减少焊接接应力和焊接变形的措施
焊接过程中应力与变形控制
焊接过程中应力与变形控制摘要焊接应力与变形是直接影响焊接结构性能、安全可靠性和制造工艺性的重要因素,了解其作用与影响,采取措施进行控制与消除,对于焊接结构的完整性设计和焊接工艺方法的选择以及产品在运行中的安全评定都有重大意义。
关键词焊接应力;焊接变形;规律;控制焊接是一种特殊而又重要的加工工艺,随着焊接技术的发展,一个重要技术课题是控制焊接件的焊接变形以提高产品制造精度,使焊件焊后加工量减少或不加工即可用于精度要求高的机械产品中,因此,了解焊接应力产生机理,掌握结构件焊接变形规律,在焊接工艺中采取措施进行控制和消除,从而保证焊接质量。
1 焊接应力1.1 焊接应力产生机理及影响因素焊接时的局部不均匀热输入是产生焊接应力与变形的决定因素,焊接热输入引起材料不均匀局部加热,使焊缝区融化,而与熔池毗邻的高温区材料的热膨胀则受到周围材料的限制,产生不均匀压缩塑性变形,在冷却过程中,已发生压缩变形的这部分材料又受到周围条件的制约,而不能自由收缩,在不同程度上又被拉伸而卸载;与此同时,熔池凝固,金属冷却收缩也产生相应的收缩应力与变形,使得焊接接头区产生不协调的应变,称为初始应变或固有应变。
与此相对应,在构件中会形成自身相平衡的内应力,通常称为焊接应力;而焊后,在在室温条件下,残留于构件中的内应力场和宏观变形,称为焊接残余应力与焊接残余变形。
焊接应力与焊接材料(主要包含材料特性、热物理常数及力学性能)、焊接接头形状和尺寸、焊接工艺参数,焊接结构(结构形状、厚度及刚性)有关。
1.2 焊接应力的分类1.2.1 接应力在焊件空间位置一维空间应力沿着焊件—个方向作用;二维空间应力应力在—个平面内不同方向上作用;三维空间应力应力在空间所有方向上作。
1.2.2 按产生应力的原因(1)热应力它是在焊接过程中,焊件内部温差所引起应力,随着温度的消失而消失,并且是引起热裂纹的力学原因。
(2)相变应力焊接过程中,局部金属发生相变,相比容增大或减小而引起的应力。
焊接应力及焊接变形预防措施
钢结构工程焊接应力与变形差生的危害及采取的措施随着“绿色建筑”理念的推广,以钢结构件为主体框架结构结合复合砌筑体结构已成为一种必然趋势,因为以钢结构为主的框架结构的回收利用性有效避免钢筋混凝土结构建筑垃圾的产生,具有可持续性。
由于钢结构工程的特有型,焊接作业时钢结构工程最重要的工序之一,而焊接应力及焊接变形产生是影响钢结构安全性及可靠性的重要因素。
本文着重对焊接应力及焊接变形的危害及所采取的对应措施进行分析。
一、焊接应力与变形产生机理焊接热输入引起材料不均匀局部加热,使焊缝区熔化,而熔池毗邻的高温区材料的热膨胀则受到周围材料的限制,产生不均匀的压缩塑性变形。
在冷却过程中,已发生压缩塑性变形的这部分材料又受到周围材料的制约,不能自由收缩,在不同程度上又被拉伸而卸载,与此同时,熔池凝固,金属冷却收缩也产生了相应的收缩拉应力和变形。
这种随焊接热过程而变化的内应力场和构件变形,称为瞬态应力与变形。
而焊后,在室温条件下,残留于构件中的内应力场和宏观变形称为焊接残余应力与焊接残余变形。
焊接残余应力和变形,严重影响焊接构件的承载力和构件的加工精度,应从设计、焊接工艺、焊接方法、装配工艺着手降低焊接残余应力和减小焊接残余变形。
二、焊接残余应力的危害及降低焊接应力的措施1.焊接残余应力的危害影响构件承受静载能力;影响结构脆性断裂;影响结构的疲劳强度;影响结构的刚度和稳定性;易产生应力腐蚀开裂;影响构件精度和尺寸的稳定性。
2.降低焊接应力的措施(1)设计措施尽量减少焊缝的数量和尺寸,在减小变形量的同时降低焊接应力;防止焊缝过于集中,从而避免焊接应力峰值叠加;要求较高的容器接管口,宜将插入式改为翻边式。
(2)工艺措施采用较小的焊接线能量,减小焊缝热塑变的范围,从而降低焊接应力;合理安排装配焊接顺序,使焊缝有自由收缩的余地,降低焊接中的残余应力;层间进行锤击,使焊缝得到延展,从而降低焊接应力;焊接高强钢时,选用塑性较好的焊条;预热拉伸补偿焊缝收缩(机械拉伸或加热拉伸);采用整体预热;降低焊缝中的含氢量及焊后进行消氢处理,减小氢致集中应力。
焊接结构件焊接变形的控制
焊接结构件焊接变形的控制摘要:焊接是通过加热或加压的方式,将两个工件的原子进行结合,使工件连接到一起的一种加工艺。
焊接在人们的生产生活中应用较为广泛,无论对于金属物质还是非金属物质都可应用。
内应力指的是物体在没有收到外力的情况下,自身存在的应力,它在物体内部自相平衡,也就是说,物体内部的应力相加为零;而焊接应力指的是在焊接过程中,焊件内存在的应力;焊接变形指的是在进行焊接时,由于焊件受热不均匀或温度场不均匀导致焊件发生形变。
基于此,本文将对焊接结构件焊接变形的控制对策进行分析。
