锐角三角函数-正切教学设计

合集下载

24.1锐角的三角函数(第一课时)教案

24.1锐角的三角函数(第一课时)教案

24.1锐角的三角函数——锐角的正切(第一课时)授课对象: 中学九年级班教学安排:一课时授课教师:一、教学背景分析(一)教材分析:1.教材的地位及作用《锐角的三角函数》是沪科版九年级数学上册第24章第一节的内容。

锐角的三角函数的概念是以前面学习的相似三角形、勾股定理的知识为基础的,本章内容是三角学中最基础的内容,也是今后进一步学习三角学的必要知识准备。

2.教材处理本节教材共分三课时完成,;第一课时是正切概念的建立及其简单应用;第二课时是正弦、余弦概念的建立及其简单应用;第三课时是综合应用。

(二)学情分析:九年级的学生具备了一定的逻辑思维能力和推理能力。

通过以前的合作学习,具备了一定的合作交流的能力.二、教学目标知识与技能: 1. 理解锐角正切(tanA)、坡度、坡角的意义;2.学会根据定义求锐角的正切值.过程与方法: 1. 经历锐角的正切的探求过程,体会数形结合的思想方法.2.三角函数的学习中,初步体验探索、讨论、论证对学习数学的重要性。

情感态度价值观:1. 在活动中培养学生乐于探究、合作交流的习惯。

2. 感受数学来源于生活又应用于生活,从而激发学生学习数学的兴趣。

三、教学重、难点教学重点:锐角的正切、坡度、坡角的定义。

教学难点:理解Rt△中一个锐角的对边与其邻边比值的对应关系。

四、教学用具多媒体课件(PPT)、几何画板五、教学过程(一)创设情境、导入新课(5分钟)利用多媒体播放“人民英雄纪念碑——民族的自豪”短片,引导学生思考:如何测量出人民英雄纪念碑的高度呢?要求学生自主探究,积极思考,回答测量高度的方法,教师引导学生分析,如直接测量法和相似法的弊端,从而导入新课——锐角的正切。

(板书课题)【设计意图】通过视频的展示,让学生身临其境地感受人民英雄纪念碑的雄伟,激发学生强烈的爱国热情和民族自豪感,同时,通过对纪念碑高度的测量自然地导入今天的教学重点。

体现新课标的要求:在关注学生数学学习水平的同时,关注学生德育教育和情感态度的发展。

《锐角三角函数》教学设计

《锐角三角函数》教学设计

《锐角三角函数》教学设计一、引言三角函数是高中数学的重要内容之一。

而锐角三角函数则是三角函数中的一个重要分支,涉及到正弦函数、余弦函数和正切函数。

本教学设计旨在帮助学生全面理解锐角三角函数的基本概念、性质和应用,并通过多种教学方法来提高学生的学习兴趣和掌握程度。

二、教学目标1. 理解锐角三角函数的定义及其基本性质;2. 掌握锐角三角函数的计算方法,并能在实际问题中应用;3. 培养学生的空间观念和逻辑思维能力。

三、教学重点1. 锐角三角函数的定义及基本性质;2. 锐角三角函数的计算方法;3. 锐角三角函数在实际问题中的应用。

四、教学内容及方法1. 锐角三角函数的定义及基本性质1.1 正弦函数的定义及性质1.2 余弦函数的定义及性质1.3 正切函数的定义及性质1.4 锐角三角函数的周期性质教学方法:通过课堂讲述、示意图和实例演示来介绍每个函数的定义及其性质,引导学生从几何角度理解函数的含义。

2. 锐角三角函数的计算方法2.1 正弦函数的计算2.2 余弦函数的计算2.3 正切函数的计算教学方法:以求解简单的三角函数值为例,引导学生利用单位圆、特殊角和三角函数定义来计算锐角三角函数的值,并通过练习巩固掌握。

3. 锐角三角函数在实际问题中的应用3.1 三角函数的应用于三角恒等变换3.2 三角函数在直角三角形中的应用3.3 三角函数在航空航天中的应用教学方法:通过实际例子和应用场景,引导学生将锐角三角函数应用于实际问题中,培养学生的问题解决能力和数学思维。

五、教学过程安排1. 引入锐角三角函数的概念和意义,解释本节课的教学目标。

2. 讲解锐角三角函数的定义及性质,通过示意图和实例演示来帮助学生理解。

3. 引导学生进行锐角三角函数的计算练习,提供不同难度的题目进行巩固。

4. 探究三角函数的恒等变换及其应用,让学生发现三角函数之间的关系。

5. 教学直角三角形中的三角函数应用,以实例演示和问题解决为主,培养学生的问题分析与解决能力。

【教案】 锐角的三角函数——正切

【教案】 锐角的三角函数——正切

23.1.1 锐角的三角函数——正切教学目标【知识与技能】1.了解锐角三角函数的概念,能够正确应用tanA表示直角三角形中两边的比.2.理解坡度的概念,并能够计算坡面的坡度.【过程与方法】通过锐角三角函数的学习进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的应用.【情感、态度与价值观】1.通过学习培养学生的合作意识.2.通过探究提高学生学习数学的兴趣.重点难点【重点】锐角三角函数的概念,坡比的概念.【难点】锐角三角函数概念的理解.教学过程一、创设情境,导入新知师:高架桥的起始一段有倾斜的部分,这个坡面的坡度或者说倾斜程度是怎样度量的呢?学生思考.二、共同探究,获取新知1.正切的概念.教师多媒体课件出示:在下图中,有两个直角三角形,直角边AC与A1C1表示水平面,斜边AB与A1B1分别表示两个不同的坡面,坡面AB和A1B1哪个更陡?你是怎样判断的?生:A1B1更陡.师:你是怎样判断的呢?生甲:这两个中同样是100的一段,对应的高度A1B1上升得多.生乙:(2)倾斜得厉害. 教师多媒体课件出示:师:这个图里,你能判断坡面AB和A1B1哪个更陡吗?学生观察后回答:A1B1更陡.师:为什么?生:……教师多媒体课件出示:如图,在锐角A的一边上任取一点B,自点B向另一边作垂线,垂足为C,得到Rt△ABC;再任取一点B1,自点B1向另一边作垂线,垂足为C1,得到另一个Rt△AB1C1……这样,我们可以得到无数个直角三角形,这些直角三角形都相似.在这些直角三角形中,锐角A的对边与邻边之比、、……究竟有怎样的关系?教师读题后学生思考.生:锐角A的这些对边与邻边之比都是相等的.师:对,在这些直角三角形中,当锐角A的大小确定后,无论直角三角形的大小怎样变化,∠A的对边与邻边的比值总是一个定值.教师边操作边讲解:在这个直角三角形ABC中,我们把锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA===.2.坡度、坡角的概念.教师边作图边讲解:正切经常用来描述坡面的坡度.坡面的铅直高度h和水平长度l的比叫做坡面的坡度(或坡比),记作i,即i=,坡度通常写成h∶l的形式.坡面与水平面的夹角叫做坡角(或称倾斜角),记作α,于是有i==tanα.你能得到坡度与坡角之间的关系吗?生:能.坡度越大,坡角越大,坡面就越陡.师:很好!三、举例应用,巩固新知教师多媒体课件出示:【例1】如图,在Rt△ABC 中,∠C=90°,AC=4,BC=3,求tanA和tanB.tanA===.师:你能计算出∠A和∠B的正切吗?学生思考后回答:能.师:怎样计算?教师找一生回答.生:tanA==,tanB==师:你回答得很好!现在请同学们看课本第114页练习的第3题.学生读题后,教师找两生板演,其余同学在下面做,然后集体订正.解:AC===≈199.64,∴引桥的坡度为:tan∠BAC===≈0.06.四、练习新知1.师:下面让我们一起来看几道习题.教师板书习题:(1)为测量如图所示的上山坡道的倾斜度,小明测得数据如图所示,则该坡道倾斜角α的正切值是( )A. B.4 C. D.【答案】C(2)晓敏由地面沿坡度i=1∶2的坡面向上前进了10 m,此时她距离地面的高度为( )A.5 mB.4 mC.2 mD. m【答案】C(3)在Rt△ABC中,∠C=90°,BC=4,AC=6,则tanA的值为 .【答案】(4)在△ABC中,∠C=90°,BC=6,tanA=,则AC的长是 .【答案】9五、课堂小结师:本节课你又学习了什么内容?学生回答.师 :你还有什么疑问?学生提问,教师解答.教学反思本节课采用问题引入法,从教材探究性问题梯子的倾斜度入手,让学生主动参与学习活动.用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图、找边角、计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后探究:三角函数与直角三角形的边、角有什么关系?三角函数与三角形的形状有关系吗?整节课都在紧张而愉快的气氛中进行.学生非常活跃,大部分人都能积极动脑、积极参与.教学中,我一直比较关注学生的情感态度,对那此积极动脑、热情参与的同学都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证教学活动的有效性.。

