线性规划法
线性规划图解法
图解法 线性规划问题求解的 几种可能结果 由图解法得到的启示
上页
下页 继续
返回
例1的数学模型
目标函数 Max Z = 2x1 + 3x2 约束条件 x1 + 2x2 8 4x1 16 4x2 12 x 1、 x 2 0
上页
下页
返回
图解法
9— 8—
x1+ 2x2=8 4x1 =16
4x1 16
C 4 x2 16
4 —B
3— 2— 1—
最优解 (4, 2)
D
x1 + 2x2 8
| 6 | 7 | 8 | 9 | 4
A
0
| 1
| 2
| 3
E
| 5
x1 下页 返回
上页
图解法求解步骤
• 由全部约束条件作图求出可行域; • 作目标函数等值线,确定使目标函数最
(d)无可行解
Max Z = 2x1 + 3x2 x1 +2 x2 8 4 x1 16 4x2 12 -2x1 + x2 4 x 1、 x 2 0
可行域为空集
上页 下页 返回
图解法的几点结论:
(由图解法得到的启示)
– 可行域是有界或无界的凸多边形。 – 若线性规划问题存在最优解,它一定可以在
优的移动方向; • 平移目标函数的等值线,找出最优点, 算出最优值。
上页
下页
返回
线性规划问题求解的 几种可能结果
(a) 唯一最优解
x2
6— 5— 4— 3— 2— 1— | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | x 9 1
线性规划PPT课件
线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义
线性规划(图解法)
D
max Z
可行域
(7.6,2) , )
34.2 = 3X1+5.7X2
X1 + 1.9X2 = 3.8(≥) X1 - 1.9X2 = 3.8 (≤) L0: 0=3X1+5.7X2
oபைடு நூலகம்
x1
图解法
min Z=5X1+4X2 x2
X1 + 1.9X2 = 10.2 (≤)
Page 18
43=5X1+4X2 8=5X1+4X2 此点是唯一最优解 (0,2) , )
图解法
线性规划问题的求解方法 一般有 两种方法 图解法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
Page 1
适用于任意变量、 适用于任意变量、但必需将 一般形式变成标准形式
下面我们分析一下简单的情况—— 下面我们分析一下简单的情况—— 只有两个决策 变量的线性规划问题, 变量的线性规划问题,这时可以通过图解的方法来 求解。图解法具有简单、直观、 求解。图解法具有简单、直观、便于初学者窥探线 性规划基本原理和几何意义等优点。 性规划基本原理和几何意义等优点。
• 有效与无效 紧与松)约束:与最优解相关的约束为有效 有效与无效(紧与松 约束 紧与松 约束: (紧)约束。 紧 约束 约束。 • 最优解:总是在可行域的边界上,一般由可行域的顶 最优解:总是在可行域的边界上, 点表示。 点表示。 • 可行域:由约束平面围起来的凸多边形区域,可行域 可行域:由约束平面围起来的凸多边形区域, 个可行解。 内的每一个点代表一 个可行解。
20
无可行解(即无最优解 无可行解 即无最优解) 即无最优解
10
O
10
线性规划知识点总结
线性规划知识点总结线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域都有广泛的应用,包括经济学、工程学、管理学等。
本文将对线性规划的基本概念、模型构建、求解方法以及应用领域进行详细介绍。
一、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。
目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为系数,xi为决策变量。
2. 约束条件:线性规划的决策变量需要满足一系列线性约束条件,常用形式为a1x1 + a2x2 + ... + anxn ≤ b,其中ai为系数,b为常数。
3. 可行解:满足所有约束条件的决策变量取值称为可行解。
4. 最优解:在所有可行解中,使目标函数取得最大值或者最小值的解称为最优解。
二、模型构建1. 决策变量:根据具体问题确定需要优化的变量,通常用xi表示。
2. 目标函数:根据问题要求确定目标函数的系数,进而确定是最大化还是最小化。
3. 约束条件:根据问题中给出的条件,建立约束条件方程。
4. 非负约束:决策变量通常需要满足非负约束条件,即xi ≥ 0。
三、求解方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先绘制约束条件的直线,然后确定可行域,最后在可行域内找到目标函数的最优解。
2. 单纯形法:对于多维线性规划问题,常使用单纯形法进行求解。
单纯形法通过不断迭代,逐步接近最优解。
