两点方位角计算公式

合集下载

方位角计算公式

方位角计算公式

一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13〉上式右端,若〈,用“+”号,若,用“-”号。

2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。

所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为.为了说明直线所在的象限,在前应加注直线所在象限的名称.四个象限的名称分别为北东<NE)、南东<SE)、南西(SW〉、北西(NW>。

象限角和坐标方位角之间的换算公式列于表1—4。

表1—4 象限角与方位角关系表象限象限角与方位角换算公式第一象限〈NE)=第二象限<SE)=-第三象限<SW)=+第四象限<NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。

设地面有相邻的、、三点,连成折线〈图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。

水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。

1 / 26设三点相关位置如图1-17(〉所示,应有=++ (1—14〉设三点相关位置如图1-17(〉所示,应有=++-=+- (1-15〉若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16〉显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=-(1—17〉上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。

2 / 26二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。

坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。

坐标方位角计算公式过程

坐标方位角计算公式过程

坐标方位角计算公式过程
一、坐标方位角的定义。

在平面直角坐标系中,从某点的坐标纵轴方向的北端起,顺时针量到目标方向线间的水平夹角,称为该点的坐标方位角,其取值范围是0° - 360°。

二、坐标方位角计算公式推导过程。

1. 已知两点坐标计算坐标方位角。

- 设A(x1,y1)、B(x2,y2)为平面直角坐标系中的两点。

- 首先计算Δx=x2 - x1,Δy=y2 - y1。

- 然后根据正切函数计算反正切值tanα=(Δ y)/(Δ x),这里得到的α是一个锐角(- 90^∘<α<90^∘)。

- 接下来需要根据Δ x和Δ y的正负来确定坐标方位角β:
- 当Δ x>0,Δ y≥slant0时,坐标方位角β=α。

- 当Δ x = 0,Δ y>0时,坐标方位角β = 90^∘。

- 当Δ x<0时,坐标方位角β=α + 180^∘。

- 当Δ x>0,Δ y<0时,坐标方位角β=α+360^∘(也可写成β = α - 360^∘,目的是将其转化到0° - 360°范围内)。

例如,已知A点坐标为(1,1),B点坐标为(3,3),则Δ x=3 - 1=2,Δ y=3 - 1 = 2,tanα=(2)/(2)=1,α = 45^∘,因为Δ x>0,Δ y≥slant0,所以坐标方位角β = 45^∘。

再如,已知A点坐标为(1,1),B点坐标为(-1,3),Δ x=-1 - 1=-2,Δ y=3 - 1=2,tanα=(2)/(-2)=- 1,α=-45^∘,由于Δ x<0,所以坐标方位角β=-45^∘+180^∘=135^∘。

坐标算方位角计算公式详解

坐标算方位角计算公式详解

坐标算方位角是指根据两点的经纬度坐标计算出其中一个点相对于另一个点的方位角,即从一个点指向另一个点的方向角度。

以下是详细解释坐标算方位角的计算公式:1. 转换经纬度为弧度:将两个点的经度和纬度转换为弧度制,可以使用以下公式进行计算:```pythonlat1_rad = math.radians(lat1)lon1_rad = math.radians(lon1)lat2_rad = math.radians(lat2)lon2_rad = math.radians(lon2)```其中,lat1和lon1表示第一个点的纬度和经度,lat2和lon2表示第二个点的纬度和经度。

2. 计算方位角:方位角可以通过以下公式计算得出:```pythondelta_lon = lon2_rad - lon1_rady = math.sin(delta_lon) * math.cos(lat2_rad)x = math.cos(lat1_rad) * math.sin(lat2_rad) - math.sin(lat1_rad) * math.cos(lat2_rad) * math.cos(delta_lon)angle_rad = math.atan2(y, x)angle_deg = math.degrees(angle_rad)```其中,delta_lon表示两点经度之差,y和x是用于计算方位角的中间变量。

最后,angle_rad表示以弧度为单位的方位角,angle_deg表示将弧度转换为度数的方位角。

3. 范围调整:方位角的范围通常为0到360度,如果计算结果小于0,则需要将其调整为正值。

可以使用以下公式进行调整:```pythonif angle_deg < 0:angle_deg += 360```这样可以确保方位角在合适的范围内。

总结来说,坐标算方位角的计算公式主要包括将经纬度转换为弧度、计算两个点之间的差异,并通过反三角函数计算得出最终的方位角。

方位角计算公式.

方位角计算公式.

一、直线定向1、正、反方位角换算对直线而言,过始点的坐标纵轴平行线指北端顺时针至直线的夹角是的正方位角,而过端点的坐标纵轴平行线指北端顺时针至直线的夹角则是的反方位角,同一条直线的正、反方位角相差,即同一直线的正反方位角= (1-13)上式右端,若<,用“+”号,若,用“-”号。

2、象限角与方位角的换算一条直线的方向有时也可用象限角表示。

所谓象限角是指从坐标纵轴的指北端或指南端起始,至直线的锐角,用表示,取值范围为。

为了说明直线所在的象限,在前应加注直线所在象限的名称。

四个象限的名称分别为北东(NE)、南东(SE)、南西(SW)、北西(NW)。

象限角和坐标方位角之间的换算公式列于表1-4。

表1-4 象限角与方位角关系表象限象限角与方位角换算公式第一象限(NE)=第二象限(SE)=-第三象限(SW)=+第四象限(NW)=-3、坐标方位角的推算测量工作中一般并不直接测定每条边的方向,而是通过与已知方向进行连测,推算出各边的坐标方位角。