湘教版九年级数学上册第4章锐角三角函数4.2正切教学设计

湘教版九年级数学上册第4章锐角三角函数4.2正切教学设计

湘教版九年级数学上册第4章锐角三角函数4.2正切教学设计一. 教材分析湘教版九年级数学上册第4章锐角三角函数4.2正切教学设计,本节课主要让学生了解正切的概念,掌握正切的定义和性质,并能运用正切解决一些实际问题。

教材通过引入直角三角形的边长关系,引导学生探究正切的概念,并通过例题和练习让学生熟练掌握正切的运算方法。

二. 学情分析学生在学习本节课之前,已经学习了直角三角形、锐角三角函数等知识,对三角函数有一定的了解。

但学生对正切的概念和性质的认识还不够深入,需要通过本节课的学习来进一步巩固和提高。

三. 教学目标1.了解正切的概念,掌握正切的定义和性质。

2.能运用正切解决一些实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.正切的概念和性质。

2.运用正切解决实际问题。

五. 教学方法1.情境教学法:通过引入直角三角形的边长关系,引导学生探究正切的概念。

2.例题教学法:通过典型例题,让学生掌握正切的运算方法。

3.实践教学法:让学生通过动手操作,巩固正切的知识。

六. 教学准备1.教学课件:制作教学课件,包括正切的概念、性质和例题。

2.练习题:准备一些练习题,用于巩固学生的正切知识。

3.教学工具:准备直尺、三角板等教学工具,用于引导学生动手操作。

七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如测量山的高度、计算建筑物的斜坡度等,引导学生思考如何利用数学知识解决这些问题。

然后引入正切的概念,激发学生的学习兴趣。

2.呈现(10分钟)通过展示直角三角形的边长关系,引导学生探究正切的定义。

利用多媒体动画展示直角三角形中,正切的概念和性质。

让学生了解正切的概念,并掌握正切的性质。

3.操练(10分钟)让学生利用直尺、三角板等工具,自己动手操作,验证正切的性质。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成一些正切的练习题,巩固所学知识。

教师选取部分题目进行讲解,纠正学生的错误。

锐角三角函数教案设计

锐角三角函数教案设计

锐角三角函数教案设计锐角三角函数教案设计锐角三角函数教案设计篇1知识目的:1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义。

2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值。

才能、情感目的:1.经历由情境引出问题,探究掌握数学知识,再运用于理论过程,培养学生学数学、用数学的意识与才能。

2.体会数形结合的数学思想方法。

3.培养学生自主探究的精神,进步合作交流才能。

重点、难点:1.直角三角形锐角三角函数的意义。

2.由直角三角形的边长求锐角三角函数值。

教学过程:一、创设情境前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。

但有些问题单靠相似与勾股定理是无法解决的。

同学们放过风筝吗?你能测出风筝离地面的高度吗?学生讨论、答复各种方法。

老师加以评论。

总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC了,但实际上要测量AC是很难的。

因此,我们换个角度,假如可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。

〔由一个学生比拟熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。

由此导入新课〕二、新课讲述在Rt△ABC中与Rt△A1B1C1中∠C=90°,C1=90°∠A=∠A1,∠A的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 〔学生探究,引导学生积极考虑,利用相似发现比值相等〕〔〕假设在Rt△A2B2C2中,∠A2=∠A,那么问题1:从以上的探究问题的过程,你发现了什么?〔学生讨论〕结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。

在一个直角三角形中,只要角的大小一定,它的对边与斜边的比值也就确定了,与这个角所在的三角形的大小无关,我们把这个比值叫做这个角的正弦,即∠A的正弦= ,记作sin A,也就是:sin A=几个注意点:①sin A是整体符号,不能所把看成sinA;②在一个直角三角形中,∠A正弦值是固定的,与∠A的两边长短无关,当∠A发生变化时,正弦值也发生变化;③sin A 表示用一个大写字母表示的一个角的正弦,对于用三个大写字母表示的角的正弦时,不能省略角的符号“∠”;例如表示“∠ABC”的正弦时,应该写成“sin∠ABC”;④ Sin A= 可看成一个等式。

锐角三角函数-正切教学设计

锐角三角函数-正切教学设计

23.1锐角的三角函数1. 锐角的三角函数第一课时正切教学目标◆知识与技能1.初步了解角度与数值的一一对应的函数关系。

2.会求直角三角形中某个锐角的正切值。

3.了解坡度的有关概念。

◆过程与方法让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维习惯,提高学生运用数学知识解决实际问题的能力。

◆情感态度通过探究活动激发学生学习的积极性和主动性,引导学生自主探索,合作交流,培养学生的创新意识。

教学重点:1.从现实情境中探索直角三角形的边角关系。

2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。

教学难点:锐角三角函数的概念的理解。

教学准备多媒体课件制作教学设计一、导入新课导语:因为这座桥的设计让它成为了旅游新热点,火起来的原因不是因为怪异的设计或者美不胜收的景色,而是大家都很好奇这个桥的坡度到底有多陡?陡峭堪比过山车!不少人给这座桥赋予了极不靠谱的数据,实际上这个坡的斜率仅为6.1%,如果按咱们口头常用单位来讲还不足4度。