关键词:焊接变形;机械制造;措施1焊接变形的机理在众多的焊接方法当中,电弧焊由于设备轻便,搬运灵活,适合于钢结构的施工作业等特点,成为主要的焊接方法。
电弧焊就是在钢构件连接处,借助电弧放电所产生的高温,将置于焊缝部位的焊条或焊丝金属熔化,同时将工件的表面熔化,形成焊接熔池,将两块分离的金属熔合在一起,从而获得牢固接头的焊接方法。
在施焊过程中,焊件会发生变形,这种变形是暂时性的。
当焊接完毕以后,构件完全冷却,会有一部分变形残留下来,形成焊接变形。
焊接变形的实质取决于两个方面,一是焊缝区的熔融焊缝金属在冷却凝固收缩时产生了变形,导致构件发生纵向、横向或者角变形;二是焊缝区以外的焊件区域。
由于熔融焊缝金属会将高温传递到焊件上,在焊件上形成热影响区,焊件在被加热和随后冷却的过程中产生变形,这种变形是一种单纯的热变形,如果焊件的热变形受到本身的刚度限制,就会引起焊件的变形。
2焊接变形产生的影响首先,对静载荷的影响。
在焊接构件中,当纵向拉伸的残余应力较高时,可以拉近某些材料的屈服强度。
当受到外在工作应力时,同方向的应力会进行相互叠加,就会使该区域发生变形,导致工件不能继续承载外力,使焊接构件的有效承载面积减少。
其次,对刚度的影响。
在焊接构件中,如果内应力方向与外载荷方向是一致的,当受到外载荷作用时,焊接工件的刚度就会下降。
并且焊接工件所发生的变形在卸载之后是无法进行恢复的。
浅谈焊接残余应力控制措施及消除方法
浅谈焊接残余应力控制措施及消除方法摘要:文章主要阐述了焊接结构在焊接过程中产生的残余应力及应力的消除方法,主要说了焊接残余应力的分布、焊接残余应力施工中的控制、焊后消除焊接应力的方法。
关键词:焊接残余应力控制措施消除方法前言随着焊接技术的迅速发展,在短短的几十年中焊接已是工业技术中的重要方法之一。
如建筑钢结构、压力容器、船舶、车辆等中几乎全部用焊接代替了铆接。
部分过去一直用整铸整锻方法生产的大型毛坯也改成了焊接结构,焊接技术不仅大大减化了生产工艺,而且还降低了很多成本。
但是实际焊接中也存在不少问题,如焊接的内应力、焊接结构的变形、焊接结构的脆性断裂、焊接结构的疲劳强度等都直接影响着焊接的质量。
本文就对焊接残余应力进行具体分析。
一、焊接残余应力的分布在厚度不大(δ<15-20mm)的常规焊接结构中,残余应力基本上是双轴向的,厚度方向上的应力很小。
只有的大厚度的焊接结构中,厚度方向的应力才比较大。
焊接应力分别有焊缝方向的纵向应力、垂直焊缝方向的横向应力和厚度方向的应力。
二、焊接残余应力施工中的控制在焊接过程中采用一些简单的工艺措施往往可以调节内应力,降低残余内应力的峰值,避免在大面积内产生较大的拉应力,并使内应力分布更为合理。
这些措施不但可以降低残余应力,而且也可以降低焊接过程中的内应力。
因此有利于消除焊接裂纹。
现在把这些措施分述于后:1、采用合理的焊接顺序和方向尽量使焊缝能自由收缩,先焊收缩量比较大的焊缝。
如带盖板的双工字钢构件,应先焊盖板的对接焊缝,后焊盖板和工字钢之间的角焊缝,使对接焊缝能自由收缩,从而减少内应力。
先焊工作时受力较大的焊缝,如在工地焊接梁的接头时,应先留出一段翼缘角焊缝最后焊接,先焊受力最大的翼缘对接焊缝,然后焊接腹板对接焊缝,最后再焊接翼缘角焊缝。
这样的焊接次序可以使受力较大的翼缘焊缝预先承受压应力,而腹板则为拉应力。
翼缘角焊缝留在最后焊接,则可使腹板有一定的收缩余地,同时也可以在焊接翼缘板对接焊缝时采取反变形措施,防止产生角变形。
塔机焊接防焊接变形措施
塔机焊接防焊接变形措施有以下几种:
-减小焊缝截面积:在得到完整、无超标缺陷焊缝的前提下,尽可能采取用较小的坡口尺寸。
-采用热输入较小的焊接方法:如CO₂气体保护焊。
-厚板焊接尽可能采用多层焊代替单层焊。
-在满足设计要求的情况下,纵向加强肋和横向加强肋的焊接可采用间断焊接法。
-双面均可焊接操作时,要采用双面对称坡口,并在多层焊时采用与构件中和轴对称的焊接顺序。
- T形接头板厚较大时采用开坡口角对接焊缝。
-采用焊前反变形方法控制焊后的角变形。
-采用刚性夹具固定法控制焊后变形。
实际操作中,需要根据具体情况选择合适的措施,以达到最好的防变形效果。
如果需要更详细的信息,建议咨询专业的焊接工程师或技术人员。
怎样焊接才能保证无变形和裂纹
1 预热和 缓冷
采 用 上 述 方 法 ,应 考 虑 到 自重 应 减 小 ,3 0 0 。 0 ~5 0C时不 允 许 锤击 ,
预 热 和 缓 冷 能 有 效 地 减 小 甚 至 可 能 引起 的 变 形 , 加 热 温 度 比较 高 以免 发 生 裂 纹 。 冷 焊 缝 的 锤 击 应 在
如 行 消除应 力退火 ,即将焊 后零件置 的 冲 击 或 者 大 的 静 载 荷 ( 自 重 ) 采 用 分 段 焊 ,每 一 段 都 是 朝 着 与 施
于 加热 炉 中缓 慢 加热 至 一定 温度 .
