6.2 提取公因式法(2)
因式分解之提取公因式法
第六讲 因式分解之提取公因式法一、知识要点1、 因式分解:把一个多项式写成几个整式的积的形式叫做多项式的因式分解。
(1) 多项式的乘法与多项式因式分解的区别简单地说:乘法是积.化和.,因式分解是和.化积.。
如:()()22b a b a b a -=-+,从左边到右边的变形属于整式乘法; ()()b a b a b a -+=-22,从左边到右边的变形属于因式分解; (2)因式分解的方法:①提公因式法; ②运用公式法; ③十字相乘法; ④分组分解法2、提公因式法:(1)如果多项式的各项含有公因式,那么就可以把这个公因式提出来。
把多项式化成公因式与另一个多项式的积的形式,这种分解因式的方法叫做提公因式法。
(2)公因式:多项式ab +ac +ad 的各项ab 、ac 、ad 都含有相同的因式a ,a 称为多项式各项的公因式。
公因式由两部份构成:系数:各项系数的最大公约数相同字母的指数:取最低次幂(3)用提公因式法时的注意点:① 公因式要提尽,考虑的顺序是,先系数,再单独字母,最后多项式。
如:4a 2(a-2b)-18ab(a-2b)=2a(a-2b)(2a-9b);② 当多项式的第一项的系数为负数时,把“-”号作为公因式的负号写在括号外,使括号内的第一项的系数为正。
如:-2m 3+8m 2-12m= -2.m(m 2-4m+6); ③ 提公因式后,另一个多项式的求法是用原多项式除以公因式。
二、知识运用典型例题例1、下列各式由左边到右边的变形中,哪些是因式分解,那些不是,为什么?(1) ()()ab b a b a 422+-=+ (2)()()ab b a b a 422-+=- (3)()()22b a a b -=+- (4)()()22b a b a +=--练习:下列式子从左到右的变形中是因式分解的是( )2233.236A a b ab a b ⋅= 2.(1)(1)1B x x x +-=-()22.211C x x x ++=+ ()2.111D x x x x ++=++例2、 若多项式2x mx n ++分解因式的结果是()()65x x -+,则m = ,n = 。
提取公因式课件
在数学解题中的应用
在解决数学问题时,提取公因式是一种常用的解题方法,可 以帮助解题者快速找到问题的解决方案。
提取公因式可以简化数学问题的复杂度,使问题更容易解决 ,提高解题效率。
感谢您的观看
THANKS
提取公因式的目的
01
02
03
简化多项式
通过提取公因式,可以将 多项式化简,使其更易于 计算和理解。
便于因式分解
提取公因式是因式分解的 一种方法,可以将多项式 分解成更简单的因式形式 。
应用在数学问题中
提取公因式在数学问题中 有着广泛的应用,如代数 方程的求解、不等式的证 明等。
提取公因式的应用场景
总结词
识别公因式是提取公因式的第一步,需要观察多项式的各项 ,寻找可以提取的公因式。
详细描述
在多项式中,公因式是指各项都包含的公共因子。通过观察 多项式的各项,可以发现一些数字或字母是各项都包含的, 这些就是可以提取的公因式。例如,在多项式 2x^2 + 4x + 6x 中,公因式是 x。
提取公因式
合并项
在化简过程中,如果存在同类项或 相似项,应合并这些项,简化表达 式。
提取公因式的局限性
适用范围
提取公因式的方法适用于多项式 的因式分解,不适用于一些复杂
数学表达式的处理。
复杂度限制
对于一些高次多项式或复杂的多 项式,提取公因式可能会变得非
常困难或无法实现。
人工操作
提取公因式需要人工操作,对于 大规模的多项式,处理效率可能
01
提取公因式是化简代数式的一种 常用方法,通过提取公因式,可 以将复杂的代数式简化成更易于 理解和计算的形式。
02
提取公因式可以减少代数式的项 数,简化计算过程,提高解题效 率。
提取公因式法分解因式的步骤
提取公因式法分解因式的步骤公因式法是一种常用的因式分解方法,它通过提取多个代数式的公因式,将其进行合并简化,从而得到原始代数式的因式分解形式。
下面将介绍公因式法分解因式的具体步骤。
1.观察多项式中的各个项,寻找它们之间的公因式。
公因式是指可以同时整除多个项的代数式。
2.将找到的公因式提取出来,并用括号括起来。
提取公因式时,需要将公因式的系数和变量一同提取出来。
3.将原始多项式中的每一项除以提取出来的公因式。
这一步可以通过将每一项的系数与公因式的系数进行除法运算来实现。
4.将提取出来的公因式与上一步得到的商相乘,并将结果写在括号外面。
这一步是将公因式和商相乘,重新得到原始多项式。
5.最后,将括号外面的结果与原始多项式进行比较,确保两者相等。
这一步是为了验证因式分解的正确性。
通过以上步骤,我们可以完成对多项式的因式分解。
下面通过一个具体的例子来说明公因式法的应用。
假设我们要对多项式3x^2 - 6x进行因式分解。
第一步,观察多项式中的各个项,发现它们之间的公因式是3x。
第二步,将公因式3x提取出来,并用括号括起来,得到3x( ).第三步,将原始多项式中的每一项除以公因式3x,得到(3x^2)/(3x) - (6x)/(3x)。
第四步,将提取出来的公因式3x与上一步得到的商相乘,并将结果写在括号外面,得到3x((3x^2)/(3x) - (6x)/(3x))。
第五步,化简括号内的表达式,得到3x(x - 2)。
将括号外面的结果与原始多项式进行比较,发现它们相等,因此得到的因式分解形式为3x(x - 2)。
通过以上步骤,我们成功地将多项式3x^2 - 6x分解为公因式3x和商(x - 2)的乘积形式。
总结起来,提取公因式法分解因式的步骤包括观察多项式中的各个项,寻找公因式,提取公因式并用括号括起来,将每一项除以公因式得到商,将公因式与商相乘得到因式分解形式,最后验证分解结果的正确性。
这一方法简单实用,可以帮助我们快速进行因式分解运算。
提取公因式法课件(浙教版)
下面的分解因式对吗?如果不对,应怎样改正?
