高二数学概率综合试题答案及解析
高中数学条件概率综合测试题(含答案)
高中数学条件概率综合测试题(含答案)选修2-3 2.2.1 条件概率一、选择题1.下列式子成立的是()A.P(A|B)=P(B|A)B.0P(B|A)1C.P(AB)=P(A)P(B|A)D.P(AB|A)=P(B)[答案] C[解析] 由P(B|A)=P(AB)P(A)得P(AB)=P(B|A)P(A).2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为()A.35B.25C.110D.59[答案] D[解析] 设第一次摸到的是红球(第二次无限制)为事件A,则P(A)=69109=35,第一次摸得红球,第二次也摸得红球为事件B,则P(B)=65109=13,故在第一次摸得红球的条件下第二次也摸得红球的概率为P=P(B)P(A)=59,选D. 3.已知P(B|A)=13,P(A)=25,则P(AB)等于()A.56B.910C.215D.115[答案] C[解析] 本题主要考查由条件概率公式变形得到的乘法公式,P(AB)=P(B|A)P(A)=1325=215,故答案选C.4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是()A.14B.13C.12D.35[答案] B[解析] 抛掷红、黄两颗骰子共有66=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含46,64,65,66共4个基本事件.所以其概率为4361236=13.5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是()A.56B.34C.23D.13[答案] C6.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为()A.911B.811C.25D.89[答案] D[解析] 设事件A表示“该地区四月份下雨”,B表示“四月份吹东风”,则P(A)=1130,P(B)=930,P(AB)=830,从而吹东风的条件下下雨的概率为P(A|B)=P(AB)P(B)=830930=89.7.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是()A.23B.14C.25D.15[答案] C[解析] 设Ai表示第i次(i=1,2)取到白球的事件,因为P(A1)=25,P(A1A2)=2525=425,在放回取球的情况P(A2|A1)=252525=25.8.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为()A.1 B.12C.13D.14[答案] B[解析] 设Ai表示第i次(i=1,2)抛出偶数点,则P(A1)=1836,P(A1A2)=1836918,故在第一次抛出偶数点的概率为P(A2|A1)=P(A1A2)P(A1)=183********=12,故选B.二、填空题9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.[答案] 0.310.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.[答案] 9599[解析] 设“第一次抽到次品”为事件A,“第二次抽到正品”为事件B,则P(A)=5100,P(AB)=51009599,所以P(B|A)=P(AB)P(A)=9599.准确区分事件B|A与事件AB的意义是关键.11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.[答案] 12[解析] 一个家庭的两个小孩只有3种可能:{两个都是男孩},{一个是女孩,另一个是男孩},{两个都是女孩},由题目假定可知这3个基本事件的发生是等可能的.12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.[答案] 3350[解析] 根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数共有33个,故所求概率为3350.三、解答题13.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,求P(B|A).[解析] P(B)=P(A)=12,P(AB)=14,P(B|A)=P(AB)P(A)=1412=12.14.盒中有25个球,其中10个白的、5个黄的、10个黑的,从盒子中任意取出一个球,已知它不是黑球,试求它是黄球的概率.[解析] 解法一:设“取出的是白球”为事件A,“取出的是黄球”为事件B,“取出的是黑球”为事件C,则P(C)=1025=25,P(C)=1-25=35,P(BC)=P(B)=525=15P(B|C)=P(BC)P(C)=13.解法二:已知取出的球不是黑球,则它是黄球的概率P=55+10=13.15.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?[解析] 记事件A:最后从2号箱中取出的是红球;事件B:从1号箱中取出的是红球.P(B)=42+4=23,P(B-)=1-P(B)=13.(1)P(A|B)=3+18+1=49.(2)∵P(A|B-)=38+1=13,P(A)=P(AB)+P(AB-)=P(A|B)P(B)+P(A|B-)P(B-)=4923+1313=1127.16.某校高三(1)班有学生40人,其中共青团员15人.全班分成4个小组,第一组有学生10人,共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率.[解析] 设事件A表示“选到第一组学生”,事件B表示“选到共青团员”.(1)由题意,P(A)=1040=14.(2)要求的是在事件B发生的条件下,事件A发生的条件概率P(A|B).不难理解,在事件B发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P(A|B)=415.。
高二数学概率试题
高二数学概率试题1.在一球内有一边长为1的内接正方体, 一动点在球内运动, 则此点落在正方体内部的概率为()A.B.C.D.【答案】D【解析】球的半径为,其体积为正方体的体积为1,则所求概率,应选D。
2.从1、2、3、4四个数中任取2个数,则取出的两个数不是连续自然数的概率是( ) A.B.C.D.【答案】C【解析】从1、2、3、4四个数中任取2个数共有6种不同的情况;取出的两个数不是连续自然数的有1、3;1、4;2、4共3种;所以取出的两个数不是连续自然数的概率是。
故选C3.在10件产品中有3件次品,从中选3件.下列各种情况是互斥事件的有( )①A: “所取3件中至多2件次品”,B : “所取3件中至少2件为次品”;②A: “所取3件中有一件为次品”,B:“所取3件中有二件为次品”;③A:“所取3件中全是正品”,B:“所取3件中至少有一件为次品”;④A:“所取3件中至多有2件次品”,B:“所取3件中至少有一件是正品”;A.①③B.②③C.②④D.③④【答案】B【解析】解:在10件产品中有3件次品,从中选3件,∵所取3件中至多2件次品与所取3件中至少2件为次品,两个事件中都包含2件次品,∴①中的两个事件不是互斥事件.∵所取3件中有一件为次品与所取3件中有二件为次品是互斥事件,∴②中的两个事件是互斥事件.∵所取3件中全是正品与所取3件中至少有一件为次品是不能同时发生的,∴③中的两个事件是互斥事件故选B.4.(本小题满分12分)口袋里有分别标有数字1、2、3、4的4只白球和分别标有数字5、6的2只红球,这些球除了颜色和所标数字外完全相同.某人从中随机取出一球,记下球上所标数字后放回,再随机取出一球并记下球上所标数字,(Ⅰ)求两次取出的球上的数字之和大于8的概率;(Ⅱ)求两次取出的球颜色不同的概率;【答案】解:由题,从口袋里任意取一球,放回后再随机取出一球,共有36个基本事件,且它们等可能发生…. …. 2分(Ⅰ) 设:“两次取出的球上的数字之和大于8”为事件A则事件A中包含两次取出的球上的号码为(3,6),(4,5,),(4,6),(5,4),(5,5,),(5,6),(6,3),(6,4),(6,5),(6,6)共10个基本事件,…. …. ….6分(Ⅱ) 设:“两次取出的球颜色不同”为事件B,则事件B包含两次取出的球上的号码为(1,5,),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(64)共16个基本事件,…. …. ….10分答:次取出的球上的数字之和大于8的概率是两次取出的球颜色不同的概率是…. …. ….12分【解析】略5. .某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮。
高二数学统计与概率试题答案及解析
高二数学统计与概率试题答案及解析1.(本小题满分13分)甲、乙两人各射击一次,击中目标的概率分别是和,假设两个射击是否击中目标,相互之间没有影响;每人各次射击是否中目标相互之间也没有影响。
(1)求甲射击4次,至少有1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则中止其射击。
则乙恰好射击5次后被中止射击的概率是多少?【答案】(1)(2)(3)【解析】(1)甲至少一次未击中目标的概率是(2)甲射击4次恰击中2次的概率为,乙射击4次恰击中3次的概率为,由乘法公式,所求概率。
(3)乙恰好5次停止射击,则最后两次未击中,前三次或都击中或第一与第二次恰有一次击中,第三次必击中,故所求概率为。
2.某市有6名教师志愿到四川地震灾区的甲、乙、丙三个镇去支教,每人只能去一个镇,则恰好其中一镇去4名,另两镇各去1名的概率为()A.B.C.D.【答案】B【解析】略3.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若,就称甲、乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为.【答案】【解析】“心有灵犀”数有或,则他们“心有灵犀”的概率为.【考点】古典概型.4.某电视台娱乐节目中,需要在编号分别为、、、、的五个礼品盒中,装四个不同礼品,只有一个礼品盒是空盒.不同的装法有()A.种B.种C.种D.种【答案】D【解析】从五个礼品盒中选出四个并装上四个不同的礼品的装法共有种不同方法,故选D.【考点】排列与组合.5.四名同学报名参加三项课外活动,每人限报其中一项,不同报名方法共有A.12B.64C.81D.7【答案】C【解析】四名同学报名参加三项课外活动,每人限报其中一项,每人有3种报名方法;根据分计数原理,可得共有3×3×3×3=81种不同的报名方法;故选:C.【考点】排列、组合及简单计数问题.6.“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取名路人进行了问卷调查,得到了如下列联表:男性女性合计已知在这人中随机抽取人抽到反感“中国式过马路”的路人的概率是(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程);(2)据此资料判断是否有的把握认为反感“中国式过马路”与性别有关?【答案】(1)答案见解析;(2)没有的把握认为反感“中国式过马路”与性别无关.【解析】(1)根据在全部人中随机抽取人抽到中国式过马路的概率,做出中国式过马路的人数,进而做出男生的人数,填好表格;(2)根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明反感“中国式过马路”与性别是否有关.试题解析:(1)男性女性合计…(2)由已知数据得:,所以,没有的把握认为反感“中国式过马路”与性别无关.【考点】1.独立性检验;2.概率与统计.7. 2015年6月20日是我们的传统节日﹣﹣”端午节”,这天小明的妈妈为小明煮了5个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件A=“取到的两个为同一种馅”,事件B=“取到的两个都是豆沙馅”,则P(B|A)=()A. B. C. D.【答案】A【解析】由题意,P(A)=,P(AB)=,∴P(B|A)=,故选:A.【考点】条件概率与独立事件.8.将参加夏令营的名学生编号为:.采用系统抽样的方法抽取一个容量为的样本,且随机抽得的号码为.这名学生分住在三个营区,从到在第I营区,从到在第II营区,从496到600在第III营区,三个营区被抽中的人数依次为()A.26,16,8B.25,17,8C.25,16,9D.24,17,9【答案】B【解析】根据系统抽样原原则,将名学生平均分成个组,每组人,又随机抽得的号码为,所以抽到的样本的序号为,由得,所以第一营区被抽中人数为人,得,所以第二营区被抽中人数为人,由得,所以第三营区被抽中人数为人,故选B.【考点】系统抽样.9.已知x与y之间的一组数据:已求得关于y与x的线性回归方程=2.1x+0.85,则m的值为()A.0.85 B.0.75 C.0.6 D.0.5【答案】D【解析】,中心点代入回归方程=2.1x+0.85得【考点】回归方程10.若的展开式中含有常数项,则的最小值等于()A.B.C.D.【答案】C【解析】由展开式的通项公式,得即有符合条件的解,所以当时,的最小值等于5;故选C.【考点】1、二项式定理;2、二元不定方程的解.11.对某同学的6次物理测试成绩(满分100分)进行统计,作出的茎叶图如图所示,给出关于该同学物理成绩的以下说法:①中位数为84;②众数为85;③平均数为85;④极差为12.其中,正确说法的序号是()A.①②B.③④C.①③D.②④【答案】C【解析】将图中各数按从小到大排列为:78,83,83,85,90,91;所以中位数是,众数为83,平均数为,极差为,故①③正确,选C.【考点】1、茎叶图;2、统计.12.甲、乙、丙三名同学站成一排,甲站在中间的概率是()。
高二数学第13章概率练习题(有答案和解释)
