kmeans的聚类算法

合集下载

k-means算法步骤及原理

k-means算法步骤及原理

k-means算法是一种基础的聚类算法,其原理和步骤如下:
原理:
k-means算法的主要目标是将n个数据点划分为k个簇,并使每个数据点与所属簇的中心点(即质心)的距离最小化。

其基本思路为先随机选择k个质心,然后迭代地执行以下两个步骤:
1. 簇分配:对于每个数据点,计算其与k个质心的距离,将其分配到距离最近的簇;
2. 更新质心:对于每个簇,计算其中所有数据点的均值,将其作为新的质心。

重复执行以上两个步骤,直到簇不再发生变化或达到最大迭代次数。

最终的簇划分结果即为算法的输出。

步骤:
1. 选择簇数k和数据集;
2. 初始化k个质心,可以随机选择或手动指定;
3. 对于每个数据点,计算其与k个质心的距离,将其分配到距离最近的簇;
4. 对于每个簇,重新计算质心,即将所有数据点的坐标求平均值;
5. 重复执行第3和第4步,直到簇不再发生变化或达到最大迭代次数;
6. 输出簇划分结果。

需要注意的是,k-means算法的结果可能会受到初始质心的影响。

因此,为了得到更好的结果,可以多次运行算法并选择最佳的簇划分结果。

同时,k-means算法要求数据点之间的距离可计算,因此对于某些非欧式距离的情况,需要进行适当的转换或修改算法。

kmeans聚类原理

kmeans聚类原理

kmeans聚类原理
k-means聚类是一种基于距离的聚类算法。

其聚类的原理是将若干个数据点分成k个类别使得每个数据点属于其最近的一类。

该算法的核心思想是通过迭代地移动每个类别的中心点(即质心),不断调整数据点的分类,最终获得最优的聚类结果。

k-means聚类的步骤如下:
1. 随机选择k个中心点,每个中心点代表一个聚类。

2. 计算每个数据点与这k个中心点的距离,将数据点划分到距离最近的中心点所代表的类别中。

3. 计算每个类别的中心点(即质心),即每个类别中所有数据点的平均值。

4. 不断重复步骤2和3,直到分类不再变化或达到预设的迭代次数。

5. 得到最终的聚类结果。

k-means聚类的优点是简单、易于实现、计算复杂度较低。

但是,由于需要提前指定聚类数量k,且对初始化的中心点比较敏感,可能会出现局部最优解的情
况。

针对这些问题,通常采用多次运行并重新随机初始化中心点的方法来得到更好的结果。

kmeans色彩聚类算法

kmeans色彩聚类算法

kmeans色彩聚类算法
K均值(K-means)色彩聚类算法是一种常见的无监督学习算法,用于将图像中的像素分组成具有相似颜色的集群。

该算法基于最小
化集群内部方差的原则,通过迭代寻找最优的集群中心来实现聚类。

首先,算法随机初始化K个集群中心(K为预先设定的参数),然后将每个像素分配到最接近的集群中心。

接下来,更新集群中心
为集群内所有像素的平均值,然后重新分配像素直到达到收敛条件。

最终,得到K个集群,每个集群代表一种颜色,图像中的像素根据
它们与集群中心的距离被归类到不同的集群中。

K均值色彩聚类算法的优点是简单且易于实现,对于大型数据
集也具有较高的效率。

然而,该算法也存在一些缺点,例如对初始
集群中心的选择敏感,可能收敛于局部最优解,对噪声和异常值敏
感等。

在实际应用中,K均值色彩聚类算法常被用于图像压缩、图像
分割以及图像检索等领域。

同时,为了提高算法的鲁棒性和效果,
通常会结合其他技术和方法,如颜色直方图、特征提取等。

此外,
还有一些改进的K均值算法,如加权K均值、谱聚类等,用于解决
K均值算法的局限性。

总之,K均值色彩聚类算法是一种常用的图像处理算法,通过对图像像素进行聚类,实现了图像的颜色分组和压缩,具有广泛的应用前景和研究价值。

K-均值聚类算法

K-均值聚类算法
3.确定中心: 用各个聚类的中心向量作为新的中心;
4.重复分组和确定中心的步骤,直至算法收敛;
2.算法实现