(1) 2x2 3x3 x xx((22xx33xx22) 1) (2) 3a2c 6a3c 33aa22(cc(1 2a2ca)) (3) 2s3 4s2 6s s2(2s(ss2 24s2s 6)3) (4) 4a2b 6ab2 8a 22aab((22aab33bb)284a)
1、把下列各式因式分解: (1)(2a b)(2a 3b) a(2a b) (2)(a 2b)(2y 3x) (2b a)(2x 3y) (3)3x(a 2b)2 6xy(a 2b) 2、已知x y 5, xy 3,求xy2 x2 y的值。
说能出你这节课的收获和体验让大家 与你分享吗?
872+87×13
3ax2 y 6x3 yz 3x2 y(a 2xz)
一个多项式中每一项都含有的相同的因式,叫做 这个多项式各项的公因式。
如果一个多项式的各项含有公因式,那么可以把 公因式提取出来进行因式分解,这种因式分解的 方法叫做提取公因式法。
议一议:
多项式 3ax2 y 6 x3 yz 的公因式找法是什么? 3ax2 y 3 a x x y 6x3 yz 2 3 x x x y z 应提取的公因式为:__3__x_2_y__
另一个因式 (3)把多项式写成这两个因式的积的情势
练一练:分解因式
(1) 3a3 2a2 a a( 3a2 2a 1 )
(2) 6p3 10 p2 2 p 2 p( 3 p2 5 p 1 )
练一练:分解因式
(1) 3x2 9xy (2) 1 mx 6nx2
3 (3) 2ab2 4a2b 10ab
添括号法则:
括号前面是“+”号,括到括号里的各项都不变号; 括号前面是“-”号,括到括号里的各项都要变号。
《提取公因式法》课件
提取公因式的例子3 :分式加减法
分式1
2 / (x + 1)
分式2
3 / (x + 1)
结果
(2 / (x + 1)) + (3 / (x + 1)) = 5 / (x + 1)
提取公因式的例子4:分式乘法
分式1
(2x + 1) / (x - 3)
分式2
(x - 3) / (2x + 1)
结果
((2x + 1)(x - 3)) / ((x - 3)(2x + 1)) = 1
2 符号
正负号对整体的影响。
3 最高次数
注意各项中的最高次数,选择合适的公因式。
提取公因式和合并同类项的区别
1 合并同类项
相同的变量和次数合并为一个项。
2 提取公因式
将可以整除的项提取出来。
提取公因式和逆元素的联系
1 逆元素
提取公因式也可以看作是找到原来运算的逆操作。
提取公因式的常用公式
公因式 x a² x+y
提取公因式法
通过本课件,我们将深入探讨《提取公因式法》。了解公因式的概念和特点, 并学习如何识别和提取公因式。准备好跟我一起进入这个令人兴奋的话题吧!
什么是公因式?
定义
公因式是多个代数式中,可同时整除的代数式。
公因式的特点
1 一致性
2 约简性
公因式在不同的多项式中都是相同的。
提取公因式可以简化多项式的表达形式。
3 影响性
公因式的提取会影响多项式的值和性质。
为什么要提取公因式?
1 简化多项式
提取公因式可以使多项 式的表达更加简洁。
数学提取公因式
数学提取公因式数学中,提取公因式是一种常见的运算方法。
它在代数表达式中起到化简的作用,使得复杂的表达式可以简化为较为简单的形式。
本文将介绍提取公因式的概念、方法和应用。
一、概念提取公因式是指从一个代数表达式中找出多个项的公因子,并将其提取出来,使得原表达式可以被简化。
公因子是指能够同时整除多个项的因子,通常是其中的最高次项。
二、方法提取公因式的方法是通过因式分解来实现的。
具体步骤如下:1. 观察代数表达式中各项的系数和字母部分,找出它们的最大公因子。
2. 将最大公因子提取出来,放在括号外面。
3. 将原表达式中的每一项除以最大公因子,得到括号内的新表达式。
三、示例下面通过几个示例来说明提取公因式的方法。
示例1:将表达式2x+4y提取公因式。
观察到2x和4y的最大公因子是2,因此将2提取出来,得到2(x+2y)。
示例2:将表达式3a^2b-6ab^2提取公因式。
观察到3a^2b和6ab^2的最大公因子是3ab,因此将3ab提取出来,得到3ab(a-2b)。
示例3:将表达式5x^2-20xy+15y^2提取公因式。
观察到5x^2、20xy和15y^2的最大公因子是5,因此将5提取出来,得到5(x^2-4xy+3y^2)。
四、应用提取公因式在数学中有广泛的应用。
它可以简化代数表达式,使得计算更加简便和高效。
同时,提取公因式也是解决代数方程和不等式的重要步骤之一。
例如,在解二次方程时,首先需要将方程化简为标准形式(ax^2+bx+c=0),其中提取公因式的方法可以用来化简方程。
通过提取公因式,可以将方程变为a(x^2+bx/a+c/a)=0,进一步化简为(x^2+bx/a+c/a)=0。
这样,原方程可以被简化为一个更加简单的形式,从而更方便地进行求解。
除了解方程外,提取公因式还可以应用于因式分解、求导、积分等数学问题的解决过程中。
它不仅可以使得计算更加简单,还可以帮助我们更好地理解和应用数学知识。
提取公因式是一种重要的数学运算方法,它可以简化代数表达式,使得计算更加简便和高效。
提取公因式法
提取公因式法各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。
当各项的系数有分数时,公因式系数为各分数的最大公约数。
如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“-”号时,多项式的各项都要变号。
口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。
例如:-am+bm+cm=-(a-b-c)ma(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。
注意:把变成不叫提公因式公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。
平方差公式:反过来为完全平方公式:反过来为反过来为注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