大家看到这个图片后一定很吃惊,那我们要想了解这副图的背景故事,我们就要来学习这里出现的数据6.1%和4度代表了什么?(导入课题锐角三角函数)二、推进新课1.交流合作【问题1】在图23-2中有两个直角三角形,直角边AC与A1C1表示水平面,斜边AB与A1B1分别表示两个不同的坡面,哪个更陡?你是怎么判断的?学生可由水平长度相等,铅直高度不同进行判断.【问题2】当水平长度和铅直高度都不相等时,类似的在图23-3中,坡面AB与A1B 1哪个更陡?你又是如何判断呢?设计意图:引发学生的争论,激发学生的求知欲.从而教师可提出能否用铅直高度与水平长度的比值进行衡量呢?【问题3】 如图,在锐角A 的一边上任取一点B ,自点B 向另一边作垂线,垂足为C ,得到Rt △ABC ;再任取一点B 1,自点B 1向另一边作垂线,垂足为C 1,得到Rt △33AB C ……,这样,我们可以得到无数个直角三角形.在这些直角三角形中,锐角A 的对边与邻边之比BC AC ,111B C AC ,222B C AC ……有怎样的关系?请同学们小组合作测量并计算它们的近似值,看看会有什么发现?同学们得到近似相等的值,我们猜测它们是相等的,是不是这样的呢,下面我们从理论角度来验证。

人教版数学九年级下册《锐角三角函数——正切》教学设计

人教版数学九年级下册《锐角三角函数——正切》教学设计

《锐角三角函数——正切》教学设计一、教材与学情分析◆教材分析:本节教材是初中数学九年级上册第一节内容,是初中数学的重要内容之一。

一方面,这是在学习了相似三角形、直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础。

鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。

◆学情分析:九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。

前面已经掌握直角三角形中各边和各角的关系,通过这节课学习要得出直角三角形中边与角之间的关系,需要观察、思考、交流,进一步体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。

学生可能会产生一定的困难,所以教学中应予以简单明了,深入浅出的剖析。

二、教学重难点:◆重点:理解锐角三角函数-正切的意义,会将某些实际问题转化为解直角三角形的问题。

◆难点:理解直角三角形中锐角与两直角边比值之间一一对应的关系,从而引入正切函数,并用符号tan A来表示.三、教学目标◆知识与技能:1.理解并掌握正切的含义,并能够举例说明;2.会在直角三角形中求出某个锐角的正切值;3.了解锐角的正切值随锐角的增大而增大.◆过程与方法:1. 经历正切的意义探索的过程,培养学生观察分析、类比归纳的探究问题的能力。

2. 逐步学习利用数形结合的思想分析问题和解决问题。

◆情感态度与价值观:1. 使学生在学习数学的过程中体会数学与生活的密切联系,激发学生学习数学的兴趣。

2 . 通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯。

四、教学方法:利用多媒体教学平台,采用教师引导,学生自主探索和小组合作相结合的教学方式,渗透函数、数形结合、转化等数学思想方法。

探究教学法:提出问题,让学生通过自主探究,解决问题,掌握新知。

1.1锐角三角函数第1课时正切(教案)

1.1锐角三角函数第1课时正切(教案)
1.讨论主题:学生将围绕“正切在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
-正切表的使用:学会查找和利用正切表解决实际问题,这是进行进一步三角函数学习的基础。
-正切函数性质的探索:了解正切函数的周期性、奇偶性等性质,为学习其他三角函数性质打下基础。
举例:通过具体的直角三角形图形,引导学生理解正切值是如何计算的,以及如何判断正切值的正负。
2.教学难点
-正切概念的内化:学生需要将正切概念从具体的直角三角形中抽象出来,内化为一般的数学定义。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正切函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对正切的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们探讨了锐角三角函数中的正切概念。我发现学生们对于正切的定义和应用有着不错的理解和接受度,但在具体的计算和应用中,还存在一些困难。这让我意识到,在今后的教学中,我需要更加注重以下几个方面:
1.1锐角三角函数第1课时正切(教案)
一、教学内容
《人教版八年级下册数学》第十章“锐角三角函数”第1课时“正切”。本节课主要内容包括以下部分:
1.理解正切的概念:通过对直角三角形的观察,引导学生发现锐角与对边、邻边的比值关系,引出正切函数的定义。

锐角三角函数数学教案

锐角三角函数数学教案

锐角三角函数数学教案标题:锐角三角函数数学教案一、教学目标:1. 理解并掌握正弦、余弦、正切等基本概念。

2. 学会利用直角三角形的边长关系求解三角函数值。

3. 能够运用锐角三角函数解决实际问题。

二、教学内容:1. 锐角三角函数的基本概念- 正弦、余弦、正切的定义- 特殊角的三角函数值2. 锐角三角函数的应用- 利用直角三角形的边长关系求解三角函数值- 利用三角函数解决实际问题三、教学过程:1. 引入新课:- 通过展示一些生活中常见的角度和比例问题,引入锐角三角函数的概念。

2. 讲授新知:- 介绍正弦、余弦、正切的定义,并举例说明。

- 介绍特殊角的三角函数值,并让学生记住这些基本的三角函数值。

3. 巩固练习:- 给出一些简单的直角三角形,让学生计算对应的三角函数值。

4. 拓展应用:- 给出一些实际的问题,让学生尝试使用锐角三角函数来解决。

5. 总结归纳:- 回顾本节课的主要知识点,强调锐角三角函数在实际生活中的应用。

四、教学方法:1. 直观演示法:通过实物或模型直观展示锐角三角函数的概念。

2. 启发引导法:通过提出问题,引导学生思考,激发他们的学习兴趣。

3. 实践操作法:让学生亲自参与实践活动,提高他们解决问题的能力。

五、教学评估:1. 过程评价:观察学生在课堂上的表现,包括他们的参与度、理解程度等。

2. 结果评价:通过作业和测试,检查学生对知识的掌握情况。

六、教学反思:1. 对于学生的反馈进行分析,找出教学中的不足,以便改进。

2. 根据学生的接受程度,调整教学进度和难度。

九年级数学上册《锐角三角函数》教案、教学设计

九年级数学上册《锐角三角函数》教案、教学设计
3.小组合作题需充分发挥团队协作精神,共同完成任务;
4.作业完成后,请学生认真检查,确保答案的正确性。
4.利用信息技术手段,如动态课件、网络资源等,丰富教学手段,提高学生的学习兴趣和积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,提高学生的自主学习能力。
2.通过解决实际问题,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
3.培养学生勇于探索、克服困难的精神,提高学生的自信心和自尊心。
九年级数学上册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握锐角三角函数的定义,理解正弦、余弦、正切函数的概念,并能够运用这些概念进行简单的计算。
2.培养学生运用三角函数解决实际问题的能力,如测量物体的高度、计算角度等。
3.使学生掌握特殊角的三角函数值,并能熟练运用到实际问题中。
(2)运用三角函数解决实际问题,尤其是将实际问题抽象为数学模型,并运用三角函数进行求解;
(3)掌握特殊角的三角函数值,并能灵活运用到实际问题中。
(二)教学设想
1.教学策略:
(1)采用情境教学法,创设实际问题情境,引导学生主动探究锐角三角函数的定义和性质;
(2)运用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的计算方法和应用;
(3)了解三角函数在其他学科领域的应用,如物理、工程等。
4.小组合作题:
(1)分组讨论:如何利用三角函数解决实际问题?举例说明;
(2)小组合作完成一份关于锐角三角函数在实际问题中应用的报告。
作业要求:
1.学生需独立完成基础题,提高题和拓展题可根据个人能力选择完成;
2.作业过程中,要求学生注重解题思路和方法的总结,养成良好的学习习惯;