高二数学第13章概率练习题(有答案和解释)1.将一枚质地均匀的硬币向上抛掷10次,其中“正面朝上恰好有5次”是()A.必然事件B.随机事件C.不可能事件D.无法确定解析:选B.“正面朝上恰好有5次”是可能发生也可能不发生的事件,故该事件为随机事件.2.下列事件在R内是必然事件的是()A.|x-1|=0B.x2+1<0C.x+1>0D.(x+1)2=x2+2x+1解析:选D.A、C为随机事件,B为不可能事件.3.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为()A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品解析:选B.至少有2件次品包含2,3,4,5,6,7,8,9,10件.共9种结果,故它的对立事件为含有1或0件次品,即至多有1件次品.4.在掷一颗骰子观察点数的试验中,若令A={2,4,6},则用语言叙述事件A对应的含义为__________________.解析:观察事件A的特点.答案:掷出的点数为偶数一、选择题1.在10件同类产品中,有8件是正品,2件是次品,从中任意抽出3件的不可能事件是()A.3件都是正品B.至少有一件是次品C.3件都是次品D.至少有一件是正品解析:选C.10件同类产品中只有2件次品,取3件产品中都是次品是不可能的.2.从6个男生,2个女生中任选3人,则下列事件中必然事件是() A.3个都是男生B.至少有1个男生C.3个都是女生D.至少有1个女生解析:选B.由于女生只有2人,而现在选择3人,故至少要有1个男生参选.3.下列命题:①集合{x||x|<0}为空集是必然事件;②若y=f(x)是奇函数,则f(x)=0是随机事件;③若loga(x-1)>0,则x>1是必然事件;④对顶角不相等是不可能事件,其中正确的有()A.0个B.1个C.2个D.3个解析:选D.∵|x|≥0恒成立,∴①正确;∵函数y=f(x)只有当x=0有意义时,才有f(0)=0,∴②正确;∵当底数a与真数x-1在相同区间(0,1)或相同区间(1,+∞)时,loga(x-1)>0才成立,∴③是随机事件,即③错误;∵对顶角相等是必然事件,∴④正确.4.A、B是互斥事件,Ω\A、Ω\B分别是A、B的对立事件,则A、B的关系是()A.一定互斥B.一定不互斥C.不一定互斥D.与A∪B彼此互斥解析:选C.如图A、B互斥,但Ω\A、Ω\B不一定互斥.5.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个黑球”与“都是黑球”B.“至少有1个黑球”与“至少有1个红球”C.“恰有1个黑球”与“恰有2个黑球”D.“至少有1个黑球”与“都是红球”解析:选C.“恰有1个黑球”与“恰有2个黑球”不能同时发生,因而互斥,而当这两个事件均不发生时,“没有黑球”这一事件发生,因而这两个事件不对立.故选C.6.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是()A.①B.②④C.③D.①③解析:选C.从1~9中任取两数,有以下三种情况:(1)两个均为奇数;(2)两个均为偶数;(3)一个奇数和一个偶数,故选C.二、填空题7.“从盛有3个排球,2个足球的筐子里任取一球,取得排球”的事件中,一次试验是指__________,试验结果是指____________________.解析:从实际意义出发进行推理.答案:取出一球得到一排球或者一足球8.下列事件:①明天进行的某场足球赛的比分是3∶1;②下周一某地的最高气温与最低气温相差10℃;③同时掷两枚大小相同的骰子,向上一面的两个点数之和不小于2;④射击一次,命中靶心;⑤当x 为实数时,x2+4x+4<0.其中必然事件有________,不可能事件有________,随机事件有________(填序号).解析:根据随机事件、不可能事件、必然事件的定义可判断.答案:③⑤①②④9.在200件产品中,有192件一级品,8件二级品,则下列事件:①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是二级品;④在这200件产品中任意选出9件,其中不是一级品的件数小于10;其中________是必然事件;________是不可能事件;________是随机事件.解析:200件产品中,8件是二级品,现从中任意选出9件,当然不可能全是二级品,不是一级品的件数最多为8,小于10.答案:③④②①三、解答题10.在投掷骰子试验中,根据向上的点数可以定义许多事件,如:A={出现1点},B={出现3点或5点},C={出现的点数为奇数},D={出现的点数为偶数},E={出现的点数为3的倍数}.试说明以上6个事件的关系,并求两两运算的结果.解:在投掷骰子的试验中,根据向上出现的点数有6种:1点,2点,3点,4点,5点,6点.它们构成6个事件,Ai={出现点数为i}(其中i=1,2,…,6).则A=A1,B=A3∪A5,C=A1∪A3∪A5,D=A2∪A4∪A6,E=A3∪A6.则(1)事件A与B是互斥但不对立事件,事件A包含于C,事件A与D 是互斥但不对立事件,事件A与E是互斥但不对立事件;事件B包含于C,事件B与D是互斥但不对立事件,事件B与E既不互斥也不对立,C与D是对立事件,C与E、D与E既不是互斥事件,也不是对立事件.(2)A∩B=∅,A∪B=C={出现点数为1,3或者5};A∩C=A1,A∪C=C ={出现点数为1,3或者5};A∩D=∅,A∪D={出现点数为1,2,4或者6},A∩E=∅,A∪E={出现点数为1,3或者6};B∩C=B,B∪C=C={出现点数为1,3或者5};B∩D=∅,B∪D={出现点数为2,3,4,5或者6};B∩E ={出现点数为3},B∪E={出现点数为3,5或者6};C∩D=∅,C∪D=S{S表示必然事件};C∩E={出现点数为3},C∪E=C={出现点数为1,3,5或者6};D∩E=A6,D∪E={出现点数为2,3,4或者6}.11.判断下列说法是否正确,并说明原因:(1)将一枚硬币抛掷两次,设事件A:“两次都出现正面”,事件B:“两次都出现反面”,则事件A与B是互斥事件;(2)在10件产品中有3件是次品,从中取3件.事件A:“所取3件中最多有2件是次品”,事件B:“所取3件中至少有2件是次品”,则事件A与B是互斥事件.解:(1)是互斥事件.因为这两个事件在一次试验中不会同时发生.(2)不是互斥事件,因为事件A包括三种情况:2件次品1件正品,1件次品2件正品,3件正品;事件B包含两种情况:2件次品1件正品,3件次品.从而事件A、B可以同时发生,故不互斥.12.某城市有甲、乙两种报纸供居民们订阅,记事件A为“只订甲报”,事件B为“至少订一种报”,事件C为“至多订一种报”,事件D为“不订甲报”,事件E为“一种报也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.(1)A与C;(2)B与E;(3)B与D;(4)B与C;(5)C与E.解:(1)由于事件C“至多订一种报”中有可能“只订甲报”,即事件A与事件C有可能同时发生,故A与C不是互斥事件.(2)事件B“至少订一种报”与事件E“一种报也不订”是不可能同时发生的,故B与E是互斥事件.且B和E必有一个发生,故B与E也是对立事件.(3)事件B“至少订一种报”中有可能“只订乙报”,即有可能“不订甲报”,即事件B发生,事件D也可能发生,故B与D不互斥.(4)事件B“至少订一种报”中有这些可能:“只订甲报”、“只订乙报”、“订甲、乙两种报”;事件C“至多订一种报”中有这些可能:“一种报也不订”、“只订甲报”、“只订乙报”.由于这两个事件可能同时发生,故B与C不是互斥事件.(5)由(4)的分析,事件E“一种报也不订”只是事件C的一种可能,故事件C与事件E有可能同时发生,故C与E不互斥.。
高二数学概率试题
高二数学概率试题1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2B.n=4,p=0.4C.n=5,p=.32D.n=7,p=0.45【答案】A【解析】由二项分布的均值和方差得,解的【考点】二项分布的均值和方差.2.某校举行综合知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有6次答题的机会,选手累计答对4题或答错3题即终止其初赛的比赛,答对4题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题连续两次答错的概率为(已知甲回答每道题的正确率相同,并且相互之间没有影响).(Ⅰ)求选手甲回答一个问题的正确率;(Ⅱ)求选手甲可以进入决赛的概率.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】解题思路:(Ⅰ)利用对立事件的概率求解;(Ⅱ)利用相互独立事件同时发生的概率公式求解(Ⅲ)利用二项分布的概率公式和互斥事件的概率公式求解.规律总结:涉及概率的求法,要掌握好基本的概率模型,正确判断概率类型,合理选择概率公式. 试题解析:(1)(Ⅰ)设选手甲答对一个问题的正确率为,则故选手甲回答一个问题的正确率(Ⅱ)选手甲答了4道题进入决赛的概率为;(Ⅲ)选手甲答了5道题进入决赛的概率为;选手甲答了6道题进入决赛的概率为;故选手甲可进入决赛的概率.【考点】1.互斥事件与对立事件;2.二项分布.3.将二颗骰子各掷一次,设事件A=“二个点数不相同”,B=“至少出现一个6点”,则概率等于()A.B.C.D.【答案】A【解析】由条件概率计算公式:,,要求点数至少含有6且点数不同,含有6有11中,而其中相同的就一种,故,【考点】条件概率的计算.4.为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:已知在全班48人中随机抽取1人,抽到关注NBA 的学生的概率为2/3 ⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA 与性别有关?⑵现从女生中抽取2人进一步调查,设其中关注NBA 的女生人数为X ,求X 的分布列与数学期望. 附:,其中【答案】(1)关注NBA 与性别有关;(2)分布列(略),E (X )=1.【解析】(1)本小题独立性检测的应用,本小题的关键是计算出的观测值,和对应的临界值,根据关注NBA 的学生的概率为,可知关注NBA 的学生为32(估计值).根据条件填满表格,然后计算出,并判断其与的大小关系,得出结论.(2)对于分布列问题:首先应弄清随机变量是谁以及随机变量的取值范围,然后就是每个随机变量下概率的取值,最后列表计算期望. 试题解析:(1)将列联表补充完整有:由,计算可得4分因此,在犯错的概率不超过0.05的前提下认为学生关注NBA 与性别有关,即有把握认为关注NBA 与性别有关 6分 (2)由题意可知,X 的取值为0,1,2,,,9分所以X 的分布列为)=1. 12分【考点】(1)独立性检测应用;(2)随机变量的分布列与期望.5.实验北校举行运动会,组委会招墓了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10 人和6人喜爱运动,其余不喜爱.(1)根据以上数据完成以下列联表:(2)根据列联表的独立性检验,有多大的把握认为性别与喜爱运动有关?(3)从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各选1人,求其中不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取的概率.参考公式:(其中)没有关联90%95%99%【答案】(1)见解析;(2)性别与喜爱运动没有关联;(3).【解析】(1)独立性检验关键是计算出,并同概率表作对比,选择适合的临界值,得出是否具有相关性结论;(2)古典概型概率的计算,间接法:“1”减去既没有甲乙的概率.试题解析:(1)由已知得:喜爱运动不喜爱运动总计(2)由已知得:,则:(选择第一个).则:性别与喜爱运动没有关联. 8分(3)记不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取为事件A,由已知得:从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各抽取1人共有种方法,其中不喜爱运动的女生甲及喜爱运动的女生乙没有一人被选取的共有种方法,则:12分【考点】(1)独立性检测;(2)古典概型.6.一个口袋中装有大小形状完全相同的红色球个、黄色球个、蓝色球个.现进行从口袋中摸球的游戏:摸到红球得分、摸到黄球得分、摸到蓝球得分.若从这个口袋中随机地摸出个球,恰有一个是黄色球的概率是.⑴求的值;⑵从口袋中随机摸出个球,设表示所摸球的得分之和,求的分布列和数学期望.【答案】(1),(2)的分布列为:.【解析】(1)本小题为古典概型,基本事件的种数为:,事件:从口袋中随机地摸出个球,有一个是黄色球的方法数为:,即可构建关于的方程;(2)易知取值为,利用古典概型概率公式,易求的每个取值对应的概率,从而可列出分布列,并求出数学期望.试题解析:⑴由题意有,即,解得;⑵取值为.则,,,,的分布列为:故.【考点】古典概型概率公式,分布列,数学期望公式.7.设随机变量服从,则的值是()A.B.C.D.【答案】A【解析】因为随机变量服从,所以,故选A.【考点】二项分布.8.某学校从4名男生和2名女生中任选3人作为参加上海世博会的志愿者,设随机变量X表示所选3人中女生的人数,则P(X≥1)=________.【答案】【解析】P(X≥1)=P(X=1)+P(X=2)=+=9.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【答案】(1)76.4 (2)0.7【解析】解:(Ⅰ).(Ⅱ)(i)这100天的平均利润为(ii) 销量为16枝时,利润为75元,故当天的利润不少于75元的概率为【考点】函数与概率点评:主要是考查了分段函数与均值以及概率的求解,属于中档题。
高二数学概率练习题及答案2023
高二数学概率练习题及答案2023一、选择题(每题4分,共40分)1. 某班级有30名男生和40名女生,从中随机选择一位学生,男生和女生被选择的概率分别为()。
A. 3/7, 4/7B. 1/3, 2/3C. 3/8, 4/7D. 4/7, 3/72. 抛掷一枚公正的骰子,事件A:"点数是奇数",事件B:"点数大于2",则事件A和事件B的交集为()。
A. {3, 5}B. {1, 3, 5}C. {2, 4, 6}D. {1, 2, 3, 4, 5, 6}3. 从字母A、B、C中顺序地任选一个字母写下,则不同字母组成的三位数有()个。
A. 5B. 6C. 7D. 84. 某班有男生和女生各20人,从中任选5名学生参与活动,已知其中一名学生是男生的概率为1/4,求这5名学生全为女生的概率。
()A. 1/283B. 1/893C. 1/156D. 1/835. 已知A、B、C三个事件两两独立,且P(A) = 1/5,P(B) = 1/4,P(C) = 1/2,则P(至少发生一个事件) = ()。
A. 13/20B. 17/20C. 7/20D. 3/206. 某种花卉中,红色花卉占总数的1/4,蓝色花卉占总数的1/3,而紫色花卉占总数的1/6。
如果从这些花卉中随机摘取一只,那么摘到红色或蓝色花卉的概率是()。
A. 1/2B. 2/3C. 7/12D. 5/127. 一副标准扑克牌中红心牌有26张,从中任选一张牌,若抽到红心牌或者方块牌,则抽到A的概率是()。
A. 1/13B. 1/52C. 1/26D. 1/48. 在一个有25名学生的班级中,9人参加了篮球比赛,从中任选1名学生评为最有价值球员的概率是()。
A. 9/25B. 1/3C. 3/5D. 4/99. 在一个数列中,每个数都是从1到5的整数,选取一个数的概率是1/5,选取的数若大于等于4,则该数列的概率是()。
2022-2023学年北师大版高二下数学:概率(附答案解析)
2022-2023学年北师大版高二下数学:概率一.选择题(共8小题)1.(2021秋•宜昌期中)某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.55,“抽到二等品”的概率为0.2,则“抽到不合格品”的概率为()A.0.8B.0.75C.0.45D.0.25 2.(2021秋•常州期中)某个班级有55名学生,其中男生35名,女生20名,男生中有20名团员,女生中有12名团员.在该班中随机选取一名学生,如果选到的是团员,那么选到的是男生的概率为()A .B .C .D .3.(2021秋•沙市区校级期中)先后抛掷两枚骰子,甲表示事件“第一次掷出正面向上的点数是1”,乙表示事件“第二次掷出正面向上的点数是2”,丙表示事件“两次掷出的点数之和是7”,丁表示事件“两次掷出的点数之和是8”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丁相互独立D.丙与丁相互独立4.(2021秋•浙江期中)不透明的口袋内装有红色、绿色和蓝色小球各2个,一次任意摸出2个小球,则与事件“2个小球都为红色”互斥而不对立的事件有()A.2个小球不全为红色B.2个小球恰有一个红色C.2个小球至少有一个红色D.2个小球不全为绿色5.(2021秋•仁寿县期中)先后抛掷一颗骰子两次,落在水平桌面后,记正面朝上的点数分别为x,y,事件A为:x+y为偶数,事件B为:xy为奇数,则概率P(B|A)=()A .B .C .D .6.(2021秋•河南期中)如图所示,阴影部分由六个全等的三角形组成,每个三角形是底边为圆的半径,顶角为120°的等腰三角形,若在圆内随机取一点,则该点落到阴影部分内的概率为()第1页(共18页)。