就 能使焊 件损坏 。钢 铁材 料温 度在 焊 总方 向相反 的 方向施 焊 ,即采 用
好 。 随 着 温 度 的 下 降 ,锤 击 力 量 也 用 分 段 后 退 法 、 分 段 逆 向 对 称 法 、
维普资讯
分段 交错 间跳 法等 进行 焊修 。对 于 块 应 做 成 凸 形 。 如 图 4所 示 。 需要填 焊较 多金 属 的部位 ,可采 用 多层 堆 焊 。对 于磨 损 的轴 类 零 件 , 可利 用均 衡变形 法堆 焊 。
并保 温一定 时间 ,然后在 空气 中冷 3 0 0 。 有 蓝脆 性 ,也 不 能 进 逆 向焊接 法 。使应 力和 变形趋 于均 0 ~5 0C时
却或 随炉缓冷 。如缸 盖热焊后 ,采 行锤击 。此外 ,含磷 高的钢铁 材料 , 匀 ,如 图 1所 示 。
用 下 列 退 火规 范 :退 火 温 度 6 0C, 0。
维普资讯
怎 样 焊 接 才 能 保 证 无 变 形 和 裂 纹
H wtWe sC n nue o e r t n n rc o lj t a sr - f mao d ak o du E N do i a C
焊接应力产生的原因及处理方法
在冷热加工过程中,产生残余应力,高者在屈服极限附近。构件中的残余应力大多数表现出很大的有害作用;如降低构件的实际强度,降低疲劳极限,造成应力腐蚀和脆性断裂。并且由于残余应力的松弛,使零件产生翘曲,大大的影响了构件的尺寸精度。因此降低构件的残余应力,是十分必要的。
焊后消除应力处理:
1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。
另外还有爆炸消除应力。
2、局部热处理:大型焊接结构,受加热炉的限制或要求不高时采用这种方法。可采用火焰、红外、电阻、感应等加热方式,应保持均匀加热并具有一定的加热宽度。低合金高强钢,一般在焊缝两侧各100~200mm。
(2)对结构刚度的影响:焊接残余应力降低结构的刚度。
(3)对受压构件承载力的影响:焊接残余应力降低受压构件的承载力。
(4)对低温冷脆的影响:增加钢材在低温下的脆断倾向。
(5)对疲劳强度的影响:焊接残余应力对结构的疲劳强度有明显不利影响。
焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。
热时效(TSR)是将构件由室温(或不高于150℃)缓慢、均匀加热至550℃左右,保温4~8小时,再严格控制降温速度至150℃以下出炉,达到消除残余应力的目的,可以保证加工精度和防止裂纹产生。
振动时效(VSR)又称振动消除应力法,是将工件(包括铸件、锻件、焊接构件等)在其固有频率下进行数分钟至数十分钟的振动处理,以振动的形式给工件施加附加应力,当附加应力与残余应力叠加后,达到或超过材料的屈服极限时,工件发生微观或宏观塑性变形,从而降低和均化工件内的残余应力,使尺寸精度获得稳定的一种方法。这种工艺具有耗能少、时间短、效果显著等特点。近年来在国内外都得到迅速发展和广泛应用。
焊接残余应力与变形
焊接残余应力和焊接变形焊接残余应力(welding residual stresses)简称焊接应力,有沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。
1、纵向焊接应力焊接过程是一个不均匀加热和冷却的过程。
在施焊时,焊件上产生不均匀的温度场,焊缝及其附近温度最高,可达1600℃以上,而邻近区域温度则急剧下降。
不均匀的温度场产生不均匀的膨胀。
温度高的钢材膨胀大,但受到两侧温度较低、膨胀量较小的钢材所限制,产生了热塑性压缩。
焊缝冷却时,被塑性压缩的焊缝区趋向于缩短,但受到两侧钢材限制而产生纵向拉应力。
在低碳钢和低合金钢中,这种拉应力经常达到钢材的屈服强度。
焊接应力是一种无荷载作用下的内应力,因此会在焊件内部自相平衡,这就必然在距焊缝稍远区段内产生压应力2、横向焊接应力横向焊接应力产生的原因有二:一是由于焊缝纵向收缩,使两块钢板趋向于形成反方向的弯曲变形,但实际上焊缝将两块钢板连成整体,不能分开,于是两块板的中间产生横向拉应力,而两端则产生压应力。
二是由于先焊的焊缝已经凝固,会阻止后焊焊缝在横向自由膨胀,使其发生横向塑性压缩变形。
当焊缝冷却时,后焊焊缝的收缩受到已凝固的焊缝限制而产生横向拉应力,而先焊部分则产生横向压应力,在最后施焊的末端的焊缝中必然产生拉应力。
焊缝的横向应力是上述两种应力合成的结果。
3、厚度方向的焊接应力在厚钢板的焊接连接中,焊缝需要多层施焊。
因此,除有纵向和横向焊接应力σx、σy外,还存在着沿钢板厚度方向的焊接应力σz。
在最后冷却的焊缝中部,这三种应力形成同号三向拉应力,将大大降低连接的塑性。
3.4.2 焊接应力和变形对结构工作性能的影响一、焊接应力的影响1、对结构静力强度的影响对在常温下工作并具有一定塑性的钢材,在静荷载作用下,焊接应力是不会影响结构强度的。
设轴心受拉构件在受荷前(N=0)截面上就存在纵向焊接应力。
在轴心力N作用下,截面bt部分的焊接拉应力已达屈服点fy,应力不再增加,如果钢材具有一定的塑性,拉力N就仅由受压的弹性区承担。
山东建筑大学钢结构焊接制造考试重点.
焊接应力与变形1、焊接残余应力与焊接瞬态应力的区别?答:焊接残余应力是焊接后留下的应力,焊接瞬态应力是焊接过程中出现的应力。
2、试分析板中心堆焊及板边缘堆焊的焊接应力的形成过程。
并用图表示其形成过程。
答:①中心堆焊:在板堆焊时,在板厚和长度方向可视为均匀温度,根据平截面假设板条保持平面, 内部中间变形率为负值,产生压应力,两侧变形率为正值,产生拉应力。
②板边堆焊板右边缘堆焊时:按平板假设时,堆焊时,堆焊部位不可能单独伸长,而保持平面,此时两侧受压应力,中间受拉应力,受拉与受压面积相等,整个平板产生了伸长并向左发生弯曲变形。