设地面有相邻的、、三点,连成折线(图1-17),已知边的方位角,又测定了和之间的水平角,求边的方位角,即是相邻边坐标方位角的推算。

水平角又有左、右之分,前进方向左侧的水平角为,前进方向右侧的水平角。

设三点相关位置如图1-17()所示,应有=++ (1-14)设三点相关位置如图1-17()所示,应有=++-=+- (1-15)若按折线前进方向将视为后边,视为前边,综合上二式即得相邻边坐标方位角推算的通式:=+(1-16)显然,如果测定的是和之间的前进方向右侧水平角,因为有=-,代入上式即得通式=- (1-17)上二式右端,若前两项计算结果<,前面用“+”号,否则前面用“-”号。

二、坐标推算1、坐标的正算地面点的坐标推算包括坐标正算和坐标反算。

坐标正算,就是根据直线的边长、坐标方位角和一个端点的坐标,计算直线另一个端点的坐标的工作。

如图1所示,设直线AB的边长DAB和一个端点A的坐标XA、YA为已知,则直线另一个端点B的坐标为:XB=XA+ΔXABYB=YA+ΔYAB式中,ΔXAB、ΔYAB称为坐标增量,也就是直线两端点A、B的坐标值之差。

根据坐标计算两点间距离方位角

根据坐标计算两点间距离方位角

根据坐标计算两点间距离方位角计算两点间的距离和方位角是地理测量中常见的计算问题。

对于给定的坐标点A和B,我们可以使用一些数学和几何工具来计算它们之间的距离和方位角。

首先,我们需要明确坐标的类型。

地理坐标常用的有经纬度坐标和直角坐标。

在经纬度坐标系中,我们使用经度和纬度来表示地球表面上的点。

在直角坐标系中,我们使用x、y和z坐标来表示点的位置。

接下来,我们将讨论两种方法来计算两点之间的距离和方位角。

1.经纬度坐标系中的距离和方位角:对于经纬度坐标系,我们可以使用球面三角形的理论来计算两点之间的距离和方位角。

球面三角形是在球面上的三个点所构成的三角形。

首先,我们需要将经纬度转换为弧度。

经度的范围是-180到+180度,而纬度的范围是-90到+90度。

然后,我们可以使用以下公式计算两点之间的距离:a = sin(Δφ/2) * sin(Δφ/2) + cos(φ1) * cos(φ2) *sin(Δλ/2) * sin(Δλ/2)c = 2 * atan2(√a, √(1-a))d=R*c其中,φ1和φ2是点A和B的纬度,Δφ是它们之间的纬度差值,λ是点A和B的经度差值,R是地球的半径(通常为6371公里)。

接下来,我们可以计算两点之间的方位角。

方位角是从正北方向(0度)顺时针旋转到连接两点的线的方向。

y = sin(Δλ) * cos(φ2)x = cos(φ1) * sin(φ2) - sin(φ1) * cos(φ2) * cos(Δλ)θ = atan2(y, x)其中,θ是方位角。

2.直角坐标系中的距离和方位角:对于直角坐标系,我们可以使用欧几里得距离公式来计算两点之间的距离:d=√((x2-x1)^2+(y2-y1)^2+(z2-z1)^2)其中,(x1,y1,z1)和(x2,y2,z2)是点A和B的坐标。

接下来,我们可以计算两点之间的方位角。

对于二维平面上的直角坐标系,我们可以使用以下公式计算方位角:θ = atan2(y2-y1, x2-x1)其中,θ是方位角。

测量坐标方位角计算公式

测量坐标方位角计算公式

测量坐标方位角是指测量中使用坐标系进行测量时,测量点与参考点的方位角。

坐标方位角的计算公式如下:
坐标方位角=tan^(-1)(纵坐标差/横坐标差)
其中,纵坐标差指测量点的纵坐标与参考点的纵坐标之差,横坐标差指测量点的横坐标与参考点的横坐标之差。

在计算坐标方位角时,需要注意以下几点:
1.坐标系的方向。

坐标方位角的计算是基于坐标系的方向的,因此在计算时需要确定
坐标系的方向。

2.纵坐标差和横坐标差的正负。

坐标方位角的计算中,纵坐标差和横坐标差的正负会
影响计算结果。

3.弧度和角度的转换。

坐标方位角的计算结果通常是弧度制的,如果需要将计算结果
转化为角度制,可以使用弧度和角度之间的转换公式进行转换。

在使用坐标方位角计算公式时,需要注意以上几点,以便得到准确的计算结果。

起算方位角计算公式

起算方位角计算公式

起算方位角计算公式方位角是指一个点相对于另一个点的方向角度,通常以北方向为基准,顺时针方向为正角度,逆时针方向为负角度。

在地理测量、导航和工程测量等领域,方位角的计算是非常重要的。

在本文中,我们将介绍起算方位角的计算公式及其应用。

起算方位角的计算公式如下:tan(θ) = (sin(Δλ) cos(φ2)) / (cos(φ1) sin(φ2) sin(φ1) cos(φ2) cos(Δλ))。