它基于线性规划的基本定理,即最优解一定在可行解的顶点上。
3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法进行求解。
整数规划问题通常更加复杂,求解时间较长。
四、应用领域1. 生产计划:线性规划可以用于确定最佳的生产计划,使得生产成本最小化或者利润最大化。
2. 运输问题:线性规划可以用于确定最佳的运输方案,使得运输成本最小化。
3. 资源分配:线性规划可以用于确定最佳的资源分配方案,使得资源利用率最高。
运筹学基础-线性规划(方法)
线性规划问题通常由三个基本部分组成,即决策变量、约束条件 和目标函数。决策变量是问题中需要求解的未知数,约束条件是 限制决策变量取值的条件,目标函数是要求最大或最小的函数。
线性规划的应用领域
01
02
03
04
生产计划
在制造业中,线性规划可以用 于制定最优的生产计划,以最 大化利润或最小化成本。
02
线性规划的基本概念
线性方程组
线性方程组是由多个线性方程组成的数学模型,描 述了多个变量之间的线性关系。
线性方程组可以用矩阵和向量表示,通过矩阵运算 和代数方法求解。
线性方程组有多种解法,如高斯消元法、LU分解、 迭代法等。
约束条件与目标函数
02
01
03
约束条件是限制变量取值的条件,通常表示为变量的 上界、下界或等式约束。
目标函数是描述问题目标的数学表达式,通常是最小 化或最大化的线性或非线性函数。
约束条件和目标函数共同构成了线性规划问题的数学 模型。
线性规划的解
线性规划的解是指满足 所有约束条件并使目标 函数取得最优值的变量 取值。
线性规划问题可能有多 个解,也可能无解或无 界解。
最优解的性质包括最优 性、可行性和唯一性。
最优解可以通过求解线 性方程组或使用专门的 优化软件获得。
03
线性规划的求解方法
单纯形法
01
基本概念
单纯形法是一种求解线性规划问题的迭代算法,通过 不断迭代寻找最优解。
02 1. 初始化 选择一个初始可行解,并确定初始基可行解。
03
2. 迭代
根据目标函数系数和约束条件系数,计算出单纯形表 格,然后进行迭代更新。
运筹学基础-线性规划(方法)
线性规划的定义及解题方法
线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划的标准化及图解法
2
线性规划的问题
• 某工厂生产两种型号的电机(记为A和B),每台 A型电机需用原料2个单位,4个工时,每台B型电 机需用原料3个单位,2个工时,工厂共有原料 100个单位,120个工时,A、B型电机的每台利 润分别为600元和400元,问两种电机各生产多少 可使利润最大?
设A、B型电机各生产x1,x2台,x1,x2称为决策变量。
解:第一个约束引入松弛变量x4, 第二个约束引入剩余变量x5
18
将线性规划化成标准形式
于是,我们可以得到以下标准形式的线性 规划问题:
19
将线性规划化成标准形式
3. 变量无符号限制的问题:
在标准形式中,必须每一个变量均有非负 约束。当某一个变量xj没有非负约束时, 可以令 xj = xj’- xj” 其中 xj’≥0,xj”≥0 即用两个非负变量之差来表示一个无符号 限制的变量,当然xj的符号取决于xj’和xj” 的大小。
3 . Min
S x1 x 2
4 . Min
S 2 x1 3 x 2
x1 x 2 1 s .t . x2 2 x , x 0 1 2
x1 2 x 2 2 2 x x 3 1 2 s .t . x2 4 x1 , x 2 0
该问题可推广到m个产地,n个销地的运输 问题。
7
线性规划的应用模型
某饲养场使用甲,乙,丙,丁四种饲料,每种饲料的 的维生素A,B,C含量及单位价格和所需的维生素 如下表,要求配制一个混合饲料,每单位混合饲料 的维生素A、B、C的需要量为3,5,10. 甲 A B C 单价 0.2 0.8 1.2 5 乙 0.8 0.3 0.9 6 丙 1.2 0.9 0.7 6 丁 0.6 0.7 1.5 7 需要量 3 5 10
线性规划问题的四种求解方法
可画出直线
l0
:y
=-
2 3
x
,
把直线
l0
向右上方
平移 , 当经过可行域上点 B 时 , 直线的截距最
大 .此时 z = 12x +18y 取最大值 .解方程组
z =6x +3y +5[ 300 -(x +y)] +5(200 -x ) +9(450 -y)+6(100 +x +y)=2 x -5y +
解 设每天生产甲 、乙产品的件数分别是
维生素 B (单位 / 千克) 800 400 500
成本(单位 / 千克) 11 9 4
某食物营养所想用 x 千克甲种食物 , y 千 克乙种食物 , z 千克丙种食物配成 100 千克混合 物 , 并使混合物至少含有 56000 单位维生素 A 和 63000 单位维生素 B
问题的最优解具有十分重要的现实意义 .现介
二 、等值线法
绍几种求解线性规划问题的最优解的策略 .