高二数学概率综合试题答案及解析
高二数学概率综合试题答案及解析1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则()A.n=5,p=0.32B.n=4,p=0.4C.n=8,p=0.2D.n=7,p=0.45【答案】C【解析】因为随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,所以.【考点】随机变量的期望方差.2.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽一张,已知第一次抽到A,则第二次也抽到A的概率为_________ .【答案】.【解析】由于第一次抽到A,则第二次抽牌时,还有3张A,共51张牌,而每张牌被抽到的概率是相等的,故第二次也抽到A的概率为.【考点】相互独立事件的概率乘法公式.3.抛掷一个骰子,若掷出5点或6点就说试验成功,则在3次试验中恰有2次成功的概率为__________。
【答案】【解析】抛掷一个骰子,若掷出5点或6点就说试验成功,则成功的概率为,则在3次试验中恰有2次成功的概率为。
【考点】等可能事件的概率4.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:喜爱打篮球不喜爱打篮球合计已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为.(1)请将上表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;下面的临界值表供参考:(参考公式:,其中)【答案】(1)详见解析;(2)在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.【解析】(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为,可得喜爱打篮球的学生,即可得到列联表;(2)利用公式求得K2,与临界值比较,即可得到结论.试题解析:列联表补充如下: 3分喜爱打篮球不喜爱打篮球合计(2)∵∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关. 12分【考点】独立性检验..5.某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为,中将可以获得2分;方案乙的中奖率为,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?【答案】(1)(2)选择方案甲进行抽奖时,累计得分的数学期望最大【解析】解:(Ⅰ)由已知得:小明中奖的概率为,小红中奖的概率为,两人中奖与否互不影响,记“这2人的累计得分”的事件为A,则A事件的对立事件为“”,,这两人的累计得分的概率为. 6分(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为,都选择方案乙抽奖中奖的次数为,则这两人选择方案甲抽奖累计得分的数学期望为,选择方案乙抽奖累计得分的数学期望为由已知:,,,他们都在选择方案甲进行抽奖时,累计得分的数学期望最大. 12分【考点】独立事件的概率以及期望点评:主要是考查了独立事件的概率以及期望值的运用,属于中档题。
高二数学概率试题
高二数学概率试题1.如图,用三类不同的元件连成一个系统.当正常工作且至少有一个正常工作时,系统正常工作.已知正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为A.0.960B.0.864C.0.720D.0.576【答案】B【解析】系统正常工作当①正常工作,不能正常工作,②正常工作,不能正常工作,③正常工作,因此概率.【考点】独立事件的概率.2.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2B.n=4,p=0.4C.n=5,p=.32D.n=7,p=0.45【答案】A【解析】由二项分布的均值和方差得,解的【考点】二项分布的均值和方差.3.设服从二项分布X~B(n,p)的随机变量X的均值与方差分别是15和,则n、p的值分别是()A.50,B.60,C.50,D.60,【答案】B【解析】由二项分布X~B(n,p)的均值与方差可知E(X)=np=15,D(X)=np(1-p)=,解得n=60,p=,所以答案为B.【考点】二项分布X~B(n,p)的均值与方差4.投两枚均匀的骰子,已知点数不同,则至少有一个是6点的概率为______.【答案】.【解析】设“投两枚均匀的骰子,点数不同”为事件A,“至少有一个是6点”为事件B,则;,.【考点】条件概率.5.中国2010年上海世博会已于2010年5月1日在上海隆重开馆.小王某天乘火车从重庆到上海去参观世博会,若当天从重庆到上海的三列火车正点到达的概率分别为0.8、0.7、0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率【答案】(1)0.398;(2)0.994.【解析】解题思路:(1)利用相互独立事件同时发生的概率公式求解即可;(2)正面情况较多,考虑反面情况即可.规律总结:若A,B相互独立,则也相互独立;对事件包含的情况分类要不重不漏,对于“至少”、“至多”,可以考虑事件的对立事件.试题解析:用、、分别表示这三列火车正点到达的事件.则所以(1)恰好有两列正点到达的概率为(2)三列火车至少有一列正点到达的概率为.【考点】相互独立事件同时发生的概率.6.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为,乙击中敌机的概率为,敌机被击中的概率为( )A.B.C.D.【答案】C【解析】设甲击中敌机为事件,乙击中敌机为事件.方法一(直接法):击中敌机分3种:甲中乙中,甲中乙不中,甲不中乙中,即;方法二(间接法):.【考点】独立事件概率的计算.7.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列和数学期望【答案】(1);(2);(3)分布列(略),.【解析】(1)4个球均为黑球,即从甲、乙中取出的2个球均为黑球,由于甲、乙相互独立,因此概率为甲中取出黑球的概率与乙中取出黑球概率的乘积;(2)取出4球中恰有1个红球,分两类计算:一类红球来至于甲,二类红球来至于乙;(3)红球个数可能取值为0,1,2,3,注意分别对应概率的计算.试题解析:(1)设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且,. 2分故取出的4个球均为黑球的概率为. 4分(2)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.则,. 6分由于事件互斥,故取出的4个球中恰有1个红球的概率为. 8分(3)可能的取值为.由(1),(2)得,,.从而.的分布列为的数学期望. 12分【考点】组合与概率综合应用.8.高二年级的一个研究性学习小组在网上查知,某珍贵植物种子在一定条件下发芽成功的概率为,该研究性学习小组又分成两个小组进行验证性实验.(1)第1组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则将继续进行下次实验,直到种子发芽成功为止,但发芽实验的次数最多不超过5次,求第二小组所做种子发芽实验的次数的概率分布列和期望.【答案】(1);(2).【解析】(1)由题设条件知,种下5粒种子至少有3次成功的概率相当于5次独立重复试验中恰好发三次、四次、五次的概率.至少有3次成功的概率等于3次、4次、5次发芽成功的概率之和.(2)ξ的所有可能值为0,1,2,3,4,5分别求其概率,列出分布列,再求期望即可.解:(1)至少有3次发芽成功,即有3次、4次、5次发芽成功,所以所求概率(2)的概率分布列为X12345所以.【考点】1. n次独立重复试验;2. 离散型随机变量的分布列、期望.9.在打靶训练中,某战士射击一次的成绩在9环(包括9环)以上的概率是0.18,在8~9环(包括8环)的概率是0.51,在7~8环(包括7环)的概率是0.15,在6~7环(包括6环)的概率是0.09.计算该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率和该战士打靶及格(及格指6环以上包括6环)的概率.【答案】该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率为0.69;及格的概率为0.93.【解析】射击的成绩是互斥事件,根据互斥事件的概率加法公式即可求得结果.试题解析:分别记该战士的打靶成绩在9分以上、在8~9分、在7~8分、在6~7分分别为事件B、C、D、E,这4个事件是彼此互斥的,根据互斥事件的概率加法公式,该战士的打靶成绩在8分以上的概率是P(B C)=P(B)+P(C)=0.18+0.51=0.69. 5分该战士打靶及格的概率,即成绩在6分以上的概率,由公式得P(B C D E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93. 8分【考点】互斥与对立事件、概率问题.10.甲乙丙三位同学独立的解决同一个问题,已知三位同学能够正确解决这个问题的概率分别为、、,则有人能够解决这个问题的概率为A.B.C.D.【答案】B【解析】此题没有被解答的概率为,故能够将此题解答出的概率为。
【必刷题】2024高二数学下册概率与统计初步专项专题训练(含答案)
【必刷题】2024高二数学下册概率与统计初步专项专题训练(含答案)试题部分一、选择题:1. 已知一组数据的方差是9,那么这组数据的标准差是()A. 3B. 9C. 3²D. 1/32. 下列哪个图形能够表示一个离散型随机变量X的概率分布()A. 直方图B. 折线图C. 散点图D. 条形图3. 抛掷一枚质地均匀的骰子两次,求至少有一次出现6点的概率是()A. 1/6B. 1/3C. 5/6D. 2/34. 已知随机变量X的分布列为:X=1,2,3,P(X=x)=1/4,1/2,1/4,则E(X)的值是()A. 1B. 2C. 3D. 2.55. 在一组数据中,众数为10,中位数为12,则这组数据的平均数可能是()A. 10B. 11C. 12D. 136. 一个袋子里有5个红球,3个蓝球,2个绿球,随机取出两个球,求取出的两个球颜色相同的概率是()A. 7/15B. 8/15C. 9/15D. 10/157. 已知随机变量X服从二项分布,且P(X=0)=0.16,P(X=1)=0.32,则P(X=2)的值是()A. 0.16B. 0.24C. 0.32D. 0.488. 下列关于正态分布的说法,错误的是()A. 正态分布是一种连续分布B. 正态分布的曲线关于x=0对称C. 正态分布的参数μ表示分布的均值D. 正态分布的参数σ越大,分布曲线越扁平9. 从一批产品中随机抽取10件,其中有3件次品,那么这批产品的次品率p的矩估计值是()A. 0.3B. 0.25C. 0.2D. 0.110. 已知一组数据的平均数为50,标准差为5,那么这组数据中至少有()个数据在45和55之间。
A. 50%B. 68%C. 95%D. 99%二、判断题:1. 随机变量X的期望值E(X)一定等于X的平均值。
()2. 在一个离散型随机变量的分布中,每个概率值都必须大于0。
()3. 二项分布的概率质量函数是单峰的。
高二数学概率试题
高二数学概率试题1.设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。
【答案】(Ⅰ)0.5;(Ⅱ)0.8;(Ⅲ)分布列为,期望为2.4【解析】(Ⅰ)进入商场的1位顾客购买甲、乙两种商品中的一种这一事件指的是买甲商品不买乙商品或买乙商品不买甲商品,概率为;(Ⅱ)进入商场的1位顾客至少购买甲、乙两种商品中的一种这一事件的对立事件是一种也不买,因此概率为;(Ⅲ)由(Ⅱ)可知服从二项分布即,所以,期望为.试题解析:记表示事件:进入商场的1位顾客购买甲种商品,记表示事件:进入商场的1位顾客购买乙种商品,记表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,记表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种,(Ⅰ)(Ⅱ)(Ⅲ),故的分布列的分布列为:0123P所以【考点】概率分布列2.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2B.n=4,p=0.4C.n=5,p=.32D.n=7,p=0.45【解析】由二项分布的均值和方差得,解的【考点】二项分布的均值和方差.3.将三颗骰子各掷一次,设事件A为“三个点数都不相同”,事件B为“至少出现一个6点”,则概率P(A|B)的值为A. B. C. D.【答案】A【解析】,由于,,因此【考点】条件概率的应用.4.有二种产品,合格率分别为0.90,0.95,各取一件进行检验,恰有一件不合格的概率为()A.0.45B.0.14C.0.014D.0.045【答案】B【解析】恰有一件不合格包含两种情况,第一种产品合格且第二种产品不合格或第一种产品不合格且第二种产品合格,所以概率为0.90×(1-0.95)+(1-0.90)×0.95=0.14,答案为B.【考点】事件的概率的计算5.设服从二项分布X~B(n,p)的随机变量X的均值与方差分别是15和,则n、p的值分别是()A.50,B.60,C.50,D.60,【答案】B【解析】由二项分布X~B(n,p)的均值与方差可知E(X)=np=15,D(X)=np(1-p)=,解得n=60,p=,所以答案为B.【考点】二项分布X~B(n,p)的均值与方差6.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复,则填入A方格的数字大于B方格的数字的概率为_________ .【答案】【解析】所有的不同填法有钟,填入A方格的数字大于B方格的数字的不同填法有种,因此所求概率为,答案为.【考点】计数原理与古典概型的概率计算7.已知随机变量服从正态分布N(2,σ2),且P(<4)=0.8,则P(0<<2)=( ) A.0.6B.0.4C.0.3D.0.2【解析】由P(<4)=0.8得P(>4)=1-0.8=0.2,则P(<0)=0.2, P(0<<2)=(0.8-0.2)/2=0.3,答案选C.【考点】正态分布8.春节期间,某商场决定从3种服装、2种家电、3种日用品中,选出3种商品进行促销活动。
高2数学试题概率及答案
高2数学试题概率及答案一、选择题(每题3分,共15分)1. 一个袋子里有5个红球和3个蓝球,随机取出一个球,下列哪个概率是正确的?A. 取出红球的概率是1/3B. 取出蓝球的概率是1/2C. 取出红球的概率是5/8D. 取出蓝球的概率是3/82. 抛一枚公正的硬币两次,下列哪个事件的概率是1/4?A. 两次都是正面B. 两次都是反面C. 至少一次是正面D. 至少一次是反面3. 一个班级有30个学生,其中10个是男生,20个是女生。