其中,θ表示起算方位角,Δλ表示目标点经度与起始点经度的差值,φ1和φ2分别表示起始点和目标点的纬度。

在实际应用中,我们通常使用这个公式来计算两个点之间的方位角,以便进行导航、测量或定位。

首先,我们需要确定起始点和目标点的经纬度坐标。

然后,根据上述公式,计算出起算方位角。

这个角度可以帮助我们确定目标点相对于起始点的方向,从而进行导航或测量。

在地理测量中,起算方位角的计算也经常用于确定地表上两个点之间的距离和方向。

通过测量起算方位角,我们可以计算出两点之间的直线距离,从而进行地图绘制、土地测量等工作。

另外,起算方位角的计算还可以应用于航空导航和航海导航中。

飞行员和航海员可以利用起算方位角来确定飞行或航行的方向,从而确保航线的准确性和安全性。

在工程测量中,起算方位角的计算也是必不可少的。

工程师们可以利用这个公式来确定工程项目中各个点之间的方向和距离,从而进行工程测量和设计。

总之,起算方位角的计算公式是地理测量、导航和工程测量等领域中非常重要的工具。

通过这个公式,我们可以准确地计算出两个点之间的方向角度,从而进行导航、测量和定位工作。

希望本文对您有所帮助,谢谢阅读!。

公路工程各点方位角及坐标计算公式

公路工程各点方位角及坐标计算公式

公路工程各点方位角及坐标计算公式建筑 2009-10-16 09:41 阅读1962 评论3字号:大中小(一)各点方位角计算:1、第一直线段(K0~ZH):F=arctgΔY/ΔX注:直线方位角要考虑象限角才能定出正确线路走向2、第一缓和曲线段(KZH~KHY):δ1=(K0-KZH)2/(2RLh)×180/π3、圆曲线段(KHY~KYH):δ2=[2(K0-KZH)-Lh]/2R×180/πδ2=(KHY-KZH)/2R×180/π+(K0-KHY)/R×180/π无缓和曲线时:δ2=(K0-KHY)/R×180/π(即圆曲线圆心角)4、第二缓和曲线段(KYH~KHZ):δ3=(KHZ-K0)2/(2RLh)×180/π5、第二直线段(KHZ~KZH):F±α (左偏时F-α,右偏时F+α)注:K0——计算点的里程α——曲线交点偏角Lh——缓和曲线长(注意有时第一和第二缓和曲线长不一样)(二)各点坐标计算XZH=XJD-T?CosF XHZ=XJD+T?Cos(F±α)YZH=YJD-T?SinF YHZ=YJD+T?Sin(F±α)1、第一直线段:X=XZH+(K0-KZH)?CosF中桩Y=YZH+(K0-KZH)?SinFX边=X中±B?Cos(F-Δ)边桩Y边=Y中±B?Sin(F-Δ)注:B——中桩至所求点的距离(左幅时为+B,右幅时为-B,当设计轴线与线路不垂直时B取斜长,即B/SinΔ)设计轴线线路方向BΔ图S-12、第一缓和曲线段:XX=XZH-Y′?Sinθ+X′?CosθX X′X′中桩′Y=YZH+Y′?Cosθ+X′?SinθYZH Yθ HZX边=X中±B?Cos(F+μδ1-Δ)HY YH边桩Y边=Y中±B?Sin(F+μδ1-Δ)JDY′注:(本公式只适用与图S-2线形)图S-2μ——曲线左转为-1,右转为+1θ——线路方位角与Y轴所夹的锐角,见图S-2Y′=L-L5/(40R2Lh2);X′=L3/(6RLh)-L7/(336R3Lh3);(R—圆曲线半径,L—缓和曲线上任一点至曲线起点长度)3、圆曲线段:X=XHY+2R?Sinφ?Cos(F+μ(ξ+φ))中桩Y=YHY+2R?Sinφ?Sin(F+μ(ξ+φ))X边=X中±B?Cos(F+μδ2-Δ)边桩Y边=Y中±B?Sin(F+μδ2-Δ)注:φ=(K0-KHY)/2R×180/π;ξ=(KHY-KZH)/2R×180/π4、第二缓和曲线段:X=XHZ-Y′?Sinθ+X′?Cosθ中桩Y=YHZ-Y′?Cosθ-X′?SinθX边=X中±B?Cos(F+μδ1-Δ)边桩Y边=Y中±B?Sin(F+μδ1-Δ)注:1、本公式只适用与图S-2线形,其他线形可根据本线形公式变换2、式中符号与第一缓和曲线意义相同3、注意有时第一缓和曲线长和第二缓和曲线长不一样4、第二直线段:X=XHZ+(K0-KHZ)?Cos(F±α)中桩Y=YHZ+(K0-KHZ)?Sin(F±α)X边=X中±B?Cos(F±α-Δ)边桩Y边=Y中±B?Sin(F±α-Δ)注:F——第一直线段的方位角(三)用CASIO fx-4500P计算已知坐标点在线路上的里程和距中线距离1、直线段(已知坐标X、Y)Pol(X-XHZ,Y-YHZ):K=V?Cos(F-W)+KHZ B=V?Sin(F-W)注:1、在fx-4500P中计算结果存入变量储存区V和W,要显示储存区内容时按RCL V 、 W 键。

方位角的计算方法

方位角的计算方法

方位角的计算方法:(已知方位角+水平角大于540°-540°)已知方位角+水平角±180°=方位角坐标增量的计算方法:平距×COS方位角=△X坐标增量平距×Sin方位角=△Y坐标增量坐标的计算方法:已知X坐标±△X坐标增量=X坐标已知Y坐标±△Y坐标增量=Y坐标高差、平距的计算方法:斜距×Sin倾角=高差斜距×COS倾角=平距高差÷Sin倾角=斜距平距÷cos已知度分秒=斜距高程的计算方法:已知高程-仪器高+前视高±高差=该点的顶板高差原始记录计算方法:前视-后视相加÷2=水平角(前视不够-后视的+360°再减)后视 00°00′00″ 180°00′09″前视92°49′02″272°49′13″水平角= 92°49′03″实测倾角:正镜-270°倒镜-90°(正、倒镜相加-360°)实例: 110°30′38″-90°= 00°30′38″实例: 270°30′38″-270°= 00°30′38″激光的计算方法:两点的高程相减:比如:5点高程1479、479-4点高程1471、052 = 8、427 两点之间的平距:60、673×tan7°19′25″=7、7988、427-7、797=0、629(上山前面的点一定高于后面的点,所以前面的点减后面的点)测量:1、先测后视水平角:归零,倒镜180°不能误差15′2、前视:先测水平角并读数记录,然后倒镜测倾角,水平角、平距、斜距、高差、量出仪器高,前视量出前视高。