锐角三角函数-正切 优秀教学设计

锐角三角函数-正切  优秀教学设计

锐角三角函数-正切教学目标1、掌握正切的定义。

2、会求直角三角形中某个锐角的正切值。

3、了角坡度的有关概念。

教学重点1、从现实情境中探索直角三角形的边角关系。

2、理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。

教学难点锐角三角函数的概念的理解。

教学设计一、导入新课:1、展示日本江岛大桥图片,学生感受“陡”。

2、展示上陡坡的交通标志,知道图片上的10%是什么意思吗?学了今天的课程我们就知道江岛大桥到底有多陡,陡坡的交通标志上的10%是什么意思?二、推进新课1、问:你们评价陡与不陡的标准是什么?在此介绍坡角概念,坡角可以刻画陡峭程度。

2、比眼力,观察哪个梯子更陡3、探索与思考:a、Rt△AFG、Rt△ADE与Rt△ABC的关系?b、,, 有什么关系?4、正切的定义:在Rt△ABC中锐角A确定,那么∠A的对边与邻边之比也随之确定。

这个比叫∠A的正切,记作tanA 即tanA=注意:a、tanA tanαtan∠BAC tan∠1 tan45°b、tanA的值只与∠A的大小有关,0°<∠A <90 °时∠A越大tanA 越大c、比值、无单位d、tanA不能看成tan*A三、学以致用1、在Rt△ABC中∠C=90°,BC=3,AC=4,求tanA、tanB2、如图△ABC中AB=BC=5,AC=6求tanA3、如图,在Rt△ABC中,AC=8, tanA=求AB4、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=1,AC=2求tan∠BCD以上习题由学生完成后,教师抽学生讲解。

四、坡度与正切坡度(坡比)记作i= 或(i= h :l)五、课堂小结1、刻画坡面的陡峭程度,除了用坡角大小还可用坡角的正切值;2、tanA的值只与∠A的大小有关,0°<∠A <90 °时∠A越大tanA越大;3、坡度不是坡角的度数,而是坡角的正切值。