两根式:立方和公式:a3+b3=(a+b)(a2-ab+b2)立方差公式:a3-b3=(a-b)(a2+ab+b2)完全立方公式:a3±3a2b+3ab2±b3=(a±b)3公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)例如:a2+4ab+4b2 =(a+2b)21.分解因式技巧掌握:①分解因式是多项式的恒等变形,要求等式左边必须是多项式。
②分解因式的结果必须是以乘积的形式表示。
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
提取公因式和公式法
一、知识点1、把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式;2、一个多项式中每一项都含有的因式叫做这个多项式的公因式;3、提取公因式法:多项式ma mb mc ++各项都含有公因式m ,可把公因式m 提到外面,将多项式ma mb mc ++写成m 与a b c ++的乘积形式,此法叫做提取公因式法。
4、提取公因式的步骤:1)找出多项式各项的公因式2)提出公因式3)写成m 与a b c ++的乘积形式5、运用公式法:把整式相乘的乘法公式反过来,就得到因式分解的两个公式(1)平方差公式:22()()a b a b a b -=+-(2)完全平方公式:2222()a ab b a b ±+=±(3)3223333()a a b ab b a b ±+±=±(4)3322()()a b a b a ab b +=+-+;(5)3322()()a b a b a ab b -=-++;(6)2222222()a b c ab ac bc a b c +++++=++.6、提取公因式法的几个技巧和注意点:(1)一次提净(2)视“多”为“一”(3)切勿漏1(4)注意符号在提出的公因式为负的时候,注意各项符号的改变;(5)化“分”为整在分解过程中如出现分数,可先提出分数单位后再进行分解;(6)仔细观察当各项看似无关的时候,仔细观察其中微妙的联系,转化后再分解.二、例题讲解(一)提取公因式法例1、下面从左到右的变形哪些是因式分解?(1)2363(2)x xy x x y -=-(2)22(5)(5)25x y x y x y -+=-(3)2222()()a b c a b a b c -+=+-+(4)221()xy x y x xy y x y++=++ 例2、指出下列各式中的公因式:(1)43224,-8,32a a b a b(2)233(),6(),9()a b a b a b ++-+(3)23,18m m a a -例3、把下列各式分解因式(提取公因式法):(1)2368a a -(2)3222y 8x x y +(3)224a 62b ab ab --(4)3121326m n m n m n x y x y x y -+--+(5)4()3()x x y x y +-+(6)234()3()x x y y x -+-(7)325(2)(2)3(2)(2)x y x y -----(8)131335()10()m m a b a b a b b a +----例4、分解因式:93()()168a x yb y x -+-. 例5、一个三位数字与各位数字交换位置后,则得到的新数与原数之差能被11整除.(二)公式法例1、把下列各式分解因式(公式法):(1)22114100m n -(2)22(72)16a b a -- (3)44x y -+(4)22269x y xyz z -+(5)214a a ---(6)22()()abcd a b c d +++--+- (7)1144n n n x x x +--+(8)222224()x y x y -+(9)3241616m m m -+-(10)22(1)(1)4m n mn --+例2、已知乘法公式:(1)43223455()()a b a a b a b ab b a b +-+-+=+(2)43223455()()a b a a b a b ab b a b -++++=-利用或者不利用上述公式分解因式:86421x x x x ++++.三、家庭作业一、选择题1.若2a a k ++是一个完全平方式,则k 是………………………………(??) A.?????B.1?????C.?????D.2.下列各式中,正确的是………………………………………………()A.22224(2)a ab b a b ++=+???B.10110.10.110-+=C.a b a b c c-+-=-????????D.3322()()a b a b a ab b +=+++ 3.分解因式41x -的结果为……………………………………………(??)A.()()2211x x -+???????B.22(1)(1)x x +-C.2(1)(1)(1)x x x -++????D.3(1)(1)x x -+4.下列各式中是完全平方式的是………………………………………(??)A.2441x x +-?????????B.2144x x --C.2441x x -++????????D.2421x x -+5.下列多项式中,能用公式法进行因式分解的是…………………(??)A.22x y +????????????B.222x xy y -+C.222x xy y +-?????????D.22x xy y ++二、填空题1.分解因式_____________________ 2.分解因式_______________________ 3.分解因式___________________4.分解因式_____________________5.分解因式____________________6、分解因式_______________三、用公式法分解因式1. 2.四、用恰当的方法分解因式1.????????????2.五、解答题无论x、y为何值,4x2-12x+9y2+30y+35的值恒为正。
因式分解 方法详解
因式分解【知识梳理】6.1因式分解一般地,把一个多项式化为几个整式的积得形式,叫做因式分解,有时我们也把这一过程叫分解因式。
因式分解和整式乘法具有互逆的关系。
6.2提取公因式法一般地,一个多项式中每一项都含有相同的因式,叫做这个多项式各项的公因式。
如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行因式分解。
这种分解因式的方法叫做提取公因式法。
应提取的多项式各项的公因式应是各项系数的最大公因数(当系数是整数时)与各项都含有的相同字母的最低次幂的积。
