切线CD ,BD ⊥CD ,BD 与外接圆交于点E ,则DE 的长为______. 答案 5解析 由题意,得弦切角∠BCD =∠A =60°,∠C =∠D =90°,所以△ABC ∽△CBD .所以AB CB =ACCD ,CD =CB ×AC AB =20sin 60°×20cos 60°20=5 3.又因CD 与圆相切,所以CD 2=DE ×DB ,则DE =CD 2DB =(53)2CB sin 60°=25×320×sin 60°×sin 60°=5.15.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.答案 16解析 将极坐标方程ρcos θ=4化为直角坐标方程得x =4,将x =4代入⎩⎪⎨⎪⎧x =t 2,y =t 3得t=±2,从而y =±8.所以A (4,8),B (4,-8).所以|AB |=|8-(-8)|=16.16.若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________. 答案 (-∞,8]解析 因为|x -5|+|x +3|表示数轴上的动点x 到数轴上的点-3,5的距离之和,而(|x -5|+|x +3|)min =8,所以当a ≤8时,|x -5|+|x +3|<a 无解,故实数a 的取值范围为(-∞,8]. 三、解答题17.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间与极值. 解 (1)因f (x )=a (x -5)2+6ln x , 故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a , 所以曲线y =f (x )在点(1,f (1))处的切线方程为 y -16a =(6-8a )(x -1),由点(0,6)在切线上可得6-16a =8a -6,故a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x 1=2,x 2=3. 当0<x <2或x >3时,f ′(x )>0, 故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.18.某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:奖级 摸出红、蓝球个数获奖金额 一等奖 3红1蓝 200元 二等奖 3红0蓝 50元 三等奖2红1蓝10元(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X 的分布列与期望E (X ).解 设A i 表示摸到i 个红球,B j 表示摸到j 个蓝球,则A i (i =0,1,2,3)与B j (j =0,1)独立.(1)恰好摸到1个红球的概率为P (A 1)=C 13C 24C 37=1835.(2)X 的所有可能值为:0,10,50,200,且 P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=C 33C 37·13=1105,P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=C 33C 37·23=2105,P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=C 23C 14C 37·13=12105=435,P (X =0)=1-1105-2105-435=67.综上知X 的分布列为X 0 10 50 200 P6743521051105从而有E (X )=0×67+10×435+50×2105+200×1105=4(元).19.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB .(1)求P A 的长;(2)求二面角B -AF -D 的正弦值. 解 (1)如图,连接BD 交AC 于点O ,因为BC =CD ,即△BCD 为等腰三角形, 又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB →,OC →,AP →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz , 则OC =CD cos π3=1,而AC =4,得AO =AC -OC =3, 又OD =CD sin π3= 3.故A (0,-3,0),B (3,0,0),C (0,1,0),D (-3,0,0). 因P A ⊥底面ABCD ,可设P (0,-3,z ), 因为F 为PC 的中点,所以F ⎝⎛⎭⎫0,-1,z2. 又AF →=⎝⎛⎭⎫0,2,z 2,PB →=(3,3,-z ), 因AF ⊥PB ,故AF →·PB →=0, 即6-z 22=0,z =23(舍去-23),所以|P A →|=2 3.(2)由(1)知AD →=(-3,3,0),AB →=(3,3,0),AF →=(0,2,3).设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2). 由n 1·AD →=0,n 1·AF →=0得⎩⎪⎨⎪⎧-3x 1+3y 1=0,2y 1+3z 1=0,因此可取n 1=(3,3,-2). 由n 2·AB →=0,n 2·AF →=0得⎩⎪⎨⎪⎧3x 2+3y 2=0,2y 2+3z 2=0,故可取n 2=(3,-3,2). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=18.故二面角B -AF -D 的正弦值为378.20.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2. (1)求C ;(2)设cos A cos B =325,cos (α+A )cos (α+B )cos α=25,求tan α的值.解 (1)因为a 2+b 2+2ab =c 2,由余弦定理有cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.又0<C <π,故C =3π4.(2)由题意得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos α=25.因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25, tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.① 因为C =3π4,A +B =π4,所以sin(A +B )=22,因为cos(A +B )=cos A cos B -sin A sin B , 即325-sin A sin B =22,解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0, 解得tan α=1或tan α=4.21.如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A ,A ′两点,|AA ′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P ′,过P ,P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P ′Q ,求圆Q 的标准方程. 解 (1)由题意知点A (-c,2)在椭圆上, 则(-c )2a 2+22b 2=1.从而e 2+4b2=1.由e =22得b 2=41-e 2=8,从而a 2=b 21-e 2=16.故该椭圆的标准方程为x 216+y 28=1.(2)由椭圆的对称性,可设Q (x 0,0). 又设M (x ,y )是椭圆上任意一点,则|QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝⎛⎭⎫1-x 216=12(x-2x 0)2-x 20+8 (x ∈[-4,4]).设P (x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点.因此,上式当x =x 1时取最小值,又因x 1∈(-4,4),所以上式当x =2x 0时取最小值,从而x 1=2x 0,且|QP |2=8-x 20.因为PQ ⊥P ′Q ,且P ′(x 1,-y 1),所以QP →·QP ′→=(x 1-x 0,y 1)·(x 1-x 0,-y 1)=0,即(x 1-x 0)2-y 21=0.由椭圆方程及x 1=2x 0得14x 21-8⎝⎛⎭⎫1-x 2116=0, 解得x 1=±463,x 0=x 12=±263. 从而|QP |2=8-x 20=163. 故这样的圆有两个,其标准方程分别为⎝⎛⎭⎫x +2632+y 2=163,⎝⎛⎭⎫x -2632+y 2=163. 22.对正整数n ,记I n ={1,2,3,…,n },P n =⎩⎨⎧⎭⎬⎫m k |m ∈I n ,k ∈I n . (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是整数的平方,则称A 为“稀疏集”.求n 的最大值,使P n 能分成两个不相交的稀疏集的并.解 (1)当k =4时,⎩⎨⎧⎭⎬⎫m k |m ∈I 7中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A ∪B =P n ⊇I n .不妨设I ∈A ,则因1+3=22,故3∉A ,即3∈B .同理6∈A,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求.当k =1时,⎩⎨⎧⎭⎬⎫m k |m ∈I 14=I 14可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14. 当k =4时,集⎩⎨⎧⎭⎬⎫m k |m ∈I 14中除整数外剩下的数组成集⎩⎨⎧⎭⎬⎫12,32,52,…,132,可分解为下面两稀疏集的并:A 2=⎩⎨⎧⎭⎬⎫12,52,92,112,B 2=⎩⎨⎧⎭⎬⎫32,72,132. 当k =9时,集⎩⎨⎧⎭⎬⎫m k |m ∈I 14中除正整数外剩下的数组成集⎩⎨⎧⎭⎬⎫13,23,43,53,…,133,143.可分解为下面两稀疏集的并:A 3=⎩⎨⎧⎭⎬⎫13,43,53,103,133,B 3=⎩⎨⎧⎭⎬⎫23,73,83,113,143. 最后,集C =⎩⎨⎧⎭⎬⎫m k |m ∈I 14,k ∈I 14,且k ≠1,4,9中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3.则A 和B是不相交的稀疏集,且A∪B=P14. 综上,所求n的最大值为14. (注:对P14的分拆方法不是唯一的)。

2013年高考数学选填压轴题(理科)含答案

2013年高考数学选填压轴题(理科)含答案

高考理科数学选填压轴题训题型一:集合与新定义 (2013福建理10)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( ).D A .A =N*,B =NB .A ={x|-1≤x≤3},B ={x|x =-8或0<x≤10}C .A ={x|0<x <1},B =RD .A =Z ,B =Q(2013广东理8)设整数n ≥4,集合X ={1,2,3,…,n },令集合S ={(x ,y ,z )|x ,y ,z ∈X ,且三条件x <y <z ,y <z <x ,z <x <y 恰有一个成立}.若(x ,y ,z )和(z ,w ,x )都在S中,则下列选项正确的是( ).BA .(y ,z ,w)∈S ,(x ,y ,w)∉SB .(y ,z ,w)∈S ,(x ,y ,w)∈SC .(y ,z ,w)∉S ,(x ,y ,w)∈SD .(y ,z ,w)∉S ,(x ,y ,w)∉S 提示:特殊值法,令x=1,y=2,z=3,w=4即得。

题型二:平面向量(2013北京理13)向量a ,b ,c 在正方形网格中的位置如图所示,若()c a b λμλμ=+∈R ,,则λμ= .4 (2013湖南理6)已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b |=1,则|c |的取值范围是( ).AA .11] B .12] C .[11] D .[12]解析:由题意,不妨令a =(0,1),b =(1,0),c =(x ,y ),由|c -a -b |=1得(x -1)2+(y -1)2=1,|c |可看做(x ,y )到原点的距离,而点(x ,y )在以(1,1)为圆心,以1为半径的圆上.如图所示,当点(x ,y )在位置P 时到原点的距离最近,在位置P ′时最远,而PO1,P ′O1,故选A .(2013重庆理10)在平面上,1AB ⊥2AB ,|1OB |=|2OB |=1,AP =1AB +2AB .若|OP|<12,则|OA |的取值范围是( ).D A.0,2⎛ ⎝⎦ B.,22⎛ ⎝⎦ C.2⎛ ⎝ D.2⎛ ⎝ 解析:因为1AB ⊥2AB ,所以可以A 为原点,分别以1AB ,2AB 所在直线为x 轴,y 轴建立平面直角坐标系.设B 1(a,0),B 2(0,b ),O (x ,y ), 则AP =1AB +2AB =(a ,b ),即P (a ,b ).由|1OB |=|2OB |=1,得(x -a )2+y 2=x 2+(y -b )2=1.所以(x -a )2=1-y 2≥0,(y -b )2=1-x 2≥0.由|OP |<12,得(x -a )2+(y -b )2<14, 即0≤1-x 2+1-y 2<14.所以74<x 2+y 2≤2,即2<≤所以|OA |的取值范围是⎝,故选D .(2013山东理15)已知向量AB 与AC 的夹角为120°,且|AB |=3,|AC |=2,若AP =λAB +AC ,且AP ⊥BC ,则实数λ的值为__________.7/12(2013天津理12) 在平行四边形ABCD 中, AD = 1, , E 为CD 的中点. 若1AC BE =, 则AB 的长为 .1/2(2013浙江理17)设12,e e 为单位向量,非零向量12,,b xe ye x y R =+∈,若12,e e 的夹角为6π,则||||x b 的最大值等于________。

2013年重庆高考数学试题理科10题

2013年重庆高考数学试题理科10题

磕. 若I — O P l < , 则 I l 的 取 值

上A B 2 得 一[ ( c o s 0 1 +c 0 s 2 ) c o s 0+
( s i n 0 1 +s i n 0 2 ) s i n 0 ] R十C O S ( 0 l 一0 2 ) =0 ①.
2 0 1 3 年 重庆 高考数学试题理科 1 O 题
重庆 市 第八 中学校 4 0 0 0 3 0 郑军委 陶兴模
题目 在平面 上, 上 磕, I — O B 1 I = l — O B 2 I
: 1, :A — BI +
A B 2 =( C O S 0 2一R e o s 0 , s i n 0 2一R s i n 0 ) .
代入 ② 得 ,
O — — B ・ O — — B , =O —} A・ ( O — — P +O — — A)一o — — a
=O — — — A — ■ ・ 0 — — — p③. 即O — — — B 0 ・ O — — — B — + ,=O — — — A・ — }O — — — P — - } .
将 ① 式平方得
—— — —— ——’ ————

+2 一 0 P. =
解法 3 不等式法
根 据条件 知 , B , P, B :
构成一个 矩形 A B 。 P B : ,以
口2 — P
+ OB. +2 DB ・D B,


=2 , 由 0≤I

( , ) , 则 点 P的坐标 为 ( 口 , 6 ) , 由J O — B I = I
1得
解i n 0 ) , P ( r c o s , r s i n ) , B t ( C O S 0 1 , s i n 0 1 ) , B 2 ( C O S 0 2 , s i n 0 2 ) . 由题 意 可 知 : 0

2013年重庆高考数学理科试卷(带详解)

2013年重庆高考数学理科试卷(带详解)