1.1 锐角三角函数 第1课时(教案)-北师大版数学九下

1.1 锐角三角函数 第1课时(教案)-北师大版数学九下

第1节锐角三角函数第1课时正切1.经历探索直角三角形中边角之间关系的过程.2.理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明.3.能够运用tan A,sin A,cos A表示直角三角形中两边的比.4.能够根据直角三角形中的边角关系进行简单的计算.1.经历三个锐角三角函数的探索过程,确信三角函数的合理性,体会数形结合的数学思想.2.在探索锐角三角函数的过程中,初步体验探索、讨论、验证对学习数学的重要性.1.通过锐角三角函数概念的建立,使学生经历从特殊到一般的认识过程.2.让学生在探索、分析、论证、总结获取新知识的过程中体验成功的喜悦,从解决实际问题中感悟数学的实用性,培养学生学习数学的兴趣.【重点】1.理解锐角三角函数的意义.2.能利用三角函数解三角形的边角关系.【难点】能根据直角三角形的边角关系进行简单的计算1.经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系.2.能够用tan A表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度等,能够用正切进行简单的计算.3.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.1.体验数形之间的联系,逐步学习利用数形结合思想分析问题和解决问题.提高解决实际问题的能力.2.体会解决问题的策略多样性,发展实践能力和创新精神.1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.【重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,加强数学与生活的联系.【难点】理解正切的意义,并用它来表示生活中物体的倾斜程度、坡度等.【教师准备】多媒体课件.【学生准备】1.自制4个直角三角形纸板.2.复习直角三角形相似的判定和直角三角形的性质.导入一:课件出示:你知道图中建筑物的名字吗?是的,它就是意大利著名的比萨斜塔,是世界著名建筑奇观,位于意大利托斯卡纳省比萨城北面的奇迹广场上,是奇迹广场三大建筑之一,也是意大利著名的标志之一,它从建成之日起便由于土层松软而倾斜.【引入】应该如何来描述它的倾斜程度呢?学完本节课的知识我们就能解决这个问题了.[设计意图]创设新颖、有趣的问题情境,以比萨斜塔的倾斜程度激发学生的学习兴趣,从而自然引出课题,并且为学生探究梯子的倾斜程度埋下伏笔.导入二:课件出示:四个规模不同的滑梯A,B,C,D,它们的滑板长(平直的)分别为300cm,250cm,200cm,200cm;滑板与地面所成的角度分别为30°,45°,45°,60°.【问题】四个滑梯中哪个滑梯的高度最高[设计意图]利用学生所熟悉的滑梯进行引导,使学生有亲切感,滑梯与课本中引用梯子比较类似,学生的探究思路会比较顺畅.(一)探究新知请同学们看下图,并回答问题.探究一:问题1课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?你有几种判断方法?小组讨论后展示结果:1组:梯子AB较陡.我们组是借助量角器量倾斜角,发现∠ABC>∠EFD,根据倾斜角越大,梯子就越陡,可以得到梯子AB较陡.师:哪组还有不同的判定方法?2组:我们也是认为梯子AB较陡.我们组是分别计算AC与BC的比,ED与FD的比,发现前者的比值大,根据铅直高度与水平宽度的比越大,梯子就越陡,可以得到梯子AB较陡.3组:我们组的方法和1组的大致相同,借助倾斜角来判断,不过不是测量,我们是过E作EG∥AB 交FD于G,就可以清晰比较∠ABC与∠EFD的大小了.4组:我们组发现这两架梯子的高度相同,水平宽度越小,梯子就越陡,所以我们也认为梯子AB较陡.探究二:问题2课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?学生会类比问题1给出的四种判断方法,只要说得合理即可.问题3课件出示:在下图中,梯子AB和EF哪个更陡?你是怎么判断的?多给学生思考和讨论的时间.代表发言:AB和EF的倾斜度一样.由于两个直角三角形的两直角边的比值相等,再加上夹角相等,可以判定两个直角三角形相似,根据相似三角形的对应角相等,可以证明两个倾斜角相等,所以AB和EF的倾斜度一样.教师引导:我们发现当直角三角形的两直角边的比值相等时,梯子的倾斜度一样,请大家判断一下在问题2与问题3中,两直角边的比值与倾斜度有什么关系?请继续探究下面的问题.问题4课件出示:在下图中,梯子AB和EF哪个更陡?你是怎样判断的?教师引导:我们观察上图直观判断梯子的倾斜程度,即哪一个更陡,可能就比较困难了.能不能从上面的探究中得到什么启示呢生讨论后得出:思路1:梯子EF较陡,因为∠EFD>∠ABC,根据倾斜角越大,梯子就越陡.思路2:梯子EF较陡,因为>,根据铅直高度与水平宽度的比越大,梯子就越陡.师生共同总结:在日常的生活中,我们判断哪个梯子更陡,应该从梯子AB 和EF 的倾斜角大小,或垂直高度和水平宽度的比的大小来判断.做一做:请通过计算说明梯子AB 和EF 哪一个更陡呢?生独立解答,代表展示:∵==,==,<,∴梯子EF 比梯子AB 更陡.[设计意图]通过探究逐层深入的问题,让学生经历由简单到复杂、由特殊到一般的探究过程,既对已学知识和生活经验进行了回味和运用,也让学生的思想逐步向本节课的中心“两直角边之比”靠近.[知识拓展]梯子的倾斜程度的判定方法:(1)梯子的倾斜程度和倾斜角有关系,倾斜角越大,梯子就越陡.(2)梯子的倾斜程度和铅直高度与水平宽度的比有关系,铅直高度与水平宽度的比越大,梯子就越陡.(二)再探新知课件出示:【想一想】如图所示,小明想通过测量B 1C 1及AC 1,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量B 2C 2及AC 2,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)直角三角形AB 1C 1和直角三角形AB 2C 2有什么关系生很容易得出两个三角形相似.由生说明理由:∵∠B 2AC 2=∠B 1AC 1,∠B 2C 2A =∠B 1C 1A =90°,∴Rt△AB 1C 1∽Rt△AB 2C 2.(2)和有什么关系?由于Rt△AB 1C 1∽Rt△AB 2C 2,所以有=.(3)如果改变B 2在梯子上的位置呢?由此你得出什么结论?生先独立思考后分组讨论.生得出结论:改变B 2在梯子上的位置,铅直高度与水平宽度的比始终相等.想一想:现在如果改变∠A 的大小,∠A 的对边与邻边的比值会改变吗?生讨论得出:∠A 的大小改变,∠A 的对边与邻边的比值会改变.∠A 的对边与邻边的比只与∠A 的大小有关系,而与它所在直角三角形的大小无关.【总结提升】由于直角三角形中的锐角A 确定以后,它的对边与邻边的比也随之确定,因此我们有如下定义:如图所示,在Rt△ABC 中,如果锐角A 确定,那么∠A 的对边与邻边之比便随之确定,这个比叫做∠A 的正切(tangent ),记作tan A ,即tan A =.当锐角A变化时,tan A的值也随之变化.能力提升:如果∠A+∠B=90°,那么tan A与tan B有什么关系?生讨论得出结论:tan A=,即任意锐角的正切值与它的余角的正切值互为倒数.【议一议】前面我们讨论了梯子的倾斜程度,在课本图1-3中,梯子的倾斜程度与tan A有关系吗?学生思考后,统一答案:tan A的值越大,梯子越陡.(反之,梯子越陡,tan A的值越大)[设计意图]此环节的设计是为了突出概念的形成过程,帮助学生理解概念.通过让学生参与、动手操作,让学生学会由特殊到一般、数形结合及函数的思想方法,提高学生分析问题和解决问题的能力.[知识拓展]正切的注意事项:(1)tan A是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”.(2)tan A没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比.(3)tan A不表示“tan”乘以“A”.(4)初中阶段,我们只学习直角三角形中锐角的正切.(教材例1)如图所示表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?想一想:要判断哪个自动扶梯比较陡,只需求出什么即可?生思考后得出:比较甲、乙两个自动扶梯哪一个陡,只需分别求出tanα,tanβ的值进行比较大小即可,正切值越大,扶梯就越陡.要求学生独立解答,代表展示:解:甲梯中,tanα==.乙梯中,tanβ==.因为tanα>tanβ,所以甲梯更陡.[设计意图]通过对例题的解答让学生初步学会运用“正切”这一数学工具判断梯子的倾斜程度,同时规范学生的解题步骤,培养良好的解题习惯.课件出示:如图所示,有一山坡在水平方向上每前进100m就升高60m,那么山坡的坡度(即tanα)就是: i=tanα==.结论:坡面与水平面的夹角(α)称为坡角,坡面的铅直高度与水平宽度的比称为坡度(或坡比),tanα=,即坡度等于坡角的正切.[设计意图]正切在日常生活中的应用很广泛,通过正切刻画梯子的倾斜程度及坡度的数学意义,密切数学与生活的联系,使学生明白学习数学就是为了更好地应用数学,为生活服务.[知识拓展]坡度与坡面的关系:坡度越大,坡面越陡.(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.1.在Rt△ABC中,∠C=90°,AB=13,AC=12,则tan A等于()A.B. C. D.解析:∵在Rt△ABC中,∠C=90°,AB=13,AC=12,∴BC=5,∴tan A=.故选B.2.如图所示,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是()A.B.C.D.解析:认真读图,在以∠AOB的O为顶点的直角三角形里求tan∠AOB的值,由图可得tan∠AOB=.故选B.3.(2014·温州中考)如图所示,在△ABC中,∠C=90°,AC=2,BC=1,则tan A的值是.解析:tan A==.故填.4.河堤横断面如图所示,堤高BC=5m,迎水坡AB的坡度是1∶(坡度是坡面的铅直高度BC与水平宽度AC之比),则AB的长是.解析:在Rt△ABC中,BC=5,tan A=1∶,∴AC=5,∴AB==10(m).故填10m.第1课时(1)正切的定义:tan A=.(2)梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系):tan A的值越大,梯子越陡.(3)坡度(或坡比)的定义:i=tanα=.一、教材作业【必做题】1.教材第4页随堂练习第1,2题.2.教材第4页习题1.1第1,2题.【选做题】教材第4页习题1.1第3,4题.二、课后作业【基础巩固】1.如图所示,在Rt△ABC中,∠C=90°,AC=6,BC=8,则tan A的值为()A. B. C. D.2.小明沿着坡度为1∶2的山坡向上走了1000m,则他升高了()A.500mB.200mC.500mD.1000m3.已知斜坡的坡度为i=1∶5,如果这一斜坡的高度为2m,那么这一斜坡的水平距离为m.【能力提升】4.(2015·山西中考)如图所示,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B.C.D.5.如图所示,将以A为直角顶点的等腰直角三角形ABC沿直线BC平移得到△A'B'C',使点B'与C重合,连接A'B,则tan∠A'BC'的值为.6.如图所示,在锐角三角形ABC中,AB=10cm,BC=9cm,△ABC的面积为27cm2.求tan B的值.7.某商场为方便顾客使用购物车,准备将滚动电梯的坡面坡度由1∶1.8改为1∶2.4(如图所示).如果改动后电梯的坡面长为13m,求改动后电梯水平宽度增加部分BC的长.【拓展探究】8.如图所示,在△ABC中,AB=AC,BD是AC边上的中线,若AB=13,BC=10,试求tan∠DBC的值.【答案与解析】1.D(解析:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴tan A===.故选D.)2.B(解析:设铅直高度为x m,∵坡度为1∶2,∴水平宽度为2x m,由勾股定理得x2+(2x)2=10002,解得x=200.∴他升高了200m.故选B.)3.10(解析:∵斜坡的坡比是1∶5,∴=.∴=,∴斜坡的水平距离为=10m.故填10.)4.D(解析:如图所示,连接AC,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan B==.故选D.)5.(解析:如图所示,过A'作A'D⊥BC',垂足为D.在等腰直角三角形A'B'C'中,易知A'D是底边上的中线,∴A'D=B'D=.∵BC=B'C',∴tan∠A'BC'===.故填.)6.解:如图所示,过点A作AH⊥BC于H,∵S=27,∴×9×AH=27,∴AH=6.∵AB=10,∴BH===8,∴tan△ABCB===.7.解:在Rt△ADC中,AD∶DC=1∶2.4,AC=13,由AD2+DC2=AC2,得AD2+(2.4AD)2=132,∴AD=±5(负值不合题意,舍去),∴DC=12.在Rt△ABD中,∵AD∶BD=1∶1.8,∴BD=5×1.8=9,∴BC=DC-BD=12-9=3(m).答:改动后电梯水平宽度增加部分BC的长为3m.8.解:如图所示,过点A,D分别作AH⊥BC,DF⊥BC,垂足分别为点H,F.∵BC=10,AH⊥BC,AB=AC,∴BH=5.∵AB=13,∴AH==12,在Rt△ACH中,AH=12,易知AH∥DF,且D为AC中点,∴DF=AH=6,∴BF=BC=,∴在Rt△DBF中,tan∠DBC==.本节课是三角函数部分的第一节概念教学,教学内容比较抽象,学生不易理解.为此结合初中学生身心发展的特点,运用实验教学、直观教学,唤起和加深学生对教学内容的体会和了解,并培养和发展学生的观察、思维能力,这是贯彻“从生动的直观到抽象的思维,并从抽象的思维到实践”的认识规律,能使学生学习数学的过程成为积极的、愉快的和富有想象的过程,使学习数学的过程不再是令人生畏的过程.概念教学由学生熟悉的实例入手,引导学生观察、分析、动手、动脑、动口多种感官参与,并组织学生积极参与小组成员间合作交流.通过由特殊到一般、具体到抽象的探索过程,紧紧围绕着函数概念,引出正切概念,再通过相应的典型题组练习巩固概念.并且在教学过程中,注重了阶段性的反思小结,使学生能够及时总结知识和方法.本节课的开放性还不够,探究梯子倾斜程度时,学生的一些奇思妙想没有给予展示机会.第一个环节内容设计多了一些,所以导致后面的教学处理上稍显仓促.对第一个环节的处理力求更加简洁,并大胆放手让学生去探索、去发现,真正让学生成为学习的主人.随堂练习(教材第4页)1.解:能.tan C====.2.解:根据题意,得AB=200,BC=55,则AC===5,所以山的坡度为=≈0.286.习题1.1(教材第4页)1.解:∵BC===12,∴tan A==,tan B==.2.解:∵tan A==,BC=3,∴AC=BC=.4.tan A=.学生学习时首先通过情境题了解本节课学习的主要任务,做到有的放矢,然后利用“由一般到特殊”的数学思想,通过三个探究活动逐步得出梯子的倾斜程度与tan A的关系(∠A和tan A之间的关系),在探究的过程中可以通过自主探究与合作交流的方式抓住重点,突破难点.学生在运用正切解决问题时,一定要注意其前提条件——在直角三角形中,找准直角是解题的关键.而有些题目需要作辅助线构造直角三角形,也可以通过角度的转化进行求解,同时还要注意数形结合思想的运用.如图所示,设计建造一条道路,路基的横断面为梯形ABCD,设路基高为h,两侧的坡角分别为α,β.已知h=2m,α=45°,tanβ=,CD=10m.求路基底部AB的宽.〔解析〕如图所示,过D,C分别作下底AB的垂线,垂足分别为E,F.在Rt△ADE和Rt△BCF中,可根据h的长以及坡角的度数或坡比的值,求出AE,BF的长,进而可求得AB的值.解:如图所示,过D作DE⊥AB于E,过C作CF⊥AB于F,∴DE∥CF.∵四边形ABCD为梯形,∴AB∥CD,∴EF=CD=10m.∴四边形DCFE为矩形.在Rt△ADE中,α=45°,DE=h=2m,∴CF=DE=h=2m.在Rt△BCF中,tanβ=,CF=2m,∴BF=2CF=4(m).故AB=AE+EF+BF=AE+CD+BF=2+10+4=16(m).答:路基底部AB的宽为16m.[解题策略]此题主要考查了坡度问题的应用,求坡度、坡角问题通常要转换为解直角三角形的问题,必要时应添加辅助线,构造出直角三角形.。