提取公因式法的一般步骤是:1.确定应提取的公因式;2.用公因式去除这个多项式,所得的商作为另一个因式;3.把多项式写成这两个因式的积得形式。
一般地,提取公因式后,应使多项式余下的各项不再含有公因式。
一般地,添括号的法则如下:括号前面是“+”,括到括号里得各项都不变号;括号前面是“-”号,括到括号里的各项都变号。
6.3用乘法公式分解因式两个数的平方差,等于这两个数的和与这两个数的差的积。
两数的平方和,加上(或者减去)这两数的积的2倍,等于这两数和(或者差)的平方。
【方法介绍】多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1 ) (a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b);(2 ) (a±b)2 = a2±2ab+b2——— a2±2ab+b2=(a±b)2;(3 ) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2);(4 ) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);例.已知a b c ,,是A B C ∆的三边,且222a b c ab bc ca ++=++,则A B C ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++例2、分解因式:bx by ay ax -+-5102练习:分解因式1、bc ac ab a -+-2 2、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22例4、分解因式:2222c b ab a -+-练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abc b a c c a b c b a 2)()()(222++++++ (12)abc c b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。
提取公因式的方法
提取公因式的方法在代数学中,提取公因式是一种常见的运算方法,它可以帮助我们简化代数表达式,使得计算更加方便和高效。
本文将介绍提取公因式的方法,希望能够帮助大家更好地掌握这一技巧。
首先,我们来看一下什么是公因式。
在代数表达式中,如果一个代数式可以被两个或多个代数式整除,那么这个代数式就是这些代数式的公因式。
提取公因式就是将这些公因式提取出来,从而简化表达式。
提取公因式的方法一般可以分为以下几个步骤:1. 观察代数表达式,找出公因式。
首先,我们需要观察代数表达式,找出其中的公因式。
通常,公因式是指代数表达式中多个项的公共部分,可以是数字、字母或字母的幂。
例如,在代数表达式2x+4xy中,公因式就是2x,因为它可以整除每一项。
2. 将公因式提取出来。
一旦找到了公因式,我们就可以将它提取出来。
具体做法是,将每一项中的公因式提取出来,然后用括号括起来。
例如,对于代数表达式2x+4xy,我们可以将公因式2x提取出来,得到2x(1+2y)。
3. 化简表达式。
最后,我们需要化简提取出来的表达式,使得它更加简洁和清晰。
这一步通常需要根据具体的代数表达式进行合并、约分等操作,以得到最简形式的表达式。
除了以上的基本方法外,提取公因式还有一些特殊情况和技巧需要注意。
例如,当代数表达式中含有平方差公式、完全平方公式等特殊形式时,我们可以利用这些公式来进行公因式的提取,从而简化表达式。
另外,对于含有多项式的代数表达式,我们还可以利用分组法来提取公因式,使得计算更加方便。
总之,提取公因式是代数学中的一项重要技巧,它可以帮助我们简化代数表达式,化繁为简。
通过观察、提取和化简,我们可以更好地掌握代数运算,提高计算效率。
希望本文介绍的方法能够帮助大家更好地理解和运用提取公因式的技巧,从而在代数学习中取得更好的成绩。
6.2 提取公因式法
1.你能确定多项式 am+an+bm+bn的公因式吗 的公因式吗? 1.你能确定多项式 am+an+bm+bn的公因式吗? 2.把多项式 2.把多项式 分解因式
1.分解因式计算(-2)101+(-2)100 分解因式计算( ) ( ) 分解因式计算 2.利用简便方法计算: 利用简便方法计算: 利用简便方法计算 4.3x199.8+0.76x1998-1.9x199.8 3.已知 已知a+b=3,ab=2,求代数式 已知 求代数式 a2 b + 2 a2 b2 +a b2的值 的值. 4.把 9am+1 –21 am+7a m-1分解因式 分解因式. 把 5.分解因式 分解因式: 分解因式
公 因 式 各项 都含有 的相同 因式. 因式 把公因式提出来 提公因式法 首先需要会 首先需要会 找公因式
你能把12、 因数分解吗 因数分解吗? 你能把 、15因数分解吗? 12=2 × 2×3; × ; 15= 3 × 5
12、15这 、 这 两数有公 因数吗? 因数吗?
你能找出下面两个单项式的公因式吗?
婺江风光带修建了三块长方形的绿 化草坪, 化草坪,它们的宽都为 8m ,长分别 k 是 a 55.5m , b 20.1m ,c 24.4m ,那么这些绿 化带的面积之和为多少? 化带的面积之和为多少?
8m k
a b c 55.5m 24.4m 20.1m
a k + b k + c k = k (a + b + c)
2 2
4m(a + b) + 8m (a + b) = 4m(a + b) (a +b + 2m)
因式分解
6.2 《提取公因式法》【教学背景】“提取公因式法”是“新浙江版七年级数学(下)”第六章第二节内容。
本课安排在“整式的乘法”后,明确了因式分解与整式乘法的联系,起到知识的链结开拓作用。
提取公因式法是因式分解的基础,也为学习因式分解的其他方法及利用因式分解解整式方程(如一元二次方程)打下结实的基础,从而也为学生的运算能力拓展了道路。
(老教材本小节是分两个课时上的)【教学内容分析】“提取公因式法”是因式分解的最基本、最常用的方法。
它的理论依据是逆用分配律,因此,学生接受起来并不难,但因题目各有其特点,形式变化多,所以需要学生具有观察、分析能力和应变能力,这就需要在教学中加以指导、训练。
例题讲授及练习题的匹配都要由浅入深,形式多样化。
利用这个方法,首先对要分解的多项式进行考察,发现特点及多项式各项之间的内在联系,适当变形。