板左边缘冷却时,冷却后两侧受拉应力,中间受压应力并缩短产生向右的弯曲变形。
3、举例说明焊接应力在生产中主要危害答:①对静载强度的影响:焊接残余应力的存在,将明显降低脆性材料钢结构的静载强度。
②对构件加工尺寸精度的影响③对受压杆件稳定性的影响:残余压应力的存在使工字梁的稳定性明显下降,使局部或整体失稳,产生变形。
④对应力腐蚀裂纹的影响:残余拉应力大小对腐蚀速度有很大的影响,当焊接残余应力与外载荷产生的拉应力叠加后拉应力值越高,产生应力腐蚀裂纹的倾向就越高,发生应力腐蚀开裂的时间就越短。
4、除加热不均匀引起焊接应力外,还有什么因素会引起焊接应力?答:①在加热过程中,金属局部发生相变,使比容增大或减小而引起。
②金属局部发生拉伸或压缩塑性变形后引起5、分析焊接纵向残余应力是如何形成的?答:焊缝冷却时,由于温差不均匀使各部位产生的收缩量不同,焊缝温差大的,产生的收缩量大于周围温差小的部位,但受到周围板的约束产生残余拉应力,而板板对接«i 忖i圆筒环缝对焊T型接头6分析焊接横向应力是如何形成的有何特点。
答:横向残余应力垂直于焊缝,由两部分组成,一是由焊缝及其附近塑性区的纵向收缩引起的横向应力,二是由焊缝及其附近塑性变形区的横向收缩引起的横向应力。
纵向应力会使板件两端存在横向压应力而中间部位存在横向拉应力,先冷却的焊缝限制后冷却焊缝的横向收缩,从而产生了横向应力。
钢结构习题解答
第一、二章1.为什么能把钢材简化为理想的弹塑性材料?答:从钢材拉伸时的应力-应变曲线可以看到,钢材有较明显的弹性、屈服阶段,但当应力达屈服点后,钢材应变可达2%~3%,这样大的变形,虽然没有破坏,但结构或构件已不适于再继续承受荷载,所以忽略弹塑性阶段,而将钢材简化为理想的弹塑性材料。
2.塑性和韧性的定义,两者有何区别,冷弯性能和冷作硬化对结构设计的意义是什么?答:塑性是指当应力超过屈服点后,能产生显著的残余变形而不立即断裂的性质;韧性是指塑性变形和断裂过程中吸收能量的能力。
韧性同塑性有关,但不完全相同,是强度和塑性的综合表现。
冷弯性能是指钢材在冷加工产生塑性变形时,对发生裂缝的抵抗能力,可检验钢材的冷加工工艺和检查钢材的内部缺陷。
钢材冷加工过程中引起的钢材硬化称为冷作硬化,冷作硬化可能使材料变脆。
3.为什么承受动力荷载的重要结构要通过刨边、扩孔等方法清除其冷加工的边缘部分?答:钢结构冷加工时会引起钢材的局部冷作硬化,从而使材料强度提高,塑性、韧性下降,使钢材变脆。
因此,对承受动力荷载的重要结构要通过刨边、扩孔等方法清除其冷加工的边缘部分,从而防止脆性破坏。
第三章1、请说明角焊缝焊脚尺寸不应太大、太小的原因及焊缝长度不应太长、太短的原因?答:焊脚尺寸太大施焊时较薄焊件容易烧穿;焊缝冷却收缩将产生较大的焊接变形;热影响区扩大容易产生脆裂。
焊脚尺寸太小,焊接时产生的热量较小,焊缝冷却快,容易产生裂纹;同时也不易焊透。
焊缝长度过短,焊件局部加热严重,会使材质变脆;同时起、落弧造成的缺陷相距太近,严重影响焊缝的工作性能。
焊缝长度过长,应力沿长度分布不均匀,两端应力可能达到极限值而先破坏,中部则未能充分发挥其承载能力。
2、试述焊接残余应力对结构工作的影响?答:残余应力对结构静力强度一般没有影响,因为它是自相平衡力系,只要材料能发生塑性变形,其静力强度是不变的。
但当材料不能发展塑性时,则可能发生脆性破坏,即各点的外加应力和其残余应力相加达到材料的抗拉强度fy ,该点即破坏,从而降低构件的承载力。
焊接应力产生原因及去应力方法
焊接应力产生原因及去应力方法摘要:焊接从本质上来说是一种融化和再凝固的工艺过程,因凝固时间不同,导致先后凝固部分相互作用而产生了内应力。
这种内应力再焊接制造过程中往往带来的都是不好的质量结果,所以我们需要分析其产生原因,针对性采取措施减少焊接应力以及消除焊接应力。
关键词:焊接应力;去应力引言焊接应力即是在焊接结构时由于焊接而产生的内应力,它可以依据产生作用的时间被分为焊接瞬时应力和焊接残余应力。
所谓焊接瞬时应力是指在焊接的过程中某一个焊接瞬时产生的焊接应力,它是会跟着时间的变化而发生变化的,而在焊接之后,某一个受到焊接的焊件内还残留的焊接应力被称为焊接残余应力。
1 产生焊接残余应力的原因之所以会产生焊接残余应力,主要是由于焊件在焊接的过程中所受到的加热是不均匀的。
按照焊接残余应力的发生来源,可将焊接残余应力分为直接应力、间接应力和组织应力三种。
直接的焊接应力是焊接残余应力所产生的最主要的原因,它是受到不均匀的加热和冷却之后所产生的,根据加热和冷却时的温度梯度而发生变化。
间接的焊接应力则是焊件由于焊前的加工状况造成的应力。
焊件在受到轧制和拉拔时会产生一定的残余应力。
间接的残余应力如果在某一种场合下叠加到焊接的残余应力上去,焊件受到焊接发生变形,也会将其影响附加到焊接残余应力上去。
而且,焊件一旦受到外来的某一种约束,产生相应的附加应力,也属于间接应力的范畴。
组织应力也就是由相变造成的比容变化而产生的应力,它的产生是由于焊件的组织发生了变化。
虽说组织应力会由于含碳量和材料其他成分的不同而产生差异,但我们一般都会将其所产生的影响进行分析研究。
2 减少焊接应力的措施焊接是产生焊接残余应力的根本原因,减少焊缝数量和尺寸能有效减少焊接量,通过控制焊接量可有效减少应力。
在同等焊接强度下,焊缝尺寸较小的,其焊接残余应力较小。
应尽量避免多条焊缝在同一部位集中,焊缝距离过近时,焊缝间会产生耦合,形成复杂残余应力场,焊缝间距离一般应大于3倍板厚且不小于100mm。
焊接应力的消除方法
爆炸工艺
• 将特种专用炸药沿焊缝走向粘贴在焊缝附近。炸药引爆后产生连续的冲击波迫使结构的峰值应力 区域发生塑性变形,以此达到消应力的目的。瞬间完成,适合大型和特大型的结构,爆炸法消应 力施工时十分强调安全措施,在城市建筑中应用有一定的困难。