所谓等值线是指直线上任一点的坐标(x ,
一 、截距法
y )都使 F(x , y)=Ax +By 取等值C 的直线l :
例 1 某厂需从国外引进两种机器 .第一 Ax +By = C(A 、B 不同时为零).通过比较等
7150 作出以上不等式组所表示的平面区域即可
x +2y 4x +y
=13得 =24
B(5 , 4).故当
x
=5, y
=4
行域 .令 z = 0 , 则可画出 直线 l 0 :2x -5y + 7150 =0 .画出一组与 l 0 平行的等值线 , 比较等
第二章线性规划的图解法
➢ 答案:
X2 ➢ 最优解为: x1 =15 ,x2=10 40 ➢ 最优值为:z*=2500×15+1500×10
➢
30
=52500
3x2=75
20
(15,10)
10
O
10
20
30
40
50 X1
3x1+2x2=65
2x1+x2=40
五、线性规划问题解的情况
➢ 例1.5的最优解只有一个,这是线性规划问题 最一般的解的情况,但线性规划问题解的情 况还存在其它特殊的可能:无穷多最优解、 无界解或无可行解。
... am1x1+am2x2 +…+amnxn≤( =, ≥ )bm x1 ,x2 ,… ,xn ≥ ( ≤) 0 或无约束
xj为待定的决策变量; cj为目标函数系数,或价值系数、费用系数; aij为技术系数; bj为资源常数,简称右端项; 其中i=1,2,…m; j=1,2,…n
可以看出,一般LP模型的特点: A、决策变量x1,x2,x3,……xn表示要寻求
O
100 200 300
X1
3、无界解的情况
➢若将例1.5的线性规划模型中约束条件1、2的 不等式符号改变,则线性规划模型变为:
➢ 目标函数:Max z= 50x1+100 x2 约束条件:x1+x2 ≥ 300 2x1+x2 ≥ 400 x2≤250 x1 ≥0, x2 ≥0
B、定义决策变量;
C、用决策变量的线性函数形式写出所要追求 的目标,即目标函数;
D、用一组决策变量的等式或不等式来表示在 解决问题过程中所必须遵循的约束条件。
三、线性规划的数学模型
1、LP模型的一般形式 目标函数:
线性规划知识点总结
线性规划知识点总结一、引言线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域中都有广泛的应用,如生产计划、资源分配、物流管理等。
本文将对线性规划的基本概念、模型建立、求解方法和应用进行总结。
二、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。
目标函数的系数称为目标系数,代表了各个决策变量对目标的影响程度。
2. 约束条件:线性规划的决策变量需要满足一系列线性约束条件,通常表示为等式或者不等式。
3. 可行解:满足所有约束条件的解称为可行解。
4. 最优解:在所有可行解中,使目标函数取得最大(最小)值的解称为最优解。
三、模型建立1. 决策变量:线性规划中,需要确定一组决策变量,代表问题中的可调整参数。
决策变量通常用符号x1, x2, ..., xn表示。
2. 目标函数:根据问题的具体要求,建立目标函数。
例如,最大化利润、最小化成本等。
3. 约束条件:根据问题中的限制条件,建立线性约束条件。
约束条件通常表示为等式或者不等式。
4. 非负约束:决策变量通常需要满足非负约束条件,即x1, x2, ..., xn≥0。
四、求解方法1. 图解法:对于二维线性规划问题,可以使用图解法进行求解。
首先绘制约束条件的直线,然后确定可行解区域,最后在可行解区域中找到最优解。
2. 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。
通过不断迭代,找到使目标函数取得最大(最小)值的最优解。
3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法进行求解。
整数规划通常比线性规划更复杂,求解时间更长。
4. 网络流算法:对于某些特殊的线性规划问题,可以使用网络流算法进行求解。
网络流算法利用图论的方法,将问题转化为网络流问题进行求解。
五、应用领域1. 生产计划:线性规划可以用于确定最佳生产计划,使得生产成本最小化或者利润最大化。
2. 资源分配:线性规划可以用于确定资源的最佳分配方案,如人力资源、物资资源等。