“锐角三角函数 ― 正切”的教学设计及反思

“锐角三角函数 ― 正切”的教学设计及反思

“锐角三角函数― 正切”的教学设计及反思“锐角三角函数―― 正切”的教学设计及反思【教学内容】正切(第一课时)(苏教版)九年级数学下册。

【教材分析】本节课苏教版九年级数学下册第七章“锐角三角函数”第一节的第一课时。

它是函数知识的延续,因此本章的学习就是在学生原有的学习基础上进一步丰富学习内容、提升学习能力。

而正切是中学阶段遇到的第一个三角函数,欲让学生感悟、经历、体验怎样引入锐角正切(新知的切入点)、怎样运用锐角正切(新知的生长点)、锐角正切可解决怎样的问题(新知的优越点),同时本节课的研究方式又直接关系到后继三角函数(正弦、余弦)的学习方式,因此本节内容无论是知识还是研究方式在教材中起到了承上启下的衔接作用。

【教学目标】正确理解正切函数的概念,会在直角三角形中求出某一个锐角的正切值,了解锐角的正切值随锐角的增大而增大,能用正切知识解决较为简单的实际问题。

【重难点分析】教学重点:正确理解锐角正切的概念。

教学难点:锐角正切概念的引入与理解。

【教学过程】一、情景引入活动一看网红大桥的图片、听老师的介绍,让学生直观感受物体的陡缓之分。

活动二通过给出几组梯子图片,让学生讨论哪个梯子更容易攀爬,将生活问题数学化,找到判断物体陡缓的方法。

设计意图:此活动是从生活中的实例出发,在判断物体的陡缓的过程中,学生归纳得出可以通过角度的大小来描述倾斜程度外,还可以计算垂直高度与水平宽度的比来描述。

二、讲授新知活动一探索思考:仍从梯子出发,提出问题,在Rt△AB1C1中,改变B2的位置,比值是否发生改变?活动二构建新知:得出正切的定义。

设计意图:通过借助几何画板的演示,以及前面相似三角形的知识,让学生得出当锐角A的大小确定后,无论直角三角形的大小怎样变化,B2C2与AC2的比值总是一个固定值,为建立角与比值的函数关系打下伏笔,从而顺理成章的提出“锐角三角函数――正切”的概念。

三、新知应用在这个模块中,通过像“鉴宝专家―是真是假”、“我的题目我做主”等一些新颖的标题,调动学生的积极性,激发学生的解题兴趣,并通过完成问题,让学生总结定义中的注意点。

人教版数学九年级下册第28章(教案):28.1锐角三角函数-余弦、正切

人教版数学九年级下册第28章(教案):28.1锐角三角函数-余弦、正切
2.教学难点
-函数定义的抽象理解:锐角三角函数的定义涉及到从具体的直角三角形中抽象出函数概念的过程,这对于学生来说是一个难点。需要通过直观的图形和具体的例子帮助学生理解。
-函数性质的掌握:理解并记忆余弦和正切函数随角度变化的规律是学生的另一个难点。需要通过图表、动画等多种方式,让学生直观感受函数值的变化。
3.重点难点解析:在讲授过程中,我会特别强调余弦和正切函数的定义及其性质。对于难点部分,我会通过具体的直角三角形图形和计算例子来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与余弦和正切函数相关的实际问题,如测量建筑物的高度。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用尺子和量角器来实际测量并计算一个物体的余弦和正切值。
3.提高学生的表达能力和逻辑思维,通过组织各类活动,锻炼他们的口才和思维。
4.及时关注学生的学习反馈,调整教学策略,确保每位学生都能跟上教学进度。
2.正切函数的定义:介绍正切函数的定义,分析锐角α的正切值等于直角三角形中,角α的对边与邻边的比值。
3.余弦、正切函数的性质:分析余弦、正切函数随角度变化的规律,探讨它们在0°~90°范围内的变化趋势。
4.应用举例:结合实际问题,运用余弦和正切函数解决一些简单的直角三角形问题。
5.练习与巩固:通过典型例题和练习题,使学生熟练掌握余弦和正切函数的计算及应用。
人教版数学九年级下册第28章(教案):28.1锐角三角函数-余弦、正切
一、教学内容
人教版数学九年级下册第28章《锐角三角函数》中的28.1节,本节课主要围绕余弦和正切两个锐角三角函数展开。内容包括:
1.余弦函数的定义:通过直角三角形中的边长关邻边和斜边的比值关系。