要求方位角-已知方位角±180°=拨角方位画两千的图:展点用0.6正好.倾角的计算方法:180°以下的-90°270°-超过180°的两点的高差除平距按tan=倾角比如:2点1500、026-6点1484、096=15、932点~6点平距=127、8315、93÷127、83=接按第二功能键、接按tan接按=接按度分秒键完事。

公路工程各点方位角及坐标计算公式

公路工程各点方位角及坐标计算公式

公路工程各点方位角及坐标计算公式建筑 2009-10-16 09:41 阅读1962 评论3字号:大中小(一)各点方位角计算:1、第一直线段(K0~ZH):F=arctgΔY/ΔX注:直线方位角要考虑象限角才能定出正确线路走向2、第一缓和曲线段(KZH~KHY):δ1=(K0-KZH)2/(2RLh)×180/π3、圆曲线段(KHY~KYH):δ2=[2(K0-KZH)-Lh]/2R×180/πδ2=(KHY-KZH)/2R×180/π+(K0-KHY)/R×180/π无缓和曲线时:δ2=(K0-KHY)/R×180/π(即圆曲线圆心角)4、第二缓和曲线段(KYH~KHZ):δ3=(KHZ-K0)2/(2RLh)×180/π5、第二直线段(KHZ~KZH):F±α (左偏时F-α,右偏时F+α)注:K0——计算点的里程α——曲线交点偏角Lh——缓和曲线长(注意有时第一和第二缓和曲线长不一样)(二)各点坐标计算XZH=XJD-T?CosF XHZ=XJD+T?Cos(F±α)YZH=YJD-T?SinF YHZ=YJD+T?Sin(F±α)1、第一直线段:X=XZH+(K0-KZH)?CosF中桩Y=YZH+(K0-KZH)?SinFX边=X中±B?Cos(F-Δ)边桩Y边=Y中±B?Sin(F-Δ)注:B——中桩至所求点的距离(左幅时为+B,右幅时为-B,当设计轴线与线路不垂直时B取斜长,即B/SinΔ)设计轴线线路方向BΔ图S-12、第一缓和曲线段:XX=XZH-Y′?Sinθ+X′?CosθX X′X′中桩′Y=YZH+Y′?Cosθ+X′?SinθYZH Yθ HZX边=X中±B?Cos(F+μδ1-Δ)HY YH边桩Y边=Y中±B?Sin(F+μδ1-Δ)JDY′注:(本公式只适用与图S-2线形)图S-2μ——曲线左转为-1,右转为+1θ——线路方位角与Y轴所夹的锐角,见图S-2Y′=L-L5/(40R2Lh2);X′=L3/(6RLh)-L7/(336R3Lh3);(R—圆曲线半径,L—缓和曲线上任一点至曲线起点长度)3、圆曲线段:X=XHY+2R?Sinφ?Cos(F+μ(ξ+φ))中桩Y=YHY+2R?Sinφ?Sin(F+μ(ξ+φ))X边=X中±B?Cos(F+μδ2-Δ)边桩Y边=Y中±B?Sin(F+μδ2-Δ)注:φ=(K0-KHY)/2R×180/π;ξ=(KHY-KZH)/2R×180/π4、第二缓和曲线段:X=XHZ-Y′?Sinθ+X′?Cosθ中桩Y=YHZ-Y′?Cosθ-X′?SinθX边=X中±B?Cos(F+μδ1-Δ)边桩Y边=Y中±B?Sin(F+μδ1-Δ)注:1、本公式只适用与图S-2线形,其他线形可根据本线形公式变换2、式中符号与第一缓和曲线意义相同3、注意有时第一缓和曲线长和第二缓和曲线长不一样4、第二直线段:X=XHZ+(K0-KHZ)?Cos(F±α)中桩Y=YHZ+(K0-KHZ)?Sin(F±α)X边=X中±B?Cos(F±α-Δ)边桩Y边=Y中±B?Sin(F±α-Δ)注:F——第一直线段的方位角(三)用CASIO fx-4500P计算已知坐标点在线路上的里程和距中线距离1、直线段(已知坐标X、Y)Pol(X-XHZ,Y-YHZ):K=V?Cos(F-W)+KHZ B=V?Sin(F-W)注:1、在fx-4500P中计算结果存入变量储存区V和W,要显示储存区内容时按RCL V 、 W 键。

两点反算方位角的通用公式

两点反算方位角的通用公式

两点反算方位角的通用公式两个点之间计算方位角普通的办法是计算角度,然后根据X/Y的正负号判断在哪个象限,然后再计算出来,这是很麻烦的一件事,下面和大家介绍一个比较简单的通用计算公式。

假设A、B连个点,坐标分别为(XA、YA),(XB、YB),下面计算A—to—B的坐标方位角,我们可以用以下公式进行计算:a ab=PI-PI/2*SIGN(YB-YA)-ATAN((XB-XA)/(YB-YA))SIGN()是取符号(正负)函数Excel中三角函数计算出来的是弧度下面用该公式对方位角在四个象限的情况进行证明:1、第一象限图中a=|ATAN((XB-XA)/(YB-YA))|,由于(YB-YA)为正,(XB-XA)为正,则a ab=PI-PI/2*SIGN(YB-YA)-ATAN((XB-XA)/(YB-YA))=PI/2-a由此可见公式正确2、第二象限图中a=|ATAN((XB-XA)/(YB-YA))|,由于(YB-YA)为正,(XB-XA)为负,则a ab=PI-PI/2*SIGN(YB-YA)-ATAN((XB-XA)/(YB-YA))=PI/2+a由此可见公式正确3、第三象限图中a=|ATAN((XB-XA)/(YB-YA))|,由于(YB-YA)为负,(XB-XA)为负,则a ab=PI-PI/2*SIGN(YB-YA)-ATAN((XB-XA)/(YB-YA))=3/2PI-a由此可见公式正确4、第四象限图中a=|ATAN((XB-XA)/(YB-YA))|,由于(YB-YA)为负,(XB-XA)为正,则a ab=PI-PI/2*SIGN(YB-YA)-ATAN((XB-XA)/(YB-YA))=3/2PI+a由此可见公式正确从以上证明可以确定该公式对于四个象限的方位角都能进行正确计算。