(可利用计算机辅助教学手段,增大教学的容量和教学质量,改变传统的言传身教的方式。
)【教学目标】认知目标:⑴在具体情境中认识公因式⑵通过对具体问题的分析及逆用分配律,使学生理解提取公因式法并能熟练地运用提取公因式法分解因式能力目标:⑴树立学生“化零为整”、“化归”的数学思想,培养学生完整地、辨证地看问题的思想。
⑵树立学生全面分析问题,认识问题的思想,提高学生的观察能力,分析问题及逆向思想能力。
情感目标:在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数学的探索性。
【教学重点、难点】1.教学重点∶掌握公因式的概念,会使用提取公因式法进行因式分解,理解添括号法则。
⒉.教学难点∶正确地找出公因式【教学方法】理论与实例相结合(采用设问式、启发式)【教学工具】应用投影仪(计算机)【教学过程】㈠创设情境,提出问题如图8-1,一块菜园由两个长方形组成,这些长方形的长分别是3.8m,6.2m,宽都是3.7 m,如何计算这块菜园的面积呢?列式:3.7×3.8+3.7×6.2(学生思考后列式)有简便算法吗?=3.7×(3.8+6.2)3.7=3.7×10=37(m2)在这一过程中,把3.7换成m,3.8换成a,6.2换成b,于是有:ma+mb =m(a+b)利用整式乘法验证: m(a+b)=ma+mb可能有学生会提出把两个小的长方形补成一个大的长方形,那就更好,或其他的方法,教师都应该及时肯定学生思维中的闪光点.(使学生初步意识到因式分解可以使运算简便,同时起到使知识进行迁移化归.)【以问题引入能引起学生的学习兴趣,符合学生的认知规律。
提取公因式法分解因式的步骤
提取公因式法分解因式的步骤一、引言在代数学中,我们经常需要对多项式进行因式分解,以便更好地理解和处理问题。
其中一种常用的因式分解方法就是提取公因式法。
本文将详细介绍提取公因式法分解因式的步骤和方法。
二、什么是公因式在开始介绍提取公因式法之前,我们首先要了解什么是公因式。
在一个多项式中,如果某一个因子能够被所有的项整除,那么它就是这些项的公因式。
例如,在多项式2x+4y中,2是这两项的公因式。
三、步骤一:观察多项式中的公因式在使用提取公因式法分解因式之前,我们首先要仔细观察多项式,找出其中的公因式。
公因式可以是一个常数或者一个变量,也可以是它们的乘积。
四、步骤二:提取公因式一旦我们找到了多项式中的公因式,我们就可以开始提取公因式。
具体来说,我们需要将公因式提取出来,然后将其乘以剩下的部分。
五、步骤三:简化多项式在提取公因式后,我们需要对剩下的部分进行简化。
具体来说,我们需要将剩下的部分通过除以公因式来得到一个简化的表达式。
六、步骤四:检查是否还有公因式在简化多项式后,我们需要再次观察是否还有公因式。
如果还有公因式,我们需要继续提取公因式并简化多项式,直到没有公因式为止。
七、例题演示为了更好地理解提取公因式法的步骤,我们来看一个例题的演示。
例题:将多项式4x^2y+8xy^2分解因式。
解:首先,观察多项式中的公因式。
我们可以发现4是这两项的公因式。
然后,我们提取公因式4,得到4(x^2y+2xy^2)。
接下来,我们简化剩下的部分(x^2y+2xy^2)。
在这个剩下的部分中,我们可以发现xy是这两项的公因式。
我们提取公因式xy,得到最终的分解结果4xy(x+y)。
八、总结通过以上的例题演示,我们可以清楚地看到提取公因式法的步骤。
首先,我们观察多项式中的公因式;然后,提取公因式并简化多项式;最后,重复以上步骤,直到没有公因式为止。
这种方法简单而有效,可以帮助我们快速分解因式。
九、应用和扩展提取公因式法不仅可以用于分解因式,还可以应用于其他代数运算中。
新浙教版数学七年级下册6.2提取公因式法详细教案设计
第⒍ 2 节提取公因式法【教课目的】1、会运用提取公因式法分解因式;2、理解添括号法例。
【教课要点、难点】1.教课要点∶掌握公因式的观点,会使用提取公因式法进行因式分解,理解添括号法例。
⒉.教课难点∶正确地找出公因式【教课过程】㈠创建情境,提出问题如图 8-1,一块菜园由两个长方形构成,这些长方形的长分别是 3.8 m,6.2m,宽都是 3.7 m,怎样计算这块菜园的面积呢? b5E2RGbCAP列式:××(学生思虑后列式 )有简易算法吗 ?×(3.8+6.2)× 10=37(m2)6.2 图8-1 p1EanqFDPw在这一过程中 , 把换成 m,3.8 换成 a,6.2 换成 b,于是有 :ma+mb =m(a+b) 利用整式乘法考证 : m(a+b)=ma+ mb㈡察看剖析,研究新知让学生察看多项式: ma+mb(让学生说出其特色:都有 m,含有两种运算乘法、加法;而后教师规范其特色,进而引出新知。
)各项都含有一个公共的因式 m,我们把因式 m 叫做这个多项式各项的公因式。
又如:b 是多项式 ab-b2各项的公因式; 2xy 是多项式 4x2 y-6xy2z 各项的公因式。
让学生说出公因式,学生可能会说是 2 或许是 x 、 y、 2x、2y、2xy 等,最后一同确立公因式 2xy,让学生初步领会到确立公因式的方法。
DXDiTa9E3d㈢独立练习,稳固新知指出以下各多项式中各项的公因式(以抢答的形式)⑴ax+ay-a(a)⑵5x2y3-10x2y(5x2y)2 2⑷m2n+mn2(mn)⑸x(x-y)2-y(x-y)(x-y)游戏规则 :准备好写有整式和多项式的纸牌 ,学生疏为四组 ,每组选四个同学游戏 ,此中 3 个同学举一组题中的整式牌 ,第四个依据组员建议找寻出题中的公因式 ,并说明原因。
明显由定义可知,提取公因式法的要点是怎样正确地找寻确立公因式的方法:(能够由学生议论总结,而后教师进行概括)RTCrpUDGiT⑴公因式的系数应取各项系数的最大条约数(当系数是整数时)⑵字母取各项的同样字母,且各字母的指数取最低次幂依据分派律,可得 m(a+b)=ma+mb 逆变形,使获得 ma+mb 的因式分解形式: ma+mb=m( a+b)这说明多项式 ma+mb 各项都含有的公因式可提到括号外面,将多项式 ma+mb 写成 m(a+b)的形式,这种分解因式的方法叫做提取公因式法。
数学教案提公因式法教学教案