2013年普通高等学校夏季招生全国统一考试数学理工农医类(重庆卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则()U A B = ð ( )A.{1,3,4}B.{3,4}C.{3}D.{4} 【测量目标】集合的并集与补集运算.【考查方式】先求出两个集合的并集,再结合补集概念求解. 【难易程度】容易 【参考答案】D【试题解析】∵A B ={1,2,3},而U ={1,2,3,4},故()U A B = ð={4},故选D . 2.命题“对任意x ∈R ,都有20x …”的否定为( )A.对任意x ∈R ,都有20x < B.不存在x ∈R ,使得20x <C.存在0x ∈R ,使得200x …D.存在0x ∈R ,使得200x <【测量目标】含有一个量词的命题的否定.【考查方式】根据含有一个量词的命题的否定的方法直接求解. 【难易程度】容易 【参考答案】D【试题解析】全称命题的否定是一个特称命题(存在性命题),故选D .()63a-剟的最大值为( )A.9B.92 C.3 D.3【测量目标】函数的最值.【考查方式】利用配方法结合函数的定义域求解. 【难易程度】容易 【参考答案】B=63a-剟,所以当32a =-92=,故选B. 4.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分) .已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为 ( )A.2,5B.5,5C.5,8D.8,8第4题图【测量目标】茎叶图.【考查方式】结合茎叶图上的数据,根据中位数和平均数的概念求解. 【难易程度】容易 【参考答案】C【试题解析】由甲组数据中位数为15,可得x =5;而乙组数据的平均数91510182416.85y ++(+)++=,可解得y =8.故选C .5.某几何体的三视图如图所示,则该几何体的体积为 ( )第5题图A.5603 B.5803C.200D.240 【测量目标】由三视图求几何体的体积.【考查方式】先将三视图还原为空间几何体,在根据体积公式求解. 【难易程度】容易 【参考答案】C【试题解析】由几何体的三视图可得,该几何体是一个横放的直棱柱,棱柱底面为梯形,梯形两底长分别为2和8,高为4,棱柱的高为10,故该几何体体积V =12×(2+8)×4×10=200,故选C . 6.若a <b <c ,则函数f (x )=(x -a ) (x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间 ( )A. (a ,b )和(b ,c )内B. (-∞,a )和(a ,b )内C. (b ,c )和(c ,+∞)内D. (-∞,a )和(c ,+∞)内 【测量目标】函数零点的求解与判断.【考查方式】利用函数在区间端点处的函数值并判断符号. 【难易程度】容易 【参考答案】A【试题解析】由题意a <b <c ,可得f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.显然f (a ) f (b )<0,f (b ) f (c )<0,所以该函数在(a ,b )和(b ,c )上均有零点,故选A .7.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为 ( )A.4 1 C.6- 【测量目标】圆与圆的位置关系.【考查方式】利用圆心坐标和半径,在结合对称性求解. 【难易程度】中等 【参考答案】A【试题解析】圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM |…|PC 1|-1,|PN |…|PC 2|-3, ∴|PM |+|PN |…|PC 1|+|PC 2|-4,故所求值为|PC 1|+|PC 2|-4的最小值.(步骤1 ) 又C 1关于x 轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-4=44=,故选A.(步骤2)8.执行如图所示的程序框图,如果输出s =3,那么判断框内应填入的条件是( )A.6k …B.7k …C.8k …D.9k …第8题图【测量目标】循环结构的程序框图.【考查方式】利用循环结构运算并结合输出结果求解.【难易程度】中等 【参考答案】B【试题解析】由程序框图可知,输出的结果为s =log 23×log 34× ×log k (k +1)=log 2(k +1) .由s =3,即log 2(k +1)=3,解得k =7.又因为不满足判断框内的条件时才能输出s ,所以条件应为k …7.故选B. 9.4cos50tan 40-=( )D.1 【测量目标】同角三角函数的基本关系,诱导公式.【考查方式】利用商数关系,三角恒等及角度拆分求解. 【难易程度】较难 【参考答案】C【试题解析】4cos50tan 40-=4sin40cos40sin40cos40︒︒-=2sin80sin 402sin100sin 40cos 40cos 40︒︒︒︒︒︒--=(步骤1 )=2sin(6040)sin40cos40︒︒︒︒+-=122sin40sin4022cos40︒︒︒︒+⨯-=故选C. (步骤2 ) 10.在平面上,1AB ⊥2AB ,|1OB |=|2OB |=1,AP =1AB +2AB.若|OP |<12,则|OA |的取值范围是( )A.0,2⎛ ⎝⎦B.22⎛ ⎝⎦C.2⎛ ⎝D.2⎛ ⎝【测量目标】平面向量的数量积运算.【考查方式】利用所给条件转化为以O 为起点的向量表示,再利用所给关系列出不等式求解. 【难易程度】较难 【参考答案】D【试题解析】因为1AB ⊥2AB ,所以可以A 为原点,分别以1AB ,2AB所在直线为x 轴,y 轴建立平面直角坐标系.设B 1(a,0),B 2(0,b ),O (x ,y ),则AP =1AB +2AB=(a ,b ),即P (a ,b ).(步骤1 ) 由|1OB |=|2OB|=1,得(x -a )2+y 2=x 2+(y -b )2=1.所以(x -a )2=1-y 2≥0,(y -b )2=1-x 2≥0. (步骤2 )由|OP |<12,得(x -a )2+(y -b )2<14,即0≤1-x 2+1-y 2<14.(步骤3 )所以74<x 2+y 2≤2,即2<所以|OA |的取值范围是⎝,故选D.(步骤4 ) 二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.已知复数5i12iz =+(i 是虚数单位),则|z |=__________. 【测量目标】复数代数形式的四则运算.【考查方式】先化简复数,再利用定义求解. 【难易程度】容易【试题解析】5i 5i(12i)2i 12i (12i)(12i)z -===+++-,∴||z ==12.已知{}n a 是等差数列,11,a =公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8S =__________.【测量目标】等差数列的前n 项和,等比数列性质. 【考查方式】利用等比中项及等差数列的通项公式求解. 【难易程度】中等 【参考答案】64【试题解析】由a 1=1且a 1,a 2,a 5成等比数列,得a 1(a 1+4d )=(a 1+d )2,解得d =2,故S 8=8a 1+872⨯d =64. 13.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________(用数字作答). 【测量目标】排列组合及其应用.【考查方式】利用两个计数原理,组合数公式求解. 【难易程度】中等 【参考答案】590【试题解析】设选骨科医生x 名,脑外科医生y 名, 则需选内科医生(5-x -y )人. (步骤1 )(1)当x =y =1时,有113345C C C 120= 种不同选法;(2)当x =1,y =2时,有122345C C C 180= 种不同选法; (3)当x =1,y =3时,有131345C C C 60= 种不同选法;(4)当x =2,y =1时,有212345C C C 120= 种不同选法; (5)当x =2,y =2时,有221345C C C 90= 种不同选法;(6)当x =3,y =1时,有311345C C C 20= 种不同选法;(步骤2 )所以不同的选法共有120+180+60+120+90+20=590种.(步骤3 )考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.如图,在△ABC 中,∠C =90,∠A =60,AB =20,过C 作△ABC 的外接圆的切线CD ,BD ⊥CD ,BD 与外接圆交于点E ,则DE 的长为__________.第14题图【测量目标】圆的性质的应用.【考查方式】利用圆的几何性质、解三角形求解. 【难易程度】中等 【参考答案】5【试题解析】在Rt △ABC 中,∠A =60,AB =20,可得BC =由弦切角定理,可得∠BCD =∠A =60. (步骤1)在Rt △BCD 中,可求得CD =,BD =15.又由切割线定理,可得CD 2=DE DB ,可求得DE =5. (步骤2)15.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线23,x t y t⎧=⎨=⎩(t 为参数)相交于A ,B 两点,则|AB |=__________. 【测量目标】坐标系与参数方程.【考查方式】利用极坐标方程与参数方程转化为普通方程求解. 【难易程度】较难 【参考答案】16【试题解析】由极坐标方程ρcos θ=4,化为直角坐标方程可得x =4,而由曲线参数方程消参得x 3=y 2, ∴y 2=43=64,即y =±8,(步骤1) ∴|AB |=|8-(-8)|=16. (步骤2)16.若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________. 【测量目标】解绝对值不等式.【考查方式】利用不等式的解法求解. 【难易程度】较难 【参考答案】(-∞,8]【试题解析】由绝对值不等式,得|x -5|+|x +3|≥|(x -5)-(x +3)|=8,(步骤1) ∴不等式|x -5|+|x +3|<a 无解时,a 的取值范围为(-∞,8].(步骤2)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分,(1)小问6分,(2)小问7分.)设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间与极值.【测量目标】导数的几何意义,利用导数求函数的极值.【考查方式】利用导数的运算、函数的定义域、函数的单调性求解. 【难易程度】容易【试题解析】(1)因f (x )=a (x -5)2+6ln x ,故()f x '=2a (x -5)+6x.(步骤1) 令x =1,得f (1)=16a ,()1f '=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1),由点(0,6)在切线上可得6-16a =8a -6,故12a =.(步骤2) (2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),()f x '=x -5+6x =23x x x(-)(-).(步骤3) 令()f x '=0,解得x 1=2,x 2=3.当0<x <2或x >3时,()0f x '>,故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时, ()0f x '<,故f (x )在(2,3)上为减函数.(步骤4)由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3. (步骤5) 18.(本小题满分13分,(1)小问5分,(2)小问8分.)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下: 其余情况无奖且每次摸奖最多只能获得一个奖级. (1)求一次摸奖恰好摸到1个红球的概率;奖级 摸出红、蓝球个数 获奖金额 一等奖 3红1蓝 200元 二等奖 3红0蓝 50元 三等奖 2红1蓝 10元(2)求摸奖者在一次摸奖中获奖金额X 的分布列与期望E (X ). 【测量目标】古典概型,离散型随机变量的期望.【考查方式】利用概率公式求解古典概型和独立事件的概率. 【难易程度】中等【试题解析】设A i (i =0,1,2,3)表示摸到i 个红球,B j (j =0,1)表示摸到j 个蓝球, 则A i 与B j 独立.(步骤1)(1)恰好摸到1个红球的概率为P (A 1)=123437C C 18C 35=.(步骤2) (2)X 的所有可能值为0,10,50,200,且P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=3337C 11C 3105=, P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=3337C 22C 3105= , P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=213437C C 1124C 310535== , P (X =0)=12461105105357---=.(步骤3)从而有E (X )=0×7+10×35+50×105+200×105=4(元).(步骤4)19.(本小题满分13分,(1)小问5分,(2)小问8分.)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,BC =CD =2,AC =4,∠ACB =∠ACD =π3,F 为PC 的中点,AF ⊥PB . (1)求P A 的长;(2)求二面角B -AF -D 的正弦值.第19题图【测量目标】二面角,空间直角坐标系.【考查方式】利用线面位置关系建立空间直角坐标系求解. 【难易程度】中等【试题解析】(1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形.又AC 平分∠BCD ,故AC ⊥BD.以O为坐标原点,OB ,OC ,AP的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O xyz -,则OC =CD πcos 3=1,而AC =4,得AO =AC -OC =3,又OD =CD πsin 3故A (0,-3,0),B ,C (0,1,0),D (步骤1)第19题图因P A ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,F 0,1,2z ⎛⎫- ⎪⎝⎭.(步骤2)又AF =0,2,2z ⎛⎫ ⎪⎝⎭,PB=z -),因AF ⊥PB ,故AF PB=0,(步骤3)即6-22z =0,z =舍去-),所以|PA|=步骤4)(2)由(1)知AD =(AB =AF=设平面F AD 的法向量为n 1=(x 1,y 1,z 1),平面F AB 的法向量为n 2=(x 2,y 2,z 2),(步骤5)由n 1 AD =0,n 1 AF =0,得111130,20,y y ⎧+=⎪⎨+=⎪⎩(步骤6)因此可取n 1=-2).(步骤7)由n 2AB=0,n 2 AF=0, 得222230,20,y y +==⎪⎩故可取n 2=(3,.(步骤8) 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=12121||||8= n n n n ,故二面角B -AF -D 步骤9) 20.(本小题满分12分,(1)小问4分,(2)小问8分.)在△ABC 中,内角A,B ,C 的对边分别是a ,b ,c ,且a 2+b 2=c 2.(1)求∠C ;(2)设cos A cos B =52cos()cos()cos 5A B ααα++=,求tan α的值. 【测量目标】余弦定理,同角三角函数的基本关系.【考查方式】利用余弦定理的变形求解,借助三角恒等变换将所给等式化简求解. 【难易程度】中等【试题解析】(1)因为a 2+b 2=c 2,由余弦定理有cos C =2222a b c ab +-==(步骤1)故3π4C ∠=.(步骤2)(2)由题意得2(sin sin cos cos )(sin sin cos cos )cos A A B B ααααα--=5.(步骤3)因此(tan αsin A -cos A )(tan αsin B -cos B ),tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B ,tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =5.①(步骤4) 因为3π4C =,A +B =π4,所以sin(A +B )=2,(步骤5)因为cos(A +B )=cos A cos B -sin A sin B ,即5-sin A sin B =,解得sin A sin B =5210-=.(步骤6) 由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. (步骤7)21.(本小题满分12分,(1)小问4分,(2)小问8分.)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率2e =,过左焦点F 1作x 轴的垂线交椭圆于A ,A ′两点,|AA ′|=4. (1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P ′,过P ,P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ ⊥P ′Q ,求圆Q 的标准方程.第21题图【测量目标】椭圆的标准方程,圆锥曲线中的轨迹问题.【考查方式】利用椭圆的方程,集合性质,平面向量数量积及轨迹方程的求法求解. 【难易程度】较难【试题解析】(1)由题意知点A (-c,2)在椭圆上,则222221c a b(-)+=.(步骤1) 从而e 2+24b=1.由2e =得22481b e ==-, 从而222161b a e ==-. 故该椭圆的标准方程为221168x y +=.(步骤2)(2)由椭圆的对称性,可设()0,0Q x .又设M (x ,y )是椭圆上任意一点, 则|QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 02+28116x ⎛⎫- ⎪⎝⎭=12(x -2x 0)2-x 02+8(x ∈[-4,4]).(步骤3) 设P (x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点, 因此,上式当x =x 1时取最小值.(步骤4)又因x 1∈(-4,4),所以上式当x =2x 0时取最小值, 从而x 1=2x 0,且|QP |2=8-x 02. 因为PQ ⊥P ′Q ,且P ′(x 1,-y 1),所以QP QP ' =(x 1-x 0,y 1) (x 1-x 0,-y 1)=0,(步骤5)即(x 1-x 0)2-y 12=0.由椭圆方程及x 1=2x 0得22111810416x x ⎛⎫--= ⎪⎝⎭,解得1x =,102x x ==.(步骤6) 从而|QP |2=8-x 02=163.故这样的圆有两个,其标准方程分别为22163x y ⎛++= ⎝⎭,22163x y ⎛+= ⎝⎭.(步骤7)22.(本小题满分12分,(1)小问4分,(2)小问8分.)对正整数n ,记I n ={1,2,…,n },,n n n P I k I ⎫=∈∈⎬⎭.(1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”.求n 的最大值,使P n 能分成两个不相交的稀疏集的并.【测量目标】集合的表示,集合中元素的基本特征,间接证明.【考查方式】利用集合元素的特征、分类讨论思想和反证法求解论证. 【难易程度】较难【试题解析】 (1)当k =4时,7I ⎫∈⎬⎭中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(步骤1)(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A B =P n ⊇I n ,不妨设I ∈A ,则因1+3=22,故3∉A ,即3∈B.同理6∈A,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.(步骤2)再证P 14符合要求,当k =1时,1414I I ⎫∈=⎬⎭可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1 B 1=I 14. (步骤3)当k =4时,集合14I ⎫∈⎬⎭中除整数外剩下的数组成集合13513,,,,2222⎧⎫⎨⎬⎩⎭ ,可分解为下面两稀疏集的并:215911,,,2222A ⎧⎫=⎨⎬⎩⎭,23713,,222B ⎧⎫=⎨⎬⎩⎭.(步骤4)当k =9时,集合14I ⎫∈⎬⎭中除正整数外剩下的数组成集合12451314,,,,,,333333⎧⎫⎨⎬⎩⎭ ,可分解为下面两稀疏集的并:31451013,,,,33333A ⎧⎫=⎨⎬⎩⎭,32781114,,,,33333B ⎧⎫=⎨⎬⎩⎭.(步骤5)最后,集合1414,,1,4,9C I k I k ⎫=∈∈≠⎬⎭且中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1 A 2 A 3 C ,B =B 1 B 2 B 3,则A 和B 是不相交的稀疏集,且A B =P 14.综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.(步骤6)。

【创新方案】高考数学(理)一轮知能检测:第3章 第6节 正弦定理和余弦定理(数学大师 为您收集整理)

【创新方案】高考数学(理)一轮知能检测:第3章 第6节 正弦定理和余弦定理(数学大师 为您收集整理)