输入:簇的数目k和包含n个对象的数据库。 输出:k个簇,使平方误差准则最小。
算法步骤:
1.为每个聚类确定一个初始聚类中心,这样就有K 个初始 聚类中心。
2.将样本集中的样本按照最小距离原则分配到最邻近聚类
给定数据集X,其中只包含描述属性,不包含 类别属性。假设X包含k个聚类子集X1,X2,„XK;各 个聚类子集中的样本数量分别为n1,n2,„,nk;各个 聚类子集的均值代表点(也称聚类中心)分别为m1, m2,„,mk。
3.算法实例
则误差平方和准则函数公式为:
k
2
E p mi
i 1 pX i
单个方差分别为
E1 0 2.52 2 22 2.5 52 2 22 12.5 E2 13.15
总体平均误差是: E E1 E2 12.5 13.15 25.65 由上可以看出,第一次迭代后,总体平均误差值52.25~25.65, 显著减小。由于在两次迭代中,簇中心不变,所以停止迭代过程, 算法停止。
示为三维向量(分别对应JPEG图像中的红色、绿色 和蓝色通道) ; 3. 将图片分割为合适的背景区域(三个)和前景区域 (小狗); 4. 使用K-means算法对图像进行分割。
2 015/8/8
Hale Waihona Puke 分割后的效果注:最大迭代次数为20次,需运行多次才有可能得到较好的效果。
2 015/8/8
例2:
2 015/8/8
Ox y 102 200 3 1.5 0 450 552
数据对象集合S见表1,作为一个 聚类分析的二维样本,要求的簇的数 量k=2。

kmeans算法原理计算公式

kmeans算法原理计算公式

kmeans算法原理计算公式
Kmeans算法是一种聚类算法,它的核心思想是将数据集划分为K 个簇,其中每个簇的数据点都具有相似的特征。

这个算法的主要流程可以分为以下几个步骤:
1. 随机选择K个数据点作为聚类中心;
2. 将数据集中的每个数据点划分到与其距离最近的聚类中心所在的簇中;
3. 根据当前所有簇中的数据点,重新计算聚类中心的位置;
4. 重复第二步和第三步,直到聚类中心的位置不再发生变化或者达到预定的迭代次数。

Kmeans算法的核心在于如何计算距离和重新计算聚簇中心,具体方式如下:
1. 距离计算方式:
在Kmeans算法中,通常使用欧氏距离作为测度标准,即将两个数据点的n个特征之间的差值按平方和的方式相加,再将结果取平方根。

例如,对于一个数据点(P)和聚类中心(C),其距离计算公式为:
$D(P,C)=\sqrt{\sum_{i=1}^{n}(p_i-c_i)^2}$
其中,n表示数据点的特征数,$p_i$表示数据点P在第i个特征上的取值,$c_i$表示聚类中心C在第i个特征上的取值。

2. 重新计算聚簇中心方式:
在Kmeans算法中,重新计算聚簇中心时,通常使用簇内样本的均值作为新的聚簇中心位置。

例如,对于一个包含m个数据点的簇S,其聚簇中心的坐标为:
$C=\frac{1}{m}\sum_{i=1}^{m}p_i$
其中,$p_i$表示属于簇S的第i个数据点的坐标。

总的来说,Kmeans算法是一种简单但有效的聚类算法,它在解决实际问题中广泛应用。

kmeans聚类算法应用实例

kmeans聚类算法应用实例

kmeans聚类算法应用实例K-Means聚类算法应用实例一、K-Means聚类算法简介K-Means聚类算法是一种基于凝聚属性的迭代算法,它旨在将数据集中的样本点分类划分到指定数量的簇中,以达到相关性最强的分组效果。

算法的核心思想是,寻找代表簇中心的聚类中心,并根据距离聚类中心的远近,将样本分类到不同的簇中。

K-Means聚类的目的是要求出最优的聚类中心,使得样本集可以被完美划分成K个簇。

二、K-Means聚类算法的应用实例(1)客群分析K-Means聚类算法可以帮助分析客户行为及消费习惯,自动归类用户构成不同客群,如:高价值客户,积极向上的客户,偶尔购买的客户,交易历史较短的客户,低价值客户等,使企业更明确地识别其客户,选择最佳的沟通方式,创造出最大的收益。