高温回火
• 于构件残余应力的最大值通常可达到该种材料的屈服点,而金属在高温下屈服点将降低。所以将 构件的温度升高至某一定数值时,应力的最大值也应该减少到该温度下的屈服点数值。如果要完 全消除结构中的残余应力,则必须将构件加热到其屈服点等于零的温度,所以一般所取的回火温 度接近于这个温度。
形,使逐步得到的焊接残余应力降低和均化,以减少焊接变形和焊接裂纹的形成。
焊接应力消除设备
• 焊接应力消除设备对焊趾进行冲击,可以快速修复焊趾的缺陷,降低应力集中,并伴随其压应力 区的作用可以在一定程度上降低焊趾边未受冲击焊缝的残余应力;焊接应力消除设备能以每秒2 万次的频率沿焊缝方向冲击焊趾部位,使之产生较大的压缩塑性变形,使焊趾处发生圆滑的几何 过渡,大大降低应力集中;消除焊趾处表层的微小裂纹和熔渣缺陷,抑制焊接裂纹的提前萌生, 调整应力场,并产生一定数值的压应力,使焊趾部位得到强化,对提高焊接接头的疲劳寿命有明 显的作用。
振动时效
• 振动时效是对构件施加交变应力,与构件上的残余应力叠加达到材料的屈服应力,发生局部的宏 观和微观塑性变形;这种塑形变形往往首先发生在残余应力最大和构件应力集中点,使这里的残 余应力得以释放,达到降低和均化残余应力的作用。
• 尽管振动时效设备不具备去氢和恢复塑形的功能,但从尺寸稳定性比较,已经达到和超过热时效 的水平;振动时效是一种以消除应力、提高尺寸稳定性为目的替代热时效的先进工艺。
• 常采用TIG重熔工艺对焊趾进行修整,重建裂纹起裂前的状态,降低由于焊趾缺陷所造成的应力 集中现象,以延长疲劳寿命。同时TIG重熔也能改善焊缝区的横向残余应力;重熔对于焊缝纵向 残余应力的改善不明显,残余应力绝对值下降不大;但对于纵向ቤተ መጻሕፍቲ ባይዱ余应力的均匀分布有一定效果。 但对横向残余应力有明显的改善效果,残余应力的绝对值下降明显而且分布趋于均匀。
焊接变形的原因及控制方法
焊接变形的原因及控制方法在焊接过程中由于急剧的非平衡加热及冷却,结构将不可避免地产生不可忽视的焊接残余变形。
焊接残余变形是影响结构设计完整性、制造工艺合理性和结构使用可靠性的关键因素。
针对钢结构工程焊接技术的重点和难点,根据多年的工程实践经验,本文主要阐述实用焊接变形的影响因素及控制措施和方法。
钢材的焊接通常采用熔化焊方法,是在接头处局部加热,使被焊接材料与添加的焊接材料熔化成液体金属,形成熔池,随后冷却凝固成固态金属,使原来分开的钢材连接成整体。
由于焊接加热,融合线以外的母材产生膨胀,接着冷却,熔池金属和熔合线附近母材产生收缩,因加热、冷却这种热变化在局部范围急速地进行,膨胀和收缩变形均受到拘束而产生塑性变形。
这样,在焊接完成并冷却至常温后该塑性变形残留下来。
一、焊接变形的影响因素焊接变形可以分为在焊接热过程中发生的瞬态热变形和在室温条件下的残余变形。
影响焊接变形的因素很多,但归纳起来主要有材料、结构和工艺3个方面。
1.1材料因素的影响材料对于焊接变形的影响不仅和焊接材料有关,而且和母材也有关系,材料的热物理性能参数和力学性能参数都对焊接变形的产生过程有重要的影响。
其中热物理性能参数的影响主要体现在热传导系数上,一般热传导系数越小,温度梯度越大,焊接变形越显著。
力学性能对焊接变形的影响比较复杂,热膨胀系数的影响最为明显,随着热膨胀系数的增加焊接变形相应增加。
同时材料在高温区的屈服极限和弹性模量及其随温度的变化率也起着十分重要的作用,一般情况下,随着弹性模量的增大,焊接变形随之减少而较高的屈服极限会引起较高的残余应力,焊接结构存储的变形能量也会因此而增大,从而可能促使脆性断裂,此外,由于塑性应变较小且塑性区范围不大,因而焊接变形得以减少。
1.2结构因素的影响焊接结构的设计对焊接变形的影响最关键,也是最复杂的因素。
其总体原则是随拘束度的增加,焊接残余应力增加,而焊接变形则相应减少。
结构在焊接变形过程中,工件本身的拘束度是不断变化着的,因此自身为变拘束结构,同时还受到外加拘束的影响。
预防和减少焊接变形的措施
预防和减少焊接变形的措施展开全文一、焊接结构的合理设计在保证结构有足够强度的前提下,尽量减小焊缝的数量和尺寸;尽可能对称布置焊缝;必要时预先流留出收缩余量;适当采用冲压结构,减少焊接结构;将焊缝布置在最大工作应力之外;留出装焊模夹具的位置等。
二控制焊接残余变形的工艺措施1.选择合理的装焊顺序采用不同的装配、焊接顺序,焊后会产生不同的变形效果。
如工字梁的焊接,采用两种不同的装焊顺序,产生的变形效果不同。
第一种先装配、焊接成丁字形,然后再装配另一块翼板,最后焊成工字梁。
采用这种装焊顺序时,焊接丁字形结构时,由于焊缝分布在中性轴的下方,焊后将产生较大的上拱弯曲变形,即使另一块翼板焊后会产生的反向弯曲变形,也难以抵消原来产生的变形,最后工字梁将形成上拱弯曲变形。
第二种先整体装配成工字梁,然后再进行焊接,此时梁的刚性增加,再采用对称、分段的焊接顺序,焊后上拱弯曲变形就小得多。
这是一项先总装后焊接的控制结构焊后变形的工艺措施。
2.采取合理的焊接顺序(1)对称焊接如果焊接结构的焊缝是对称布置的,应该采用对称焊接。
这时应注意焊接顺序,采用分段、跳焊的对称焊接,通过先后焊缝的熔敷量来控制变形量,效果很好。
(2)不对称焊缝先焊焊缝少的一侧如果焊接结构的焊缝是不对称布置的,采用先焊焊缝少的一侧,后焊焊缝多的一侧,使后焊的焊缝产生的变形足以抵消先前的变形,以使总的变形减小。
(3)采用不同的焊接顺序结构中若是长焊缝,采用连续的直通焊,将会造成较大的变形,在实践中常采用分段退焊法、分中段退焊法、跳焊法和交替焊法不同的焊接顺序来控制变形。
3.反变形法为了抵消焊接残余变形,焊前预先使焊件向焊接变形相反的方向变形,这种方法叫反变形法。