锐角三角函数正切教案

锐角三角函数正切教案

§26.1 锐角三角函数(1)第一课时正切课前思考:数学概念在中学数学教学中有着极其重要的地位,正确理解数学概念是掌握好数学基础知识的前提,是解题的关键,本节课探讨的是从学生所熟悉的生活实际出发,创造启发式的教学环境,进而引入新概念,真正做到“因材(教材)施教”与“因才(学生)施教”相结合,有利于增强学生对概念的理解,从而帮助学生提高学习的效率。

教材分析:锐角三角函数的概念是以前面学习的相似三角形、勾股定理的知识为基础的,本节课从滑梯的陡缓谈起,引入第一个锐角三角函数-------正切,因为相比之下,正切是生活中用的最多的三角函数,而正弦、余弦的概念是类比正切得到的,所以本节从现实情景出发让学生在探索直角三角形边角关系的过程中,理解三角函数的意义,进而根据直角三角形的边角关系进行简单的计算。

学情分析:在之前的学习中,学生已明确了直角三角形中角与角以及边与边的关系,但对于边与角之间的关系,学生尚未清楚,也未曾思考过这个问题,同时学生已经学习掌握了相似三角形的对应边成比例等知识,这为本节学习奠定了基础。

教学目标:知识与技能:1、理解锐角的正切(tanA)的概念及意义。

2、会根据定义求锐角的正切值。

过程与方法:1、经历锐角的正切的探索过程,体会数形结合的思想方法。

2、通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,体会数学在解决实际问题中的应用。

情感态度与价值观:1、通过探究提高学生对数学的好奇心和求知欲。

2、感受数学来源于生活又应用于生活,理解三角函数与现实生活的联系。

教学重点:理解锐角的正切的概念及意义。

教学难点:理解直角三角形中一个锐角的对边与其邻边比值的对应关系。

教具准备:多媒体课件(PPT)教学方法:引导------探索法教学过程:一、创设情境,导入新课多媒体演示五幅滑梯图片。

师:这些滑梯有的陡,有的缓,你喜欢玩陡的,还是缓的,为什么?师:那老师问个问题,滑梯的陡缓,用什么来表示?学完今天这节课,相信你们就能回答这个问题了。

1.1锐角三角函数第1课时正切(教案)

1.1锐角三角函数第1课时正切(教案)
首先,关于导入新课环节,通过提问方式引导学生思考日常生活中的实际问题时,我发现大部分学生对此表现出浓厚的兴趣。这说明贴近生活的实例能够激发学生的学习兴趣,有助于他们更好地投入课堂学习。在以后的教学中,我将继续寻找更多生活化的例子,让学生感受到数学知识的实用价值。
其次,在新课讲授环节,我发现学生在理解正切函数定义和计算公式时,还存在一定的困难。这说明对于基础概念和公式的讲解,还需要更加细致和生动。在今后的教学中,我可以尝试使用更多的教具和实物,帮助学生形象地理解正切函数的定义和计算方法。
3.重点难点解析:在讲授过程中,我会特别强调正切函数的定义和计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,例如,通过不同角度的正切值计算,让学生看到正切值随角度变化的规律。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正切函数相关的实际问题,如测量树的高度或建筑物的高度。
突破方法:总结记忆技巧,如“正切等于对边除邻边”,并通过大量练习巩固记忆。
(3)实际问题的解决:学生面对实际问题,不知如何运用正切函数建立数学模型。
突破方法:提供丰富的实际问题案例,引导学生学会分析问题、建立数学模型,并逐步解决问题。
(4)正切函数的性质:学生对正切函数随角度变化的规律理解不深,难以把握其性质。
1.1锐角三角函数第1课时正切(教案)
一、教学内容
本节课选自《数学》八年级上册第十一章“锐角三角函数”的第一课时,主要内容为正切函数的定义及应用。具体内容包括:
1.理解正切函数的概念:通过观察直角三角形的对边与邻边的比值,引出正切函数的定义。
2.掌握正切函数的表示方法:利用直角三角形的边长关系,推导出正切函数的计算公式,即tanα =对边/邻边。

(完整word版)苏科版九年级数学下册第七章《锐角三角函数》教学案

(完整word版)苏科版九年级数学下册第七章《锐角三角函数》教学案

课题7.1正切(1) 自主空间学习目标知识与技能:1.理解正切的概念, 能通过画图求出一个角的正切的近似值。

能运用正切解决与直角三角形有关的简单问题。

过程与方法:1.经历探索表示物体倾斜程度, 形成正切的概念的过程, 练就创造性解决问题的能力。

1.经历探索表示物体倾斜程度,形成正切的概念的过程,练就创造性解决问题的能力。

学习重点理解并掌握正切的含义, 会在直角三角形中求出某个锐角的正切值。

学习难点计算一个锐角的正切值的方法。

教学流程预习导航观察回答: 如图某体育馆, 为了方便不同需求的观众设计了多种形式的台阶。

下列图中的两个台阶哪个更陡?你是怎么判断的?图(1)图(2)[点拨]可将这两个台阶抽象地看成两个三角形答: 图的台阶更陡, 理由合作探究一、新知探究:1.思考与探索一:除了用台阶的倾斜角度大小外, 还可以如何描述台阶的倾斜程度呢?可通过测量BC与AC的长度,再算出它们的比, 来说明台阶的倾斜程度。

(思考: BC与AC长度的比与台阶的倾斜程度有何关系?)答: _________________. 讨论: 你还可以用其它什么方法?能说出你的理由吗?答: ________________________. 2.思考与探索二:(1)如图, 一般地, 如果锐角A的大小已确定,我们可以作出无数个相似的RtAB1C1, RtAB2C2, RtAB3C3……, 那么有: Rt△AB1C1∽_____∽____……根据相似三角形的性质,得: =_________=_________=……(2)由上可知:如果直角三角形的一个锐角的大小已确定, 那么这个锐角的对边与这个角的邻边的比值也_________。

3.正切的定义如图, 在Rt △ABC 中, ∠C =90°, a 、b 分别是∠A 的对边和邻边。

我们将∠A 的对边a 与邻边b 的比叫做∠A_______, 记作______。

即: tanA =________=__________(你能写出∠B 的正切表达式吗? )试试看.4.思考: 当锐角α越来越大时, α的正切值有什么变化? 二. 例题分析:例1:⑴某楼梯的踏板宽为30cm, 一个台阶的高度为15cm, 求 楼梯倾斜角的正切值。