随机选择一个学生,下列哪个概率是正确的?A. 选择男生的概率是1/3B. 选择女生的概率是2/5C. 选择男生的概率是1/2D. 选择女生的概率是3/54. 一个骰子有6个面,每个面出现的概率相等。
投掷一次骰子,下列哪个事件的概率是1/6?A. 得到1点B. 得到2点C. 得到3点D. 所有选项都是1/65. 一个盒子里有3个白球和2个黑球,随机取出两个球,下列哪个组合的概率是1/5?A. 两个都是白球B. 两个都是黑球C. 一个白球和一个黑球D. 没有可能的组合二、填空题(每题2分,共10分)6. 如果一个事件的概率是0.6,那么它的对立事件的概率是________。
7. 一个袋子里有7个球,其中2个是红球,5个是蓝球。
如果随机取出一个球,再放回去,然后再取出一个球,两次取出的都是红球的概率是________。
8. 抛一枚公正的硬币三次,至少出现一次正面的概率是________。
9. 一个袋子里有4个白球和6个黑球,随机取出3个球,取出的球都是同一种颜色的概率是________。
10. 如果一个事件的概率是p,那么它的必然事件的概率是________。
三、解答题(每题5分,共20分)11. 一个袋子里有10个球,其中4个是红球,6个是蓝球。
求以下事件的概率:- 随机取出一个球,是红球的概率。
- 随机取出两个球,两个都是红球的概率。
12. 一个班级有50个学生,其中25个是男生,25个是女生。
高二数学概率试题
高二数学概率试题1.奖器有个小球,其中个小球上标有数字,个小球上标有数字,现摇出个小球,规定所得奖金(元)为这个小球上记号之和,求此次摇奖获得奖金数额的数学期望【答案】此次摇奖获得奖金数额的数字期望是元【解析】解:设此次摇奖的奖金数额为元,当摇出的个小球均标有数字时,;当摇出的个小球中有个标有数字,1个标有数字时,;当摇出的个小球有个标有数字,个标有数字时,。
所以,答:此次摇奖获得奖金数额的数字期望是元【考点】本题主要考查离散型随机变量的均值与方差。
点评:基础题,注意明确随机变量的取值情况,关键是各种取值情况下概率的计算。
2.某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为,数学为,英语为,问一次考试中(Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少【答案】(Ⅰ)三科成绩均未获得第一名的概率是(Ⅱ)恰有一科成绩未获得第一名的概率是【解析】解:分别记该生语、数、英考试成绩排名全班第一的事件为,则(Ⅰ)答:三科成绩均未获得第一名的概率是(Ⅱ)()答:恰有一科成绩未获得第一名的概率是【考点】本题主要考查离散型随机变量的概率计算。
点评:注意事件的相互独立性,利用公式加以计算。
3.从装有3个红球,2个白球的袋中随机取出2个球,设其中有个红球,则得分布列是___________________________________.【答案】【解析】当2球全为红球时=0.3,当2球全为白球时=0.1,当1红、1白=0.6.所以分布列为:【考点】本题主要考查离散型随机变量及其分布列点评:基础题,利用简单排列组合知识,确定分布列。
4.从一副扑克(无王)中随意抽取5张,求其中黑桃张数的概率分布是______.【解析】总的事件数为,随意抽取5张,其中黑桃张数的可能取值为0,1,2,3,4,5。
所以P(0)= ,P(1)=,P(2)= ,P(3)= ,P(4)= ,P(5)= 。
人教版高中数学必修第二册第五单元《概率》测试(包含答案解析)
一、选择题1.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.8,在目标被击中的条件下,甲、乙同时击中目标的概率为( ) A .2144B .1223C .1225D .21112.斐波那契数列(Fibonacci sequence )又称黄金分割数列,因为数学家昂纳多斐波那契以兔子繁殖为例子引入,故又称为“兔子数列”,在数学上斐波那契数列被以下递推方法定义:数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,现从该数列的前10项中随机的抽取一项,则该数除以3余数为1的概率为( ) A .18B .14C .38D .123.如图,已知电路中4个开关闭合的概率都是12,且是互相独立的,灯亮的概率为( )A .316B .34C .1316D .144.设两个独立事件A 和B 同时不发生的概率是p ,A 发生B 不发生与A 不发生B 发生的概率相同,则事件A 发生的概率为( ) A .2pB .2p C .1p D .12p 5.设A ,B ,C 是三个事件,给出下列四个事件:(Ⅰ)A ,B ,C 中至少有一个发生; (Ⅱ)A ,B ,C 中最多有一个发生; (Ⅲ)A ,B ,C 中至少有两个发生; (Ⅳ)A ,B ,C 最多有两个发生;其中相互为对立事件的是( ) A .Ⅰ和ⅡB .Ⅱ和ⅢC .Ⅲ和ⅣD .Ⅳ和Ⅰ6.从一批产品中取出三件产品,设事件A 为“三件产品全不是次品”,事件B 为“三件产品全是次品”,事件C 为“三件产品不全是次品”,则下列结论正确的是( ) A .事件A 与C 互斥 B .事件B 与C 互斥 C .任何两个事件均互斥D .任何两个事件均不互斥7.甲、乙二人进行围棋比赛,采取“三局两胜制”,已知甲每局取胜的概率为23,则甲获胜的概率为 ( ).A .22213221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .22232233C ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭C .22112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .21112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭8.下列说法正确的是( )A .天气预报说明天下雨的概率为0900,则明天一定会下雨B .不可能事件不是确定事件C .统计中用相关系数r 来衡量两个变量的线性关系的强弱,若[]0.75,1,r ∈则两个变量正相关很强D .某种彩票的中奖率是11000,则买1000张这种彩票一定能中奖 9.一个三位数的百位,十位,个位上的数字依次是,,a b c ,当且仅当a b c b >>且时称为“凹数”,若{},,1234a b c ∈,,,,从这些三位数中任取一个,则它为“凹数”的概率是 A .13B .532C .732D .71210.有3位男生和2位女生在周日去参加社区志愿活动,从该5位同学中任取3人,至少有1名女生的概率为( ) A .110B .25C .35D .91011.甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是45,通过第二项考核的概率是12;乙同学拿到该技能证书的概率是13, 那么甲、乙两人至少有一人拿到该技能证书的概率是( ) A .1315B .1115C .23D .3512.某班级举办投篮比赛,每人投篮两次.若小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为( ) A .0.24B .0.36C .0.6D .0.8413.今年“五一”小长假期间,某博物馆准备举办-次主题展览,为了引导游客有序参观,该博物馆每天分别在10时,13时,16时公布实时观展的人数.下表记录了5月1日至5日的实时观展人数:1日2日3日4日5日10时观展人数3256427245672737235513时观展人数5035653771494693370816时观展人数61006821658048663521通常用实时观展的人数与博物馆的最大承载量(同一时段观展人数的饱和量)之比来表示观展的舒适度,50%以下称为“舒适”,已知该博物馆的最大承载量是1万人.若从5月1日至5日中任选2天,则这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率为()A.12B.25C.35D.34二、解答题14.一个不透明的袋子中装有5个小球,其中有3个红球,2个白球,这些球除颜色外完全相同.(1)记事件A为“一次摸出2个球,摸出的球为一个红球,一个白球”.求()P A;(2)记事件B为“第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,记事件C为“第一次摸出一个球,不放回袋中,再次摸出一个球,两次摸出的球为不同颜色的球”,求证:1()()()5P C P B P A-=.15.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[)50,60,[)60,70,…[]90,100分成5组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的平均数;(3)已知满意度评分值在[)50,60内的男生数与女生数的比为3:2,若在满意度评分值为[)50,60的人中随机抽取2人进行座谈,求恰有1名女生的概率.16.高考改革后,学生除了语数外三门必选外,可在A类科目:物理、化学、生物和B类科目:政治、地理、历史共6个科目中任选3门.(1)求小明同学选A类科目数X的分布列.(2)求小明同学从A类和B类科目中均至少选择1门科目的概率.17.甲、乙两名运动员各投篮一次,甲投中的概率为0.8,乙投中的概率为0.9,求下列事件的概率:(Ⅰ)两人都投中;(Ⅱ)恰好有一人投中;(Ⅲ)至少有一人投中.18.2018年,在《我是演说家》第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,他的视角独特,语言幽默,给观众留下了深刻的印象.某机构为了了解观众对该演讲的喜爱程度,随机调查了观看了该演讲的140名观众,得到如下的列联表:(单位:名)(1)根据以上列联表,问能否在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(精确到0.001)(2)从这60名男观众中按对该演讲是否喜爱采取分层抽样,抽取一个容量为6的样本,然后随机选取两名作跟踪调查,求选到的两名观众都喜爱该演讲的概率.附:临界值表参考公式:22()=)()()()n ad bcKa b c d a c b d(-++++,+n a b c d=++.19.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?20.某校从高一年级的一次月考成绩中随机抽取了50名学生的成绩,这50名学生的成绩都在[50,100]内,按成绩分为[50,60),[60,70),[70,80),[80,90),[90,100]五组,得到如图所示的频率分布直方图.(1)求图中的a值;(2)根据频率分布直方图估计该校高一年级本次考试成绩的中位数;(3)用分层抽样的方法从成绩在[80,100]内的学生中抽取6人,再从这6人中随机抽取2名学生进行调查,求月考成绩在[90,100]内至少有1名学生被抽到的概率.21.某校高二期中考试后,教务处计划对全年级数学成绩进行统计分析,从男、女生中各随机抽取100名学生,分别制成了男生和女生数学成绩的频率分布直方图,如图所示.(1)若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?(2)在(1)中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意任取2人,求至少有1名男生的概率.22.某社区对安全卫生进行问卷调查,请居民对社区安全卫生服务给出评价(问卷中设置仅有满意、不满意).现随机抽取了90名居民,调查情况如下表:男居民女居民合计a 2560满意35(1)利用分层抽样的方法从对安全卫生服务评价为不满意的居民中随机抽取6人,再从这6人中随机抽取2人,求这2人中男、女居民各有1人的概率;(2)试通过计算判断能否在犯错误的概率不超过0.05的情况下认为男居民与女居民对社区安全卫生服务的评价有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.23.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?24.某大学宣传部组织了这样一个游戏项目:甲箱子里面有3个红球,2个白球,乙箱子里面有1个红球,2个白球,这些球除了颜色以外,完全相同.每次游戏需要从这两个箱子里面各随机摸出两个球.(1)设在一次游戏中,摸出红球的个数为X,求X分布列;(2)若在一次游戏中,摸出的红球不少于2个,则获奖.求一次游戏中,获奖的概率. 25.为了解学生“课外阅读日”的活动情况,某校以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样调查,测得阅读时间(单位:分钟)的频数统计图如下:(1)分别估计该校高二年级选修物理和选修历史的人数;(2)估计该校高二年级学生阅读时间在60分钟以上的概率;(3)从样本中阅读时间在6090分钟的选修物理的学生中任选2人,求至少有1人阅读时间在7590之间的概率.26.2020年开始,山东推行全新的高考制度,新高考不再分文理科,采用“3+3”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分,2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行线上检测,下面是100名学生的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)由频率分布直方图;(i)求物理、化学、生物三科总分成绩的中位数;(ii)估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,由频率分布直方图,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中,用分层随机抽样的方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C ,由相互独立事件的概率公式,计算可得目标被击中的概率,进而计算在目标被击中的情况下,甲、乙同时击中目标的概率,可得答案. 【详解】根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C , 则()()()()()1110.610.80.92P C P A P B =-=--⨯-=; 则在目标被击中的情况下,甲、乙同时击中目标的概率为0.60.80.921223P ⨯==. 故选:B. 【点睛】本题考查条件概率的计算,是基础题,注意认清事件之间的关系,结合条件概率的计算公式正确计算即可.属于基础题.2.D解析:D 【分析】写出斐波那契数列的前10项,列举出被3除所得的余数,由概率公式可得答案. 【详解】数列{}n a 满足:121a a ==,()*21Nn n n a a a n ++=+∈,数列的前10项为:1,1,2,3,5,8,13,21,34,55 该数列被3除所得的余数为1,1,2,0,2,2,1,0,1,1 所以10项中共有5项满足除以3余数为1, 故概率为51102P . 