V 形坡口对接焊中,均采用了反变形法来控制焊后的残余角变形。
例如工字梁焊后产生的角变形,可在焊前预先将翼板制成反变形,然后焊接以抵消焊后变形。
4.刚性固定法焊前对焊件采取外加刚性约束,使焊件在焊接时不能自由变形,这种防止变形的方法叫刚性固定法。
焊接残余应力与变形
焊接残余应力和焊接变形焊接残余应力(welding residual stresses)简称焊接应力,有沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。
1、纵向焊接应力焊接过程是一个不均匀加热和冷却的过程。
在施焊时,焊件上产生不均匀的温度场,焊缝及其附近温度最高,可达1600℃以上,而邻近区域温度则急剧下降。
不均匀的温度场产生不均匀的膨胀。
温度高的钢材膨胀大,但受到两侧温度较低、膨胀量较小的钢材所限制,产生了热塑性压缩。
焊缝冷却时,被塑性压缩的焊缝区趋向于缩短,但受到两侧钢材限制而产生纵向拉应力。
在低碳钢和低合金钢中,这种拉应力经常达到钢材的屈服强度。
焊接应力是一种无荷载作用下的内应力,因此会在焊件内部自相平衡,这就必然在距焊缝稍远区段内产生压应力2、横向焊接应力横向焊接应力产生的原因有二:一是由于焊缝纵向收缩,使两块钢板趋向于形成反方向的弯曲变形,但实际上焊缝将两块钢板连成整体,不能分开,于是两块板的中间产生横向拉应力,而两端则产生压应力。
二是由于先焊的焊缝已经凝固,会阻止后焊焊缝在横向自由膨胀,使其发生横向塑性压缩变形。
当焊缝冷却时,后焊焊缝的收缩受到已凝固的焊缝限制而产生横向拉应力,而先焊部分则产生横向压应力,在最后施焊的末端的焊缝中必然产生拉应力。
焊缝的横向应力是上述两种应力合成的结果。
3、厚度方向的焊接应力在厚钢板的焊接连接中,焊缝需要多层施焊。
因此,除有纵向和横向焊接应力σx、σy外,还存在着沿钢板厚度方向的焊接应力σz。
在最后冷却的焊缝中部,这三种应力形成同号三向拉应力,将大大降低连接的塑性。
3.4.2 焊接应力和变形对结构工作性能的影响一、焊接应力的影响1、对结构静力强度的影响对在常温下工作并具有一定塑性的钢材,在静荷载作用下,焊接应力是不会影响结构强度的。
设轴心受拉构件在受荷前(N=0)截面上就存在纵向焊接应力。
在轴心力N作用下,截面bt部分的焊接拉应力已达屈服点fy,应力不再增加,如果钢材具有一定的塑性,拉力N就仅由受压的弹性区承担。
焊接残余应力和焊接变形对钢结构的影响以及消除和调整的措施
焊接残余应力和焊接变形对钢结构的影响以及消除和调整的措施摘要:焊接残余应力和焊接变形是钢结构产生变形和开裂的主要原因。
本文以焊接残余应力和焊接变形为对象,分别讨论了残余应力对钢结构刚度、静力强度、疲劳强度、应力腐蚀等的影响,促使结构发生脆性断裂、疲劳断裂、应力腐蚀开裂、低温变脆等以及造成的焊接变形的种类。
应采取措施对焊接残余应力和焊接变形加以消除和调整。
关键词:钢结构焊接残余应力焊接变形钢结构是钢材通过一定的设计方法做成构件,构件再通过一定的连接方式连接成的整体结构承力体系或传力体系。
连接方式及其质量优劣直接影响钢结构的工作性能。
焊接连接是目前钢结构最主要的连接方式。
但在焊接过程中,在焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆;焊接残余应力和残余变形使受压构件承载力降低;焊接结构对裂纹很敏感,局部的裂缝一旦发生,就容易扩展到整体。
一、焊接残余应力钢材的焊接是一个不均匀的加热和冷却的过程。
在施焊时,焊缝及其附近区域的温度很高,而临近区域温度则急剧的下降,导致不均匀的温度场。
不均匀的温度场产生不均匀的膨胀,温度低的区域膨胀量小限制了高温度区域钢材的膨胀。
当焊接温度场消失后,构件内部产生应力,这种应力称为焊接残余应力。
(一)焊接残余应力对钢结构的影响1.对钢结构刚度的影响焊接残余应力使构件的有效截面减小,丧失进一步承受外载的能力。
焊接残余应力的存在还会增大结构的变形,降低结构的刚度。
2.对静力强度的影响由于焊接应力的自相平衡,使受压区和受拉区的面积相等。
构件全截面达到屈服强度所承受的外力与无焊接应力的轴心受拉构件全截面达到屈服强度时的应力相等,因此不影响静力强度。
3.对疲劳强度的影响残余应力的存在使应力循环发生偏移。
这种偏移,只改变其平均值,不改变其幅值。
当应力循环的平均值增加时,其极限幅值就降低,反之则提高。
4.对应力腐蚀开裂的影响应力腐蚀开裂是拉伸残余应力和化学腐蚀作用下产生裂纹的现象,在一定材料和介质的组合下发生。
焊接结构件焊接变形的控制
焊接结构件焊接变形的控制摘要:在日常的焊接生产活动中,焊接结构件的焊后变形是多方面因素共同作用的结果,然而,影响结构件变形的主要因素也许就一个或者两个,当焊接环境适宜,焊接规范调整合理的情况下,焊接工艺完善与否往往成为影响结构件焊接变形的唯一主要因素,所以日常生产活动中,大量的实验和总结可以帮助完善焊接工艺,从而尽可能大的控制焊接变形。
关键词:焊接结构;焊接变形;分析原因在钢结构的制作过程中,焊接属于是一种主要的连接方法,但是在具体应用的过程中,由于焊接所产生的变形问题,对于结构的质量也产生了一定程度的影响,如何根据焊接变形的规律性内容防止不良的制作问题,是工作人员面临的重要内容。
本文通过对钢结构件制作焊接变形的控制方法进行探究,希望能够起到参考的作用。
1、焊接变形的形成及将导致的后果1.1焊接热过程是一个十分复杂的问题,在实施焊接作业时,焊接工艺选择的合理性与否,可能导致工件整体受热不均匀问题突出,从而造成工件内部应力分布不均匀、工件变形严重,无法正常使用。
(1)焊接热过程的局部性或不均匀性。
多数焊接过程都是进行局部加热的,只有在热源直接作用下的区域受到加热,有热量输入,其他区域则存在热量损耗。