第六节 正弦定理和余弦定理[全盘巩固]1.已知△ABC ,sin A ∶sin B ∶sin C =1∶1∶2,则此三角形的最大内角的度数是( ) A .60° B .90° C .120° D .135°解析:选B 依题意和正弦定理知,a ∶b ∶c =1∶1∶2,且c 最大.设a =k ,b =k ,c =2k (k >0),由余弦定理得,cos C =k 2+k 2-(2k )22k 2=0,又0°<C <180°,所以C =90°. 2.(2013·山东高考)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( )A .2 3B .2 C. 2 D .1解析:选B 由已知及正弦定理得1sin A =3sin B =3sin 2A =32sin A cos A ,所以cos A =32,A =30°.结合余弦定理得12=(3)2+c 2-2c ×3×32,整理得c 2-3c +2=0,解得c =1或c=2.当c =1时,△ABC 为等腰三角形,A =C =30°,B =2A =60°,不满足内角和定理,故c =2.3.(2014·沈阳模拟)在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394解析:选B 由余弦定理得:(7)2=22+AB 2-2×2AB ·cos 60°,即AB 2-2AB -3=0,得AB =3,故BC 边上的高是AB sin 60°=332.4.在△ABC 中,若lg sin A -lg cos B -lg sin C =lg 2,则△ABC 的形状是( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形解析:选D 由条件得sin Acos B sin C =2,即2cos B sin C =sin A .由正、余弦定理得,2·a 2+c 2-b 22ac·c =a ,整理得c =b ,故△ABC 为等腰三角形.5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4解析:选D ∵A >B >C ,∴a >b >c .又∵a ,b ,c 为连续的三个正整数, ∴设a =n +1,b =n ,c =n -1(n ≥2,n ∈N *).∵3b =20a cos A ,∴3b 20a =cos A ,∴3b 20a =b 2+c 2-a22bc,3n 20(n +1)=n 2+(n -1)2-(n +1)22n (n -1),即3n 20(n +1)=n (n -4)2n (n -1),化简得7n 2-27n -40=0,(n -5)(7n +8)=0,∴n =5⎝⎛⎭⎫n =-87 舍.又∵a sin A =b sin B =c sin C,∴sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4.6.在△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于( )A.32B.34C.32或 3D.32或34解析:选D 由已知及正弦定理得AB sin C =AC sin B ,sin C =AB ·sin B AC =32,C =60°或C =120°.当C =60°时,A =90°,△ABC 的面积等于12AB ·AC =32;当C =120°时,A =30°,△ABC 的面积等于12AB ·AC ·sin A =34.因此,△ABC 的面积等于32或34.7.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且a sin A sin B +b cos 2A =2a ,则ba=________. 解析:由正弦定理,得sin 2A sin B +sin B cos 2A =2sin A ,即sin B ·(sin 2A +cos 2A )=2sinA ,所以sinB =2sin A .所以b a =sin Bsin A= 2.答案: 28.(2014·深圳模拟)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cosB =513,b =3,则c =________.解析:由题意知sin A =45,sin B =1213,则sin C =sin(A +B )=sin A cos B +cos A sin B =5665,所以c =b sin C sin B =145.答案:1459.在△ABC 中,B =60°,AC =3,则△ABC 的周长的最大值为________.解析:由正弦定理得:BC sin A =AB sin C =AC sin B =3sin 60°,即BC sin A =ABsin C=2,则BC =2sin A ,AB =2sin C ,又△ABC 的周长l =BC +AB +AC =2sin A +2sin C +3=2sin(120°-C )+2sin C +3=2sin 120°cos C -2cos 120°sin C +2sin C +3=3cos C +sin C +2sin C +3=3cosC +3sin C +3=3(3sin C +cos C )+3=2332sin C +12cos C +3=23sin ⎝⎛⎭⎫C +π6+ 3.故△ABC 的周长的最大值为3 3.答案:3 310.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+3bc . (1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值.解:(1)由余弦定理得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32.又因0<A <π,所以A =5π6.(2)由(1)得sin A =12,又由正弦定理及a =3得S =12bc sin A =12·a sin Bsin A·a sin C =3sin B sinC ,因此,S +3cos B cos C =3(sin B sin C +cos B cos C )=3cos(B -C ).所以,当B =C ,即B =π-A 2=π12时,S +3cos B cos C 取得最大值3.11.(2014·杭州模拟)设函数f (x )=6cos 2x -3sin 2x (x ∈R ). (1)求f (x )的最大值及最小正周期;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,锐角A 满足f (A )=3-23,B =π12,求a 2+b 2-c 2ab的值.解:(1)f (x )=23cos ⎝⎛⎭⎫2x +π6+3. 故f (x )的最大值为23+3,最小正周期T =π.(2)由f (A )=3-23,得23cos ⎝⎛⎭⎫2A +π6+3=3-23, 故cos ⎝⎛⎭⎫2A +π6=-1, 又由0<A <π2,得π6<2A +π6<π+π6,故2A +π6=π,解得A =5π12.又B =π12,∴C =π2.∴a 2+b 2-c 2ab =2cos C =0.12.(2013·重庆高考)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2 +2ab =c 2. (1)求C ;(2)设cos A cos B =325,cos (α+A )cos (α+B )cos 2α=25,求tan α的值. 解:(1)因为a 2+b 2+2ab =c 2,由余弦定理有cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.又0<C <π,故C =3π4.(2)由题意得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos 2α=25. 因此(tan αsin A -cos A )(tan αsin B -cos B )=25,tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25,tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.①因为C =3π4,所以A +B =π4,所以sin(A +B )=22,因为cos(A +B )=cos A cos B -sin A sin B ,即325-sin A sin B =22,解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4.[冲击名校]1.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b a +a b =6cos C ,则tan Ctan A+tan Ctan B=________. 解析:∵b a +a b =6cos C ,∴b a +a b =6·a 2+b 2-c 22ab ,化简得a 2+b 2=32c 2,则tan C tan A +tan Ctan B=tan C ·sin B cos A +sin A cos B sin A sin B =tan C sin (A +B )sin A sin B =sin 2C cos C sin A sin B =c 2a 2+b 2-c 22ab·ab =4.答案:4 2. (2013·福建高考)如图,在等腰直角△OPQ 中,∠POQ =90°,OP =22,点M 在线段PQ 上.(1)若OM =5,求PM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时,△OMN 的面积最小?并求出面积的最小值.解:(1)在△OMP 中,∠OPM =45°,OM =5,OP =22,由余弦定理,得OM 2=OP 2+PM 2-2×OP ×PM ×cos 45°,得PM 2-4PM +3=0,解得PM =1或PM =3.(2)设∠POM =α,0°≤α≤60°,在△OMP 中,由正弦定理,得OM sin ∠OPM =OPsin ∠OMP,所以OM =OP sin 45°sin (45°+α),同理ON =OP sin 45°sin (75°+α).故S △OMN =12×OM ×ON ×sin ∠MON =14×OP 2sin 245°sin (45°+α)sin (75°+α)=1sin (45°+α)sin (45°+α+30°)=1sin (45°+α)⎣⎡⎦⎤32sin (45°+α)+12cos (45°+α)=132sin 2(45°+α)+12sin (45°+α)cos (45°+α)=134[1-cos (90°+2α)]+14sin (90°+2α)=134+34sin 2α+14cos 2α=134+12sin (2α+30°).因为0°≤α≤60°,则30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)的最大值为1,此时△OMN 的面积取到最小值.即∠POM =30°时,△OMN 的面积的最小值为8-4 3.[高频滚动]1.已知sin x -sin y =-23,cos x -cos y =23,且x ,y 为锐角,则tan(x -y )=( )A.2145 B .-2145C .±2145D .±51428解析:选B ∵sin x -sin y =-23,x ,y 为锐角,∴-π2<x -y <0,又⎩⎨⎧sin x -sin y =-23,①cos x -cos y =23,②①2+②2,得2-2sin x sin y -2cos x cos y =⎝⎛⎭⎫-232+⎝⎛⎭⎫232,即2-2cos(x -y )=89,得cos(x -y )=59,又-π2<x -y <0,∴sin(x -y )=-1-cos 2(x -y )=-1-⎝⎛⎭⎫592=-2149, ∴tan(x -y )=sin (x -y )cos (x -y )=-2145.2.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45,所以sin ⎝⎛⎭⎫α+π6=35,sin 2⎝⎛⎭⎫α+π6=2425,cos 2⎝⎛⎭⎫α+π6=725,所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4=sin 2⎝⎛⎭⎫α+π6·cos π4-cos 2⎝⎛⎭⎫α+π6·sin π4=17250. 答案:17250。

2013年高考真题文-重庆卷文科数学试题及答案

2013年高考真题文-重庆卷文科数学试题及答案

2013年普通高等学校招生全国统一考试文科数学(重庆卷)一、选择题1.已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )等于( ) A .{1,3,4} B .{3,4} C .{3}D .{4}答案 D解析 因为A ∪B ={1,2,3},全集U ={1,2,3,4},所以∁U (A ∪B )={4},故选D. 2.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .存在x 0∈R ,使得x 20<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 20≥0 D .对任意x ∈R ,都有x 2<0 答案 A解析 由于“对任意x ∈R ”的否定为“存在x 0∈R ”,对“x 2≥0”的否定为“x 2<0”,因此选A.3.函数y =1log 2(x -2)的定义域为( )A .(-∞,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞)答案 C解析 由题意得,⎩⎪⎨⎪⎧x -2>0,x -2≠1,即x >2且x ≠3,故选C.4.设P 是圆(x -3)2+(y +1)2=4上的动点,Q 是直线x =-3上的动点,则|PQ |的最小值为( ) A .6B .4C .3D .2答案 B解析 由题意,知圆的圆心坐标为(3,-1),圆的半径长为2,|PQ |的最小值为圆心到直线x =-3的距离减去圆的半径长,所以|PQ |min =3-(-3)-2=4.故选B.5.执行如图所示的程序框图,则输出的k 的值是( )A .3B .4C .5D .6答案 C解析 由题意,得k =1时,s =1;k =2时,s =1+1=2;k =3时,s =2+4=6;k =4时,s =6+9=15;k =5时,s =15+16=31>15,此时输出的k 值为5.6.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为( )**B .0.4C .0.5D .0.6答案 B解析 10个数据落在区间[22,30)内的数据有22,22,27,29共4个,因此,所求的频率为410=0.4.故选B. 7.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a 等于( ) A.52B.72C.154D.152答案 A解析 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52.8.某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240答案 D解析 由三视图还原的几何体为两底面为梯形的直棱柱,底面梯形的面积为12(2+8)×4=20,梯形的腰长为32+42=5,棱柱的四个侧面的面积之和为(2+8+5+5)×10=200.所以棱柱的表面积为200+2×20=240.9.已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))等于( ) A .-5B .-1C .3D .4答案 C解析 lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4= -1+4=3.10.设双曲线C 的中心为点O ,若有且只有一对相交于点O 、所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A.⎝⎛⎦⎤233,2B.⎣⎡⎭⎫233,2C.⎝⎛⎭⎫233,+∞D.⎣⎡⎭⎫233,+∞ 答案 A解析 设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0).由双曲线的对称性知,直线A 1B 1与A 2B 2关于坐标轴对称,否则不会有|A 1B 1|=|A 2B 2|,设双曲线的两条渐近线的夹角为2θ,由题意知2θ>(60°,120°],否则,若2θ<60°,则不存在满足题意的直线对,若2θ>120°,则直线对不唯一.因此双曲线渐近线的斜率满足关系式tan 60°≥b a >tan 30°,即3≥b a >33,平方得:3≥e 2-1>13,解得e ∈⎝⎛⎦⎤233,2.二、填空题11.已知复数z =1+2i(i 是虚数单位),则|z |=________.答案 5解析 因为z =1+2i ,所以|z |=12+22= 5. 12.若2、a 、b 、c 、9成等差数列,则c -a =________. 答案 72解析 设等差数列2,a ,b ,c,9的公差为d ,则9-2=4d , ∴d =74,c -a =2d =2×74=72.13.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________. 答案 23解析 甲、乙、丙三人站成一排,共有甲、乙、丙,甲、丙、乙,乙、甲、丙,乙、丙、甲,丙、甲、乙,丙、乙、甲共6种情况,其中甲、乙丙人相邻而站共4种情况,故 P =46=23.14.OA 为边,OB 为对角线的矩形中,OA →=(-3,1),OB →=(-2,k ),则实数k =________. 答案 4解析 AB →=OB →-OA →=(1,k -1), 因OA →⊥AB →,所以OA →·AB →=0, 即-3+k -1=0,所以k =4.15.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则a 的取值范围为________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 由题意,得Δ=64sin 2α-32cos 2α≤0, 化简得cos 2α≥12,∵0≤α≤π,∴0≤2α≤2π, ∴0≤2α≤π3或5π3≤2α≤2π,∴0≤α≤π6或5π6≤α≤π.三、解答题16.设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20.解 (1)由题设知{a n }是首项为1,公比为3的等比数列,所以a n =3n -1,S n =1-3n 1-3=12(3n-1).(2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d , 所以公差d =5,故T 20=20·3+20·192·5=1 010.17.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x (单位:千元)与月储蓄y (单位:千元)的数据资料,算得(Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y=bx+a;(Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.18.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且a 2=b 2+c 2+3bc . (1)求A ;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值,并指出此时B 的值.解 (1)由余弦定理得cos A =b 2+c 2-a 22bc =-3bc 2bc =-32.又因0<A <π,所以A =5π6.(2)由(1)得sin A =12,又由正弦定理及a =3得S =12bc sin A =12·a sin B sin A ·a sin C =3sin B sin C , 因此,S +3cos B cos C =3(sin B sin C +cos B cos C ) =3cos(B -C ).所以,当B =C ,即B =π-A 2=π12时,S +3cos B cos C 取最大值3.19.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,P A =23,BC =CD =2,∠ACB = ∠ACD =π3.(1)求证:BD ⊥平面P AC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积. (1)证明 因BC =CD ,即△BCD 为等腰三角形, 又∠ACB =∠ACD ,故BD ⊥AC . 因为P A ⊥底面ABCD ,所以P A ⊥BD .从而BD 与平面P AC 内两条相交直线P A ,AC 都垂直, 所以BD ⊥平面P AC .(2)解 三棱锥P -BCD 的底面BCD 的面积 S △BCD =12BC ·CD ·sin ∠BCD =12·2·2·sin 2π3= 3.由P A ⊥底面ABCD ,得V P -BCD =13·S △BCD ·P A =13·3·23=2.由PF =7FC ,得三棱锥F -BCD 的高为18P A ,故V F -BCD =13·S △BCD ·18P A =13·3·18·23=14,所以V P -BDF =V P -BCD -V F -BCD =2-14=74.20.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)因为蓄水池侧面的总成本为100·2πrh =200πrh 元,底面的总成本为160πr 2元. 所以蓄水池的总成本为(200πrh +160πr 2)元. 又根据题意得200πrh +160πr 2=12 000π, 所以h =15r (300-4r 2),从而V (r )=πr 2h =π5(300r -4r 3).因r >0,又由h >0可得r <53,故函数V (r )的定义域为(0,53). (2)因V (r )=π5(300r -4r 3),故V ′(r )=π5(300-12r 2),令V (r )=0,解得r 1=5,r 2=-5(因r 2=-5不在定义域内,舍去). 当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上为增函数; 当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上为减函数. 由此可知,V (r )在r =5处取得最大值,此时h =8. 即当r =5,h =8时,该蓄水池的体积最大.21.如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A 、A ′两点,|AA ′|=4. (1)求该椭圆的标准方程;(2)取平行于y 轴的直线与椭圆相交于不同的两点P 、P ′,过P 、P ′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.求△PP ′Q 的面积S 的最大值,并写出对应的圆Q 的标准方程.解 (1)由题意知A (-c,2)在椭圆上, 则(-c )2a 2+22b 2=1.从而e 2+4b 2=1.由e =22得b 2=41-e 2=8, 从而a 2=b 21-e 2=16. 故该椭圆的标准方程为x 216+y 28=1.(2)由椭圆的对称性,可设Q (x 0,0). 又设M (x ,y )是椭圆上任意一点,则 |QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝⎛⎭⎫1-x 216=12(x -2x 0)2-x 20+8(x ∈[-4,4]). 设P (x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点, 因此,上式当x =x 1时取最小值,又因x 1∈(-4,4),所以上式当x =2x 0时取最小值, 从而x 1=2x 0,且|QP |2=8-x 20.由对称性知P ′(x 1,-y 1),故|PP ′|=|2y 1|, 所以S =12|2y 1||x 1-x 0|=12×28⎝⎛⎭⎫1-x 2116|x 0| =2(4-x 20)x 20=2-(x 20-2)2+4.当x 0=±2时,△PP ′Q 的面积S 取到最大值2 2.此时对应的圆Q 的圆心坐标为Q (±2,0),半径|QP |=8-x 20=6, 因此,这样的圆有两个,其标准方程分别为 (x +2)2+y 2=6,(x -2)2+y 2=6.。

2013年高考真题解析分类汇编(理科数学)含解析

2013年高考真题解析分类汇编(理科数学)含解析

2013高考试题解析分类汇编(理数)5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为;以D为起点,其余顶点为终点的向量分别为.若分别为的最小值、最大值,其中,,则满足()A. B. C. D.D.【解答】作图知,只有,其余均有,故选D.2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知点()A. B. C. D.A,所以,所以同方向的单位向量是,选A.3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))设是边上一定点,满足,且对于边上任一点,恒有.则()A. B. C. D.D以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(﹣2,0),B(2,0),P0(1,0)所以=(1,0),=(2﹣x,0),=(a﹣x,b),=(a﹣1,b)因为恒有所以(2﹣x)(a﹣x)≥a﹣1恒成立整理可得x2﹣(a+2)x+a+1≥0恒成立所以△=(a+2)2﹣4(a+1)≤0即△=a2≤0所以a=0,即C在AB的垂直平分线上所以AC=BC故△ABC为等腰三角形故选D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))在四边形ABCD中,,,则四边形的面积为()A. B. C.5 D.10C由题意,容易得到.设对角线交于O点,则四边形面积等于四个三角形面积之和即S= .容易算出,则算出S=5.故答案C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))在平面直角坐标系中,是坐标原点,两定点满足则点集所表示的区域的面积是()A. B. C. D.D.在本题中,.建立直角坐标系,设A(2,0),所以选D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,,,.若,则的取值范围是()A. B. C. D.D【命题立意】本题考查平面向量的应用以及平面向量的基本定理。