(完整版)第28章_锐角三角函数全章教案

(完整版)第28章_锐角三角函数全章教案

课题 锐角三角函数——正弦一、教学目标1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

二、教学重点、难点重点:理解认识正弦(sinA )概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

三、教学过程 (一)复习引入操场里有一个旗杆,老师让小明去测量旗杆高度。

(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。

你想知道小明怎样算出的吗?师:通过前面的学习我们知道,利用相似三角形的方法可以测算出旗杆的大致高度;实际上我们还可以象小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度。

这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法。

下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦 (二)实践探索为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。

现测得斜坡与水平面所成角的度数是30o,为使出水口的高度为35m ,那么需要准备多长的水管? 分析:问题转化为,在Rt △ABC 中,∠C=90o,∠A=30o,BC=35m,求AB 根据“再直角三角形中,30o角所对的边等于斜边的一半”,即341米10米?可得AB=2BC=70m.即需要准备70m长的水管结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于如图,任意画一个Rt△ABC,使∠C=90o,∠A=45o,计算∠A的对边与斜边的比,能得到什么结论?分析:在Rt△ABC 中,∠C=90o,由于∠A=45o,所以Rt△ABC是等腰直角三角形,由勾股定理得,故结论:在一个直角三角形中,如果一个锐角等于45o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于.一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A`B`C`,∠C=∠C` =90o,∠A=∠A`=α,那么与有什么关系分析:由于∠C=∠C` =90o,∠A=∠A`=α,所以Rt△ABC∽Rt△A`B`C`,,即结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.1锐角的三角函数
1. 锐角的三角函数
第一课时正切
教学目标
◆知识与技能
1.初步了解角度与数值的一一对应的函数关系。

2.会求直角三角形中某个锐角的正切值。

3.了解坡度的有关概念。

◆过程与方法
让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维习惯,提高学生运用数学知识解决实际问题的能力。

◆情感态度
通过探究活动激发学生学习的积极性和主动性,引导学生自主探索,合作交流,培养学生的创新意识。

教学重点:
1.从现实情境中探索直角三角形的边角关系。

2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。

教学难点:
锐角三角函数的概念的理解。

教学准备
多媒体课件制作
教学设计
一、导入新课
导语:因为这座桥的设计让它成为了旅游新热点,火起来的原因不是因为怪异的设计或者美不胜收的景色,而是大家都很好奇这个桥的坡度到底有多陡?陡峭堪比过山车!
不少人给这座桥赋予了极不靠谱的数据,实际上这个坡的斜率仅为6.1%,如果按咱们口头常用单位来讲还不足4度。

大家看到这个图片后一定很吃惊,那我们要想了解这副图的背景故事,我们就要来学习这里出现的数据6.1%和4度代表了什么?
(导入课题锐角三角函数)
二、推进新课
1.交流合作
【问题1】在图23-2中有两个直角三角形,直角边AC与A
1C
1
表示水平面,斜
边AB与A
1B
1
分别表示两个不同的坡面,哪个更陡?你是怎么判断的?
学生可由水平长度相等,铅直高度不同进行判断.
【问题2】当水平长度和铅直高度都不相等时,类似的在图23-3中,坡面AB
与A
1B 1
哪个更陡?你又是如何判断呢?
设计意图:引发学生的争论,激发学生的求知欲.从而教师可提出能否用铅直高度与水平长度的比值进行衡量呢?
【问题3】 如图,在锐角A 的一边上任取一点B ,自点B 向另一边作垂线,垂足为C ,得到Rt △ABC ;再任取一点B 1,自点B 1向另一边作垂线,垂足为C 1,得到Rt △33AB C ……,这样,我们可以得到无数个直角三角形.在这些直角三角形中,锐角A 的对边与邻边之比BC AC ,111B C AC ,222B C AC ……有怎样的关系?
请同学们小组合作测量并计算它们的近似值,看看会有什么发现?
同学们得到近似相等的值,我们猜测它们是相等的,是不是这样的呢,下面我们从理论角度来验证。

引导学生独立证明:易知,BC ∥11B C ∥22B C ∥33B C ∥…, ∴△ABC ∽△11AB C ∽△22AB C ∽△33AB C ∽…, ∴BC AC =111B C AC =222
B C
AC =….
因此,在这些直角三角形中,∠A 的对边与邻边的比值是一个固定值. 设计意图:理论证明太过抽象性,让学生经历“操作—猜测—论证—归纳”的自我体验过程,达到教学目标,培养了学生发现问题、解决问题的能力. 3. 正切函数概念的提出
在日常生活和数学活动中,上面所得出的结论是非常有用的.为了叙述方便,作出如下规定:
如图25-5,在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与邻边的比叫做
∠A 的正切,记作tan A ,即tan A=
注意:正切的定义是在直角三角形中,相对其锐角而定义的,实质是两条线段长度的比,它只是一个数值,没有单位,其大小只与角的大小有关,与三角形的大小无关. 4.坡度和坡角
对于交流中“当水平长度和铅直高度都不相等时,判断坡度的大小”,你现在能判断了吗?
结合图形,教师讲述坡度概念,并板书:
坡面的铅直高度h 和水平宽度l 的比叫做坡度(或叫做坡比), 一般用i 表示,即i =h l

把坡面与水平面的夹角α叫做坡角(或称倾斜角).
A a
A b
∠=
∠的对边的邻边
引导学生结合图形思考,坡度i 与坡角α之间具有什么关系?
i =h
l
=tan α. 你们能计算一下课本图23-2、图23-3中坡面AB 与和坡面A 1B 1的坡度吗? 显然,坡度i 越大,坡角α越大,坡面就越陡 三、拓展延伸
例1.在Rt △ABC 中,∠C=90°,AC=4,BC=3,求tanA 和tanB .
解:
思考:tanA 和tanB 的值有什么样的关系?如右图tanA =a b 和tanB =b
a
又有怎样的关系?
学生总结: 当两个互余锐角的正切互为倒数。

即:若∠A+∠B=90°,则有tanA ·tanB =1
设计意图:由题目的结果,让学生自己找出三角函数中的相互关系。

而不是教师直接的灌输。

四、巩固应用
现在大家能理解开始我们对于那座桥出现的两个数据的含义了吗?6.1%是桥的 坡度i ,4度是坡角。

那么从数据上看桥面是否如我们看到的那样陡呢?
4
tan 3
AC B BC =
=3
tan 4BC A AC =
=
江岛大桥全长约1446米,高约44米,桥下可供5000吨级的轮船通过。

一侧的斜率为6.1%,你能计算出这一侧的水平长度约有多长吗?坡面的长度大约是多少呢?
设计意图:善始善终,回归生活实际,用知识来解决实际问题,激发学生应用新知的意识,巩固所学。

五、课堂小结
学生自主小结,在相互的交流中,感知本节课学习的体会和收获。

可能在讨论中会存在一些困惑。

此时,教师及时点拨,合作完成课堂小结。

1、直角三角形两条直角边的比随着直角三角形中锐角大小的确定而唯一确定。

2、正切的概念。

3、两个互余锐角的正切互为倒数。

即:若∠A+∠B=90°,则有tanA·tanB=1
设计意图:体现教学的民主性,同时培养学生归纳、概括问题的能力和团队合作精神,教师适当引导学生反思学习过程,增强信心,提高兴趣。

六、课后作业
P114练习第2、3题
奥赛链接
如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处,已知AB =8,BC =10,则tan ∠EFC 的值为( ).
A .34
B .43
C .35
D .45
板书设计。

相关文档
最新文档