不过需要说明的是当(YB-YA)为0时会出现bug,这种特例需要我们在实际工作中进行特殊处理。

测量学正反坐标方位角计算例题

测量学正反坐标方位角计算例题

测量学正反坐标方位角计算例题
在测量学中,方位角是指点的方向与参考方向之间的角度。

正反坐标方位角是
指在正反测量中,通过测定两点的坐标值来计算两点间的方位角。

本文将通过一个具体的计算例题,介绍如何计算测量学中的正反坐标方位角。

问题描述
已知点A的坐标为(100,200),点B的坐标为(200,300)。

请计算点A相对
于点B的方位角。

解题过程
第一步,我们需要获得AB线段的坐标差值。

根据已知数据,点A与点B的坐
标差值为(200-100,300-200) = (100,100)。

第二步,我们需要计算方位角。

正反坐标方位角的计算公式如下:
方位角 = atan(X差值 / Y差值)
其中,atan为反正切函数,用来求取给定参数的反正切值。

将AB线段的坐标差值代入上述公式,我们得到方位角为:
方位角= atan(100 / 100) = atan(1) ≈ 45°
因此,点A相对于点B的方位角约为45°。

结论
通过以上计算,我们得出点A相对于点B的方位角约为45°。

总结
测量学中的正反坐标方位角是指通过测定两点的坐标值来计算两点间的方位角。

本文通过一个具体的计算例题,详细介绍了计算的步骤和公式。

在实际测量中,熟练掌握正反坐标方位角的计算方法,能够帮助测量人员准确地确定方向,提高测量结果的精度。

角度坐标测量计算公式细则

角度坐标测量计算公式细则

计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα;式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角;2、方位角计算:1、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数±号判断象限;2、方位角:arctany2-y1/x2-x1;加减180大于180就减去180还大于360就在减去360、小于180就加180如果x轴坐标增量为负数,则结果加180°;如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°;S=√y2-y1+x2-x1,1)、当y2-y1>0,x2-x1>0时;α=arctany2-y1/x2-x1;2)、当y2-y1<0,x2-x1>0时;α=360°+arctany2-y1/x2-x1;3)、当x2-x1<0时;α=180°+arctany2-y1/x2-x1;再用两点之间的距离公式可算距离根号下两个坐标距离差的平方相加;拨角:arctany2-y1/x2-x11、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法前视边方位角减后视边方位在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”+360°就可化为右偏,正值为右偏“顺时针”;2、在图上标识方位的方法:就是导线边与Y轴的夹角;3、高程计算:目标高程=测点高程+h+仪器高—占标高;4、直角坐标与极坐标的换算:直角坐标用坐标增量表示;极坐标用方位角和边长表示1、坐标正算极坐标化为直角坐标已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知AXa,Ya、Sab、αab,求BXa,Ya解:Xab=Sab×COSαab 则有Xb=Xa+XabYab=Sab×SINαab Yb=Ya+Yab2)、坐标反算,已知两点的坐标,求两点的距离称反算边长和方位角称反算方位角的方法已知AXa,Ya、BXb,Yb,求αab、Sab;解:tanαab=Ya b/Xab所以;Αab=tanˉYab/Xab;则有:Sab=Yab/SINαab=Xab/COSαab=√X2ab+Y2ab;5、缘和曲线的方位角和坐标计算公式:S12=sqr<X2 -X12×Y2-Y12> =sqr X221× Y221;A12=arcsinY2-Y1/S12;S12为测站点1至放样点2的距离,A12为测站点1至放样点2的坐标方位角;X1,Y1为测站坐标,X2,Y2为放样点坐标;新公式:A12=arccosX21/S12×sgnY21360°只需将测量的成果用直线或其他线形连接起来;坐标输入时需注意交换输入,也就是将实测的X坐标在CAD中当Y坐标输入,而Y坐标则当X坐标输入;标高则用文字在标注在各相应的坐标点傍;一、建立新图时坐标偏移法1、先按比例大小绘制坐标网格,2、然后将测量整理得来的坐标拐点在CAD中输入绘制矿区范围,3、根据相应的测点坐标绘制实测图,4、填写图例;二、坐标增量上图相对坐标法①:如果比例尺为1:2000,平距除以2之后乘以方位角得坐标增量;②:点击直线或多线段按回车键点击后点,再输入ΔY,ΔX;倾斜巷道贯通计算:可根据倾斜角度进行换算,再结合地测交庄书中给的贯距或标高差来算,而且还要结合巷道的断面高差来综合计算;坡度的表示方法有百分比法、度数法、密位法和分数法四种;其中百分比法和度数法较为常用;1、百分比法表示坡度最为常用的方法,即两点的高程差与其水平距离的百分比,其计算公式如下:坡度=高程差/水平距离﹡100%,是指水平距离每100米垂直方向上下降…米;2、度数法用度数来表示坡度,利用反三角函数计算而得,其公式如下:TAN坡度=高程差 /水平距离,所以坡度=TAN-;一、平巷开门点仪器安设过程:用全站仪确定巷道开门点,C为开门点位置;1、在B点安置仪器,2、后视A点,用卷尺量出开门点的距离位置,定为C点然后在C点顶板钉点挂占标,再前视C点;3、把仪器移动安设在C点,后视B点,再用仪器把设计的方位、角度拨出来,用手拿着垂线或粉笔在开门点帮上,用仪器观测,左右移动垂线或粉笔,确定好准确点后用钉子钉上再用喷漆在帮上喷出;也就是中线点;为防止以后施工的破坏,多确定几个中线点,也是为了以后方便跟踪测量;一、标定腰线方法:1、用半圆仪标定倾斜巷道腰线,1点为新开斜巷的起点,称为起破点;1点高程H1由设计给出,Ha为已知点A高程,从图可知Ha-H1=ha在A点悬挂垂球,自A点向下量取ha,得到a点过a点拉一条水平线I'I,使1点位于新开巷道的一帮上,挂上半圆仪,此时半圆仪上读数应为0;将1点固定在巷道帮上,在1点系上测绳,沿巷道同侧拉向掘进方向,在帮上选定一点2,拉直测绳,悬挂半圆仪,上下移动测绳,使半圆仪的读数等于巷道设计倾角,此时固定2点,连接1、2点,划出腰线;2、用经纬仪标定腰线在主要倾斜巷道中,通常采用经纬仪标定腰线,其方法较多,这里只介绍三种; 1)、利用中线点标定腰线,图a为巷道横断图,图b为巷道纵断面图;标定方法如下:a:在中线点1安置仪器,量取仪器高i;b:使竖盘读数为巷道的设计倾角,此时的望远镜视线方向与腰线平行;然后瞄准掘进方向已标定的中线点2、3、4的垂线,分别作临时记号,得到 2'、3'、4',倒镜再测一次倾角a作为检查;c:由下式计算k值:k=H1-H'1+h-i;式中H1―1点处的高程;H'1 ―1点处轨面设计高程;i―仪器高;h ―轨面到腰线点的铅垂距离;d:由中线点的记号2'、3'、4' 分别向下量k值,得到 2"、3"、4"即为所求的腰线点;e:用半圆仪分别从腰线点拉一条垂直中线的水平线到两帮上;f:用测绳连接帮壁上的2"、3"、4"点并用喷漆沿测绳划出腰线;3、平巷与斜巷连接处腰线的标定:平巷与斜巷连接处是巷道坡度变化的地方,腰线到这里要改变坡度,巷道底板在竖起面上的转折点称为巷道变坡点,设平巷腰线到轨面或底板的距离为a,斜巷腰线到轨面或底板的法线距离也保持为a,那么,在变坡点处,平巷腰线必须抬高Δh,才能得到斜巷腰线起坡点,或者自变坡点处向前或向后量取距离ΔL,得到斜巷腰线起坡点,由此标定出斜巷腰线; Δh和ΔL值按下式计算Δh=a/COSδ-a=asecδ-1ΔL= Δδ;标定时,测量人员首先应在平巷的中线点上标定出A点的位置,然后在A点垂直于巷道中线的两帮上标出平巷腰线点,再从平巷腰线向上量取Δh 也可向前或向后量取ΔL,得到斜巷腰线起坡点位置;斜巷掘进时的最初10米,可以用半圆仪在帮手按δ角划出腰线;倾斜巷道的贯通:上下平巷和一号下山已掘好,二号下山正由下向上开掘至B点,现为加快掘进速度,欲上下同时开掘;这种贯通的特殊性在于上部开切点P的位置是未知的;为此,首先应确定P点的位置;确定P点的位置的方法主要有两种:第一种是根据A和C、B和D的坐标,列出直线方程,求解出交点P的位置;这种方法解联立方程的工作相当复杂,一般不予采用;第二种方法是根据三角学的基本知识,解算ΔAPB;由于在ΔAPB中,A、B的坐标已知,从而可求出它们间的水平距离Lba,和方位角eab,而且eba=edb,eap=eac也是已知的;这样我们就可以根据正弦定理求得Lap,确定出P点的位置;Lap=LbaSINδb/SINδp=<Ya-YbCOSeb-Xa-XbSINedb>/SINebd-eca;P点确定后,即可测定出其高程Hp,然后即可按与第一个例子类似的方法,标定贯通巷道的中线和腰线;水平巷道间的贯通:1、准备工作布设仪器和水准路线,计算出A、B点的平面直角坐标XA,YA、XB,YB以及它们的高程Ha、Hb;2、计算贯通测量的几何要素1计算贯通巷道中心线的方位角aAB:tanaAB=YB-YA/XB-XA;(2)计算A、B处的指向角β1、β2:β1=αAB- αAC β2=αBA- αBD(3)计算A、B间的水平距离LAB:LAB=√XB-XA2+YB-YA2;(4)计算贯通巷道的倾角δ:tanδ=HB-HA/LAB;(5)计算A、B间的斜长LAB:LAB=√LAB2+HB2-HA2或LAB=LAB/COSδ。

角度坐标测量计算公式细则

角度坐标测量计算公式细则

角度坐标测量计算公式细则文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)计算细则1、坐标计算:X1=X+Dcosα,Y1=Y+Dsinα。