5.复数模的运算与几何意义

5.复数模的运算与几何意义

[决胜高考数学母题](第008号)复数模的运算与几何意义复数与坐标平面內的点具有一一对应关系,由此可定义复数的模:若复数z=a+bi,则z 的模|z|=22b a +,复数的模具有优美的运算性质和直观的几何意义.[母题结构]:(Ⅰ)(模的运算):|z 1z 2|=|z 1||z 2|;|z|2=|z 2|,|21z z |=||||21z z . (Ⅱ)(几何意义):复数的两层几何意义:复数z=a+bi ←→Z(a,b)←→OZ =(a,b).(Ⅲ)(模的意义)①|z-z o |⇔z 对应的点Z 与z o 对应的点Z o 的距离;②|z-z 1|=|z-z 2|⇔复数z 对应的点Z 在线段Z 1Z 2的垂直平分线上,其中Z 1、Z 2分别是复数z 1、z 2的对应点;③|z-z 0|=R ⇔复数z 对应的点Z 在以点Z 0为圆心,半径为R 的圆上,其中Z 0是复数z 0的对应点;④|z-z 1|+|z-z 2|=|z 1-z 2|⇔复数z 对应的点P 在线段Z 1Z 2上,其中Z 1、Z 2分别是复数z 1、z 2的对应点.[母题解析]:略.1.模的运算子题类型Ⅰ:(2010年课标卷高考试题)已知复数z=2)31(3i i-+,则|z|=( ) (A)41 (B)21 (C)1 (D)2 [解析]:由z=2)31(3i i-+⇒|z|=2|31||3|i i -+=222=21.故选(B). [点评]:利用复数模的运算性质求复数的模,无需把所给复数化成a+bi 的形式,可直接求解,减少计算量,是解决该类高考试题的最佳途径.[同类试题]:1.(2013年课标Ⅱ卷高考试题)|i+12|=( ) (A)22 (B)2 (C)2 (D)12.(2013年山东高考试题)复数z=ii 2)2(-(i 为虚数单位),则|z|=( ) (A)25 (B)41 (C)5 (D)5 2.几何意义子题类型Ⅱ:(2003年上海春招试题)复数z=ii m 212+-(m ∈R,i 为虚数单位)在复平面上对应的点不可能位于( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限[解析]:由z=i i m 212+-=51(m-2i)(1-2i)=51(m-4)-52(m+1)i;如果在第一象限,则⎩⎨⎧<+>-0104m m ,而该不等式组无解.故选(A). [点评]:复数的几何意义:复数z=a+bi ←→点Z(a,b);本题把复数的几何意义与解不等式进行有机结合,不仅体现了知识的交汇,而且呈现了逆向思维.[同类试题]:3.(2007年复旦大学保送生考试试题)复数z=ii a 212+-(a ∈R,i 为虚数单位)在复平面内对应的点不可能位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限4.(1989年全国高中数学联赛试题)若A,B 是锐角△ABC 的两个内角,则复数z=(cosB-sinA)+i(sinB-cosA)在复平面内所对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3.模的意义子题类型Ⅲ:(2002年北京高考试题)己知z 1,z 2∈C,且|z 1|=1,若z 1+z 2=2i,则|z 1-z 2|的最大值是( )(A)6 (B)5 (C)4 (D)3[解析]:令z 1、z 2对应的点分别为P 、Q,A(0,2),由|z 1|=1⇒点P 在圆x 2+y 2=1上;又由z 1+z 2=2i ⇒点Q 满足:OP +OQ =OA ,且|z 1-z 2|=|PQ|=|OP -OQ |=|2OP -(OP +OQ )|=|2OP -OA |≤2|OP |+|OA |=4,当且仅当z 1=-i,z 2=3i 时,等号成立.故选(C).[点评]:复数的几何意义有两个层次:复数z=a+bi ←→点Z(a,b)←→向量OZ =(a,b);复数模的意义:|z-z o |⇔z 对应的点Z 与z o 对应的点Z o 的距离;由此作图,根据几何直观是解决模的最值问题的最佳选择.[同类试题]:5.(1990年广东高考试题)如果z 1,z 2是复数,且|z 1|=3,|z 2|=4,|z 1-z 2|=5,那么|z 1+z 2|的值是 .6.(2003年安徽春招试题)若复数z 满足|z-1|=|z-2|=|z-i|,则z= .4.子题系列:7.(2013年广东高考试题)若i(x+yi)=3+4i,x,y ∈R,则复数x+yi 的模是( )(A)2 (B)3 (C)4 (D)58.(2010年江苏高考试题)设复数z 满足z(2-3i)=6+4i(i 为虚数单位),则z 的模为 .9.(2013年辽宁高考试题)复数z=11-i 的模为( ) (A)21 (B)22 (C)2 (D)2 10.(2013年课标Ⅱ卷高考试题)|i +12|=( ) (A)22 (B)2 (C)2 (D)111.(2013年山东高考试题)复数z=ii 2)2(-(i 为虚数单位),则|z|=( ) (A)25 (B)41 (C)5 (D)512.(2013年重庆高考试题)已知复数z=ii 215+(i 为虚数单位),则|z|= . 13.(2017年江苏高考试题)已知z=(1+i)(1+2i),其中i 是虚数单位,则z 的模是 .14.(2017年高考全国Ⅲ理科试题)设复数z 满足(1+i)z=2i,则|z|=( ) (A)21 (B)22 (C)2 (D)2 15.(2017年山东高考试题)已知a ∈R,i 是虚数单位.若z=a+3i,z z =4,则a=( )(A)1或-1 (B)7或-7 (C)-3 (D)316.(2017年高考全国Ⅲ文科试题)在复平面内表示复数z=i(-2+i)的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限17.(2011年山东高考试题)复数z=ii +-22(i 为虚数单位)在复平面内对应的点所在象限为( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限18.(2005年辽宁高考试题)复数z=ii ++-11-1在复平面内,z 所对应的点在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.(2005年浙江高考试题)在复平面内,复数ii +1+(1+3i)2对应的点位于( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限20.(2004年北京春招试题)当32<m<1时,复数z=(3m-2)+(m-1)i 在复平面内所对应的点位于( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限21.(2017年北京高考试题)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )(A)(-∞,1) (B)(-∞,-1) (C)(1,+∞) (D)(-1,+∞)22.(2008年江西高考试题)在复平面内,复数z=sin2+icos2对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限23.(2003年北京高考试题)若z ∈C,且|z+2-2i|=1,则|z-2-2i|的最小值是( )(A)2 (B)3 (C)4 (D)524.(2004年北京高考试题)满足条件|z-i|=|3+4i|的复数z 在复平面上对应点的轨迹是( )(A)一条直线 (B)两条直线 (C)圆 (D)椭圆25.(1994年全国高考试题)如果复数z 满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是( ) (A)1 (B)2 (C)2 (D)526.(1999年全国高中数学联赛河北初赛试题)若复数z 满足|z+1+i|+|z-1-i|=22,记|z+i|的最大值和最小值分别为M,m,则mM = . 27.(1989年广东高考试题)满足条件|z|=1及|z+21|=|z-23|的复数z 的集合是 . 5.子题详解:1.解:|i +12|=|1|2i +=22=2.故选(C). 2.解:|z|=|i i 2)2(-|=|||2|2i i -=5.故选(C). 3.解:z=i i a 212+-=51(a-4)-52(a+1)i.故选(A). 4.解:由A+B>900⇒cosB-sinA<0,sinB-cosA>0.故选(B).5.解:在复平面内,令z 1,z 2对应的点分别为A,B,则|OA|=3,|OB|=4,|AB|=5⇒△OAB 是直角三角形⇒|z 1+z 2|=|AB|=5.6.解:在复平面内,令点A(1,0),B(2,0),C(0,1),由|z-1|=|z-2|知,复数z 对应的点P 在线段AB 的垂直平分线x=23上,又由|z-1|=|z-i|知,复数z 对应的点P 在线段AC 的垂直平分线y=x ⇒y=x=23⇒P(23,23)⇒z=23+23i. 7.解:由i(x+yi)=3+4i ⇒|i||x+yi|=|3+4i|⇒|x+yi|=5.故选(D).8.解:由z(2-3i)=6+4i ⇒|z|=2.9.解:|z|=|11-i |=|1|1-i =22.故选(B).10.解:|i +12|=|1|2i +=22=2.故选(C). 11.解:|z|=|i i 2)2(-|=|||2|2i i -=5.故选(C). 12.解:|z|=|ii 215+|=5. 13.解:由z=(1+i)(1+2i)⇒|z|=|1+i||1+2i|=2⋅5=10.14.解:由(1+i)z=2i ⇒|1+i||z|=|2i|⇒|z|=2.故选(C).15.解:由z z =4⇒|z|=2⇒a=1或-1.故选(A).16.解:由z=i(-2+i)=-1-2i.故选(C).17.解:由z=i i +-22=51(3-4i).故选(D). 18.解:由z=ii ++-11-1=i-1.故选(B). 19.解:由i i +1+(1+3i)2=2)341(3i ++-.故选(B). 20.解:由3m-2>0,m-1<0.故选(D).21.解:由(1-i)(a+i)=(a+1)+(1-a)i 在第二象限⇒a<-1.故选(B).22.解:由sin2>0,cos2<0.故选(D).23.解:在复平面内,令z,-2+2i,2+2i 对应的点分别为P,A,B,则|PA|=|z+2-2i|=1,|z-2-2i|=|PB|≥|AB|-1=3.故选(B).24.解:令z 1=i 则z 1对应的点Z 1(0,1),设z 对应的点为P,则|z-i|=|3+4i|⇔|PZ 1|=5⇔点P 的轨迹是圆.故选(C).25.解:在复平面上,设A(0,-1),B(0,1),M(-1,-1),P:z,则|AB|=2,由|z+i|+|z-i|=2⇒点P 在线段AB 上⇒|x+i+1|=|PM|≥|AM|=1.故选(A).26.解:在复平面上,设A(-1,-1),B(1,1),C(0,-1),则|AB|=22⇒|z+1+i|+|z-1-i|=22点P 在线段AB 上⇒M=|BC|= 5,m=22. 27.解:在复平面内,令点A(-21,0),B(23,0),由|z+21|=|z-23|⇒复数z 对应的点P 在线段AB 的垂直平分线x=21上;又由|z|=1⇒点P 在圆x 2+y 2=1上⇒y=±23⇒z=21±23i ⇒复数z 的集合是{21±23i}.。

浅谈高中数学零点问题

浅谈高中数学零点问题

浅谈⾼中数学零点问题 函数的零点是考纲上要求的基本内容,也是⾼中新课程标准新增内容之⼀,是函数的重要性质。

接下来店铺为你整理了浅谈⾼中数学零点问题,⼀起来看看吧。

浅谈⾼中数学零点问题篇⼀ ⼀、求函数的零点 例1求函数y=x2-(x<0)2x-1(x≥0)的零点。

解:令x2-1=0(x<0),解得x=1, 2x-1=0(x≥0),解得x=。

所以原函数的零点为和-1和。

点评:求函数f(x)的零点,转化为⽅程f(x)=0,通过因式分解把⽅程转化为⼀(⼆)次⽅程求解。

⼆、判断函数零点个数 例2求f(x)=x-的零点个数。

解:函数的定义域(-∞,0)∪(0,+∞)。

令f(x)=0即x-=0, 解得:x=2或x=-2。

所以原函数有2个零点。

点评:转化为⽅程直接求出函数零点,注意函数的定义域。

三、根据函数零点反求参数 例3若⽅程ax-x-a=0有两个解,求a的取值范围。

析:⽅程ax-x-a=0转化为ax=x+a。

由题知,⽅程ax-x-a=0有两个不同的实数解,即函数y=ax与y=a+x 有两个不同的交点,如图所⽰。

(1)0此种情况不符合题意。

(2)a>1。

直线y=x+a 在y轴上的截距⼤于1时,函数y=ax与函数y=a+x 有两个不同的交点。

所以a<0与0 点评:采⽤分类讨论与⽤数形结合的思想。

四、⽤⼆分法近似求解零点 例4求函数f(x)=x3+x2-2x-2的⼀个正数零点(精确到0.1)。

解:(1)第⼀步确定零点所在的⼤致区间(a,b),可利⽤函数性质,也可借助计算机,但尽量取端点为整数的区间,并尽量缩短区间长度,通常可确定⼀个长度为1的区间。

(2)列表如下: 零点所在区间中点函数值区间长度 (1,2)f(1.5) >0 1 (1,1.5) f(1.25) <00.5 (1.25,1.5) f(1.375) <00.25 (1.375,1.5) f(1.438)>0 0.125 (1.375,1.438) f(1.4065)>0 0.0625 可知区间(1.375,1.438)长度⼩于0.1,故可在(1.375,1.438)内取1.4065作为函数f(x)正数的零点的近似值。

2013年重庆市高考文科数学试卷(含详细解答过程)

2013年重庆市高考文科数学试卷(含详细解答过程)

若甲、 乙两人相邻而站则有甲乙丙、 丙甲乙、 乙甲丙、 丙乙甲, 共 4 种, 故所求的概率为 14. OA 为边, OB 为对角线的矩形中, OA (3,1) , OB (2, k ) ,则实数 k . 【答案】4 【考点】本题主要考查向量的剑法运算、向量垂直的充要条件。 【解析】∵ OA =(-3,1), OB =(-2,k), ∴ AB = OB - OA =(-2,k)-(-3,1)=(1,k-1). 又 OA , AB 为矩形相邻两边所对应的向量, ∴ OA ⊥ AB ,即 OA · AB =-3×1+1×(k-1)=-4+k=0, 即 k=4.
3
(A) 5 【答案】C
(B) 1
(C) 3
(D) 4
【考点】本题主要考查函数的求值、对数的运算。 【解析】∵ log 210
1 , lg2
-1
∴lg(log210)=lg(lg 2) =-lg(lg 2). 令 g(x)=ax +bsinx,易知 g(x)为奇函数. ∵f(lg(log210))=f(-lg(lg 2))=g(-lg(lg 2))+4=5,∴g(-lg(lg 2))=1. ∴g(lg(lg 2))=-1. ∴f(lg(lg 2))=g(lg(lg 2))+4=-1+4=3. 故选 C. 10.设双曲线 C 的中心为点 O ,若有且只有一对相较于点 O 、所成的角为 60 的直线 A1B1 和
2 2 2
k=2,s=1+(2-1)2=2; k=3,s=2+(3-1)2=6; k=4,s=6+(4-1)2=15; k=5,s=15+(5-1)2=31>15.
∴k=5.故选 C. 6.下图是某公司 10 个销售店某月销售某产品数量 (单位: 台) 的茎叶图, 则数据落在区间[20,30) 内的概率为 1 8 9 (A)0.2 (B)0.4 2 1 2 2 7 9 (C)0.5 (D)0.6 3 0 0 3 【答案】B 题(6)图 【考点】本题主要考查茎叶图的识别,频率、频数的计算。 【解析】∵数据总个数 n=10, 又∵落在区间[22,30)内的数据个数为 4, ∴所求的频率为

重庆市2013年高考数学考纲解读及命题分析《不等式(理工农医类)》

重庆市2013年高考数学考纲解读及命题分析《不等式(理工农医类)》

重庆市2013年高考数学考纲解读及命题分析《不等式(理工农医类)》摘要:本文通过对2013年普通高等学校招生全国统一考试(重庆卷)数学(理工农医类)考试说明的解读和2006-2012年的历史命题分析来预测新课标之后重庆高考数学不等式板块的命题趋势。

并在此趋势下,根据课程大纲及考试大纲要求提出高考复习建议。

关键词:考纲解读、预测、趋势、复习建议不等式在高考中占据着十分重要的地位,新考纲颁布后,在每年的高考试卷中都有一个填空题选做5分,以及22题的最后一问也是数列不等式,而且不等式和立体几何这一类在高考中分数固定的知识点不一样的是不等式在高考中不仅仅局限于这两个题,而是其思想很有可能在很多选填题中体现。