数学教案提公因式法教学教案第一章:提公因式法概述1.1 教学目标了解提公因式法的概念和作用掌握提公因式法的基本步骤1.2 教学内容提公因式法的定义提公因式法在解题中的应用1.3 教学方法讲解提公因式法的概念和步骤举例讲解提公因式法在解题中的应用1.4 教学活动引入提公因式法的概念,引导学生思考其作用通过举例讲解提公因式法的步骤和应用1.5 练习题完成课后练习题,巩固提公因式法的基本概念和应用第二章:提公因式法的步骤2.1 教学目标掌握提公因式法的基本步骤2.2 教学内容提公因式法的第一步:确定公因式提公因式法的第二步:提取公因式提公因式法的第三步:验证结果2.3 教学方法讲解提公因式法的每个步骤举例演示每个步骤的应用2.4 教学活动通过举例引导学生了解并掌握提公因式法的每个步骤进行小组讨论,让学生互相交流和学习2.5 练习题完成课后练习题,巩固提公因式法的每个步骤的应用第三章:提公因式法的应用3.1 教学目标学会运用提公因式法解决实际问题3.2 教学内容提公因式法在因式分解中的应用提公因式法在解方程中的应用3.3 教学方法讲解提公因式法在因式分解和解方程中的应用举例演示提公因式法在实际问题中的应用3.4 教学活动通过举例引导学生了解提公因式法在因式分解和解方程中的应用进行小组讨论,让学生互相交流和学习提公因式法的应用3.5 练习题完成课后练习题,巩固提公因式法在实际问题中的应用第四章:提公因式法的拓展4.1 教学目标掌握提公因式法的拓展应用4.2 教学内容提公因式法在多项式乘法中的应用提公因式法在解不等式中的应用4.3 教学方法讲解提公因式法在多项式乘法和解不等式中的应用举例演示提公因式法在实际问题中的应用4.4 教学活动通过举例引导学生了解提公因式法在多项式乘法和解不等式中的应用进行小组讨论,让学生互相交流和学习提公因式法的拓展应用4.5 练习题完成课后练习题,巩固提公因式法在实际问题中的应用第五章:提公因式法的综合应用5.1 教学目标能够将提公因式法应用于复杂的数学问题中5.2 教学内容提公因式法在解决多项式方程中的应用提公因式法在解决代数表达式简化中的应用5.3 教学方法讲解提公因式法在解决复杂问题时的应用步骤提供实际例子,让学生通过练习掌握提公因式法综合应用的方法5.4 教学活动引导学生通过小组合作解决复杂的数学问题,运用提公因式法组织学生进行讨论,分享各自解决问题的过程和经验5.5 练习题完成课后练习题,巩固提公因式法在综合应用中的知识第六章:提公因式法的练习与提高6.1 教学目标提高学生运用提公因式法解决实际问题的能力6.2 教学内容提供一系列练习题,让学生通过独立完成练习提高提公因式法的技能分析学生练习中的常见错误,进行讲解和指导6.3 教学方法引导学生独立完成练习题,通过练习提高提公因式法的应用能力对学生练习中的错误进行分析和讲解,帮助学生理解和掌握提公因式法的要点6.4 教学活动组织学生进行练习,鼓励学生积极思考和解决问题对学生的练习结果进行点评和指导,帮助学生提高解题技巧6.5 练习题完成课后练习题,通过独立练习进一步提高提公因式法的应用能力第七章:提公因式法在实际问题中的应用培养学生将提公因式法应用于实际问题的能力7.2 教学内容结合实际问题,讲解提公因式法在解决问题中的应用提供实际问题案例,让学生通过提公因式法解决问题7.3 教学方法引导学生通过分析实际问题,识别问题中的公因式提供案例,让学生通过练习掌握提公因式法在实际问题中的应用7.4 教学活动组织学生进行小组讨论,探讨如何将提公因式法应用于实际问题学生通过实际问题案例进行练习,分享解题过程和经验7.5 练习题完成课后练习题,巩固提公因式法在实际问题中的应用能力第八章:提公因式法的评价与反思8.1 教学目标培养学生对提公因式法的自我评价和反思能力8.2 教学内容让学生通过自我评价,反思提公因式法的应用过程和结果引导学生讨论提公因式法的优缺点,以及如何改进和提高8.3 教学方法引导学生进行自我评价,反思提公因式法的应用过程和结果组织学生进行小组讨论,分享对提公因式法的看法和经验学生进行自我评价和反思,讨论提公因式法的应用和改进方法教师对学生的评价和反思进行点评和指导8.5 练习题完成课后练习题,通过自我评价和反思提高提公因式法的应用能力第九章:提公因式法的拓展与延伸9.1 教学目标培养学生对提公因式法的拓展和延伸能力9.2 教学内容讲解提公因式法在其他数学领域的应用,如代数、几何等引导学生思考提公因式法的延伸,如何应用于解决更复杂的问题9.3 教学方法引导学生了解提公因式法在其他数学领域的应用提供相关案例,让学生通过练习拓展和延伸提公因式法的应用9.4 教学活动学生进行小组讨论,探讨提公因式法在其他数学领域的应用学生通过相关案例进行练习,分享解题过程和经验9.5 练习题完成课后练习题,巩固提公因式法的拓展和延伸能力第十章:提公因式法的总结与复习10.1 教学目标帮助学生总结和复习提公因式法的知识回顾和总结提公因式法的概念、步骤和应用复习提公因式法在实际问题中的应用和解题技巧10.重点解析本文主要介绍了提公因式法在数学教学中的概念、步骤、应用以及拓展。
提取公因式法(第二课时)说课教案定稿
§9.2 提取公因式法(2)一、设计思想这节课是九年制义务教育课程标准实验教科书八年级下册第二章第二节《提公因式法》第二课时。
学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。
它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。
本章教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式这一章在整个教材中起到了承上启下的作用。
鉴于此,本节课的课堂教学策略:本节课根据学生的知识结构,采用的教学流程是:提出问题—实际操作—归纳方法—课堂练习—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生进一步发展观察、归纳、类比、概括、逆向思考等能力,发展有条理思考及语言表达能力;学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下主动地从事观察、实验与交流等数学活动,让学生看、说、讨论、总结,从而真正有效地理解和掌握知识。
并且借助多媒体课件,使学生直观形象地观察、讨论和交流。
二、前端分析学生分析:1、初一学生注重直觉思维,对观察、实验、归纳、类比等数学想法有所了解。
2、初一下学期学生对整式的运算比较熟悉,对互逆过程也有一定的感知。
3、初一下学期学生已具备了一定的自我学习能力,所以本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究提公因式法分解因式。