式中 Y、X为已知坐标,D为两点之间的距离,Α为方位角。

2、方位角计算:1)、方位角=tan=两坐标增量的比值,然后用计算器按出他们的反三角函数(±号判断象限)。

2)、方位角:arctan(y2-y1)/(x2-x1)。

加减180(大于180就减去180(还大于360就在减去360)、小于180就加180如果x轴坐标增量为负数,则结果加180°。

如果为正数,则看y轴的坐标增量,如果Y轴上的结果为正,则算出来的结果就是两点间的方位角,如果为负值,加360°。

S=√(y2-y1)+(x2-x1),1)、当y2-y1>0,x2-x1>0时;α=arctan(y2-y1)/(x2-x1)。

2)、当y2-y1<0,x2-x1>0时;α=360°+arctan(y2-y1)/(x2-x1)。

3)、当x2-x1<0时;α=180°+arctan(y2-y1)/(x2-x1)。

再用两点之间的距离公式可算距离(根号下两个坐标距离差的平方相加)。

拨角:arctan(y2-y1)/(x2-x1)1、例如:两条巷道要互相平行掘进的话,求它们的拨角:方法(前视边方位角减后视边方位)在此后视边方位要加减180°,若拨角结果为负值为左偏“逆时针”(+360°就可化为右偏,正值为右偏“顺时针”。

2、在图上标识方位的方法:就是导线边与Y轴的夹角。

3、高程计算:目标高程=测点高程+h+仪器高—占标高。

4、直角坐标与极坐标的换算:(直角坐标用坐标增量表示;极坐标用方位角和边长表示)1)、坐标正算(极坐标化为直角坐标)已知一个点的坐标及该点至未知点的距离和方位角,计算未知点坐标方位角,知A(Xa,Ya)、Sab、αab,求B(Xa,Ya)解:Xab=Sab×COSαab 则有Xb=Xa+XabYab=Sab×SINαab Yb=Ya+Yab2)、坐标反算,已知两点的坐标,求两点的距离(称反算边长)和方位角(称反算方位角)的方法已知A(Xa,Ya)、B(Xb,Yb),求αab、Sab。

方位角及坐标计算

方位角及坐标计算

方位角及坐标计算公路工程各点方位角及坐标计算公式(一)各点方位角计算:1、第一直线段(k0~zh):f=arctgδy/δx备注:直线方位角必须考量象限角就可以厘定恰当线路迈向2、第一缓解曲线段(kzh~khy):δ1=(k0-kzh)2/(2rlh)×180/π3、圆曲线段(khy~kyh):δ2=[2(k0-kzh)-lh]/2r×180/πδ2=(khy-kzh)/2r×180/π+(k0-khy)/r×180/π无缓和曲线时:δ2=(k0-khy)/r×180/π(即圆曲线圆心角)4、第二缓和曲线段(kyh~khz):δ3=(khz-k0)2/(2rlh)×180/π5、第二直线段(khz~kzh):f±α(左偏时f-α,右偏时f+α)备注:k0――排序点的程α――曲线交点偏角lh――缓和曲线长(注意有时第一和第二缓和曲线长不一样)(二)各点坐标计算xzh=xjd-t?cosfxhz=xjd+t?cos(f±α)yzh=yjd-t?sinfyhz=yjd+t?sin(f±α)1、第一直线段:x=xzh+(k0-kzh)?cosf中桩y=yzh+(k0-kzh)?sinfx边=x中±b?cos(f-δ)边桩y边=y中±b?sin(f-δ)备注:b――中桩至所求点的距离(左幅时为+b,右幅时为-b,当设计轴线与线路不横向时b取斜短,即b/sinδ)设计轴线线路方向。

bδ图s-12、第一缓和曲线段:xx=xzh-y′?sinθ+x′?cosθxx′x′中桩′y=yzh+y′?cosθ+x′?sinθyzhyθhzx边=x中±b?cos(f+μδ1-δ)hyyh边桩y边=y中±b?sin(f+μδ1-δ)jdy′注:(本公式只适用与图s-2线形)图s-2μ――曲线左转为-1,右转为+1θ――线路方位角与y轴所缠的锐角,见到图s-2y′=l-l5/(40r2lh2);x′=l3/(6rlh)-l7/(336r3lh3);(r―圆曲线半径,l―缓解曲线就任一点至曲线起点长度)3、圆曲线段:x=xhy+2r?sinφ?cos(f+μ(ξ+φ))中桩y=yhy+2r?sinφ?s in(f+μ(ξ+φ))x边=x中±b?cos(f+μδ2-δ)边桩y边=y中±b?sin(f+μδ2-δ)备注:φ=(k0-khy)/2r×180/π;ξ=(khy-kzh)/2r×180/π4、第二缓解曲线段:x=xhz-y′?sinθ+x′?cosθ中桩y=yhz-y′?cosθ-x′?sinθx边=x中±b?cos(f+μδ1-δ)边桩y边=y中±b?sin(f+μδ1-δ)注:1、本公式只适用于与图s-2线形,其他线形可以根据本线形公式转换2、式中符号与第一缓解曲线意义相同3、注意有时第一缓和曲线长和第二缓和曲线长不一样4、第二直线段:x=xhz+(k0-khz)?cos(f±α)中桩y=yhz+(k0-khz)?sin(f±α)x边=x中±b?cos(f±α-δ)边桩y边=y中±b?sin(f±α-δ)备注:f――第一直线段的方位角(三)用casiofx-4500p计算已知坐标点在线路上的里程和距中线距离1、直线段(已知坐标x、y)pol(x-xhz,y-yhz):k=v?cos(f-w)+khzb=v?sin(f-w)备注:1、在fx-4500p中计算结果取走变量储存区v和w,必须表明储存区内容时按rclv、w键。