填空题的这一个不等式题目与平面几何、极坐标与参数方程这两块之前从未涉及到的内容一起构成填空三选二的选做题。

从熟悉度和考纲要求两方面来说都是比较占优势的。

一、《不等式(理工农医类)》考纲解读◆运算求解能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件寻找或设计合理、简捷的运算途径;能根据要求对数据惊醒估计和近似运算。

1.绝对值不等式【考纲解读】(1)、理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:①|a+b|≤|a|+|b|②|a-b|≤|a-c|+|c-b|③会求解以下类型的不等式: |ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c(2)、会用上述不等式证明一些简单问题(3)、了解证明不等式的基本方法:比较法、综合法和分析法【命题规律及趋势】绝对值不等式在以前的教材中出现过,知识没有像现在这样单独列出来一个考点,这其实也不算是一个新增考点。

但是对于其几何意义以及其证明对于大家来说是比较陌生的,但是“距离”这一几何意义在考纲中是有要求的。

这也是数形结合的一种很好的体现。

考纲在抽象概括能力这一块高度要求舍弃事物非本质的属性,揭示其本质属性,就此处的绝对值不等式而言就是找到它的本质属性:距离。

高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)

高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)

第1讲函数、基本初等函数的图象与性质考情解读(1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|.3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况.热点一 函数的性质及应用例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32=________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,12]时的解析式探求f (3)和f (-32)的值.答案 (1)(-1,3) (2)-14解析 (1)∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3. (2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t ) =f (1+t ),即f (t +1)=-f (t ),进而得到 f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫12=-14.所以f (3)+f ⎝⎛⎭⎫-32=0+⎝⎛⎭⎫-14=-14. 思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·重庆改编)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=________.(2)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________________________________________________________________________. 答案 (1)3 (2)⎝⎛⎭⎫-2,23 解析 (1)lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4=-1+4=3. (2)易知f (x )为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知, f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0, 令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,即⎩⎪⎨⎪⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.热点二 函数的图象例2 (1)下列四个图象可能是函数y =10ln|x +1|x +1图象的是________.(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为________.思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f (x )的单调性. 答案 (1)③ (2)b >a >c解析 (1)函数的定义域为{x |x ≠-1},其图象可由y =10ln|x |x 的图象沿x 轴向左平移1个单位而得到,y =10ln|x |x 为奇函数,图象关于原点对称,所以,y =10ln|x +1|x +1的图象关于点(-1,0)成中心对称.所以①④不可能是;又x >0时,y =10ln|x +1|x +1>0,所以②不可能是,图象③可能是.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f (-12)=f (52),当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)(2013·课标全国Ⅰ改编)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a的取值范围是________.(2)形如y =b|x |-a (a >0,b >0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg |x |图象的交点个数为n ,则n =________. 答案 (1)[-2,0] (2)4解析 (1)函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立. 比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,所以a ≥-2.综上所述:-2≤a ≤0. (2)由题意知,当a =1,b =1时, y =1|x |-1=⎩⎨⎧1x -1(x ≥0且x ≠1),-1x +1(x <0且x ≠-1),在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.热点三 基本初等函数的图象及性质例3 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________.(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是________.①α>β;②α+β>0;③α<β;④α2>β2.思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f (x )=x sin x ,利用f (x )的单调性.答案 (1)(-1,0)∪(1,+∞) (2)④解析 (1)方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ). 方法二 对a 分类讨论:当a >0时,log 2a >log 12a ,即log 2a >0,∴a >1.当a <0时,log 12(-a )>log 2(-a ),即log 2(-a )<0,∴-1<a <0.(2)设f (x )=x sin x ,x ∈[-π2,π2],∴y ′=x cos x +sin x =cos x (x +tan x ), 当x ∈[-π2,0]时,y ′<0,∴f (x )为减函数,当x ∈[0,π2]时,y ′>0,∴f (x )为增函数,且函数f (x )为偶函数,又αsin α-βsin β>0, ∴αsin α>βsin β,∴|α|>|β|,∴α2>β2.思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.(1)设15<(15)b <(15)a <1,那么a a ,b a ,a b 的大小关系式是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 (1)a b <a a <b a (2)0解析 (1)因为指数函数y =(15)x 在(-∞,+∞)上是递减函数,所以由15<(15)b <(15)a <1,得0<a <b <1,所以0<ab<1.所以y =a x ,y =b x ,y =(a b )x 在(-∞,+∞)上都是递减函数,从而a b <a a ,(ab )a <1得b a >a a ,故a b <a a <b a .(2)当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3.函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a . (2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中. 5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较. 6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟1.(2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 答案516解析 ∵f (x )是以4为周期的奇函数, ∴f ⎝⎛⎭⎫294=f ⎝⎛⎭⎫8-34=f ⎝⎛⎭⎫-34, f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫8-76=f ⎝⎛⎭⎫-76.∵当0≤x ≤1时,f (x )=x (1-x ), ∴f ⎝⎛⎭⎫34=34×⎝⎛⎭⎫1-34=316.∵当1<x ≤2时,f (x )=sin πx ,∴f ⎝⎛⎭⎫76=sin 7π6=-12. 又∵f (x )是奇函数,∴f ⎝⎛⎭⎫-34=-f ⎝⎛⎭⎫34=-316, f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫76=12. ∴f ⎝⎛⎭⎫294+f ⎝⎛⎫416=12-316=516.2.(2014·福建改编)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是________.答案 ②解析 由题意得y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.图象①中,y =3-x =(13)x ,显然图象错误;图象②中,y =x 3,由幂函数图象可知正确;图象③中,y =(-x )3=-x 3,显然与所画图象不符;图象④中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符,故图象②正确. 押题精练1.已知函数f (x )=e |ln x |-⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为________.答案 ①解析 据已知关系式可得f (x )=⎩⎨⎧e-ln x+⎝⎛⎭⎫x -1x =x (0<x ≤1),eln x-⎝⎛⎫x -1x =1x(x >1),作出其图象然后将其向左平移1个单位即得函数y =f (x +1)的图象.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.答案 (4,+∞)解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )的最小值为________. 答案 -1解析 由题意得,利用平移变化的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )的最小值为-1.4.已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 则所有正确命题的序号为________. 答案 ①②④解析 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0,①正确; 根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴,②正确; 根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确; 由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.(推荐时间:40分钟)1.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 答案 -9解析 令g (x )=f (x )-1=x 3cos x ,∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ), ∴g (x )为定义在R 上的奇函数.又∵f (a )=11, ∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9.2.(2014·浙江改编)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是________.答案 ④解析 幂函数f (x )=x a 的图象不过(0,1)点,图象①不正确;②由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a 的图象应是增长越来越慢的变化趋势,故②错;图象③中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a 的图象应是增长越来越快的变化趋势,故③错.图象④是正确的.3.(2014·朝阳模拟)已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值为________. 答案 -lg 2解析 当x <0时,-x >0,则f (-x )=lg(-x ). 又函数f (x )为奇函数,f (-x )=-f (x ), 所以当x <0时,f (x )=-lg(-x ). 所以f ⎝⎛⎭⎫1100=lg 1100=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100=f (-2)=-lg 2. 4.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 答案 -1解析 因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x +a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.5.设偶函数f (x )满足f (x )=2x -4(x ≥0),则f (x -2)>0的解集为________.答案 {x |x <0或x >4}解析 由于函数f (x )是偶函数,因此有f (|x |)=f (x ),不等式f (x -2)>0,即f (|x -2|)>0,f (|x -2|)=2|x -2|-4>0, |x -2|>2,即x -2<-2或x -2>2,由此解得x <0或x >4.∴f (x -2)>0的解集为{x |x <0或x >4}.6.使log 2(-x )<x +1成立的x 的取值范围是________.答案 (-1,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).7.函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,cos πx ,x <0的图象上关于y 轴对称的点共有________对. 答案 3解析 因为y =cos πx 是偶函数,图象关于y 轴对称.所以,本题可转化成求函数y =log 3x 与y =cos πx 图象的交点个数的问题.作函数图象如图,可知它们有三个交点,即函数f (x )图象上关于y 轴对称的点有3对.8.(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________. 答案 ⎣⎡⎦⎤12,2解析 由题意知a >0,又log 12a =log 2a -1=-log 2a . ∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ). ∵f (log 2a )+f (log 12a )≤2f (1), ∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1).又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,-1≤log 2a ≤1,∴a ∈⎣⎡⎦⎤12,2.9.已知函数f (x )=⎩⎪⎨⎪⎧ 13e x (x ≥2),f (x +1)(x <2),则f (ln 3)=________. 答案 e解析 f (ln 3)=f (ln 3+1)=13eln 3+1=e ,故填e. 10.已知函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0恒成立,则实数a 的取值范围为________.答案 {a |a ≤2}解析 f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥a ,-x (x -a ),x <a ,由(x 1-x 2)[f (x 1)-f (x 2)]>0知,函数y =f (x )在[2,+∞)单调递增,当a ≤0时,满足题意,当a >0时,只需a ≤2,即0<a ≤2,综上所述,实数a 的取值范围为a ≤2.11.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )的周期为2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12.又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b 2+212+1=b +43, 所以-12a +1=b +43. 整理,得a =-23(b +1).① 又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a .② 将②代入①,得a =2,b =-4.所以a +3b =2+3×(-4)=-10.12.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.则判断f (4.5),f (6.5),f (7)的大小关系为________.答案 f (4.5)<f (7)<f (6.5)解析 由已知得f (x )是以4为周期且关于直线x =2对称的函数.所以f (4.5)=f (4+12)=f (12), f (7)=f (4+3)=f (3),f (6.5)=f (4+52)=f (52). 又f (x )在[0,2]上为增函数.所以作出其在[0,4]上的图象知f (4.5)<f (7)<f (6.5).13.设函数f (x )=1+(-1)x 2(x ∈Z ),给出以下三个结论: ①f (x )为偶函数;②f (x )为周期函数;③f (x +1)+f (x )=1,其中正确结论的序号是________. 答案 ①②③解析 对于x ∈Z ,f (x )的图象为离散的点,关于y 轴对称,①正确;f (x )为周期函数,T =2,②正确;f (x +1)+f (x )=1+(-1)x +12+1+(-1)x 2 =1+(-1)x +1+(-1)x 2=1,③正确. 14.能够把圆O :x 2+y 2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数是圆O 的“和谐函数”的是________.①f (x )=e x +e -x ;②f (x )=ln 5-x 5+x; ③f (x )=tan x 2;④f (x )=4x 3+x . 答案 ②③④解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.①中,f (0)=e 0+e -0=2,所以f (x )=e x +e -x 的图象不过原点,故f (x )=e x +e -x 不是“和谐函数”;②中f (0)=ln 5-05+0=ln 1=0,且f (-x )=ln 5+x 5-x =-ln 5-x 5+x=-f (x ),所以f (x )为奇函数,所以f (x )=ln 5-x 5+x为“和谐函数”;③中,f (0)=tan 0=0,且f (-x )=tan -x 2=-tan x 2=-f (x ),f (x )为奇函数,故f (x )=tan x 2为“和谐函数”;④中,f (0)=0,且f (x )为奇函数,故f (x )=4x 3+x 为“和谐函数”,所以,②③④中的函数都是“和谐函数”.。