线性规划方法及其应用
05
线性规划方法优缺点分析
优点分析
有效处理多变量问题
线性规划能够同时处理多个决策变量,通过 优化算法寻找最优解。
直观易懂的数学模型
线性规划在各个领域都有广泛的应用,如生 产计划、资源分配、运输问题等。
广泛应用
线性规划的数学模型相对简单,易于理解和 应用。
可求解大规模问题
随着计算机技术的发展,线性规划可以求解 大规模的问题,满足实际应用的需求。
复杂约束处理
研究如何处理包含复杂约束条件的线性规划问题,提高求解效率和 准确性。
不确定性问题建模
针对包含不确定性因素的线性规划问题,发展有效的建模和求解方 法。
应用领域拓展
探索线性规划方法在更多领域(如机器学习、大数据分析等)的应用 潜力,推动相关领域的理论和技术创新。
感谢您的观看
THANKS
3
考虑不确定性
将不确定性因素引入资源分配问题中,通过线性 规划求解鲁棒性强的资源分配策略,以应对潜在 的风险和变化。
04
线性规划软件介绍
MATLAB软件介绍
1
MATLAB是一款由MathWorks公司开发的数学 计算软件,广泛应用于算法开发、数据可视化、 数据分析以及数值计算等领域。
2
MATLAB提供了丰富的工具箱,其中包括优化工 具箱(Optimization Toolbox),可用于解决线 性规划问题。
线性规划方法及其应用
目录
• 线性规划基本概念 • 线性规划方法 • 线性规划应用举例 • 线性规划软件介绍 • 线性规划方法优缺点分析 • 线性规划方法发展趋势与展望
01
线性规划基本概念
定义与特点
定义:线性规划是一种数学方法,用于 优化一组线性不等式约束下的线性目标 函数。
线性规划计算方法
线性规划法的数学模型如下:设X1,X2,X3,…,X n为各变量,n为变量个数,m为约束条件数,a ij(i=1,2…,m;j=1,2…,n)为各种系数,b1,b2,b3,…,b m为常数,C1,C2,C3,…C n为目标函数系数,Z为目标值,则线性规划模型如下:a11X1+a12X2+…+a1n X n≥(=≤)b1a21X1+a22X2+…+a2n X n≥(=≤)b2…………………a m1X1+a m2X2+…+a mn X n≥(=≤)b mX1,X2,…,X n≥0目标函数Zmin(max)=C1X1+C2X2十…+C n X n线性规划计算方法:鲜花店向李大民预定两种花卉——百合、玫瑰。
其中每株收购价百合为4元,玫瑰为3元,鲜花店需要百合在1100~1400株之间,玫瑰在800~1200株之间,李大民只有资金5000元, 要去购买良种花苗, 在自家902m的温室中培育,每株苗价百合为2.5元,玫瑰为2元,由于百合与玫瑰生长所需采光条件的不同,百合每株大约占地0.052m,玫瑰每株大约占地0.032m,应如何配置才能使李大民获利最大?数学建模:设种百合x1 株,玫瑰x2 株,则2. 5 x1 + 2 x2 ≤50000. 05 x1 + 0. 03 x2 ≤90x1 ≥ 1100x1 ≤ 1400x2 ≥ 800x2 ≤ 1200目标函数求最大值(即获利)Max z = (4 - 2. 5) x1 + (3 - 2) x2 = 1. 5 x + x1可以看出,变量数为2,约束方程数为6,目标函数求最大值,打开线性规划计算软件,输入如下所示:输入完成后点“计算”按纽,即可完成计算结果如下图:即x1 = 1200 , x2 = 1000时, z取得最大值Z max= 1. 5 ×1200 + 1000 = 2800 (元) 。
所以,种百合1200株,玫瑰1000株时,李大民获利最大。
线性规划知识点总结
线性规划知识点总结引言概述:线性规划是一种数学优化方法,用于在给定的约束条件下最大化或者最小化线性目标函数。
它在各种领域中都有广泛的应用,包括经济学、管理学、工程学等。
本文将对线性规划的基本概念、模型构建、求解方法和应用进行详细阐述。
一、线性规划的基本概念1.1 目标函数:线性规划的目标函数是一个线性函数,用于表示需要最大化或者最小化的目标。
1.2 约束条件:线性规划的约束条件是一组线性等式或者不等式,用于限制变量的取值范围。
1.3 可行解与最优解:线性规划问题存在无穷多个可行解,但惟独一个最优解,即使满足所有约束条件且使目标函数取得最大(或者最小)值的解。