故选:D 【点睛】本题考查概率的求法,考查列举法的应用,属于基础题.3.C解析:C【分析】灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开,这三种情况是互斥的,每一种情况中的事件是相互独立的,根据概率公式得到结果. 【详解】由题意知,本题是一个相互独立事件同时发生的概率,灯泡不亮包括四个开关都开,或下边的2个都开,上边的2个中有一个开, 这三种情况是互斥的,每一种情况中的事件是相互独立的,∴灯泡不亮的概率是111111111322222222216111222⨯+⨯⨯⨯+⨯⨯⨯⨯=⨯,灯亮和灯不亮是两个对立事件,∴灯亮的概率是31311616-=, 故选:C . 【点睛】本题结合物理的电路考查了有关概率的知识,考查对立事件的概率和项和对立事件的概率,本题解题的关键是看出事件之间的关系,灯亮的情况比较多,需要从反面来考虑,属于中档题.4.C解析:C 【分析】利用A 发生B 不发生与A 不发生B 发生的概率相同,事件A 和B 同时不发生的概率是p ,建立方程,即可求得事件A 发生的概率. 【详解】根据题意设事件A 发生的概率为a ,事件B 发生的概率为b , 则有(1)(1)(1)(1)a b p a b a b --=⎧⎨-=-⎩①②由②知a b =,代入①得1a =故选:C . 【点睛】本题主要考查相互独立事件的概率的计算,解题的关键是正确理解题意,列出方程,属于中档题.5.B解析:B 【分析】利用互斥事件、对立事件的定义直接求解. 【详解】解:A ,B ,C 是三个事件,给出下列四个事件: (Ⅰ)A ,B ,C 中至少有一个发生;(Ⅱ)A,B,C中最多有一个发生;(Ⅲ)A,B,C中至少有两个发生(Ⅳ)A,B,C最多有两个发生;在A中,Ⅰ和Ⅱ能同时发生,不是互斥事件,故A中的两个事件不能相互为对立事件;在B中,Ⅱ和Ⅲ既不能同时发生,也不能同时不发生,故B中的两个事件相互为对立事件;在C中,Ⅲ和Ⅳ能同时发生,不是互斥事件,故C中的两个事件不能相互为对立事件;在D中,Ⅳ和Ⅰ能同时发生,不是互斥事件,故D中的两个事件不能相互为对立事件.故选:B.【点睛】本题考查相互为对立事件的判断,考查互斥事件、对立事件的定义等基础知识,考查运算求解能力,属于基础题.6.B解析:B【分析】根据互斥事件的定义,逐个判断,即可得出正确选项.【详解】A为三件产品全不是次品,指的是三件产品都是正品,B为三件产品全是次品,C为三件产品不全是次品,它包括一件次品,两件次品,三件全是正品三个事件由此知:A与B是互斥事件;A与C是包含关系,不是互斥事件;B与C是互斥事件,故选B.【点睛】本题主要考查互斥事件定义的应用.7.C解析:C【分析】先确定事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,再利用独立重复试验的概率公式和概率加法公式可求出所求事件的概率.【详解】事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,若甲三局赢两局,则第三局必须是甲赢,前面两局甲赢一局,所求概率为2121233C⎛⎫⋅⋅ ⎪⎝⎭,若前两局都是甲赢,所求概率为223⎛⎫⎪⎝⎭,因此,甲获胜的概率为22112221333C⎛⎫⎛⎫⎛⎫+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C.【点睛】本题考查独立重复事件的概率,考查概率的加法公式,解题时要弄清楚事件所包含的基本情况,考查分类讨论思想,考查计算能力,属于中等题.8.C解析:C 【分析】运用概率的相关知识对四个选项逐一进行分析即可 【详解】对于A ,天气预报说明天下雨的概率为90%,表示下雨的可能性比较大,是不确定事件,在一定条件下可能下雨,也可能不下雨,但明天一定会下雨是不正确的,故错误; 对于B ,根据定义可知不可能事件是确定事件,故错误;对于C ,统计中用相关系数r 来衡量两个变量的线性关系的强弱,若[]0.75,1,r ∈则两个变量正相关很强,故正确; 对于D ,某种彩票的中奖率是11000,每一次买彩票的中奖是独立的,并不是买1000张这种彩票一定能中奖,故错误 故选C 【点睛】本题主要考查了辨别生活中的概率,理解并运用概率知识即可判断,较为基础.9.C解析:C 【解析】 【分析】先分类讨论求出所有的三位数,再求其中的凹数的个数,最后利用古典概型的概率公式求解. 【详解】先求所有的三位数,个位有4种排法,十位有4种排法,百位有4种排法,所以共有44464⨯⨯=个三位数.再求其中的凹数,第一类:凹数中有三个不同的数,把最小的放在中间,共有3428C ⨯=种,第二类,凹数中有两个不同的数,将小的放在中间即可,共有2416C ⨯=种方法,所以共有凹数8+6=14个, 由古典概型的概率公式得P=1476432=. 故答案为:C 【点睛】本题主要考查排列组合的运用,考查古典概型的概率,意在考查学生对这些知识的掌握水平和分析推理能力.10.D解析:D 【分析】将3位男生分别记为A 、B 、C ,2位女生分别记为a 、b ,列举出所有的基本事件,并确定事件“从这5位同学中任取3人,至少有1名女生”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】将3位男生分别记为A 、B 、C ,2位女生分别记为a 、b ,从这5位同学中任取3人,所有的基本事件有:ABC 、ABa 、ABb 、ACa 、ACb 、Aab 、BCa 、BCb 、Bab 、Cab ,共10种,其中,事件“从这5位同学中任取3人,至少有1名女生”包含的基本事件有:ABa 、ABb 、ACa 、ACb 、Aab 、BCa 、BCb 、Bab 、Cab ,共9种,因此,所求概率为910P =. 故选:D. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)列举法; (2)列表法; (3)树状图法; (4)排列、组合数的应用.11.D解析:D 【分析】由已知先求得甲取得证书的概率,再求得甲,乙两人都取不到证书的概率,由对立事件的概率公式可得选项. 【详解】由已知得甲拿到该技能证书的概率为412525⨯=,则甲,乙两人都没有拿到证书的概率为:21211535⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以甲、乙两人至少有一人拿到该技能证书的概率是23155-=, 故选:D. 【点睛】方法点睛:在解决含有“至少”,“至多”等一类问题的概率问题时,正面求解时情况较复杂,可以求其对立事件的概率,再用1减去所求的对立事件的概率,就是所求的概率.12.D解析:D 【分析】先求出对立事件:一次都未投中的概率,然后可得结论. 【详解】由题意小明每次投篮不中的概率是10.60.4-=,再次投篮都不中的概率是20.40.16=,∴他再次投篮至少投中一次的概率为10.160.84-=.故选:D.【点睛】本题考查相互独立事件同时发生的概率公式,在出现至少、至多等词语时,可先求其对立事件的概率,然后由对立事件概率公式得出结论.13.C解析:C【分析】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,从5月1日至5日中任选2天,基本事件总数2510n C==,这2天中,恰有1天这3个时刻的观展舒适度都是"舒适"包含的基本事件个数11236m C C==,由此能求出这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率.【详解】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,分别为5月4日和5月5日,从5月1日至5日中任选2天,基本事件总数2510n C==,这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”包含的基本事件个数11 236m C C==,所以这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率63105mPn===.故选:C【点睛】本题主要考查了概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于基础题.二、解答题14.(1)35;(2)证明见解析.【分析】(1)列举出从袋中一次摸出2个球的所有基本事件,找出其中满足事件A的基本事件有6个,即可求解()P A;(2)同样列举出从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件B的基本事件;同理列举出从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件,找出其中满足事件C的基本事件,即可计算出1()()()5P C P B P A-=.【详解】解:(1)记这3个红球为123,,a a a ,2个白球记为12,b b ,则从袋中一次摸出2个球的所有基本事件为:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()23,a a ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()12,b b 共10个,其中满足事件A 的基本事件有6个,所以()63105P A ==. (2)从袋中第一次摸出一个球,记下颜色后将它放回袋中,再次摸出一个球的所有基本事件为()11,a a ,()12,a a ,()13,a a ,()11,a b ,()12,a b ,()21,a a ,()22,a a ,()23,a a ,()21,a b ,()22,a b ,()31,a a ,()32,a a ,()33,a a ,()31,a b ,()32,a b ,()11,b a ,()12,b a ,()13,b a ,()11,b b ,()12,b b ,()21,b a ,()22,b a ,()23,b a ,()21,b b ,()22,b b 共25个,满足事件B 的基本事件有12个,所以()1225P B =. 从袋中第一次摸出一个球,不放回袋中,再次摸出一个球的所有基本事件为()12,a a ,()13,a a ,()11,a b ,()12,a b ,()21,a a ,()23,a a ,()21,a b ,()22,a b ,()31,a a ,()32,a a ,()31,a b ,()32,a b ,()11,b a ,()12,b a ,()13,b a ,()12,b b ,()21,b a ,()22,b a ,()23,b a ,()21,b b 共20个,满足事件C 的基本事件有12个,所以()123205P C ==. 因此:()()312352525P C P B -=-=, 又()35P A =,所以()()()15P C P B P A -=. 【点晴】方法点晴:等可能事件概率一般用列举法列举出所有基本事件,找出满足所求事件的基本事件个数,直接用公式求得概率. 15.(1)0.01;(2)77;(3)35. 【分析】(1)由各组的频率和为1,列方程可求出x 的值; (2)由平均数的公式直接求解即可;(3)先计算满意度评分值在[)50,60内有1000.005105⨯⨯=人,按比例男生3人女生2人,从5人中选2人,用列举法列出所有情况,利用概率公式求解即可. 【详解】解:(1)由()0.0050.020.0350.030101x ++++⨯=,解得0.01x =;(2)这组数据的平均数为550.05650.2750.35850.3950.177⨯+⨯+⨯+⨯+⨯=; (3)满意度评分值在[)50,60内有1000.005105⨯⨯=人,男生数与女生数的比为3:2,故男生3人,女生2人,记为12312,,,,A A A B B ,记“满意度评分值为[)50,60的人中随机抽取2人进行座谈,恰有1名女生”为事件A ,从5人中抽取2人有:12A A ,13A A ,11A B ,12A B ,23A A ,21A B ,22A B ,31A B ,32A B ,12B B ,所以总基本事件个数为10个,A 包含的基本事件:11A B ,12A B ,21A B ,22A B ,31A B ,32A B ,共6个,所以 ()63105P A ==. 【点睛】 结论点睛:频率分布直方图的相关公式以及数字特征的计算, ①直方图中各个小长方形的面积之和为1;②直方图中纵轴表示频率除以组距,故每组样本中的频率为组距乘以小长方形的高,即矩形的面积;③直方图中每组样本的频数为频率乘以总数; ④最高的小矩形底边中点横坐标即是众数; ⑤中位数的左边和右边小长方形面积之和相等;⑥平均数是频率分布直方图的重心,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 16.(1)分布列见解析;(2)910. 【分析】(1)确定X 的所有取值为0,1,2,3,X 服从超几何分布,代入超几何分布的概率公式,计算每个X 的取值对应的概率,列出X 的分布列即可;(2)即两门A 类科目一门B 类科目或者一门A 类科目两门B 类科目的概率,则概率()()12P P X P X ==+=,从而计算可得;【详解】解:(1)小明同学选A 类科目数X 可能的取值为0,1,2,3,则X 服从超几何分布,()0333361020C C P X C ===, ()1233369120C C P X C ===,()2133369220C C P X C ===,()3033361320C C P X C ===. X 的分布列为:(2)设“小明同学从A 类和B 类科目中均至少选择1门科目”为事件C ,()()()99912202010P C P X P X ==+==+= 【点睛】本题考查了离散型随机变量的概率分布列,考查了超几何分布,古典概型的概率计算,计数原理.属于中档题.17.(Ⅰ)0.72;(Ⅱ)0.26;(Ⅲ)0.98. 【分析】(Ⅰ)由相互独立事件概率的乘法公式即可得解;(Ⅱ)由相互独立事件概率的乘法公式、互斥事件概率的加法公式,运算即可得解; (Ⅲ)由互斥事件概率加法公式即可得解. 【详解】设A =“甲投中”,B =“乙投中”,则A =“甲没投中”,B =“乙没投中”, 由于两个人投篮的结果互不影响,所以A 与B 相互独立,A 与B ,A 与B ,A 与B 都相互独立, 由己知可得()0.8P A =,()0.9P B =,则()0.2P A =,()0.1P B =; (Ⅰ)AB =“两人都投中”,则()()()0.80.90.72P AB P A P B ==⨯=; (Ⅱ)ABAB =“恰好有一人投中”,且AB 与AB 互斥,则()()()()()()()P AB AB P AB P AB P A P B P A P B ⋃=+=+0.80.10.20.90.26=⨯+⨯=;(Ⅲ)AB ABAB =“至少有一人投中”,且AB 、AB 、AB 两两互斥,所以(()()())P ABABAB P AB P AB P AB =++ )0.720.260.9()(8P AB P ABAB =+==+.【点睛】本题考查了对立事件的概率及概率的加法公式、乘法公式的应用,考查了运算求解能力,属于中档题.18.(1)见解析;(2)0.4 【分析】(1)根据独立性检验求出()221406020402071.167 3.8418060100406K ⨯⨯-⨯==≈<⨯⨯⨯,即得不能在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(2)利用古典概型求选到的两名观众都喜爱该演讲的概率. 