高考数学真题:双曲线含答案

高考数学真题:双曲线含答案

专题九 解析几何第二十七讲 双曲线2019年1.(2019全国III 理10)双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A B C . D .2.(2019江苏7)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .3.(2019全国I 理16)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.4.(2019年全国II 理11)设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为ABC .2D 5.(2019浙江2)渐近线方程为x ±y =0的双曲线的离心率是A B .1CD .26.(2019天津理5)已知抛物线24y x =的焦点为F ,准线为l ,若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为C.22010-2018年一、选择题1.(2018浙江)双曲线2213x y -=的焦点坐标是A .(,B .(2,0)-,(2,0)C .(0,,D .(0,2)-,(0,2)2.(2018全国卷Ⅰ)已知双曲线C :2213-=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若∆OMN 为直角三角形,则||MN =A .32B .3C .D .43.(2018全国卷Ⅱ)双曲线22221(0,0)-=>>x y a b a bA .=yB .=yC .2=±y x D .2=±y x 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为AB .2CD5.(2018天津)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d , 且126d d +=,则双曲线的方程为A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -=6.(2017新课标Ⅱ)若双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线被圆22(2)4x y -+=所截得的弦长为2,则C 的离心率为A .2BCD .37.(2017新课标Ⅲ)已知双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -=8.(2017天津)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F .若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -= 9.(2016天津)已知双曲线222=1(0)4x y b b->,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为A .22443=1y x -B .22344=1y x -C .2224=1x y b -D .2224=11x y - 10.(2016年全国I)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是A .(–1,3)B .(–1,3)C .(0,3)D .(0,3)11.(2016全国II)已知1F ,2F 是双曲线E :22221x y a b-=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为A B .32C D .2 12.(2015四川)过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则AB =A B . C .6 D .13.(2015福建)若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于A .11B .9C .5D .314.(2015湖北)将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 15.(2015安徽)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是A .2214y x -= B .2214x y -= C .2214y x -= D .2214x y -= 16.(2015新课标1)已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是A .(B .(C .(,33-D .(33- 17.(2015重庆)设双曲线22221x y a b-=(0,0a b >>)的右焦点为F ,右顶点为A ,过F作AF 的垂线与双曲线交于,B C 两点,过,B C 分别作,AC AB 的垂线,两垂线交于点D .若D 到直线BC 的距离小于a 则该双曲线的渐近线斜率的取值范围是A .(1,0)(0,1)-∪B .(,1)(1,)-∞-+∞∪C .∪D .(,1))-∞-∞∪18.(2014新课标1)已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C的一条渐近线的距离为A B .3 C D .3m19.(2014广东)若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A .焦距相等 B .实半轴长相等 C .虚半轴长相等 D .离心率相等20.(2014天津)已知双曲线22221x y a b 0,0a b 的一条渐近线平行于直线l :210y x ,双曲线的一个焦点在直线l 上,则双曲线的方程为 A .221520x y B .221205x yC .2233125100x y D .2233110025x y21.(2014重庆)设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为 A .34 B .35 C .49D .322.(2013新课标1)已知双曲线C :22221x y a b-=(0,0a b >>C的渐近线方程为A .14y x =± B .13y x =± C .12y x =± D .y x =± 23.(2013湖北)已知04πθ<<,则双曲线1C :22221cos sin x y θθ-=与2C :22sin y θ2221sin tan y θθ-=的 A .实轴长相等 B .虚轴长相等 C .焦距相等 D . 离心率相等 24.(2013重庆)设双曲线C 的中心为点O ,若有且只有一对相较于点O 、所成的角为060的直线11A B 和22A B ,使1122A B A B =,其中1A 、1B 和2A 、2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是A .(2]3 B .[,2)3 C .()3+∞ D .[)3+∞ 25.(2012福建)已知双曲线22215x y a -=的右焦点为(3,0),则该双曲线的离心率等于A .14B .4 C .32D .4326.(2012湖南)已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为A .220x -25y =1B .25x -220y =1C .280x -220y =1 D .220x -280y =1 27.(2011安徽)双曲线x y 222-=8的实轴长是A .2B .C .4D .28.(2011山东)已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均和圆22:650C x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -= 29.(2011湖南)设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为 A .4 B .3 C .2 D .130.(2011天津)已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(2,1)--,则双曲线的焦距为A .B .C .D .31.(2010新课标)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为A .22136x y -= B .22145x y -= C .22163x y -= D .22154x y -= 32.(2010新课标)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2)-,则它的离心率为A B C .2 D .233.(2010福建)若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为A .2B .3C .6D .8 二、填空题34.(2018上海)双曲线2214x y -=的渐近线方程为 . 35.(2018江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为2c ,则其离心率的值是 . 36.(2017江苏)在平面直角坐标系xOy 中 ,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是 .37.(2017新课标Ⅰ)已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若MAN ∠=60°,则C 的离心率为________.38.(2017山东)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>,的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若||||4||AF BF OF +=,则该双曲线的渐近线方程为 .39.(2017北京)若双曲线221y x m-=m =_________.40.(2016年北京)双曲线22221(0,0)x y a b a b-=>>的渐近线为正方形OABC 的边,OA OC所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =______.41.(2016山东)已知双曲线E :22221x y a b-=(0,0)a b >>,若矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是 .42.(2015北京)已知双曲线()22210x y a a-=>0y +=,则a = .43.(2015江苏)在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点.若点P 到直线01=+-y x 的距离大于c 恒成立,则是实数c 的最大值为 .44.(2015山东)平面直角坐标系xOy 中,双曲线1C :22221x y a b-=(0,0)a b >>的渐近线与抛物线2C :22x py =(0p >)交于,,O A B ,若△OAB 的垂心为2C 的焦点,则1C 的离心率为_______.45.(2014山东)已知双曲线22221(0,0)x y a b a b-=>>的焦距为2c ,右顶点为A ,抛物线22(0)x py p =>的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且||FA c =,则双曲线的渐近线方程为 .46.(2014浙江)设直线30(0)x y m m -+=≠与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A ,B ,若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是____.47.(2014北京)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.48.(2013陕西)双曲线221169x y -=的离心率为 .49.(2014湖南)设F 1,F 2是双曲线C :22221(0,0)x y a b a b-=>>的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为_________.50.(2013辽宁)已知F 为双曲线22:1916x y C -=的左焦点,,P Q 为C 上的点,若PQ 的长等于虚轴长的2倍,点(5,0)A 在线段PQ ,则PQF ∆的周长为 .51.(2012辽宁)已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为 .52.(2012天津)已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a = b = .53.(2012江苏)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为 .54.(2011山东)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .55.(2011北京)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .三、解答题56.(2014江西)如图,已知双曲线C :2221x y a-=(0a >)的右焦点F ,点B A ,分别在C的两条渐近线上,x AF ⊥轴,BF OB AB ,⊥∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点)0)((00,0≠y y x P 的直线1:020=-y y axx l 与直线AF 相交于点M ,与直线23=x 相交于点N ,证明:当点P 在C 上移动时,NFMF 恒为定值,并求此定值.57.(2011广东)设圆C 与两圆2222(5)4,(5)4x y x y ++=+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程; (2)已知点M 3545(,5,0)55F ,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.专题九 解析几何第二十七讲 双曲线答案部分2019年1. 解析 双曲线22:142x y C -=的右焦点为6,0)F ,渐近线方程为:22y x =±,不妨设点P 在第一象限,可得2tan POF ∠=63P ,所以PFO △的面积为: 133262=.故选A .2. 解析 因为双曲线2221(0)y x b b-=>经过点(3,4),所以221631b-=,解得22b =,即2b =. 又1a =,所以该双曲线的渐近线方程是2y x =±. 3.解析 如图所示,因为1F A AB =,所以A 为1F B 的中点. 又O 为12F F 的中点,所以212AOBF ,212AO BF =. 因为120F B F B ⋅=,所以1290F BF ∠=︒, 且O 为12F F 的中点,所以12212OB F F OF c ===. 由212AOBF 得2121BOF AOF BF F ∠=∠=∠,所以2OB BF =, 因此2OPF △为等边三角形,260BOF ∠=︒,即渐近线的斜率为3,也即3ba=, 所以2212b e a=+=.4.A 解析:解法一:由题意,把2c x =代入222x y a +=,得2224c PQ a =-,再由PQ OF =,得2224ca c -=,即222a c =,所以222c a=,解得2c e a ==.故选A .解法二:如图所示,由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,所以,22c c P ⎛⎫± ⎪⎝⎭,代入222x y a +=得222a c =, 所以222c a=,解得2c e a ==.故选A .解法三:由PQ OF =可知PQ 为以OF 为直径圆的另一条直径,则1222OP a OF ===,2c e a ==故选A . 5.解析 根据渐进线方程为0x y ±=的双曲线,可得a b =,所以2c a =,则该双曲线的离心率为2ce a==C . 6.解析 因为抛物线24y x =的焦点为F ,准线为l ,所以()1,0F ,准线l 的方程为1x =-.因为与双曲线()222210,0x y a b a b=>>的两条渐近线分别交于点A 和点B ,且4AB OF =(为原点),所以2b AB a =,1OF =,所以24b a=,即2b a =, 所以225c a b a +=,所以双曲线的离心率为5ca==.故选D .2010-2018年1.B 【解析】由题可知双曲线的焦点在x 轴上,因为222314c a b =+=+=,所以2c =,故焦点坐标为(2,0)-,(2,0).故选B .2.B 【解析】因为双曲线2213-=x y 的渐近线方程为33=±y x ,所以60∠=MON .不妨设过点F 的直线与直线3=y 交于点M ,由∆OMN 为直角三角形,不妨设90∠=OMN ,则60∠=MFO ,又直线MN 过点(2,0)F ,所以直线MN 的方程为3(2)=-y x ,由2)⎧=-⎪⎨=⎪⎩y x y x,得32⎧=⎪⎪⎨⎪=⎪⎩x y3(,22M ,所以||==OM所以|||3==MN OM .故选B . 3.A 【解析】解法一由题意知,==ce a,所以=c,所以=b ,所以=b a=±=by x a,故选A .解法二由===c e a,得=ba,所以该双曲线的渐近线方程为=±=by x a.故选A . 4.C 【解析】不妨设一条渐近线的方程为by x a=, 则2F 到by x a =的距离d b ==, 在2Rt F PO ∆中,2||F O c =,所以||PO a =,所以1||PF =,又1||F O c =,所以在1F PO ∆与2Rt F PO ∆中,根据余弦定理得22212)cos cos 2a c aPOF POF ac c+-∠==-∠=-,即2223)0a c +-=,得223a c =.所以ce a==.故选C . 5.C 【解析】通解 因为直线AB 经过双曲线的右焦点,所以不妨取2(,)b A c a,2(,)b B c a -,取双曲线的一条渐近线为直线0bx ay -=,由点到直线的距离公式可得221bc b d c -==,222bc b d c +==, 因为126d d +=,所以226bc b bc b c c-++=,所以26b =,得3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 优解 由126d d +=,得双曲线的右焦点到渐近线的距离为3,所以3b =.因为双曲线22221(0,0)x y a b a b -=>>的离心率为2,所以2ca=,所以2224a b a+=,所以2294a a +=,解得23a =, 所以双曲线的方程为22139x y -=,故选C . 6.A 【解析】双曲线C 的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线的距离为2bd c==,圆心(2,0)到弦的距离也为d ==所以2b c =222c a b =+,所以得2c a =,所以离心率2ce a==,选A . 7.B【解析】由题意可得:b a =,3c =,又222a b c +=,解得24a =,25b =, 则C 的方程为2145x y 2-=.选B . 8.B 【解析】设(,0)F c -,双曲线的渐近线方程为b y x a =±,由44PF k c c-==-,由题意有4bc a=,又c a =222c a b =+,得b =,a =.选B .9.D 【解析】不妨设A 在第一象限,(,)A x y ,所以2242x y b y x ⎧+=⎪⎨=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩, 故四边形ABCD的面积为2324424bxy b b ===+,解得212b =.故所求的双曲线方程为2224=11x y -,选D . 10.A 【解析】由题意得22()(3)0m n m n +->,解得223m n m -<<,又由该双曲线两焦点间的距离为4,得M 2234m n m n ++-=,即21m =,所以13n -<<.11.A 【解析】设1(,0)F c -,将x c =-代入双曲线方程,得22221c y a b -=,化简得2by a=±,因为211sin 3MF F ∠=,所以222212112||tan ||222b MF b c a a MF F F F c ac ac -∠=====,12222c a e a c e -=-=210e --=,所以e =A . 12.D 【解析】由双曲线的标准方程2213y x -=得,右焦点(2,0)F ,两条渐近线方程为y =,直线AB :2x =,所以不妨设取(2,A,(2,B -,则||AB =,选D .13.B 【解析】由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B .14.D【解析】由题意1e ==2e ==∵()()b b m m b a a a m a a m +--=++,由于0m ,0a ,0b , 所以当a b 时,01b a <<,01b m a m +<<+,b b m a a m +<+,22()()b b m a a m+<+, 所以12e e <;当a b <时,1ba>,1b m a m +>+,而b b m a a m +>+,22()()b b m a a m +>+, 所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >.15.C 【解析】由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C . 16.A 【解析】由题意知22a,21b ,所以23c,不妨设1(F,2F ,所以100(,)=--MF x y ,200(3,)=-MF x y ,又∵00(,)M x y 在双曲线上,所以220012x y -=,即220022x y =+,222120003310MF MF x y y ⋅=-+=-<,所以033-<<y ,故选A . 17.A 【解析】 由题意22(,0),(,),(,)b b A a B c C c a a-,由双曲线的对称性知D 在x 轴上,设(,0)D x ,由BD AC ⊥得221b b a a c x a c-⋅=---,解得42()b c x a c a -=-,所以42()b c x a a c a c a -=<=+-,所以42222b c a b a <-=221b a⇒<01b a ⇒<<,而双曲线的渐近性斜率为ba±,所以双曲线的渐近线的斜率取值范围是(1,0)(0,1)-,选A .18.A 【解析】双曲线方程为22133x y m -=,焦点F 到一条渐近线的距离为b =A . 19.A 【解析】∵09k <<,∴90,250k k ->->,本题两条曲线都是双曲线,又25(9)(25)9k k +-=-+,∴两双曲线的焦距相等,选A .20.A 【解析】 依题意得22225ba cc a b ,所以25a,220b ,双曲线的方程为221520x y .21.B 【解析】由双曲线的定义得12||||||2PF PF a -=,又12||||3PF PF b +=,所以22221212(||||)(||||)94PF PF PF PF b a +--=-,即124||||9PF PF ab =,因此22949b a ab -=,即299()40b b aa --=,则(31b a +)(34ba-)=0,解得41(33b b a a ==-舍去),则双曲线的离心率53e ==.22.C 【解析】由题知,2c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 23.D 【解析】双曲线1C 的离心率是11cos e θ=,双曲线2C 的离心率是21cos e θ==,故选D . 24.A 【解析】设双曲线的焦点在x 轴上,则由作图易知双曲线的渐近线的离心率ba必须满足3b a <,所以21()33b a <≤,241()43b a<+≤,2<,又双曲线的离心率为c e a ==23e <≤. 25.C 【解析】∵双曲线22215x y a -=的右焦点为(3,0),∴2a +5=9,∴2a =4,∴a =2∵c =3,∴32c e a ==,故选C . 26.A 【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P(2,1)在C 的渐近线上,12ba∴=,即2a b =.又222c a b =+,a ∴==,∴C 的方程为220x -25y =1.27.C 【解析】x y 222-=8可变形为22148x y -=,则24a =,2a =,24a =.故选C . 28.A 【解析】圆22:(3)4C x y -+=,3,c =而32bc =,则22,5b a ==,应选A . 29.C 【解析】由双曲线方程可知渐近线方程为3y x a=±,故可知2a =.30.B 【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线为by x a=±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p-=-,即4p =, 又∵42p a +=,∴2a =,将(-2,-1)代入by x a=得1b =,∴c ==2c =31.B 【解析】由双曲线E 的中心为原点,(3,0)P 是E 的焦点可设双曲线的方程为2222221(9)x y a b a b -=+=,设1122(,),(,)A x y B x y ,即 2222112222221,1x y x y a b a b -=-= 则22121222121212015115312y y x x b b x x a y y a -+-+=⋅=⋅==-+-+,则22225,5,44b b a a ===,故E 的方程式为22145x y -=.应选B . 32.D 【解析】设双曲线的方程为22221(0,0)x y a b a b -=>>,其渐近线为x aby ±=,∵点(4,2)-在渐近线上,所以12b a =,由2e ==. 33.C 【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=, 解得22003(1)4x y =-, 因为00(1,)FP x y =+,00(,)OP x y =,所以2000(1)OP FP x x y ⋅=++=00(1)OP FP x x ⋅=++203(1)4x -=20034x x ++, 此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅取得最大值222364++=,选C . 34.12y x =±【解析】由题意2a =,1b =,∴12b y x x a =±=±.35.2【解析】不妨设双曲线的一条渐近线方程为b y x a =2b ==,所以222234b c a c =-=,得2c a =,所以双曲线的离心率2ce a==. 36.232a x c ==,渐近线的方程为3y x =±,设3(,22P,则3(,22Q -,1(2,0)F -,2(2,0)F , 所以四边形12F PF Q的面积为1211||||422F F PQ =⨯=. 37.3【解析】如图所示,AH MN ⊥,AM AN b ==,MAN ∠=60°, x所以30HAN ∠=,又MN 所在直线的方程为by x a=, (,0)A a 到MN的距离AH =,在Rt HAN ∆中,有cos HA HAN NA =,所以2==因为222c a b =+a c =,所以c e a ==.38.y x =【解析】设11(,)A x y ,22(,)B x y ,由抛物线的定义有1212||||22p p AF BF y y y y p +=+++=++,而||2p OF =, 所以1242py y p ++=⨯,即12y y p +=,由2222212x y a b x py⎧-=⎪⎨⎪=⎩得2222220a y pb y a b -+=,所以21222pb y y a +=, 所以222pb p a=,即a =,所以渐近性方程为2y x =±. 39.2【解析】221,a b m ==,所以1c a ==,解得2m =. 40.2【解析】不妨令B 为双曲线的右焦点,A 在第一象限,则双曲线图象如图∵OABC 为正方形,2=OA∴==c OB ,π4∠=AOB ∵直线OA 是渐近线,方程为=b y x a ,∴tan 1=∠=bAOB a又∵2228+==a b c ∴2=a41.2【解析】由题意||2BC c =,所以||3AB c =,于是点3(,)2cc 在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==,应填2. 42.3【解析】因为双曲线()22210x y a a -=>的一条渐近线为y =,所以1a=故3a =. 43.2(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以c 的最大值为直线10x y -+=与渐近线0x y -== 44.32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为b y x a =±,则2222(,)pb pb A a a ,2222(,)pb pb B a a -,22:2(0)C x py p =>的焦点(0,)2p F , 则22222AFpb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 45.y x =±【解析】抛物线的准线2p y =-,与双曲线的方程联立得2222(1)4p x a b =+,根据已知得2222(1)4p a c b+= ①,由||AF c =得2224p a c += ②,由①②得22a b =,即a b =,所以所求双曲线的渐近线方程为y x =±.46.2【解析】联立直线方程与双曲线渐近线方程by x a=±可解得交点为(,)33am bm A b a b a --,(,)33am bm B b a b a -++,而13AB k =,由||||PA PB =,可得AB 的中点3333(,)22am am bm bmb a b a b a b a -+-+-+与点)0,(m P 连线的斜率为-3,可得224b a =,所以e =47.221312x y -= 2y x =±【解析】设与2214y x -=具有相同渐近线的双曲线C 的方程为224y x k -=,将点()2,2代入C 的方程中,得3k =-.∴双曲线的方程为221312x y -=,渐近线方程为2y x =±.48.45【解析】。

2013年高考文科数学重庆卷(含详细答案)

2013年高考文科数学重庆卷(含详细答案)