二、线性规划模型构建2.1 决策变量:线性规划模型中的决策变量是需要优化的变量,可以是实数、整数或者二进制数。
2.2 目标函数的构建:根据问题的具体要求,将目标转化为线性函数的形式,并确定是最大化还是最小化。
2.3 约束条件的建立:根据问题的限制条件,将其转化为线性等式或者不等式的形式,并确定约束条件的数学表达式。
三、线性规划的求解方法3.1 图形法:对于二维线性规划问题,可以使用图形法进行求解。
通过绘制约束条件的直线或者曲线,找到目标函数的最优解点。
3.2 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。
通过迭代计算,不断改变基变量和非基变量的取值,直到找到最优解。
3.3 整数规划法:当决策变量需要取整数值时,可以使用整数规划法进行求解。
该方法将线性规划问题转化为整数规划问题,并采用分支定界等算法求解最优解。
四、线性规划的应用4.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化产量或者最小化成本。
4.2 资源分配:线性规划可以用于优化资源的分配,如确定最佳的人力资源配置、物资采购策略等。
4.3 运输问题:线性规划可以用于解决运输问题,如确定最佳的货物运输路线和运输量,以降低运输成本。
4.4 金融投资:线性规划可以用于优化金融投资组合,以最大化收益或者最小化风险。
第三章 线性规划及图解法
max z=11x1+8x2+0 sl +0 s2 +0 s3; 约束条件: 例2中 10x1+ 2x2-sl=20, sl=0 3x1+3 x2-s2=18, s2=0 4x1+9x2-s3=36, s3=13 x1,x2,sl,s2,s3≥0
六、线性规划数学模型的标准形式
引入了松驰变量和剩余变量后,就可以 将线性规划数学模型用“≤”,“≥”和“=” 建立的一般形式化为统一用“=”的标准形式:
兰州大学管理学院
运筹学
-------数据、模型与决策
2010年用
运筹学
第三章
线性规划及图解法
第三章 线性规划及图解法
确定型决策 ——线性规划方法
线性规划 ——所有资源限制条件式和目标 式都是自变量的一次方关系。
描述的是在一定资源限制下(自然状态),给 出了很多个可以选择的不同方案(运行方案), 从这些方案中找到一个最好的方案来执行。
二、线性规划问题的解
1、在线性规划问题的解集合中,若约束条件能构成 一个封闭的可行域,则可行域的任意点都是问题的 一个可行解,这些可行解中必有最优解。 若最优解是可行域中一个点,则这个解是线性 规划的唯一最优解。唯一最优解都必落在可行域的 顶点上,可行域的所有顶点称为基本可行解; 对于求最大目标的线性规划问题,取Z值最小的 基本可行解为初始基本可行解,再依次迭代至最优 解。 求最小目标的情况,可选可行域中任意目标初函 数值较大的点为初始基本可行解,再依次迭代至最
蛋白质 钙
食用量不能为负
一般线性规划问题的建模过程
(1)理解要解决的问题。明确在什么条件下,要 追求什么目标。 (2)定义决策变量。每个问题都用一组决策变量 (x1, x2, …, xn)表示,当这组决策变量取具体值时就 代表一个具体方案,一般这些变量取值是非负的。 (3)用决策变量的线性函数形式写出所要追求的 目标,即目标函数,按问题的不同,要求目标函数 实现最大化或最小化。 (4)用一组决策变量的等式或不等式来表示在解 决问题过程中所必须遵循的约束条件(决策分析中 的自然状态)。
求解线性规划的方法
求解线性规划的方法
线性规划的方法包括以下几种:
1. 单纯形法:单纯形法是最常用的线性规划求解方法,通过不断优化目标函数来找到最优解。
2. 对偶理论:对偶理论将原问题转化为对偶问题,通过对偶问题的求解来获取原问题的最优解。
3. 整数规划:如果线性规划中的变量属于整数集合,那么就需要使用整数规划方法进行求解。
4. 分枝定界法:将线性规划问题分解为多个子问题,然后逐一求解每个子问题,最终得到原问题的最优解。
5. 网络流法:将线性规划问题转换为图论问题,然后通过构造最大流或最小费用最大流的方法来求解。
6. 内点法:内点法可以处理线性规划中变量约束为非负的情况,并且对于高维稀疏的问题有较好的求解效果。
每个方法都有其特点和适用情况,选择合适的求解方法可以提高求解效率和精度。
线性规划法
s.t.