(2)市场营销用户的社会属性,行为属性和品牌属性等,都可以利用K-Means算法对用户进行分类,进而分析用户喜好,细分市场,在不同市场中采取不同的营销战略,从而从更佳的维度去理解市场消费行为,深入分析和把握客户的行为,改善企业的市场营销效果。

(3)图像聚类K-Means聚类算法也可以用于图像处理中的相似图像聚类,以减少用户在查看数据时需要处理太多图像。

它旨在将图像划分为几个集群,使得每个簇中的样本相似度最高。

K-Means聚类算法可以用于解决视觉识别任务中的分类问题,提高图像识别系统的正确率以及效率。

(4)故障诊断K-Means聚类也可以用于故障诊断,将系统参数情况分类,来区分出系统的故障,当某一参数的值远低于正常值时,可以准确的将其分类为异常值,从而确定系统存在什么故障,从而可以有效降低系统故障率,提高系统稳定性和可靠性。

三、四、K-Means聚类算法的优缺点(1)优点a. K-Means算法效率高,计算量少;b. K-Means算法易于实现,调参相对容易;c. K-Means算法执行简单,可轻松融入现有系统;d. K-Means具有 translation invariant, scale invariant等特性,可解决非线性问题;(2)缺点a. K-Means算法的缺点是受初始聚类中心的影响较大,其结果可能受噪声干扰;b. K-Means算法可能收敛到局部最佳解;c. K-Means算法不能解决不同量级聚类间隔差异大的问题;d. K-Means算法对异常值存在敏感性,容易影响到聚类结果。

K-means算法详解

K-means算法详解

算法实例
O x y
1
2 3 4 5Βιβλιοθήκη 00 1.5 5 5
2
0 0 0 2
数据对象集合S见表1,作为一个聚类分析的二 维样本,要求的簇的数量k=2。 O (1)选择 O1 0,2 , 2 0,0 为初始的簇中心, 即 M 1 O1 0,2 , M 2 O2 0,0 。 (2)对剩余的每个对象,根据其与各个簇中心的 距离,将它赋给最近的簇。 对 O3 : 2 2

0 5
0 5
2

2 2
2
2
5
29
1
5
5
2



0 2

• 因为 d M 1 , O 5 d M 2 , O 5 所以将 O 5分配给 C
• 更新,得到新簇
E1 0 0
2 2
C1 O1 ,O5

2
C 2 O 2 , O 3 , O 4
xi1,xi2,„xid和xj1,xj2,„xjd分别是样本xi和xj对应d个描 述属性A1,A2,„Ad的具体取值。 • 样本xi和xj之间的相似度通常用它们之间的距离d(xi,xj) 来表示,距离越小,样本xi和xj越相似,差异度越小;距
离越大,样本xi和xj越不相似,差异度越大。
欧式距离公式如下:
d xi , x j
x
d k 1
ik
x jk
2
平均误差准则函数
• K-means聚类算法使用误差平方和准则函数来评价聚类 性能。给定数据集X,其中只包含描述属性,不包含类别
属性。假设X包含k个聚类子集X1,X2,„XK;各个聚类子集
中的样本数量分别为n1,n2,„,nk;各个聚类子集的均值代 表点(也称聚类中心)分别为m1,m2,„,mk。 • 误差平方和准则函数公式为:

k-means聚类算法研究及应用

k-means聚类算法研究及应用

k-means聚类算法研究及应用
K-means聚类算法研究及应用
一、简介
K-means聚类算法是一种非监督学习算法,它是一种广泛应用在模式分类和无监督式学习的数据挖掘技术。

它使用了基于距离的聚类算法,以相似性作为衡量子簇类别的标准,任务是将样本(属性)空间中的数据分为K个不同的类,使聚类的误差平方和最小化:通常假设样本由簇中心所处的子空间所构建,每个子空间由一个簇中心控制,因此K-means算法常常被形象地称为“均值聚类”算法。

二、原理
K-means聚类算法是一种迭代算法,它的基本思想是:首先,随机选取若干个“簇中心”,然后将其他的数据点根据其与“簇中心”的距离,归到最近的“簇中心”所代表的簇中。