【详解】(1)假设:观众性别与喜爱该演讲无关,由已知数据可求得,()221406020402071.167 3.8418060100406K ⨯⨯-⨯==≈<⨯⨯⨯ ∴ 不能在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(2)抽样比为616010=,样本中喜爱的观众有40×110=4名,不喜爱的观众有6﹣4=2名.记喜爱该演讲的4名男性观众为a,b,c,d,不喜爱该演讲的2名男性观众为1,2,则基本事件分别为:(a,b),(a,c),(a,d),(a,1),(a,2),(b,c),(b,d),(b,1),(b,2),(c,d),(c,1),(c,2),(d,1),(d,2),(1,2).其中选到的两名观众都喜爱该演讲的事件有6个,故其概率为P(A)=60.4 15=【点睛】本题主要考查独立性检验和古典概型,意在考查学生对这些知识的理解能力,掌握水平和应用能力.19.(1)0.05;(2)0.45;(3)1200.【分析】(1)先列举出所有的事件共有20种结果,摸出的3个球为白球只有一种结果,根据概率公式得到要求的概率,本题应用列举来解,是一个好方法;(2)先列举出所有的事件共有20种结果,摸出的3个球为1个黄球2个白球从前面可以看出共有9种结果种结果,根据概率公式得到要求的概率;(3)先列举出所有的事件共有20种结果,根据摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱,算一下摸出的球是同一色球的概率,估计出结果.【详解】把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3.从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个.(1)事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123号3个球,P(E)=120=0.05.(2)事件F={摸出的3个球为2个黄球1个白球},事件F包含的基本事件有9个,P(F)=920=0.45.(3)事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)=220=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次.则一天可赚,每月可赚1200元.考点:1.互斥事件的概率加法公式;2.概率的意义20.(1)0.016;(2)约为74.1;(3)35.。
高二数学概率试题
高二数学概率试题1.为弘扬民族古典文化,巿电视台举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确将给该选手记正分,否则记负分,根据以往统计,某参赛选手能答对每一个问题的概率为;现记“该选手在回答完个问题后的总得分为”.(1)求且的概率;(2)记,求的分布列,并计算数学期望.【答案】(1);(2)故的分布列为:.【解析】本题属于独立重复试验问题,求概率的关键是发生的次数,(1) ,说明回答个问题后,正确个,错误个.要满足,则第一题回答正确,第2题如果正确,则后面4题2对2错,第2题如果错误,则第3题正确,后面3题2对1错,由此可计算出概率;(2)由可知的取值为.按概率公式计算概率可得分布列,可计算出数学期望.试题解析:(1)当时,即回答个问题后,正确个,错误个. 若回答正确个和第个问题,则其余个问题可任意回答正确个问题;若第一个问题回答正确,第个问题回答错误,第三个问题回答正确,则其余三个问题可任意回答正确个.故所求概率为:.(2)由可知的取值为.,.故的分布列为:.【考点】次独立重复试验恰好发生次的概率,随机变量的分布列,数学期望.2.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()A.B.C.D.【答案】C【解析】5点中任选2点的选法有,距离不小于该正方形边长的选法有【考点】古典概型概率3.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去,求两人能会面的概率【答案】【解析】由题意知本题是一个几何概型,试验发生包含的所有事件对应的集合是Ω={(x,y)|6<x<7,6<y<7}做出集合对应的面积是边长为1的正方形的面积,写出满足条件的事件对应的集合和面积,根据面积之比得到概率试题解析:设甲到达时间为x,乙到达的时间为y则全部结果构成的区域:设“甲乙能会面”的事件记为A则事件A的结果构成的区域:∴P(A)=【考点】几何概型概率4.已知关于的二次函数.(1)设集合和,分别从集合中随机取一个数作为和,求函数在区间上是增函数的概率;(2)设点是区域内的随机点, 求函数在区间上是增函数的概率.【答案】(1);(2).【解析】(1)本题是一个等可能事件的概率,试验发生包含的事件是,满足条件的事件是函数在区间上为增函数,根据二次函数的对称轴,写出满足条件的结果,得到概率;(2)本题是一个等可能事件的概率问题,根据第一问做出的函数是增函数,得到试验发生包含的事件对应的区域和满足条件的事件对应的区域,做出面积,得到结果.试题解析:要使函数在区间上是增函数, 需,且,即.(1)所有的取法总数为个, 满足条件的有共个, 所以所求概率.(2)如图求得区域的面积为,由,求得,所以区域内满足且的面积为,所以所求概率.【考点】古典概型;几何概型.【方法点晴】古典概型:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能相等.本题中的第一问属于古典概型,对于古典概型,任何事件的概率为:,所以做这类题,的主要方法就是计数;几何概型:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一个点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到所述区间内的某个特定区域中的点,这里的区域可以是线段,平面图形,立体图形等,本题就是利用面积比做的.5.下列叙述错误的是()A.若事件发生的概率为,则B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件C.5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同D.某事件发生的概率是随着试验次数的变化而变化的【答案】D【解析】对于A.若事件发生的概率为,则,那么显然成立。
高二数学独立重复试验某事件发生的概率试题答案及解析
高二数学独立重复试验某事件发生的概率试题答案及解析1.实验女排和育才女排两队进行比赛,在一局比赛中实验女排获胜的概率是2/3,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则实验女排获胜的概率等于A.B.C.D.【答案】B【解析】实验女排要获胜必须赢得其中两局,可以是1,2局,也可以是1,3局,也可以是2,3局.故获胜的概率为:,故选B.【考点】独立事件概率计算.2.设随机变量,则________.【答案】.【解析】由随机变量,利用二项分布的概率计算公式能求出.【考点】二项分布与次独立重复试验的模型.3.设随机变量,则________.【答案】.【解析】由随机变量,利用二项分布的概率计算公式能求出.【考点】二项分布与次独立重复试验的模型.4.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()①若K2的观测值满足K2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误A.①B.①③C.③D.②【答案】C【解析】解:若,我们有的把握认为吸烟与患肺病有关系,不表示有的可能患有肺病,也不表示在100个吸烟的人中必有99人患有肺病,故①不正确.也不表示某人吸烟,那么他有的可能患有肺病,故②不正确,若从统计量中求出有是吸烟与患肺病的比例,表示有的可能性使得推断出现错误,故③正确.【考点】独立性检验5.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.(1)求这支篮球队首次胜场前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好胜了3场的概率;(3)求这支篮球队在6场比赛中胜场数的期望和方差.【答案】(1)(2)(3)【解析】解:(1)P=2×=.4种,(2)6场胜3场的情况有C6∴P=C333=20××=.6(3)由于X服从二项分布,即X~B,∴E(X)=6×=2,D(X)=6××=.6.某大厦的一部电梯从底层出发后只能在第18,19,20层可以停靠,若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用X表示这5位乘客在第20层下电梯的人数,求随机变量X的分布列.【答案】X的分布列为【解析】解:考查每一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,即X~B,k k5-k,k=0,1,2,3,4,5,即有P(X=k)=C5从而X的分布列为X0123457.甲、乙两人进行乒乓球比赛,采用“五局三胜制”,即五局中先胜三局为赢,若每场比赛甲获胜的概率是,乙获胜的概率是,则比赛以甲三胜一负而结束的概率为________.【答案】【解析】甲三胜一负即前3次中有2次胜1次负,而第4次胜,∴P=C22··=,3∴甲三胜一负而结束的概率为.8.甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为求:(1)乙至少击中目标2次的概率;(2)乙恰好比甲多击中目标2次的概率【答案】(1)(2)【解析】解:(1)乙至少击中目标2次的概率为(2)设乙恰好比甲多击中目标2次为事件A,包含以下2个互斥事件:乙恰好击中目标2次且甲恰好击中目标0次B1P(B1)=B2:乙恰好击中目标3次且甲恰好击中目标1次,P(B2)=则P(A)=P(B1)+P(B2)所以,乙恰好比甲多击中目标2次的概率为【考点】独立重复试验点评:独立重复试验的概率的求法:一般地,如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率。
高二数学条件概率试题答案及解析
高二数学条件概率试题答案及解析1.抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},则P(A|B)等于()A. B. C. D.【答案】A【解析】方法一:在事件B发生的条件下研究事件A,总共有5种结果,而事件A只含其中的2种,所以P(A|B)=;方法二:条件概率的计算公式,答案选A.【考点】条件概率2.把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则等于()A.B.C.D.【答案】A【解析】.【考点】条件概率.3.一个袋中装有6个红球和4个白球(这10个球各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次摸出红球的概率为________.【答案】【解析】设第一次摸出红球为事件A,第二次摸出红球为事件B,则P(A)=,P(AB)==.∴P(B|A)==.4.已知某种产品的合格率是95%,合格品中的一级品率是20%,则这种产品的一级品率为________.【答案】19%【解析】A=“产品为合格品”,B=“产品为一级品”,P(B)=P(AB)=P(B|A)P(A)=0.2×0.95=0.19.所以这种产品的一级品率为19%.5.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以,和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是__________(写出所有正确结论的序号).①;②;③事件与事件相互独立;④,,是两两互斥的事件;⑤的值不能确定,因为它与,,中究竟哪一个发生有关.【答案】②④⑤【解析】若从甲罐取出红球放入乙罐,则,,若从甲罐取出的不是红球放入乙罐,则,故①错误,②正确。
显然事件受事件的影响,故③错误。
由于事件,,不会同时出现,所以,,是两两互斥的事件,故④正确。
高二数学统计与概率试题
高二数学统计与概率试题1.某市有6名教师志愿到四川地震灾区的甲、乙、丙三个镇去支教,每人只能去一个镇,则恰好其中一镇去4名,另两镇各去1名的概率为()A.B.C.D.【答案】B【解析】略2.(本小题满分12分)现有三人被派去各自独立地解答一道数学问题,已知三人各自解答出的问题概率分别为,,,且他们是否解答出问题互不影响.(Ⅰ)求恰有二人解答出问题的概率;(Ⅱ)求“问题被解答”与“问题未被解答”的概率.【答案】(1);(2)【解析】记“第i个人解答出问题”为事件Ai(i=1,2,3),依题意有…………1分P(A1)=,P(A2)=,P(A3)=,且A1,A2,A3相互独立.…………4分(Ⅰ)设“恰好二人解答出问题”为事件B,则有B=A1A2+A1A3+A2A3,且A1A2、A1A3、A2A3彼此互斥于是P(B)=P(A1A2)+P(A1A3)+P(A2A3)=××+××+××=.答:恰好二人解答出问题的概率为.…………6分20090318(Ⅱ)设“ 问题被解答”为事件C,“问题未被解答”为事件 D. D=··,且、、相互独立,则P(D)=P()·P()·P()=××=.而P(C)=1-P(D)=…………12分3.某学校高一年级共8个班,高二年级6个班从中选一个班级担任学校星期一早晨升旗任务,共有()种安排方法A.8B.6C.14D.48【答案】C【解析】根据分类计数的原理:共种方法.【考点】分类计数原理4.(本小题满分10分)某地区100位居民的人均月用水量(单位:t)的频率分布直方图及频数分布表如下:分组频数(1)根据频率分布直方图估计这组数据的众数与平均数;(2)当地政府制定了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?【答案】(1)这组数据的众数为2.25,平均数为2.02.(2)政府的解释是正确的,原因详见解析.【解析】(1)众数是出现次数最多的数,从频率分布直方图知,条形图最高的一组的组中值.(2)从频率分布直方图或频率分布表可知,大约有88%的居民月用水量在3t以下,所以政府解释正确.试题解析:由图知,这组数据的众数为2.25,平均数为.(2)人均月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约是有12%的居民月均用水量在3t以上,88%的居民月均用水量在3t以下,因此,政府的解释是正确的.【考点】频率分布直方图及频率分布表的应用.5.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是.【答案】【解析】因为2人中谁担任正副班长有区别,所以需要排列.没有女生选中的概率为,则至少有1名女生当选的概率为.【考点】排列组合的应用.6.从12个同类产品(其中有10个正品,2个次品)中,任意抽取3个的必然事件是()A.3个都是正品B.至少有1个次品C.3个都是次品D.至少有1个正品【答案】D【解析】,必然事件是一定会发生的时间,12件产品中只有2个次品,因此抽取3个时至少有一个正品,因此D是必然事件【考点】必然事件7.已知关于的一元二次函数.(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和,求函数在区间上是增函数的概率;(2)设点是区域内的随机点,求函数上是增函数的概率.