两点坐标求方位角公式

两点坐标求方位角公式

两点坐标求方位角公式1. 什么是方位角嘿,朋友们,今天咱们聊聊方位角,听起来像是个高大上的数学名词,其实没那么复杂。

方位角,简单来说,就是从某个基准方向(通常是北)到目标点的方向。

想象一下,如果你在一个广场上,想知道怎么从这里走到对面的咖啡店,方位角就告诉你该往哪个方向走,真是个贴心的小工具啊!2. 坐标系的基本知识2.1 坐标系是什么在讨论方位角之前,咱们先得搞清楚坐标系的概念。

坐标系就像是一个城市的地图,X轴和Y轴分别代表东西和南北两个方向。

你只需要在这张“地图”上标记两个点,就能找到它们之间的方位角。

2.2 坐标的表示每个点都有自己的坐标,通常表示为(x1, y1)和(x2, y2)。

比如说,你的朋友在(2, 3) 的位置,而你在 (5, 7),这两个点就分别是你和朋友的坐标。

坐标像什么?就像是两个小伙伴在广场上的位置,呼朋引伴,热闹得很!3. 如何计算方位角3.1 计算步骤好啦,接下来是关键时刻,咱们要用公式来计算方位角。

首先,找出两点的坐标差,像这样:Δx = x2 x1,Δy = y2 y1。

听起来有点复杂,其实就是看看你们之间的水平和垂直距离。

别担心,简单的加减法就能搞定!接着,咱们用反正切函数(arctan)来求角度,公式是:方位角= arctan(Δy / Δx)。

最后,要记得把角度转换成0到360度之间的值。

这里面还有一些小细节,比如如果Δx是负的,咱们得加180度,记得小心别迷路哦!3.2 实例解析来,咱们举个例子!假设你在 (2, 3),而你的小伙伴在 (5, 7),那么Δx = 5 2 = 3,Δy = 7 3 = 4。

用公式来算:方位角 = arctan(4 / 3)。

通过计算,咱们得到了一个大约53.13度的角。

哇,这就是你从自己位置到朋友那的方向!简直像是地图上标的那样清晰。

4. 方位角的应用4.1 实际应用场景那么,方位角能用在哪儿呢?首先,它在导航中大显身手,像是你开车的时候,车载导航就会告诉你朝哪个方向去。

正反方位角计算公式

正反方位角计算公式

我们要找出正反方位角的计算公式。

首先,我们需要了解什么是正反方位角。

方位角是一个角度,通常用于描述一个方向相对于北方的角度。

正方位角是目标方向与北方向的夹角,而反方位角是目标方向与南方向的夹角。

正方位角(A)和反方位角(B)可以用以下的数学公式表示:
A = arctan(y/x)
B = 180° - A
其中,x 和y 是目标点的坐标。

这个公式告诉我们如何根据目标点的坐标计算正反方
位角。

计算结果为:正方位角是26.57°, 反方位角是26.57°。

所以,正反方位角的计算公式为:
正方位角 A = arctan(y/x)
反方位角 B = 180° - A。

两点坐标计算距离方位角

两点坐标计算距离方位角

两点坐标计算距离方位角计算两点之间的距离和方位角是大地测量中常见的问题。

为了计算距离和方位角,我们需要知道两点的经纬度坐标。

在计算之前,需要确保经纬度坐标是在同一个坐标系下,常见的坐标系包括WGS84和GCJ-02、以下是计算两点之间距离和方位角的步骤。

步骤1:定义两点的经纬度坐标假设有两个点A和B,可以通过经度(longitude)和纬度(latitude)来定义它们的位置。

点A的经纬度表示为(A_longitude,A_latitude),点B的经纬度表示为(B_longitude, B_latitude)。

步骤2:将经纬度转换为弧度(radians)计算距离和方位角之前,需要将经纬度转换为弧度,因为大地测量中的计算一般使用弧度作为单位。

将经纬度转换为弧度的公式如下:r_longitude = A_longitude * π / 180r_latitude = A_latitude * π / 180(其中π是圆周率)步骤3:计算两点之间的球面距离在大地测量中,可以使用球面三角学公式计算两点之间的距离。

常用的公式包括球面三角形的余弦定理、球面三角形的两点间弧长和正弦定理等。

根据具体的需要选择相应的公式进行计算。

以下是使用球面三角形的两点间弧长公式来计算两点之间的距离的步骤:a = sin²((r_latitudeB - r_latitudeA) / 2) + cos(r_latitudeA) * cos(r_latitudeB) * sin²((r_longitudeB - r_longitudeA) / 2)c = 2 * atan2(√a, √(1-a))d=R*c(其中,a是两点之间的角距离,c是弧度,d是距离,R是地球的半径,一般取6371公里)步骤4:计算两点之间的方位角方位角表示从一个点指向另一个点的方向角度。

在计算方位角之前,需要转换经纬度坐标为直角坐标系,即将经纬度坐标转换为笛卡尔坐标系的xyz坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两点方位角计算公式
两点方位角是指从一个点出发,经过直线路径到达另一个点的方向。

一般通过经纬度的坐标来计算两点方位角,以下是计算公式:
1. 根据起点和终点的经纬度计算它们之间的距离,可以使用以下公式:
a = sin(Δlat/2) + cos(lat1) * cos(lat2) * sin(Δlong/2)
c = 2 * atan2( √a, √(1a) )
d = R * c
其中,Δlat和Δlong分别表示起点和终点的纬度和经度之差,R为地球半径,d表示两点之间的距离。

2. 计算起点和终点的方位角,可以使用以下公式:
y = sin(Δlong) * cos(lat2)
x = cos(lat1) * sin(lat2) sin(lat1) * cos(lat2) * cos(Δlong)
θ = atan2(y, x)
其中,θ表示起点指向终点的方位角,正北方向为0°,顺时针方向为正。

以上就是计算两点方位角的公式,可以通过这些公式来快速计算出两点间的方位角。

- 1 -。

相关文档
最新文档