x 11 x 12 x 13 x 14 100 x 21 x 22 x 23 x 24 80 各矿山的运输量与产 量的平衡条件 x 31 x 32 x 33 x 34 50 x 11 x 21 x 31 50 x 12 x 22 x 32 70 x 13 x 23 x 33 80 x 14 x 24 x 34 30 x ij 0 i 1 ,2 ,3 ;
成,答案在计算机上由线性规划程序运行很快获得。
正确的建模要求建模者:
熟悉规划问题的生产和管理问题,明确目标和错综
复杂的约束条件,通过调查和统计资料获取原始可靠的
数据。
建模过程的规律: ①通过对实际问题的分析、理解,明确那些是决策 变量,目标要求是什么,有那些资源限制条件; ②把变量、常数、约束条件、目标要求的相互关系 联系起来列出相应的方程式; ③注意变量、系数、常数的计量单位要统一。
4x1 16
必落在由这三个 半平面交成的第 一象限区域内。
7—
6— 5—
4—
3— 2— 1— 0 | 1 | 2 | 3 | 4 | 5
4 x2 12 x1 + 2x2 8
| 6
| 7
| 8
| 9
x1
9— 8—
可行解:满足约束条件的解。白 色区域中的每一个点(包括边界 点)都是可行解。此区域是【例 2-1】的线性规划问题的解的集 合(可行解域)。
| 1 | 2 | 3 | 4
O
0
D|
5
| 6
| 7
| 8
| 9
x1
2.4
简单最小化问题的图解法求解
2.4.1 两个变量最小化线性规划模型的求解
线性规划知识点
线性规划知识点线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域都有广泛的应用,包括经济学、管理学、工程学等。
本文将详细介绍线性规划的基本概念、模型建立、求解方法以及应用案例。
一、基本概念1. 目标函数:线性规划的目标是最小化或者最大化一个线性函数,称为目标函数。
目标函数可以表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为系数,xi为决策变量。
2. 约束条件:线性规划的决策变量需要满足一系列线性等式或者不等式,称为约束条件。
约束条件可以表示为a11x1 + a12x2 + ... + a1nxn ≤ b1,a21x1 + a22x2 + ... + a2nxn ≥ b2等。
3. 可行解:满足所有约束条件的解称为可行解。
可行解集合称为可行域。
4. 最优解:在所有可行解中,使得目标函数取得最小值或者最大值的解称为最优解。
二、模型建立1. 决策变量的定义:根据问题的特点,定义适当的决策变量。
例如,假设要生产两种产品,可以定义x1为第一种产品的生产量,x2为第二种产品的生产量。
2. 目标函数的建立:根据问题的要求,建立目标函数。
例如,如果要最大化利润,可以将目标函数定义为Z = p1x1 + p2x2,其中p1和p2为单位产品的利润。
3. 约束条件的建立:根据问题的限制条件,建立约束条件。
例如,如果生产资源有限,可以建立生产资源约束条件,如a11x1 + a12x2 ≤ b1,a21x1 + a22x2 ≤ b2等。
4. 模型的完整表达:将决策变量、目标函数和约束条件整合起来,形成完整的线性规划模型。
三、求解方法1. 图解法:对于二维线性规划问题,可以通过绘制等式和不等式的图形,找到可行域和最优解。
最优解通常浮现在可行域的顶点处。
2. 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。
单纯形法是一种迭代算法,通过不断优化目标函数的值,逐步接近最优解。
线性规划算法的应用案例
线性规划算法的应用案例线性规划是应用最广泛的数学优化方法之一,也是一种非常有效的运筹学技术。
它的基本思想是将问题建模成一组线性方程和线性不等式的组合,通过寻找最优解来实现目标最大化或最小化。
线性规划算法广泛应用于制造业、金融、物流和交通等领域,以下将介绍几个重要的应用案例。
1. 生产计划和调度线性规划算法可以用于制造业的生产计划和调度。