【答案】(1);(2).【解析】(1)因为,函数在区间上是增函数,所以只需函数对称轴,然后写出所有的基本事件,找出满足的基本事件,分别计算其个数,再利用古典概型的概率公式可得函数在区间上是增函数的概率;(2)(,)是区域内的随机点,由(1)知(,)满足且时,函数在区间上是增函数,所以满足条件的点应在区域内,因此这是几何概型问题,分别求这两个区域的面积,通过面积比可得所求概率.试题解析:(1)∵函数的图象的对称轴为要使在区间上为增函数,当且仅当>0且,若=1则=-1;若=2则=-1,1;若=3则=-1,1;∴事件包含基本事件的个数是1+2+2=5,∴所求事件的概率为.(2)由(1)知当且仅当且>0时,函数在区间上为增函数,依条件可知试验的全部结果所构成的区域为,构成所求事件的区域为三角形部分.由∴所求事件的概率为.【考点】1、古典概型;2、几何概型.【方法点晴】本题主要考查的是古典概型和几何概型,属于中档题.解题时一定要分清问题是古典概型还是几何概型,对于古典概型通过列出所有基本事件数出基本事件个数或通过分析得到基本事件个数,然后确定满足所求条件的基本事件个数,利用求解;几何概型要分清基本事件空间区域的度量是长度、面积、体积,然后分别求出对应的度量利用计算,本题涉及到了线性区域面积的计算是难点.8.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为.【答案】8【解析】∵高一年级有名学生,在高一年级的学生中抽取了名,∴每个个体被抽到的概率是∵高二年级有名学生,∴要抽取学生,故答案为:.【考点】分层抽样.9.某市一高中经过层层上报,被国家教育部认定为2015年全国青少年足球特色学校.该校成立了特色足球队,队员来自高中三个年级,人数为50人.视力对踢足球有一定的影响,因而对这50人的视力作一调查.测量这50人的视力(非矫正视力)后发现他们的视力全部介于4.75和5.35之间,将测量结果按如下方式分成6组:第一组,第二组,…,第6组,下图是按上述分组方法得到的频率分布直方图.又知:该校所在的省中,全省喜爱足球的高中生视力统计调查数据显示:全省100000名喜爱足球的高中生的视力服从正态分布.(1)试评估该校特色足球队人员在全省喜爱足球的高中生中的平均视力状况;(2)求这50名队员视力在5.15以上(含5.15)的人数;(3)在这50名队员视力在5.15以上(含5.15)的人中任意抽取2人,该2人中视力排名(从高到低)在全省喜爱足球的高中生中前130名的人数记为,求的数学期望.参考数据:若~N(, 2),则 0.6826,,【答案】(1);(2)人;(3).【解析】(1)利用组中值频率,即可得到结论;(2)首先理解频率分布直方图横纵坐标表示的意义,恒坐标表示身高,纵轴表示频数,即:每组中包含个体的个数,可以以及频率分布直方图,了解数据的分布情况,知道每段所占的比例,从而求出这名队员视力在以上的人数;(3)先根据正态分布的规律求出全市前名视力在以上,这人中以上的有人,确定变量的取值,求出概率,即可得到变量的期望.试题解析:(1)由频率分布直方图知,该校特色足球队人员平均视力为4.80.1+4.90.2+5.00.3+5.10.2+5.20.1+5.30.1=5.03高于全省喜爱足球的高中生的平均值5.01. 4分(2)由频率分布直方图知,后两组队员的视力在5.15以上(含5.15),其频率为0.2,人数为0.250=10,即这50名队员视力在5.15以上(含5.15)的人数为10人. 6分⑶,即,,.所以全省喜爱足球的高中生中前130名的视力在5.25以上.这50人中视力在5.25以上的有0.150=5人,这50名队员视力在5.15以上(含5.15)的人分为两部分:5人在5.25以上,5人在5.155.25.随机变量可取0,1,2,于是,,..【考点】正态分布曲线的特点及曲线表示意义;离散型随机变量的分布列及期望,10.袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球(Ⅰ)试问:一共有多少种不同的结果?请列出所有可能的结果;(Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.【答案】(Ⅰ)见解析;(Ⅱ)【解析】(1)由分步计数原理知这个过程一共有8个结果,按照一定的顺序列举出所有的事件,顺序可以是按照红球的个数由多变少变化,这样可以做到不重不漏.(2)本题是一个等可能事件的概率,由前面可知试验发生的所有事件数,而满足条件的事件包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红),根据古典概型公式得到结果.解:(I)一共有8种不同的结果,列举如下:(红、红、红、)、(红、红、黑)、(红、黑、红)、(红、黑、黑)、(黑、红、红)、(黑、红、黑)、(黑、黑、红)、(黑、黑、黑)(Ⅱ)本题是一个等可能事件的概率记“3次摸球所得总分为5”为事件A事件A包含的基本事件为:(红、红、黑)、(红、黑、红)、(黑、红、红)事件A包含的基本事件数为3由(I)可知,基本事件总数为8,∴事件A的概率为【考点】等可能事件的概率;随机事件.11.某校高二年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______.【答案】25【解析】设应抽取的男生人数为为,所以有,应抽取25人【考点】分层抽样12.某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n人,回答问题计结果如下图表所示:(1)分别求出a,b,x,y的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.【答案】(1);(2),,;(3).【解析】(1)先由第一组求出的值,再结合图表及频率分布直方图就可以求出的值;(2)根据(1)中求出的各组人数,按照分层抽样的方法就可求出各组应抽取的人数;(3)先列出从人中随机抽取人的总抽取方法,再列出所抽取的人中第二组至少有人的抽取方法数,即可求出所得的概率.试题解析:(1)由频率表中第一组数据可知,第一组总人数为,再结合频率分布直方图可知,,,,(2)第二,三,四组中回答正确的共有人,所以利用分层抽样在人中抽取人,每组分别抽取的人数为:第二组:人,第三组:人,第四组:人.(3)设第二组的人为,第三组的人为,第四组的人为,则从人中抽人所有可能的结果有:共个基本事件,其中第二组至少有一人被抽中的有这个基本事件.所以第二组至少有一人获得幸运奖的概率为.【考点】1、频率分布表及直方图;2、分层抽样;3、古典概型.13.下列说法错误的是()A.在统计里,把所需考察对象的全体叫作总体B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大【答案】B【解析】平均数与每一个样本的数据有关,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但是一组数据的平均数不一定大于这组数据中的每个数据.解:对于A:总体:考察对象的全体,故A对;对于C:在统计里,一组数据的集中趋势可以用平均数、众数与中位数,故C对.∵平均数不大于最大值,不小于最小值.比如:1、2、3的平均数是2,它小于3.故B不对;∵从方差角度看,方差最小,成绩较稳定.故D正确.故选B.【考点】分布的意义和作用;众数、中位数、平均数;极差、方差与标准差.14.从学号为~的高一某班名学生中随机选取名同学参加体育测试,采用系统抽样的方法,则所选名学生的学号可能是A.B.C.D.【答案】B【解析】系统抽样时每组10名学生,因此抽取的编号构成以10为公差的等差数列,因此B正确【考点】系统抽样15.在三张奖券中有一、二等奖各一张,另一张无奖,甲乙两人各抽取一张(不放回),两人都中奖的概率为.【答案】【解析】所求概率为【考点】古典概型概率16.为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两轴单位长度相同),用回归直线近似的刻画其相关关系,根据图形,以下结论最有可能成立的是()A.线性相关关系较强,的值为B.线性相关关系较强,的值为C.线性相关关系较强,的值为D.线性相关关系太弱,无研究价值【答案】B【解析】由散点图可知,点的分布比较集中在一条直线附近,所以语文成绩和英语成绩之间具有线性相关关系,且线性相关关系较强,由于所有点都在直线的下文,所以回归直线的斜率小于,故结论最大的可能成立的是B.【考点】散点图.17.组合数恒等于()A.B.C.D.【答案】D【解析】由题意得,,故选D.【考点】组合数的运算.18.设,则等于()A.1.6B.3.2C.6.4D.12.8【答案】C【解析】由于满足二项分布,所以,故.【考点】二项分布的均值与方差.19.掷3枚均匀硬币一次,求正面个数与反面个数之差的分布列,并求其均值和方差.【答案】.【解析】设正面个数为,反面个数为,,故,,,,,由此,列出分布列,并利用期望和方差公式,计算得.试题解析:解:的可能取值为-3,-1,1,3,且,,因此,的分布列为因此,【考点】离散型随机变量的期望与方差.【方法点晴】若离散型随机变量的分布列为称为随机变量的均值或数学期望,它反映了离散型随机变量取值的平均水平.描述了 ()相对于均值的偏离程度,而为这些偏离程度的加权平均,刻画了随机变量与其均值的平均偏离程度.称为随机变量的方差,其算术平方根为随机变量的标准差.20.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率,分别是()A.,B.,C.,D.,【答案】A【解析】根据条件概率的函数,的含义为在发生的情况下,发生的概率,即在“至少出现一个点”的情况下,“三个点数都不相同”的概率,因为“至少出现一个点”的情况数目为,“三个点数都不相同”则只有一个点,共有种,;其含义是在在发生的情况下,发生的概率,即“三个点数都不相同”的情况下,“至少出现一个点”的概率,所以,故选A.【考点】条件概率.【方法点晴】本题主要考查了条件概率的计算,着重考查了学生分析问题和解答问题的能力与转化与化归思想的应用,其中明确条件概率的基本含义是解答的关键,属于中档试题,本题的解答中,根据条件概率的函数,的含义为在发生的情况下,发生的概率,其含义是在在发生的情况下,发生的概率是解得的关键.21.一个口袋中装有形状大小均相同的6个红球和4个白球,从中不放回的依次摸出2个球,在第一次摸出红球的条件下,第二次也摸出红球的概率为()A.B.C.D.【答案】D【解析】第一次摸出红球后,剩下9个球,其中有5个红球,因此从中摸出一个红球概率为.故选D.【考点】条件概率.22.已知x、y的取值如下表所示:如果与呈线性相关,且线性回归方程为,则()A. B. C. D.1【答案】B【解析】由表格数据可知,中心点坐标为,代入回归方程得【考点】回归方程23.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).【答案】【解析】当一,二,三等奖被三个不同的人获得,共有种不同的方法,当一,二,三等奖被两个不同的人获得,即有一个人获得其中的两个奖,共有,所以获奖的不同情况有种方法,故填:60.【考点】排列组合【方法点睛】本题主要考察了排列组合和分类计数原理,属于基础题型,重点是分析不同的获奖情况包含哪些情况,其中一,二,三等奖看成三个不同的元素,剩下的5张无奖奖券看成相同元素,那8张奖券平均分给4人,每人2张,就可分为三张奖券被3人获得,或是被2人获得的两种情况,如果是被3人获得,那这4组奖券就可看成4个不同的元素的全排列,如何2人获得,3张奖券分为2组,从4人挑2人排列,最后方法相加.24.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).(1)求的值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X的分布列和数学期望. (以直方图中的频率作为概率).【答案】(1);(2)分布列见解析,期望为.【解析】(1)由频率分布直方图知,所有小矩形面积(频率)之和为1,可求得;(2)由统计的知识,可知小球重量在内的概率为,因此随机变量,利用二项分布概率公式可计算出所有概率,从而得概率分布表,再由期望公式可计算期望.试题解析:(1)由题意,得,解得;(2)利用样本估计总体,该盒子中小球重量在内的概率为,则.的可能取值为、、、,,,,.的分布列为:.(或者).【考点】频率分布直方图,随机变量频率分布列,数学期望.25.甲乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为,则甲以的比分获胜的概率为()A.B.C.D.【答案】【解析】设“甲获胜”为事件A,则,则甲以的比分获胜的概率:,故选A.【考点】n次独立试验.26.NBA决赛期间,某高校对学生是否收看直播进行调查,将得到的数据绘成如下的2×2列联表,但部分字迹不清:将表格填写完整,试说明是否收看直播与性别是否有关?附:P 0.150.100.050.0250.0100.0050.001【答案】有99%的把握认为是否收看直播与性别有关【解析】根据所给数据得到列联表,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,即可得出结论试题解析:;所以有99%的把握认为是否收看直播与性别有关,【考点】独立性检验的应用27.事件在四次独立重复试验中事件出现的概率相同,若事件至少发生一次的概率为,则事件在一次试验中出现的概率为()A.B.C.D.【答案】A【解析】设事件A在一次试验中发生的概率为p,根据相互独立事件的概率可知,【考点】n次独立重复试验中恰好发生k次的概率28.已知在四棱锥中,底面,底面是正方形,,在该四棱锥内部或表面任取一点,则三棱锥的体积不小于的概率为______.【答案】【解析】由题意得,如图,的中点分别为,当点在几何体内部或表面上时,.在几何体中,连接,则,又,则所求概率为.【考点】1.线面垂直的性质;2.锥体体积;3.几何概型.【方法点睛】本题主要考查的是线面垂直的性质,锥体体积,几何概型,考查学生分析解决问题的能力,属于中档题,对于本题而言,主要考查的是利用几何概型求概率,很显然是要求出的体积,然后求出三棱锥的体积不小于时,的面积,两个值相除,即可得到概率值,因此此类问题主要分析清楚问题要求的具体量是什么,多理解题意是解决此类问题的关键.29.的展开式中的系数为.(用数字作答)【答案】【解析】由题意可得,令,综上所述,的系数为,故答案为.【考点】1、二项展开式的通项公式;2、二项展开式的系数.30.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某农科所记录了5组昼夜温差与100颗种子发芽数,得到如下资料:组号12345温差()发芽数(颗)该所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求出线性回归方程,再对被选取的2组数据进行检验.(1)若选取的是第1组与第5组的两组数据,请根据第2组至第4组的数据,求出关于的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:,)【答案】(1);(2)(1)中所得的回归直线方程可靠.【解析】(1)根据表中的数据,利用公式计算成的值,在利用公式求得和的值,即可求解回归直线方程;(2)分别计算当时和时对应的,可通过比较得到结论.试题解析:(1)由题意:,,.,故回归直线方程为:.(2)当时,,,当时,,,∴(1)中所得的回归直线方程可靠.【考点】回归直线方程的求解及应用.