受热区域金属熔化,形成焊接熔池,这种局部加热正是引起焊接残余应力和焊接变形的根源。
(2)焊接热过程的瞬时性。
由于在金属材料中热量的传播速度很快,焊接时必须利用高度集中的热源。
这种热源可以在极短的时间内将大量的热量由热源传递给工件,这就造成了焊接热过程的时变性和非稳态特性。
(3)焊接热源的相对运动。
由于焊接热源相对于工件的位置不断发生变化,这就造成了焊接热源的不稳定性。
1.2工件在没有外力作用的条件下,存在平衡于物体内部的内应力。
在进行焊接作业的工件上,工件受热后会膨胀,冷却后会收缩,温度的变化使工件产生变形,克服这种变形产生了平衡于工件的热应力,这种热应力是由于工件不均匀加热引起的。
在沿着焊缝方向上产生残余应力称为纵向应力;在垂直于焊缝方向产生的残余应力称之为横向应力,对进行施焊的工件而言残余应力的存在对焊接工件产生的影响是多方面的,其中不乏负面的影响。
焊接的应力如何消除
焊接的应力如何消除?焊接应力一、焊接残余应力的分类1.根据应力性质划分:拉应力、压应力2.根据引起应力的原因划分:热应力、组织应力、拘束应力3.根据应力作用方向划分:纵向应力、横向应力、厚度方向应力4.根据应力在焊接结构中的存在情况划分:单向应力、两向应力、三向应力5.根据内应力的发生和分布范围划分:第一类应力、第二类应力、第三类应力二、焊接残余应力的分布规律1.纵向应力бx的分布бx在焊件横截面上的分布规律为:焊缝及其附近区域为残余拉应力,一般可达材料的屈服强度,随着离焊缝距离的增加,拉应力急剧下降并转为压应力。
бx在焊件纵截面上的分布规律为:在焊件纵截面端头,бx=0,越靠近纵截面的中间,бx越图2—11为板边堆焊时,бx在焊缝横截面上的分布。
T形接头的бx分布与立板和水平板尺寸有很大关系,δ/h越小,接近于板边堆焊的情况;δ/h 越大,接近于等宽板对接的情况。
2.横向应力бy的分布бy =бy′+бy″бy′:焊缝及其塑性变形区的纵向收缩引起的横向应力;бy″:焊缝及其塑性变形区的横向收缩不均匀、不同时引起的横向应力。
3.特殊情况下的焊接残余应力① 厚板中的焊接残余应力② 拘束状态下焊接残余应力③ 封闭焊缝中的残余应力④ 焊接梁柱中的残余应力⑤ 焊接管道中的残余应力三、焊接残余应力对焊接结构的影响1.对结构强度的影响只要材料具有足够的塑性,焊接残余应力的存在并不影响结构的静载强度。
对脆性材料制造的焊接结构,由于材料不能进行塑性变形,随着外力的增加,构件不可能产生应力均匀化,所以在加载过程中应力峰值不断增加。
当应力峰值达到材料的强度极限时,局部发生破坏,而最后导致构件整体破坏。
所以焊接残余应力对脆性材料的静载强度有较大的影响。
2.对构件加工尺寸精度的影响3.对梁柱结构稳定性的影响四、减小焊接残余应力的措施一般来说,可以从设计和工艺两方面着手:1.设计措施① 尽可能减少焊缝数量;② 合理布置焊缝;③ 采用刚性较小的接头形式。
简述控制焊接变形的措施
简述控制焊接变形的措施工艺措施是指在焊接构件生产制造过程中所采用的一系列措施,将其分为焊前预防措施、焊接过程中的控制措施和焊后矫正措施。
1 焊前预防措施焊前预防主要包括预防变形、预拉伸法和刚性固定组装法。
预变性法或称反变形法是根据预测的焊接变形大小和方向,在待焊工件装配时造成与焊接残余变形大小相当、方向相反的预变形量(反变形量),焊后焊接残余变形抵消了预变形量,使构件恢复到设计要求的几何形状和尺寸。
预拉伸法多用于薄板平面构件,焊接时在薄板有预张力或有预先热膨胀量的情况下进行的。
焊后,去除预拉伸或加热,薄板恢复初始状态,可有效地降低焊接残余应力,控制焊接变形。
预热的作用在于减小温度梯度,不同的预热温度在降低残余应力的作用方面有一定的差别,预热温度在300℃~400℃时,在钢中残余应力水平降低了30%~50%,当预热温度为200℃时,残余应力水平降低了10%~20%。
刚性固定组装法是采用夹具或刚性胎具将被焊构件尽可能地固定,可有效地控制待焊构件的角变形与弯曲变形等。
2 焊接过程控制措施焊接过程控制主要方法有采用合理的焊接方法和焊接规范参数,选择合理的焊接顺序以及采用随焊两侧加热、随焊碾压、随焊跟踪激冷等措施。
选择线能量较低的焊接方法以及合理地控制焊接规范参数可以有效地防止焊接变形。
采用随焊两侧加热、随焊碾压、随焊跟踪激冷等措施可以降低残余应力和减小焊接变形。
采用随焊两侧加热,横向应变、纵向应变和最大剪切应变的分布更加均匀,变化更加平缓,起到减小焊接残余应力和变形的作用。
随焊碾压法由于设备复杂、使用不便等原因,在生产应用中受到一定的限制,但该方法在提高焊接变形等方面具有理想的效果。
随焊激冷法能够显著地降低残余应力和减少焊接变形。
焊接顺序对焊接残余应力和变形的产生影响较大,在采用不同的焊接顺序时,可以改变残余应力的分布规律,但对残余应力整体幅值的降低作用不大,同时该方法对于控制焊接变形有较大的作用,尤其在多道焊中,作用更加明显。
建筑钢结构工程技术 2.5 焊接残余应力和残余变形
焊接残余应力和残余变形一、焊接残余应力和残余变形的成因钢结构的焊接过程是一个不均匀加热和冷却的过程。
在施焊时,焊件上产生不均匀的温度场,焊缝及附近温度最高,达1600℃以上,其邻近区域则温度急剧下降。
不均匀的温度场要求产生不均匀的膨胀和收缩。
而高温处钢材的膨胀和收缩要受到两侧温度较低、胀缩较小的钢材的限制,从而使焊件内部产生残存应力并引起变形,此即通称的焊接残余应力和残余变形。
二、焊接残余应力和残余变形(一)焊接残余应力焊接残余应力按其方向可分为纵向残余应力、横向残余应力和厚度方向残余应力。
1. 纵向残余应力。
图2-38是焊接残余应力的示例。
图2-38(a)是两块钢板平接连接,焊接时钢板焊缝一边受热,将沿焊缝方向纵向伸长。
但伸长量会因钢板的整体性,受到钢板两侧未加热区域的限制,由于这时焊缝金属是熔化塑性状态,伸长虽受限,却不产生应力(相当于塑性受压)。