数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2013年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题卷(文史类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B =ð ( )A .{1,3,4}B .{3,4}C .{3}D .{4} 2.命题“对任意x ∈R ,都有20x ≥”的否定为( )A .存在0x ∈R ,使得200x < B .对任意x ∈R ,都有20x < C .存在0x ∈R ,使得20x ≥ D .不存在x ∈R ,使得20x < 3.函数21log (2)y x =-的定义域是( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞ D .(2,4)(4,)+∞4.设P 是圆22(3)(1)4x y -++=上的动点,Q 是直线3x =-上的动点,则||PQ 的最小值为( )A .6B .4C .3D .25.执行如图所示的程序框图,则输出的k 的值是 ( )A .3B .4C .5D .66.如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )1 8 92 1 2 2 7 9 33A .0.2B .0.4C .0.5D .0.67.关于x 的不等式22280x ax a --<(0)a >的解集为12(,)x x ,且2115x x -=,则a =( )A .52B .72C .154 D .1528.某几何体的三视图如图所示,则该几何体的表面积为 ( )A .180B .200C .220D .2409.已知函数3()sin 4f x ax b x =++(,)a b ∈R ,2(lg(log 10))5f =,则(lg(lg 2))f =( ) A .5-B .1-C .3D .410.设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60的直线11A B 和22A B ,使1122||||A B A B =,其中1A ,1B 和2A ,2B 分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( )姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)A. B. C.)+∞ D.)+∞ 二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.设复数12i z =+(i 是虚数单位),则||z = . 12.若2,a ,b ,c ,9成等差数列,则c a -= .13.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为 . 14.在OA 为边,OB 为对角线的矩形中,(3,1)OA =-,(2,)OB k =-,则实数k = . 15.设0πα≤≤,不等式28(8sin )cos20x x αα-+≥对x ∈R 恒成立,则a 的取值范围为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分)设数列{}n a 满足:11a =,13n n a a +=,*n ∈N . (Ⅰ)求{}n a 的通项公式及前n 项和n S ;(Ⅱ)已知{}n b 是等差数列,n T 为其前n 项和,且12b a =,3123b a a a =++,求20T .17.(本小题满分13分,(Ⅰ)小问9分,(Ⅱ),(Ⅲ)小问各2分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄iy (单位:千元)的数据资料,算得10180i i x ==∑,10120i i y ==∑,101184i i i x y ==∑,1021720i i x ==∑. (Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+; (Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y bx a =+中,1221ni ii ni i x ynx yb x nx==-=-∑∑,a y bx =-,其中x ,y 为样本平均值.线性回归方程也可写为y bx a =+.18.(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问9分)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且222a b c =++. (Ⅰ)求A ;(Ⅱ)设a =,S 为△ABC 的面积,求3cos cos S B C +的最大值,并指出此时B 的值.19.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD,PA =,2BC CD ==,π3ACB ACD ∠=∠=. (Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)若侧棱PC 上的点F 满足7PF FC =,求三棱锥P BDF -的体积.20.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米,假设建造成本仅与表面积有关,侧面的建造成本为100 元/平方米,底面的建造成本为160 元/平方米,该蓄水池的总建造成本为12 000π 元(π为圆周率).(Ⅰ)将V 表示成r 的函数()V r ,并求该函数的定义域;(Ⅱ)讨论函数()V r 的单调性,并确定r 和h 为何值时该蓄水池的体积最大. 21.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =,过左焦点1F 作x 轴的垂线交椭圆于A ,A '两点,||4AA '=. (Ⅰ)求该椭圆的标准方程; 相交于不同的两点P ,(Ⅱ)取平行于y 轴的直线与椭圆椭圆上的其余点均在P ',过P ,P '作圆心为Q 的圆,使大值,并写出对应的圆Q 外.求PP Q '△的面积S 的最圆Q 的标准方程.2013年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)答案解析一、选择题1.【答案】D【解析】{1,2}A=∵,{2,3}B={1,2,3}A B=∴(){4}UA B=∴ð【提示】先求出两个集合的并集,再结合补集的概念求解.【考点】集合的基本运算2.【答案】A【解析】根据全称命题的否定是特称命题可得:命题“对任意x∈R,都有20x≥”的否定为“存在0x∈R,使得2x<”.【提示】根据全称命题“()x M p x∀∈,”的否定是特称命题“()x M p x∃∈⌝,”,可直接写出.【考点】全称与存在量词3.【答案】C【解析】要使原函数有意义,则2log(2)020xx-≠⎧⎨->⎩,解得23x<<,或3x>,所以原函数的定义域为(2,3)(3,)+∞.【提示】根据“让解析式有意义”的原则,对数的真数大于0,分母不等于0,建立不等式,解之即可. 【考点】函数的定义域4.【答案】B【解析】过圆心A作AQ⊥直线3x=-,与圆交于点P,此时||PQ最小,由圆的方程得到(3,1)A-,半径2r=,则||||624AQQ rP=-==-.【提示】根据题意画出相应的图形,过圆心A作AQ⊥直线3x=-,与圆交于点P,此时||PQ最小,由圆的方程找出圆心A坐标与半径r,求出AQ的长,由||AQ r-即可求出||PQ的最小值【考点】直线与圆的位置关系3 / 10数学试卷第7页(共20页)数学试卷第8页(共20页)1212A AB B,,,关于轴对称,如图所示:5 / 10数学试卷 第11页(共20页)数学试卷 第12页(共20页)【解析】画出矩形草图:由于(3,1)(2,OA OB k =-=-, 所以(1,AB OB OA k =-=,在矩形中,由0OA AB OA AB ⊥=得,所以2()(3,1)(2,)106OA OB OA OA OB OA k k -=-=---=+-7 / 10【提示】由题意可得OA AB ⊥,故有0OA AB =,即()0OA OB OA OA OB OA -=-==,解方程求得5π,π6⎤⎡⎤⎥⎢⎥⎦⎣⎦【解析】由题意,要使28x -18410nx y =-数学试卷 第15页(共20页)数学试卷 第16页(共20页)1sin sin 3sin 2sin a B a C A=cos 3(sin sin C B C =πA -sin BC CD BCD ∠1133BCD S PA ∆=⨯FC ,得三棱锥111383B C D S PA ∆=⨯1002π200rh=9 / 10数学试卷 第19页(共20页)数学试卷 第20页(共20页)22220002(4)2(2)4x x x -=--+。

2013年高考理科数学重庆卷(含答案解析)

2013年高考理科数学重庆卷(含答案解析)

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前2013年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回. 特别提醒:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U AB =ð( ) A .{1,3,4}B .{3,4}C .{3}D .{4} 2.命题“对任意x ∈R ,都有20x ≥”的否定为( )A .对任意x ∈R ,都有20x <B .不存在x ∈R ,使得20x <C .存在0x ∈R ,使得20x ≥ D .存在0x ∈R ,使得20x < 3(63)a -≤≤的最大值为 ( )A .9B .92C .3D4.(单位:分).7424已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5B .5,5C .5,8D .8,85.某几何体的三视图如图所示,则该几何体的体积为( )A .5603 B .5803C .200D .2406.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( )A .(,)a b 和(,)b c 内B .(,)a -∞和(,)a b 内C .(,)b c 和(,)c +∞内D .(,)a -∞和(,)c +∞内7.已知圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=,M ,N 分别是圆1C ,2C 上的动点,P 为x 轴上的动点,则||||PM PN +的最小值为( ) A .4 B 1 C .6-D 8.执行如图所示的程序框图,如果输出3s =,那么判断框内应填入的条件是( )A .6k ≤ B .7k ≤ C .8k ≤D .9k ≤ 9.4cos50tan 40-=( )AB C D .1姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)10.在平面上,12AB AB ⊥,12||||1OB OB ==,12AP AB AB =+.若1||2OP <,则||OA 的取值范围是( ) A.B.C .D .二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.已知复数5i12iz =+(i 是虚数单位),则||z = . 12.已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若1a ,2a ,5a 成等比数列,则8S = .13.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是 (用数字作答).考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 14.(几何证明选讲)如图所示,在ABC △中,90C ∠=,60A ∠=,20AB =,过C 作ABC △的外接圆的切线CD ,BD CD ⊥,BD 与外接圆交于点E ,则DE 的长为 . 15.(坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为cos 4ρθ=的直线与曲线23,,x t y t ⎧=⎨=⎩(t 为参数)相交于A ,B 两点,则||AB = .16.(不等式选讲)若关于实数x 的不等式|5||3|x x a -++<无解,则实数a 的取值范围是 . 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)设2()(5)6ln f x a x x =-+,其中a ∈R ,曲线()y f x =在点(1,(1))f 处的切线与y 轴相交于点(0,6). (Ⅰ)确定a 的值;(Ⅱ)求函数()f x 的单调区间与极值.18.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1其余情况无奖且每次摸奖最多只能获得一个奖级. (Ⅰ)求一次摸球恰好摸到1个红球的概率;(Ⅱ)求摸奖者在一次摸奖中获奖金额X 的分布列与期望()E X . 19.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,BC CD=2=,4AC =,π3ACB ACD ∠=∠=,F 为PC 的中点,AF PB ⊥.(Ⅰ)求PA 的长;(Ⅱ)求二面角B AF D --的正弦值.20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,且222a b c++=. (Ⅰ)求C ; (Ⅱ)设cos cos A B =2cos()cos()cos A B ααα++=求tan α的值.21.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =,过左焦点1F 作x 轴的垂线交椭圆于A ,A '两点,||4AA '=. (Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P ',过P ,P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)22.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)对正整数n ,记{1,2,,}n I n =⋅⋅⋅,,k }n n n P m I I =∈∈. (Ⅰ)求集合7P 中元素的个数;(Ⅱ)若n P 的子集A 中任意两个元素之和不是整数的平方,则称A 为“稀疏集”.求n 的最大值,使n P 能分成两个不相交的稀疏集的并.数学试卷 第7页(共18页) 数学试卷 第8页(共18页)2013年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)答案解析{1,2,3}AB =){4}A B =【提示】根据A 与B U ,找出不属于并集的元素,即可求出所求的集合.()())0()0c f b f b f <<,,所以该函数在【提示】由函数零点存在判定定理可知:在区间(,)a b ,(,)b c 内分别存在一个零点;又数学试卷 第9页(共18页) 数学试卷 第10页(共18页)log (k k ⨯⨯,又∵不满足判断框内的条件时才能输出D因为AB AB ⊥,所以可以分别以AB ,2AB 所在直线为x 轴,则(,AP AB AB a b =+=(,)P a b .||||1OB OB ==,得所以()x a -1||OP <,得所以24x <+||OA 的取值范围是【提示】建立坐标系,将向量条件用等式与不等式表示,利用向量模的计算公式,即可DE DB,可求得边角关系,利用直角BCD△的边角关系即可得出DE DB,即可得出【考点】与圆有关的比例线段3 3 311 3105 =3 3 322 3105 =143112 3105C==数学试卷第11页(共18页)数学试卷第12页(共18页)数学试卷 第13页(共18页) 数学试卷 第14页(共18页)【解析】(Ⅰ)如图,连接BD 交AC 于O ,因为BC CD =,故AC 垂直BD 以OB OC AP ,,的方向分别为π又(0,2,AF =,(3,3,PB =故0AF PB =,即因此,(3,3,)PA z =-所以||23PA =.(Ⅱ)由(Ⅰ)知(3,3,0)AD =-,(3,3,0)AB =,(0,2,3)AF =.的法向量为1(,n x y =的法向量为(,n x y =由10n AD =,10n AF =,得30y +=⎨⎪⎩,因此可取(3,3,n =-由20n AB =,20n AF =,得,因此可取(3,n =-从而法向量1n 2n 的夹角的余弦值为1221,8||||n n n n n n ==. AF D --的正弦值为从而得到(3,3,PA =.(Ⅱ)由(Ⅰ)的计算,得(3,3,0)AD =-,(3,3,0)AB =,(0,2,AF =直向量数量积为零的方法建立方程组,解出1(3,n =和2(3,3,2)n =-分别为的法向量,利用空间向量的夹角公式算出1n 2n 夹角的余弦,数学试卷 第15页(共18页) 数学试卷 第16页(共18页)因为PQ P Q '⊥,且所以101101(,)(,)0QP QP x x y x x y '=---=由椭圆方程及102x x =得2211181416x x ⎛⎫--= ⎪⎝⎭n A B P =⊇,即3B ∈.数学试卷 第17页(共18页) 数学试卷 第18页(共18页)1114=B I .14I ⎫∈⎬⎭中除整数外剩下的数组成集合13,,2⎫⎬⎭,可分解A ⎧=1314,,,33⎫⎬⎭14⎫⎬.123A A C ,123B B B =.是不相交的稀疏集,且14AB P =.的最大值为14.(注:对14P 的分拆方法不是唯一的)4=时,根据。