【方法点晴】本题主要考查了统计的应用问题,其中解答中涉及到回归直线方程的求解、最小二乘法的应用、以及回归直线方程的应用等知识点的综合考查,试题比较基础,但运算量较大,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中准确预算是解答本题的关键.31.某产品的广告费用x与销售额y的统计数据如右表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额大约为()万元A.63.6B.65.5C.67.7D.72.0【答案】B【解析】由题意得,,又因为,即,把点代入回归直线方程,得,解得,即回归直线方程为,当时,解得,故选B.【考点】回归直线方程的应用.32.某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.组号分组频数频率(1)求、、的值;(2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这名学生中随机抽取名学生与张老师面谈,求第三组中至少有名学生与张老师面谈的概率.【答案】(1),,;(2).【解析】(1)依题意,得,,,即可求解、、的值;(2)由第三、四、五组共有名学生,用分层抽样的方法抽取名学生,则第三、四、五组的人数,设出第三组的名学生记为、、,第四组的名学生记为、,第五组的名学生记为,即可利用古典概型求解其概率.试题解析:(1)依题意,得,,,解得,,;(2)因为第三、四、五组共有名学生,用分层抽样的方法抽取名学生,则第三、四、五组分别抽取名,名,名.第三组的名学生记为、、,第四组的名学生记为、,第五组的名学生记为,则从名学生中随机抽取名,共有种不同取法,具体如下:,,,,,,,,,,,,,,,其中第三组的名学生、、没有一名学生被抽取的情况有种,具体如下:、、,故第三组中至少有名学生与张老师面谈的概率为.【考点】分层抽样;古典概型及其概率的计算.33.某商场要从化为手机、、、、5种型号中,选出3种型号的手机进行促销活动,则在型号被选中的条件下,型号也被选中的概率是()A.B.C.D.【答案】D【解析】设事件为“型号被选中”,事件为“型号被选中”.,,.【考点】条件概率.34.已知某地区中小学生人数和近视情况如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,10【答案】A【解析】试题分析:因,故,应选A.【考点】分层抽样的特点.35.已知集合Z={(x,y)|x∈[0,2],y∈[-1,1]}.(1)若x,y∈Z,求x+y≥0的概率;(2)若x,y∈R,求x+y≥0的概率.【答案】(1) (2)【解析】(1)因为x,y∈Z,且x∈[0,2],y∈[-1,1],基本事件是有限的,所以为古典概型,这样求得总的基本事件的个数,再求得满足x,y∈Z,x+y≥0的基本事件的个数,然后求比值即为所求的概率;(2)因为x,y∈R,且围成面积,则为几何概型中的面积类型,先求x,y∈Z,求x+y≥0表示的区域的面积,然后求比值即为所求的概率试题解析:(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,∴P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,∵x∈[0,2],y∈[-1,1],则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.∴P(B)====,故x,y∈R,x+y≥0的概率为.【考点】几何概型中的面积类型和古典概型36.某校有1400名考生参加市模拟考试,现采取分层抽样的方法从文、理考生中分别抽取20份和50份数学试卷,进行成绩分析,得到下面的成绩频数分布表:分数分组[0,30)[30,60)[60,90)[90,120)[120,150](1)估计文科数学平均分及理科考生的及格人数(90分为及格分数线);(2)在试卷分析中,发现概念性失分非常严重,统计结果如下:文理失分概念问是否有90%的把握认为概念失分与文、理考生的不同有关?(本题可以参考独立性检验临界值表:)(参考公式:,其中.【答案】(1)(2)没有90%的把握【解析】(1)利用组中值与对应频数乘积的和计算总分,再除以总人数得平均数;先根据分成抽样确定理科总人数,样本中理科考生有人及格,所以估计有,(2)先将数据代入参考公式得,再比较数据确定是否有90%把握.试题解析:(1)∵∴估计文科数学平均分为.∴理科考生有人及格.(2),故没有90%的把握认为概念失分与文、理考生的不同有关.37.已知的取值如图所示,若与线性相关,且线性回归方程为x123,则的值为A. B. C. D.【答案】D【解析】 ,选D.38.若…,则____【答案】【解析】令得39.为了研究一种昆虫的产卵数和温度是否有关,现收集了7组观测数据列于下表中,并做出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学概率综合试题答案及解析1.在一次口试中,要从10道题中随机抽出3道题进行回答,答对其中两道或两道以上的题可获得及格.某考生会回答10道题中的6道题,那么他(她)获得及格的概率是________.【答案】【解析】N=10,M=6,n=3,P=P(X=3)+P(X=2)=+==.2.为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从三个区中抽取6个工厂进行调查.已知区中分别有27,18,9个工厂.(Ⅰ)求从区中应分别抽取的工厂个数;(Ⅱ)若从抽得的6个工厂中随机地抽取2个进行调查结果的对比,求这2个工厂中至少有1个来自区的概率.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)由分层抽样的含义即可得总共有54个工厂,所以抽取的6个工厂占总数的,所以每个区域的工厂的个数即可求出.(Ⅱ)因为6个被抽到的工厂中,A区有3个工厂,B区有2个,C区有1个.从中抽取两个工厂共有15种情况,一一列举出来.通过数2个工厂中都没来自区的共有3种情况,所以符合2个工厂中至少有1个来自区的共有12种,即可求得结论.试题解析:解:(Ⅰ)由题可知,每个个体被抽取到得概率为;设三个区被抽到的工厂个数为,则所以,故三个区被抽到的工厂个数分别为(Ⅱ)设区抽到的工厂为,区抽到的工厂为,区抽到的工厂为则从6间工厂抽取2个工厂,基本事件有:,,,,,,,,,,,,,共15种情况;2个都没来自区的基本事件有,,共3种情况设事件“至少一个工厂来自区”为事件,则事件为“2个都没来自区”所以所以,至少有一个工厂来自区的概率为【考点】1.分层抽样的思想.2.概率的计算中含至少通常考虑从对立面出发.3.先后抛掷2枚均匀的一分、二分的硬币,观察落地后硬币的正、反面情况,则下列事件包含3个基本事件的是 ()A.“至少一枚硬币正面向上”;B.“只有一枚硬币正面向上”;C.“两枚硬币都是正面向上”;D.“两枚硬币一枚正面向上,另一枚反面向上”.【答案】A【解析】先后抛掷2枚均匀的一分、二分的硬币的基本事件有{正,正}、{正,反}、{反,正}、{反,反},故“至少一枚硬币正面向上”的目标事件有{正,正}、{正,反}、{反,正},故选A.【考点】做一次试验的基本事件个数.4.有甲、乙两个班,进行数学考试,按学生考试及格与不及格统计成绩后,得到如下的列联表根据表中数据,你有多大把握认为成绩及格与班级有关?附表:k【答案】没有理由认为成绩合格与班级有关【解析】解:由列联表中的数据,得所以,我们没有理由认为成绩合格与班级有关。
【考点】独立性检验点评:主要是考查了独立性检验的思想的运用,属于基础题。
5.某校从高二年级学生中随机抽取60名学生,将其会考的政治成绩(均为整数)分成六段:,,…,后得到如下频率分布直方图.(Ⅰ)求图中的值(Ⅱ)根据频率分布直方图,估计该校高二年级学生政治成绩的平均分;(Ⅲ)用分层抽样的方法在80分以上(含 80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.【答案】(1)(2)71(3)【解析】解:(Ⅰ)分数在内的频率为:3分(Ⅱ)平均分为:7分(Ⅲ)由题意,分数段的人数为:人分数段的人数为:人; 9分∵用分层抽样的方法在80分以上(含80分)的学生中抽取一个容量为6的样本,∴分数段抽取5人,分数段抽取1人,设“从样本中任取2人,其中恰有1人的分数不低于90分为”事件,概率为【考点】直方图和古典概型点评:主要是分析题意,理解题意,结合直方图和古典概型概率来求解,属于基础题。
6.从含有5张假钞的20张百元钞票中任意抽取2张,在其中1张是假钞的条件下,2张都是假钞的概率是()A.B.C.D.【答案】A【解析】设事件A表示“抽到的两张都是假钞”,事件B表示“抽到的两张至少有一张假钞”,则所求的概率即 P(A︱B).又P(AB)=P(A)=,P(B)=,由公式P(A︱B)==,故选A.【考点】本题考查了条件概率的求法,考查等可能事件的概率点评:此类问题体现了转化的数学思想.注意准确理解题意,看是在什么条件下发生的事件,本题是求条件概率,而非古典概率,属于中档题.7.设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程实根的个数(重根按一个计).(1)求方程有实根的概率;(2)求的分布列和数学期望;(3)求在先后两次出现的点数中有5的条件下,方程有实根的概率.【答案】(1)(2)的分布列为012P的数学期望(3).【解析】(1)基本事件总数为,若使方程有实根,则,即。
当时,;。
当时,;当时,;当时,;当时,;当时,,目标事件个数为因此方程有实根的概率为(2)由题意知,,则,,故的分布列为012P的数学期望(3)记“先后两次出现的点数中有5”为事件M,“方程有实根” 为事件N,则,,.【考点】本题考查了随机变量的分布列与期望点评:概率统计题主要考查基本概念和基本公式,对互斥事件(对立事件)的概率、独立事件的概率、事件在n次独立重复试验中恰好发生K次的概率,离散型随机变量分布列和数学期望、方差等内容都进行了考查。
8.我区高三期末统一测试中某校的数学成绩分组统计如下表:合计(1)求出表中、、、的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;(2)若我区参加本次考试的学生有600人,试估计这次测试中我区成绩在分以上的人数;(3)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.【答案】(1), ,,.直方图5分(2)全区90分以上学生估计为人.(3).【解析】(1)由频率分布表得, 1分所以, 2分,. 3分直方图5分(2)由题意知,全区90分以上学生估计为人. 7分(3)设考试成绩在内的3人分别为A、B、C;考试成绩在内的3人分别为a、b、c,从不超过60分的6人中,任意抽取2人的结果有:(A,B),(A,C),(A ,a),(A,b),(A,c),(B,C),(B,a),(B,b),(B,c),(C,a),(C,b),(C,c),(a,b),(a,c),(b,c)共有15个. 10分设抽取的2人的分数均不大于30分为事件D.则事件D含有3个结果: (A,B),(A,C) ,(B,C) 11分∴. 12分【考点】本题主要考查频率分布表,频率分布直方图,频率的概念及计算,古典概型概率的计算。
点评:中档题,统计中的抽样方法,频率直方图,概率计算及分布列问题,是高考必考内容及题型。
古典概型概率的计算问题,关键是明确基本事件数,往往借助于“树图法”,做到不重不漏。
频率分布直方图中,小矩形的高等于每一组的频率÷组距,它们与频数成正比,小矩形的面积等于这一组的频率,则组距等于频率除以高。
9.袋子和中装有若干个均匀的红球和白球,从中摸出一个红球的概率是,从中摸出一个红球的概率为.(1)从中有放回地摸球,每次摸出一个,共摸4次.①恰好有2次摸到红球的概率;②第一次、第三次摸到红球的概率.(2)若、两个袋子中的球数之比为4,将、中的球装在一起后,从中摸出一个红球的概率是,求的值【答案】(1)①②(2)【解析】解:(1)①②(2)设B袋子有个球,则A袋子有个球。
依题意得【考点】独立重复试验的概率的公式、古典概型点评:考查了独立重复试验的概率的公式,以及古典概型的概率运用,属于中档题。
10.一名学生骑自行车上学,从他家到学校的途中有6个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是,设为这名学生在途中遇到的红灯次数,D的值是__ _ .【答案】【解析】解:由于学生路过交通岗的遇到红灯的概率为1/3,则在6个交通岗遇到红灯的次数符合二项分布,则利用方差公式可以为6*1/3*2/3=11.(12分)奖器有个小球,其中个小球上标有数字,个小球上标有数字,现摇出个小球,规定所得奖金(元)为这个小球上记号之和,(1)求奖金为9元的概率(2)(非实验班做)求此次摇奖获得奖金数额的分布列(实验班做)求此次摇奖获得奖金数额的分布列,期望。
.【答案】解(1):设此次摇奖的奖金数额为元,(2)当摇出的个小球均标有数字时,;当摇出的个小球中有个标有数字,1个标有数字时,;当摇出的个小球有个标有数字,个标有数字时,。
所以,答:此次摇奖获得奖金数额的数字期望是元【解析】略12.(此题平行班做)(本小题满分12分)某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(Ⅰ)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是,请完成上面的列联表;(Ⅱ)在(1)的条件下,试运用独立性检验的思想方法分析:在犯错误概率不超过0.1%的情况下判断学生的学习积极性与对待班级工作的态度是否有关?并说明理由.【答案】解:(Ⅰ)如果随机抽查这个班的一名学生,抽到积极参加班级工作的学生的概率是,所以积极参加班级工作的学生有人,以此可以算出学习积极性一般且积极参加班级工作的人数为6,不太主动参加班级共工作的人数为26,学习积极性高但不太主动参加班级工作得人数为7,学习积极性高的人数为25,学习积极性一边拿的人数为25,得到变革如下:………………………………………………6分(Ⅱ)==≈11.5,∵>10.828,∴有99.9%的把握认为学习积极性与对待班级工作的态度有关系.………12分【解析】略13.甲、乙两厂生产同一种商品,甲厂生产的此商品占市场上的,乙厂生产的此商品占市场上的;甲厂商品的合格率为,乙厂商品的合格率为。
若某人购买了此商品发现为次品,则此次品为甲厂生产的概率为(用最简分数表示)。
【答案】【解析】略14.美国篮球职业联赛(),某赛季的总决赛在洛杉矶湖人队与费城76人队之间角逐,采用七局四胜制,即若有一队胜四场,由此队获胜且比赛结束,因两队实力水平非常接近,在每场比赛中两队获胜是等可能的,据以往资料统计,每场比赛组织者可获门票收入300万美元,两队决出胜负后问:(1)组织者在此次决赛中获门票收入为1200万美元的概率是多少?(2)组织者在此次决赛中获门票收入不低于1800万美元的概率是多少?【答案】5/8【解析】15.已知事件A发生的概率为0.5,事件B发生的概率为0.3,事件A和事件B同时发生的概率为0.2,则在事件A发生的条件下、事件B发生的概率为 .【答案】0.4【解析】略16.某人投篮一次投进的概率为,现在他连续投篮次,且每次投篮相互之间没有影响,那么他投进的次数服从参数为,的二项分布,记为~,计算 ( ) A.B.C.D.【答案】A【解析】略17.(本小题满分10分)某班从4名男同学和2名女同学中任选3人参加全校举行的“八荣八耻”教育演讲赛。