教法分析:针对初一下学期学生的知识结构和心理特征,本节课选择独立思考——合作交流法.就是让学生共同讨论,并用类比推理的方法学习的方法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。
提取公因式的方法
提取公因式的方法提取公因式是在代数式计算中常见的一种方法,通过提取公因式可以简化计算过程,使得代数式更加简洁、易于处理。
下面我们将介绍几种常见的提取公因式的方法。
一、提取公因式的基本原理。
在代数式中,如果多个项有一个共同的因子,那么我们就可以将这个共同的因子提取出来,这个过程就是提取公因式。
提取公因式的基本原理就是找出代数式中各项的最大公因式,然后将其提取出来,从而简化代数式的形式。
二、提取公因式的方法。
1. 查找公因式。
在进行提取公因式的时候,首先需要对代数式进行分解,然后找出各项的公因式。
通常情况下,我们可以通过观察各项中的变量和常数的因子,来找出它们的最大公因式。
2. 提取公因式。
找到各项的最大公因式之后,我们就可以将其提取出来,形成一个公因式和一个括号内的代数式相乘的形式。
这样可以使得代数式更加简洁,方便后续的计算和化简。
3. 化简代数式。
提取公因式之后,我们还可以进一步对代数式进行化简。
通过提取公因式,可以将复杂的代数式化简成简单的形式,从而更容易进行计算和分析。
三、提取公因式的应用。
1. 因式分解。
在因式分解的过程中,提取公因式是非常重要的一步。
通过提取公因式,可以将复杂的代数式分解成简单的因式,从而更容易进行后续的计算和分析。
2. 求解方程。
在求解方程的过程中,有时候我们需要对方程进行化简,这时候提取公因式就可以发挥作用。
通过提取公因式,可以将方程化简成简单的形式,从而更容易求解方程的根。
3. 求解不定积分。
在求解不定积分的过程中,有时候我们需要对被积函数进行化简,这时候提取公因式也可以发挥作用。
通过提取公因式,可以将被积函数化简成简单的形式,从而更容易进行积分运算。
四、总结。
提取公因式是代数运算中常见的一种方法,通过提取公因式可以简化代数式的形式,使得计算更加简洁高效。
在实际应用中,提取公因式有着广泛的应用,可以用于因式分解、方程求解、不定积分等方面。
因此,掌握提取公因式的方法对于代数运算是非常重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第⒍2节提取公因式法【教学背景】“提取公因式法”是“新浙江版七年级数学(下)”第六章第二节内容。
本课安排在“整式的乘法”后,明确了因式分解与整式乘法的联系,起到知识的链结开拓作用。
提取公因式法是因式分解的基础,也为学习因式分解的其他方法及利用因式分解解整式方程(如一元二次方程)打下结实的基础,从而也为学生的运算能力拓展了道路。
(老教材本小节是分两个课时上的)【教学内容分析】“提取公因式法”是因式分解的最基本、最常用的方法。
它的理论依据是逆用分配律,因此,学生接受起来并不难,但因题目各有其特点,形式变化多,所以需要学生具有观察、分析能力和应变能力,这就需要在教学中加以指导、训练。
例题讲授及练习题的匹配都要由浅入深,形式多样化。
利用这个方法,首先对要分解的多项式进行考察,发现特点及多项式各项之间的内在联系,适当变形。
(可利用计算机辅助教学手段,增大教学的容量和教学质量,改变传统的言传身教的方式。
)【教学目标】认知目标:⑴在具体情境中认识公因式⑵通过对具体问题的分析及逆用分配律,使学生理解提取公因式法并能熟练地运用提取公因式法分解因式能力目标:⑴树立学生“化零为整”、“化归”的数学思想,培养学生完整地、辨证地看问题的思想。
⑵树立学生全面分析问题,认识问题的思想,提高学生的观察能力,分析问题及逆向思想能力。
情感目标:在观察、对比、交流和讨论的数学活动中发掘知识,并使学生体验到学习的乐趣和数学的探索性。
【教学重点、难点】1.教学重点∶掌握公因式的概念,会使用提取公因式法进行因式分解,理解添括号法则。
⒉.教学难点∶正确地找出公因式【教学方法】理论与实例相结合(采用设问式、启发式)【教学工具】应用投影仪(计算机)【教学过程】㈠创设情境,提出问题如图8-1,一块菜园由两个长方形组成,这些长方形的长分别是3.8m,6.2m,宽都是3.7 m,如何计算这块菜园的面积呢?3.8列式:3.7×3.8+3.7×6.2 (学生思考后列式)3.7 有简便算法吗?=3.7×(3.8+6.2)3.7 =3.7×10=37(m2)错误!不能识别的开关参数。
6.2 图8-1在这一过程中,把3.7换成m,3.8换成a,6.2换成b,于是有:ma+mb =m(a+b)利用整式乘法验证: m(a+b)=ma+mb可能有学生会提出把两个小的长方形补成一个大的长方形,那就更好,或其他的方法,教师都应该及时肯定学生思维中的闪光点.(使学生初步意识到因式分解可以使运算简便,同时起到使知识进行迁移化归.)【以问题引入能引起学生的学习兴趣,符合学生的认知规律。
本课时用“复习引入”亦是一种好办法,即先复习分配律,同时可让学生说出整式乘法与因式分解的联系与区别,以便复习上一节的内容,然后让学生观察引出新内容。
】㈡观察分析,探究新知让学生观察多项式:ma+mb(让学生说出其特点:都有m,含有两种运算乘法、加法;然后教师规范其特点,从而引出新知。
)各项都含有一个公共的因式m,我们把因式m叫做这个多项式各项的公因式。
【把主动权交给学生,尽量让他们自己说,也可尝试让他们取名,使他们体验到成功的喜悦。
】注意:公因式是一个多项式中每一项都含有的相同的因式。
又如:b是多项式ab-b2各项的公因式2xy是多项式4x2y-6xy2z各项的公因式让学生说出公因式,学生可能会说是2或者是 x 、 y、2x、2y、2xy等,最后一起确定公因式2xy,让学生初步体会到确定公因式的方法。
㈢独立练习,巩固新知指出下列各多项式中各项的公因式(以抢答的形式)⑴ax+ay-a (a)⑵5x2y3-10x2y (5x2y)⑶24abc-9a2b2 (3ab)⑷m2n+mn2 (mn)⑸x(x-y)2-y(x-y) (x-y)【初一学生自控能力不强,上课时注意力易分散,注意力集中时间较短,对数学概念的理解肤浅,对规律的应用生搬硬套,针对学生的这种特点,教师在教学中创设抢答,引起学生兴趣,积极参与教学进程,争做课堂的主人。