随后焊缝金属冷却恢复弹性,收缩受限将导致焊缝金属纵向受拉,两侧钢板则因焊缝收缩倾向牵制而受压,形成图2-38(b)所示的纵向焊接残余应力分布。
它是一组在外荷载作用之前就已产生的自相平衡的内应力。
2. 横向残余应力。
图2-38所示两块钢板平接除产生上述纵向残余应力外,还可能产生垂直于长度方向的残余应力。
由图中可以看到,焊缝纵向收缩将使两块钢板有相向弯曲变形的趋势(如图2-38a中虚线所示)。
但钢板已焊成一体,弯曲变形将受到一定的约束,因此在焊缝中段将产生横向拉应力,在焊缝两侧将产生横向压应力,如图2-38(c)所示。
此外,焊缝冷却时除了纵向收缩外,焊缝横向也将产生收缩。
由于施焊是按一定顺序进行,先焊好的部分冷却凝固恢复弹性较早,将阻碍后焊部分自由收缩,因此,先焊部分就会横向受压,而后焊部分横向受拉,形成如图2-38(d)所示的应力分布。
图2-38(e)是上述两项横向残余应力的叠加,它也是一组自相平衡的内应力。
3. 厚度方向残余应力对于厚度较大的焊缝,外层焊缝因散热较快先冷却,故内层焊缝的收缩将受其限制,从而可能沿厚度方向也产生残余应力,形成三相应力场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
减少焊接接应力和焊接变形的措施
1、减少焊接接应力和焊接变形的措施
1.1、减少焊接应力的措施:
1)、安装过程中的措施
结采取合理的焊接顺序。
在焊缝较多的组装条件下,根据构件形状和焊缝的布置,采取先焊接收缩量较大的焊缝,后焊接收缩量较小的焊缝;先焊拘束度较大而不能自由收缩的焊缝,后焊拘束度较小而能自由收缩的焊缝。
在满足设计要求的条件下,尽量减小焊缝尺寸。
不应加大焊缝尺寸和余高,要转变焊缝越大越安全的观念。
在构件组装施工时,严禁强力对口和热膨胀法对口以减小焊接拘束度。
拘束度越大,焊接应力越大,尽量使焊缝在较小拘束度下焊接或在自由状态下施焊。
安装时焊接过程控制:
对接接头的焊接采用特殊的左右两根同时施焊方式,操作者分别来取共同先在外侧起焊,后在内侧施焊的顺序,自根部起始至面缝止,每层次均按此顺序实施。
根部焊接,根部施焊应自下部超始出处超越中心线10mm起弧,与定位焊接接头处应前行10mm收弧,再次始焊应在定位焊缝上退行1Omm起弧,在顶部中心处熄弧时应超越中心线至少15mm并填满弧坑;另一半焊接前应将前半部始焊及收弧处修磨成缓坡状并确认无未熔合即未熔透现象后在前半部焊缝上引弧。
仰焊接头处应用力上顶,完全击穿;上部接头处应不熄弧连续引带至接头处5mm时稍用力下压,并连弧超越中心线至少一个熔池长度(10一15mm)方允许熄弧。
次层焊接,焊接前剔除首层焊道上的凸起部分及引弧收弧造成的
多余部分,仔细检查坡口边沿有无未熔合及凹陷夹角,如有必须除去。
飞溅与雾状附着物,采用角向磨光机时,应注意不得伤及坡口边沿。
此层的焊接在仰焊部分时采用小直径焊条,仰爬坡时电流稍调小,立焊部位时选用较大直径焊条,电流适中,焊至爬坡时电流逐渐增大,在平焊部位再次增大,其余要求与首层相问。
填充层焊接:填充层的焊接工艺过程与次展完全相同,仅在接近面层时,注意均匀流出1.5-2mm的深度,且不得伤及坡边。
面层的焊接,管贯面层焊接,直接关系到接头的外观质量能否满足质量要求,因此在面层焊接时,应注意选用较小电流值并注意在坡口边熔合时间稍长,接头重新燃弧动作要快捷。
焊后清理与检查,并采用氧炔焰调整接头上、下部温差。
处理完毕工即采用不少于两层石棉紧裹并用扎丝捆紧。
2)、安装焊缝焊后消除应力处理
工地安装焊缝宜采用锤击法消除应力。
用锤击法消除中间焊层应力时,应使用圆头手锤或小型振动工具进行,不应对根部焊缝、盖面焊缝或焊缝坡口边缘的母材进行锤击。
1.2、减少焊接变形的措施:
1)、宜按下列要求采用合理的焊接顺序控制变形:
对于对接接头、T形接头和十字接头坡口焊接,在工件放置条件允许或易于翻身的情况下,宜采用双面坡口对称顺序焊接;对于有对称截面的构件,宜采用对称于构件中和轴的顺序焊接;
对双面非对称坡口焊接,宜采用先焊深坡口侧部分焊缝、后焊浅坡口侧、最后焊完深坡口侧焊缝的顺序;
对长焊缝宜采用分段退焊法或与多人对称焊接法同时运用;
相贯节点形式,趾部采用全焊透焊缝,侧面采用部分焊透焊缝,
跟部区则采用角焊缝焊接,过渡区采用从分焊透焊缝到角焊缝焊接过渡。
在同一构件上焊接时,应尽可能采用热量分散的跳焊法等;严格控制层间温度,对称分布的方式施焊,施焊时应严格控制线能量和最高层间温度。
2)、在节点形式、焊缝布置、焊接顺序确定的情况下,宜采用熔化极气体保护电弧焊或药芯焊丝自保护电弧焊等能量密度相对较高的焊接方法,并采用较小的热输入。
3)、宜采用反变形法控制角变形。
4)、使用必要的工装夹具、工艺隔板及撑杆。
对一般构件可用定位焊固定同时限制变形;对大型、厚板构件宜用刚性固定法增加结构焊接时的刚性。
5)、对于大型结构宜采取分部组装焊接、分别矫正变形后再进行总装焊接或连接的施工方法。
6)、下料、装配时,根据制造工艺要求,预留焊接收缩余量,预制焊接反变形。
7)、装配前,矫正每一构件的变形,保证装配符合装配公差表的要求。
8)、焊工应按照焊接工艺指导书中所指定的焊接参数,焊接施焊方向,焊接顺序等进行施焊;应严格按照施工图纸上所规定的焊角高度进行焊接;施焊应注意焊道的起点、终点及焊道的接头不产生焊接
缺陷。
2、对钢结构合拢的温度进行分析
主楼的钢框架的安装要落后核心筒几层,并且东莞的日照光线很强,因此钢框架在受阳面和阴暗面的温差较大,尤其是钢柱为φ1400×25mm的钢管柱,最大时的偏差在20~30mm。
为保证测量精度,在进行垂直度等观测时要注意温差的影响,需在日出之前、正午等太阳照射均匀的时候进行观测定位。