5.复数模的运算与几何意义

5.复数模的运算与几何意义

[决胜高考数学母题](第008号)复数模的运算与几何意义复数与坐标平面內的点具有一一对应关系,由此可定义复数的模:若复数z=a+bi,则z 的模|z|=22b a +,复数的模具有优美的运算性质和直观的几何意义.[母题结构]:(Ⅰ)(模的运算):|z 1z 2|=|z 1||z 2|;|z|2=|z 2|,|21z z |=||||21z z . (Ⅱ)(几何意义):复数的两层几何意义:复数z=a+bi ←→Z(a,b)←→OZ =(a,b).(Ⅲ)(模的意义)①|z-z o |⇔z 对应的点Z 与z o 对应的点Z o 的距离;②|z-z 1|=|z-z 2|⇔复数z 对应的点Z 在线段Z 1Z 2的垂直平分线上,其中Z 1、Z 2分别是复数z 1、z 2的对应点;③|z-z 0|=R ⇔复数z 对应的点Z 在以点Z 0为圆心,半径为R 的圆上,其中Z 0是复数z 0的对应点;④|z-z 1|+|z-z 2|=|z 1-z 2|⇔复数z 对应的点P 在线段Z 1Z 2上,其中Z 1、Z 2分别是复数z 1、z 2的对应点.[母题解析]:略.1.模的运算子题类型Ⅰ:(2010年课标卷高考试题)已知复数z=2)31(3i i-+,则|z|=( ) (A)41 (B)21 (C)1 (D)2 [解析]:由z=2)31(3i i-+⇒|z|=2|31||3|i i -+=222=21.故选(B). [点评]:利用复数模的运算性质求复数的模,无需把所给复数化成a+bi 的形式,可直接求解,减少计算量,是解决该类高考试题的最佳途径.[同类试题]:1.(2013年课标Ⅱ卷高考试题)|i+12|=( ) (A)22 (B)2 (C)2 (D)12.(2013年山东高考试题)复数z=ii 2)2(-(i 为虚数单位),则|z|=( ) (A)25 (B)41 (C)5 (D)5 2.几何意义子题类型Ⅱ:(2003年上海春招试题)复数z=ii m 212+-(m ∈R,i 为虚数单位)在复平面上对应的点不可能位于( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限[解析]:由z=i i m 212+-=51(m-2i)(1-2i)=51(m-4)-52(m+1)i;如果在第一象限,则⎩⎨⎧<+>-0104m m ,而该不等式组无解.故选(A). [点评]:复数的几何意义:复数z=a+bi ←→点Z(a,b);本题把复数的几何意义与解不等式进行有机结合,不仅体现了知识的交汇,而且呈现了逆向思维.[同类试题]:3.(2007年复旦大学保送生考试试题)复数z=ii a 212+-(a ∈R,i 为虚数单位)在复平面内对应的点不可能位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限4.(1989年全国高中数学联赛试题)若A,B 是锐角△ABC 的两个内角,则复数z=(cosB-sinA)+i(sinB-cosA)在复平面内所对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3.模的意义子题类型Ⅲ:(2002年北京高考试题)己知z 1,z 2∈C,且|z 1|=1,若z 1+z 2=2i,则|z 1-z 2|的最大值是( )(A)6 (B)5 (C)4 (D)3[解析]:令z 1、z 2对应的点分别为P 、Q,A(0,2),由|z 1|=1⇒点P 在圆x 2+y 2=1上;又由z 1+z 2=2i ⇒点Q 满足:OP +OQ =OA ,且|z 1-z 2|=|PQ|=|OP -OQ |=|2OP -(OP +OQ )|=|2OP -OA |≤2|OP |+|OA |=4,当且仅当z 1=-i,z 2=3i 时,等号成立.故选(C).[点评]:复数的几何意义有两个层次:复数z=a+bi ←→点Z(a,b)←→向量OZ =(a,b);复数模的意义:|z-z o |⇔z 对应的点Z 与z o 对应的点Z o 的距离;由此作图,根据几何直观是解决模的最值问题的最佳选择.[同类试题]:5.(1990年广东高考试题)如果z 1,z 2是复数,且|z 1|=3,|z 2|=4,|z 1-z 2|=5,那么|z 1+z 2|的值是 .6.(2003年安徽春招试题)若复数z 满足|z-1|=|z-2|=|z-i|,则z= .4.子题系列:7.(2013年广东高考试题)若i(x+yi)=3+4i,x,y ∈R,则复数x+yi 的模是( )(A)2 (B)3 (C)4 (D)58.(2010年江苏高考试题)设复数z 满足z(2-3i)=6+4i(i 为虚数单位),则z 的模为 .9.(2013年辽宁高考试题)复数z=11-i 的模为( ) (A)21 (B)22 (C)2 (D)2 10.(2013年课标Ⅱ卷高考试题)|i +12|=( ) (A)22 (B)2 (C)2 (D)111.(2013年山东高考试题)复数z=ii 2)2(-(i 为虚数单位),则|z|=( ) (A)25 (B)41 (C)5 (D)512.(2013年重庆高考试题)已知复数z=ii 215+(i 为虚数单位),则|z|= . 13.(2017年江苏高考试题)已知z=(1+i)(1+2i),其中i 是虚数单位,则z 的模是 .14.(2017年高考全国Ⅲ理科试题)设复数z 满足(1+i)z=2i,则|z|=( ) (A)21 (B)22 (C)2 (D)2 15.(2017年山东高考试题)已知a ∈R,i 是虚数单位.若z=a+3i,z z =4,则a=( )(A)1或-1 (B)7或-7 (C)-3 (D)316.(2017年高考全国Ⅲ文科试题)在复平面内表示复数z=i(-2+i)的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限17.(2011年山东高考试题)复数z=ii +-22(i 为虚数单位)在复平面内对应的点所在象限为( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限18.(2005年辽宁高考试题)复数z=ii ++-11-1在复平面内,z 所对应的点在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.(2005年浙江高考试题)在复平面内,复数ii +1+(1+3i)2对应的点位于( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限20.(2004年北京春招试题)当32<m<1时,复数z=(3m-2)+(m-1)i 在复平面内所对应的点位于( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限21.(2017年北京高考试题)若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a 的取值范围是( )(A)(-∞,1) (B)(-∞,-1) (C)(1,+∞) (D)(-1,+∞)22.(2008年江西高考试题)在复平面内,复数z=sin2+icos2对应的点位于( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限23.(2003年北京高考试题)若z ∈C,且|z+2-2i|=1,则|z-2-2i|的最小值是( )(A)2 (B)3 (C)4 (D)524.(2004年北京高考试题)满足条件|z-i|=|3+4i|的复数z 在复平面上对应点的轨迹是( )(A)一条直线 (B)两条直线 (C)圆 (D)椭圆25.(1994年全国高考试题)如果复数z 满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是( ) (A)1 (B)2 (C)2 (D)526.(1999年全国高中数学联赛河北初赛试题)若复数z 满足|z+1+i|+|z-1-i|=22,记|z+i|的最大值和最小值分别为M,m,则mM = . 27.(1989年广东高考试题)满足条件|z|=1及|z+21|=|z-23|的复数z 的集合是 . 5.子题详解:1.解:|i +12|=|1|2i +=22=2.故选(C). 2.解:|z|=|i i 2)2(-|=|||2|2i i -=5.故选(C). 3.解:z=i i a 212+-=51(a-4)-52(a+1)i.故选(A). 4.解:由A+B>900⇒cosB-sinA<0,sinB-cosA>0.故选(B).5.解:在复平面内,令z 1,z 2对应的点分别为A,B,则|OA|=3,|OB|=4,|AB|=5⇒△OAB 是直角三角形⇒|z 1+z 2|=|AB|=5.6.解:在复平面内,令点A(1,0),B(2,0),C(0,1),由|z-1|=|z-2|知,复数z 对应的点P 在线段AB 的垂直平分线x=23上,又由|z-1|=|z-i|知,复数z 对应的点P 在线段AC 的垂直平分线y=x ⇒y=x=23⇒P(23,23)⇒z=23+23i. 7.解:由i(x+yi)=3+4i ⇒|i||x+yi|=|3+4i|⇒|x+yi|=5.故选(D).8.解:由z(2-3i)=6+4i ⇒|z|=2.9.解:|z|=|11-i |=|1|1-i =22.故选(B).10.解:|i +12|=|1|2i +=22=2.故选(C). 11.解:|z|=|i i 2)2(-|=|||2|2i i -=5.故选(C). 12.解:|z|=|ii 215+|=5. 13.解:由z=(1+i)(1+2i)⇒|z|=|1+i||1+2i|=2⋅5=10.14.解:由(1+i)z=2i ⇒|1+i||z|=|2i|⇒|z|=2.故选(C).15.解:由z z =4⇒|z|=2⇒a=1或-1.故选(A).16.解:由z=i(-2+i)=-1-2i.故选(C).17.解:由z=i i +-22=51(3-4i).故选(D). 18.解:由z=ii ++-11-1=i-1.故选(B). 19.解:由i i +1+(1+3i)2=2)341(3i ++-.故选(B). 20.解:由3m-2>0,m-1<0.故选(D).21.解:由(1-i)(a+i)=(a+1)+(1-a)i 在第二象限⇒a<-1.故选(B).22.解:由sin2>0,cos2<0.故选(D).23.解:在复平面内,令z,-2+2i,2+2i 对应的点分别为P,A,B,则|PA|=|z+2-2i|=1,|z-2-2i|=|PB|≥|AB|-1=3.故选(B).24.解:令z 1=i 则z 1对应的点Z 1(0,1),设z 对应的点为P,则|z-i|=|3+4i|⇔|PZ 1|=5⇔点P 的轨迹是圆.故选(C).25.解:在复平面上,设A(0,-1),B(0,1),M(-1,-1),P:z,则|AB|=2,由|z+i|+|z-i|=2⇒点P 在线段AB 上⇒|x+i+1|=|PM|≥|AM|=1.故选(A).26.解:在复平面上,设A(-1,-1),B(1,1),C(0,-1),则|AB|=22⇒|z+1+i|+|z-1-i|=22点P 在线段AB 上⇒M=|BC|= 5,m=22. 27.解:在复平面内,令点A(-21,0),B(23,0),由|z+21|=|z-23|⇒复数z 对应的点P 在线段AB 的垂直平分线x=21上;又由|z|=1⇒点P 在圆x 2+y 2=1上⇒y=±23⇒z=21±23i ⇒复数z 的集合是{21±23i}.。

重庆一中高2013级12-13学年(下)高考模拟——数学文

重庆一中高2013级12-13学年(下)高考模拟——数学文

秘密★启用前2013级重庆一中高考模拟试题数 学 试 题 卷(文科) 2013.5一、选择题:(每小题5分,共50分)1.已知直线l :1=-y x ,则直线l 的倾斜角为( )A .6π B .4π C .43π D .32π2.集合*{|}n i n N ∈(其中i 是虚数单位)中元素的个数是( )A . 1B . 2C . 4D . 无穷多个3.已知向量a (3,2)=-,)3,(λ=b ,若a 与b 垂直,则实数λ的值为( )B. 4.已知命题:p 所有指数函数都是单调函数,则p ⌝为( )A. 所有指数函数都不是单调函数B. 所有单调函数都不是指数函数C. 存在一个指数函数,它不是单调函数D. 存在一个单调函数,它不是指数函数 5.在区间[0,π]上随机取一个数x,则事件 “sin cos x x ≥”发生的概率为( )6.若两直线1l :043=++a y x 与2l :043=++b y x 都与圆014222=++++y x y x 相切,则=-||b a ( )A .5B .52C .10D .207. 已知某几何体的三视图如下图所示,其中正视图、侧视图均是由直角三角形与半圆构成,俯视图由圆与内接三角形构成,图中所标数据均为1,则此几何体的体积为( )A.2132+π B.6134+π C. 6162+π D.2132+π8.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织 尺布.(不作近似计算)( ) A.12 B. 815 C. 1631 D. 16299.若将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”,下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行; ③平行于同一直线的两直线平行;④平行于同一平面的两直线平行 其中是“可换命题”的是( )A.①②B. ①③C. ③④D.①④ 10定义:函数()f x 的定义域为D ,如果对于任意的1x D ∈,存在唯一的2x D ∈,使得c x f x f =)()(21 (其中c 为常数)成立,则称函数()f x 在D 上的几何均值为c ,则下列函数在其定义域上的“几何均值”可以为2的是( )A. x y e = (e 为自然对数的底)B. 21y x =+C.sin 3y x =+ D. |ln |y x =二、填空题:(每小题5分,共25分)13. 执行右边的程序框图,若0.8p =,则输出的n= .______________.15. 已知ABC ∆的顶点对应顶角为A,B,C,其中B A >,若顶点A 、B 分别是离心率为e 的圆锥曲线221x y m n +=的焦点,顶点C 在该曲线上,一同学已正确地推得,当0m n >>时有BA Ce sin sin sin +=,类似地,当0,0m n ><时,有 .三、解答题(共75分)16. (本题满分13分,第(Ⅰ)问6分,第(Ⅱ)问7分)) 数列{}n a 中,cn a a a n n +==+11,2(c 是常数, ,3,2,1=n ) 且321,,a a a 成公比不为1的等比数列. (Ⅰ) 求c 的值;(Ⅱ) 求数列{}n a 的通项公式.17.(本小题满分13分,第(Ⅰ)问6分,第(Ⅱ)问7分) 设△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,CA Bc b c a sin sin sin +=-- (Ⅰ)求A 的值;(Ⅱ)求函数32cos 322cos 2sin 2)(2-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=A x A x A x x f 的单调递增区间.18. (本小题满分13分, 第(Ⅰ)问8分,第(Ⅱ)问5分) 从某学校高三年级共800名男生中随机抽取50名测量身高,据测量被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195),右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(Ⅰ)估计这所学校高三年级全体男生身高180cm 以上(含180cm )的人数;并求第七组人数;(Ⅱ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,x y ,求满足:5x y -≤的事件概率.19.(本小题满分12分, 第(Ⅰ)问6分,第(Ⅱ)问6分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点.已知PD =2,CD =4,AD =3.(Ⅰ)若∠ADE =π6,求证:CE ⊥平面PDE ;(Ⅱ)当点A 到DE 的距离为2217时,求三棱锥A -PDE 的全面积.20.(本题满分12分,第(Ⅰ)问4分,第(Ⅱ)问4分,第(Ⅲ)问4分) 已知函数()()321,ln f x x x g x x =-+=.(Ⅰ)求)(x f 的单调区间和极值点;(Ⅱ)求函数)(x f 和)(x g 分别在点(1,0)处的切线方程;(Ⅲ)是否存在实常数k 和m ,使得0x >时,()m kx x f +≥且()?m kx x g +≤若存在,求出k 和m 的值;若不存在,说明理由.21.(本小题满分12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为23,半焦距为c (c >0),且a -c =1.经过椭圆的左焦点F ,斜率为k 1(k 1≠0)的直线与椭圆交于A ,B 两点,O 为坐标原点.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)当k 1=1时,求S △AOB 的值;(Ⅲ)设R (1,0),延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为k 2,求证:k 1k 2为定值.命题人:杨春权 审题人:朱 斌2013级重庆一中高考模拟试题数学答案(文科) 2013.5一、选择题:1-5 BCACD 6-10 DCDBA三、解答题:16. 解: (Ⅰ)由题c a a +==2,221,c c c a 32223+=++=,因为321,,a a a 成等比数列,所以)(0,202)32(2)2(223122舍=-=⇒=-⇒+=+⇒=c c c c c c a a a所以2c =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013重庆高考数学
2013年重庆高考数学试题
2013年重庆高考数学试题备受关注,考生们都希望能够取得好成绩。

以下是2013年重庆高考数学试题的详细内容。

一、选择题(共10小题,每小题5分,共50分)
1. 已知函数 f(x) = x^2 - 3x + 2,那么 f(2)的值为多少?
A. 1
B. 2
C. 3
D. 4
2. 函数 f(x) 在区间 [a, b] 上单调递增,那么下面哪个不等式成立?
A. f(a) < f(b)
B. f(a) > f(b)
C. f(a) = f(b)
D.
a < b
3. 若二次函数 y = ax^2 + bx + c 的图象与 x 轴交于两个不等点,那么必有下面哪个不等式成立?
A. b^2 > 4ac
B. b^2 < 4ac
C. b^2 = 4ac
D. b^2 ≤ 4ac
4. 在平行四边形 ABCD 中,AE 垂直于 AD,AD = 4,AE = 3. 则平行四边形 ABCD 的面积为多少?
A. 9
B. 12
C. 16
D. 36
5. 设函数 f(x) = ln(x^2+1),则 f'(1)的值为多少?
A. 0
B. 1
C. 2
D. -1
6. 在△ABC 中,已知 AB = 3,AC = 4,∠BAC = 90°。

则△ABC 的面积为多少?
A. 6
B. 8
C. 12
D. 24
7. 函数 y = 2^x 定义在 (-∞,+∞) 上,那么函数 y =
2^(x+1) 的图像相对于 y = 2^x 的图像向左平移了多少个单位?
A. 0
B. 1
C. -1
D. 2
8. 已知 y = log2(x+1),则方程 y = 1/2 的解为多少?
A. (0, 3)
B. (1, 3)
C. (-1, 2)
D. (-2, 1)
9. 设直线 l1:x-2y+5=0,l2:2x-y+1=0。

过点 P(2, -1)
的直线与直线 l1 和 l2 的交点分别为 A、B 和 C,那么
△ABC 的面积为多少?
A. 6
B. 8
C. 10
D. 12
10. 定义函数 f(x) = x^3 - 2x^2 - 3x + 2,那么 f(x) = 0 的实根个数为多少?
A. 1
B. 2
C. 3
D. 4
二、填空题(共6小题,每小题5分,共30分)
1. 若函数 f(x) = a(x-1)^2 + 2 在点 (1, 3) 处取得极小值,则 a 的值为______。

2. 若函数 f(x) = x^2 + bx + c 在点 (-2, 1) 处取得极小值,则 b 的值为______。

3. 函数 y = ax^2 + bx + c 的图象与 x 轴交于两个不等点,则 a^2 + b^2 - 2ac 的值为______。

4. 已知直线 l1:y = 2x + 1,直线 l2 与直线 l1 垂直且过点 (1, 2),则直线 l2 的方程为______。

5. 函数 f(x) = x^3 + bx^2 + cx + d 除以 (x+1) 余数为 2,除以 (x-2) 余数为 -1,则 b - c + d 的值为______。

6. 在△ABC 中,已知∠BAC = 60°,AB = 3,AC = 5,则
BC 的长度为______。

三、解答题(共4小题,共70分)
1. 已知公式 Sn=n(a+l)/2,其中 Sn 为等差数列的前 n 项和,
a 为首项,l 为末项。

如果一个等差数列的首项为 2,公差为4,前 20 项和为 640,求此等差数列的末项。

2. 已知函数 f(x) = 2x^3 + ax^2 + bx + c,其中 a、
b、c 均为常数。

如果函数 f(x) 除以 (x-1) 的余数为 0,除以 (x+2) 的余数为 1,且函数 f(x) 在点 (1, 1) 处取得极值,求函数 f(x) 的表达式。

3. 在平面直角坐标系中,已知点 A(2, 0)、B(4, 0)、
P(6, a)。

过点 P 作直线 l1 平行于 x 轴交直线 AB 于点 Q,过点 P 作直线 l2 垂直于 x 轴交直线 AB 于点 R。

如果点 Q 的坐标为 (k, 0),求实数 a 和 k 的值。

4. 设函数 f(x) = x^3 + bx^2 + cx + d,其中 b、c、
d 均为常数。

已知函数 f(x) 除以 (x+1) 的余数为 0,除以(x-2) 的余数为 -1,在点 (2, 1) 处取得极小值。

求函数
f(x) 的表达式。

以上就是2013年重庆高考数学试题的内容。

希望考生们
能够充分准备,取得优异的成绩。

祝愿大家考试成功!。

相关文档
最新文档