】说明:本活动也可以改为寻找公因式游戏如:(根据提供的多项式和整式,寻找出这个多项式的公因式.)⑴ax+ay-a ⑵5x2y3-10x2y ⑶24abc-9a2b2 ⑷m2n+mn2 ⑸x(x-y)2-y(x-y)a, x, y 5xy,5x2y3,5x2y 3abc,9ab,3ab mn,m2n,mn2 x(x-y),y(x-y),(x-y)游戏规则:准备好写有整式和多项式的纸牌,学生分为四组,每组选四个同学游戏,其中3个同学举一组题中的整式牌,第四个根据组员建议寻找出题中的公因式,并说明理由。
显然由定义可知,提取公因式法的关键是如何正确地寻找确定公因式的方法:(可以由学生讨论总结,然后教师进行归纳)⑴公因式的系数应取各项系数的最大公约数(当系数是整数时)⑵字母取各项的相同字母,且各字母的指数取最低次幂(让学生在游戏中团结协作,自主探索出方法,有利于发展思维能力及培养学生归纳总结表达交流的能力,打破了传统的由教师讲授找公因式的方法,学生被动接受;补充⑸是想让学生了解公因式也可以是多项式。
)根据分配律,可得m(a+b)=ma+mb逆变形,使得到ma+mb的因式分解形式:ma+mb=m(a+b)这说明多项式ma+mb各项都含有的公因式可提到括号外面,将多项式ma+mb写成m(a+b)的形式,这种分解因式的方法叫做提取公因式法。
定义:一般地,如果一个多项式的各项含有公因式,那么可把该公因式提取出来进行分解的方法叫做提取公因式法。
㈣例题教学,运用新知例1.把3pq3+15p3q分解因式通过上面的练习,学生会比较容易地找出公因式,所以这一步还是让学生来操作。
然后在黑板上正确规范地书写提取公因式法的步骤。
事后总结出提取公因式的一般步骤分两步:第一步:找出公因式;第二步:提取公因式解:3pq3+15p3q=3pq×q2+3pq×5p2=3pq(q2+5p2)让学生口答:把2x3+6x2分解因式【学生在探究、交流中能获得一些初步概念和技能,但真正达到掌握知识与技能,还需要教师示范,学生模仿性学习,经过规范化的示范,就能逐步培养学生严谨的思维,正确的计算能力。
】说明:⑴应特别强调确定公因式的两个条件,以免漏取.⑵刚开始讲,最好把公因式单独写出。
①以显提醒②强调提公因式③强调因式分解课堂练习:P156T1例2.把4x2-8ax+2x分解因式(让学生做,教师下去观察并选择有代表性的解答。
)学生可能出现的解答:①4x2-8ax+2x=x(4x-8a+2)②4x2-8ax+2x=2(2x2-4ax+x)③4x2-8ax+2x=2x(2x-4a)④4x2-8ax+2x=2x(2x-2a+1)⑤4x2-8ax+2x=2x(2x-8ax+2x)教师出示学生的解答,可先让学生自行点评,找出分解因式的错误,而且这些错误都是以后学生练习中的常犯错误,接着由教师总结。
这样做比教师直接给出可能会更有效。
【先让学生自己动手做,暴露他们的错误,然后再进行点评,加深他们的记忆。
】分析:找出公因式2x,强调多项式中2x=2x×1解:4x2-8ax+2x=2x×2x-2x×4a+2x×1=2x(2x-4a+1)说明:当多项式的某一项恰好是公因式时,这一项应看成它与1的乘积,提公因式后剩下的应是1。
1作为项的系数通常可省略,但如果单独成一项时,它在因式分解时不能漏项。
这类题常有学生犯下面的错误:4x2-8ax+2x=2x(2x-4a)注意:提公因式后的项数应与原多项式的项数一样,这样可检查是否漏项。
例3.把-3ab+6abx-9aby分解因式【让学生自己观察找出此例与前面两例的不同点】学生可能会指出字母的个数不同…(只要学生说得合理,教师应及时给予肯定与鼓励)他们很快就会发现第一项的系数是“-”的,那么如何转化呢?【由学生各述己见,教师不加评定,然后集体总结学生思维中的闪光点。
】应先把它转化成前面的情形,便可以因式分解了,所以应先提负号转化,然后再提公因式,提“-”号时,教师可适当地引出添括号法则,可谓解决“燃尾之急”。
添括号法则:括号前面是“+”号,括到括号里的各项都不变号;括号前面是“-”号,括到括号里的各项都要变号。
课堂练习:P156T 2【巩固添括号法则】解:-3ab+6abx-9aby=-(3ab-6abx+9aby)=-3ab(1-2x+3y)说明:通过此例可看出应用提取公因式法分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则要提出负因数,此时一定要把各项变号。
由此总结出提取公因式法的一般步骤。
见P155课堂练习:P156T3【通过纠错题,及时反馈信息,进行点评】例4.探索: 2(a-b)2-a+b能分解因式吗?还是把问题先交给学生进行小组讨论(四人一小组),鼓励学生进行交流探索。
可能有学生会提出好象没有公因式?此时教师可以适当地点拨一下。
比如可降低难度改为:2(a-b)2-(a-b),然后启发学生如何转化?从而解决问题。
解:2(a-b)2-a+b= 2(a-b)2-(a-b)=(a-b)[2(a-b)-1]=(a-b)(2a-2b-1)然后可追加一问:2(a-b)2-(b-a)3呢?让学生积极思考,讨论回答。
注:n 为偶数(a-b)n=(b-a)nn 为奇数(a-b)n= -(b-a)n【让他们从合作中去感受群体合作的力量,体验展示自我的愉悦。
】指出:我们知道代数式里的字母可以表示一个数、一个单项式、一个多项式。
此多项式的公因式不明显,但仔细观察可发现,利用添括号法则把-a+b可变形成-(a+b),若把(a-b)看作m,原多项式就可以提取公因式a-b。
【向学生渗透换元思想】【例题4培养学生分析问题的能力,优化学生思维品质,让学生区分方法的差异。
】㈤强化训练,掌握新知把下列各式分解因式⑴2ax+2ay ⑵x2y-xy2⑶a3+2a2-a ⑷2mn-6m2n2+14m3n3⑸-ab2c+2a2b-5ac2⑹x(a+b)-y(a+b)⑺a(x-a)+b(a-x)-c(x-a)【让学生上来板演,练习都是针对例题的直接应用,同时可检查学生对提取公因式法的灵活应用。
】㈥变式训练,扩展新知A组:将下列各式分解因式⑴3(a-b)2-6a+6b⑵-0.01x3y+o.2x2yz2⑶利用因式分解计算22×3.145+53×3.145+31.45×2.5(学习的最终目的是应用,所以补充了此例,可让学生体验运用新知解决问题的喜悦。
)B组: 分解因式x a-x a-1+x a-2【供学有余力的学生练习,让不同层次的学生都能得到发展.】㈦整理知识,形成结构同学们,今天这节课你学会了什么?在学习过程中你有哪些收获?还有什么疑问?【培养学生反思自己学习过程的意识,让学生在思考问题的过程中自己把整节内容进行了梳理,并且逐步培养学生自我概括、总结能力,学会口头表达能力。