例如,在一家造纸厂中,有若干个可用的生产线、仓库和运输车辆,需要考虑原材料的成本、工人的人工费用、工厂的能耗费用以及运输的成本等因素,制定出最佳的生产计划和调度方案。
对于这类问题,可以将目标函数设置为生产成本最小化或产出效率最大化,约束条件包括原材料的库存量、生产线的容量和物流的时间窗口等。
通过使用线性规划算法,可以得到最佳的生产计划和调度方案,使得企业的生产效率和盈利能力得到提升。
2. 市场营销和广告投放线性规划算法可以帮助企业制定最佳的市场营销和广告投放方案。
例如,在一家快递公司中,需要制定如何调整价格策略、开拓市场份额、投放广告等方案,以达到最大化利润或最小化成本的目标。
对于这类问题,可以将目标函数设置为销售额最大化或成本最小化,约束条件包括市场份额的限制、广告投放预算的限制等。
通过使用线性规划算法,可以得到最佳的市场营销和广告投放方案,提高企业的营销效率和市场竞争力。
3. 交通运输和物流配送线性规划算法可以用于交通运输和物流配送领域。
例如,在一个物流中心中,需要规划配送路线和运输车辆的分配,以最小化交通堵塞和物流成本的影响。
对于这类问题,可以将目标函数设置为运输成本最小化或配送效率最大化,约束条件包括车辆数量的限制、货物配送时间的限制等。
通过使用线性规划算法,可以得到最佳的路线规划和车辆分配方案,提高企业的配送效率和物流运转效率。
4. 金融投资和风险管理线性规划算法可以用于金融投资和风险管理领域。
例如,在一个投资银行中,需要制定最佳的投资组合和股票交易策略,以最大化收益和降低风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划法
线性规划法(Linear Programming)是一种数学模型和优化方法,用于解决线性约束条件下的最优决策问题。
线性规划法被广泛应用于经济、管理、工程等领域中的决策问题,可以帮助决策者在有限的资源条件下,实现最优的目标。
线性规划法的核心思想是将问题转化为数学模型,即线性规划模型。
该模型包括目标函数、决策变量和约束条件三个要素。
目标函数是决策问题的数学表达,用于衡量达到最优目标的程度。
通常,目标函数是一个线性函数,可用代数式表示。
决策变量是决策问题中可以被决策者调整的变量,根据实际情况选取。
决策变量的取值会直接影响目标函数的结果。
约束条件是决策问题中各种限制条件,例如资源约束、技术约束等。
约束条件可以是等式约束或不等式约束,也可以是单个约束或多个约束。
线性规划法的基本思路是通过优化算法,对线性规划模型进行求解,找到使目标函数取得最大(或最小)值的决策变量取值。
常见的线性规划求解算法有单纯形法、对偶单纯形法、内点法等。
在应用线性规划法解决实际问题时,需要经过以下步骤:
1. 建立数学模型:根据实际问题的特点和需求,确定目标函数和约束条件,制定出线性规划模型。
2. 求解线性规划模型:根据所选的求解算法,对线性规划模型进行求解。
通常,求解算法会根据目标函数和约束条件的特点,进行适当的优化,减少计算量。
3. 分析和解释结果:对求解结果进行分析和解释,评估结果的合理性和可行性。
如果结果满足实际需求,则可以进行下一步决策;如果不满足,则需要根据实际情况,对模型进行优化或修改。
线性规划法的优点在于能够在有限的资源条件下,寻找到最优的决策解。
它可以帮助决策者进行定量分析和优化决策,提高决策的效果和效率。
同时,线性规划法的应用范围广泛,可以应用于各种实际问题中。
然而,线性规划法也存在一些局限性。
首先,线性规划法只适用于具有线性目标函数和线性约束条件的问题,对于非线性问题不适用;其次,线性规划法只能得到局部最优解,无法保证找到全局最优解;此外,线性规划法会受到数据误差、模型假设等因素的影响,需要进行敏感性分析和可行性分析。
总之,线性规划法是一种重要的数学模型和优化方法,可以帮助决策者在复杂的决策问题中做出最优的决策。
通过合理的建模和求解,线性规划法能够指导实践,提高资源利用效率和经济效益。
然而,线性规划法也需要在实践中不断优化和改进,以适应不断变化的实际需求。