然后根据新聚集的簇,重新更新这些“簇中心”;如此不断迭代,最终计算得到一组稳定的“簇中心”,这组“簇中心”所代表的簇就是最后的结果了。

三、应用
1、生物信息学:K-means聚类算法用于基因芯片和定量PCR,以及蛋白质表达数据。

2、计算机视觉:K-means用于图像分割,聚类,像素重新分配等。

3、自然语言处理:K-means用于文本聚类,文档分类,文本挖掘等方面。

4、机器学习:K-means用于各种拟合问题,比如参数估计,探索异常
值等等。

四、总结
K-means聚类算法是一种简单高效的聚类算法,它可以有效地将数据空间分割成几个簇,属于非监督学习算法,它的核心在于划分数据空间,对数据的模式分类和无监督式学习有较好的应用,如生物信息学、计
算机视觉、自然语言处理、机器学习等领域。

KMEANSK均值聚类算法C均值算法

KMEANSK均值聚类算法C均值算法

KMEANSK均值聚类算法C均值算法K-means和C-means是两种常用的均值聚类算法。

它们都是通过计算数据点之间的距离来将数据划分为不同的簇。

K-means算法的基本思想是先随机选择K个初始聚类中心,然后迭代地将数据点分配到最近的聚类中心,并更新聚类中心的位置,直到聚类中心不再发生变化或达到预设的迭代次数。

具体步骤如下:1.随机选择K个初始聚类中心。

2.对每个数据点,计算其到每个聚类中心的距离,将其分配到距离最近的聚类中心的簇。

3.更新每个聚类中心的位置为该簇中所有数据点的均值。

4.重复步骤2和3,直到聚类中心不再发生变化或达到预设的迭代次数。

K-means算法的优点是简单易懂,计算复杂度较低。

但缺点是需要事先确定聚类的数量K,并且对初始聚类中心的选择比较敏感,可能会陷入局部最优解。

C-means算法是一种模糊聚类算法,与K-means算法类似,但每个数据点可以属于多个簇,而不是只属于一个确定的簇。

C-means算法引入了一个模糊权重因子,用于描述数据点与每个聚类中心的相似程度。

具体步骤如下:1.随机选择C个初始聚类中心。

2.对每个数据点,计算其与每个聚类中心的相似度,并计算出属于每个聚类中心的隶属度。

3.更新每个聚类中心的位置为该簇中所有数据点的加权均值,其中权重为隶属度的指数。

4.重复步骤2和3,直到聚类中心不再发生变化或达到预设的迭代次数。

C-means算法的优点是可以更灵活地表示数据点与聚类中心之间的关系,并且对于模糊性较强的数据集有更好的效果。

但缺点是计算复杂度较高,且需要事先确定聚类的数量C和模糊权重因子。

在实际应用中,K-means和C-means算法经常用于数据挖掘、模式识别和图像分割等领域。

它们都有各自的优缺点,需要根据具体问题的需求选择合适的算法。

此外,还可以通过改进算法的初始值选择、距离度量和迭代停止条件等方面来提高聚类的效果。

聚类分析方法

聚类分析方法
选方法之一 06
优缺点
缺点
对初始点的选择敏感:K-means算法的初始点选择对结果有很大影响,可能会导致不同 的初始点导致不同的聚类结果 需要预设k值:使用K-means算法需要预先设定k值,而最佳的k值可能并不容易确定
不适合大规模数据集:对于大规模数据集,K-means算法可能需要很长时间才能收敛
means||等
第1部分 算法步骤
算法步骤
以下是K-means算法的 基本步骤
算法步骤
初始化:选择k个点作为初始的聚类中心。这些点可以 是数据集中的实际数据点,也可以是随机生成的数据点
分配数据点到最近的聚类中心:对于数据集中的每个点,计 算它与k个聚类中心的距离,并将其分配到最近的聚类中心。 这一步通常使用欧氏距离来计算两点之间的距离
聚类分析—— Kmeans方法
-
目录
CONTENTS
1
算法步骤
2
优缺点
3
应用场景
2
聚类分析——Kmeans方法
聚类分析是一种无监督学习方法,用于将对象分组,使得同一组(或簇)内的对象相互之间 相似(按照某些度量方式),而不同组之间的对象相互之间不相似。其中,K-means算法是 一种常用的聚类算法,以其发明者Arthur James和Donald Fisher的名字来命名
特征选择和降维:在聚类之前,可以 进行特征选择和降维,以减少数据的 维度和噪声,提高聚类的效果
可视化:可以将聚类结果进行可视化, 以更直观地展示聚类的效果和结果
优缺点
通过以上改进方向,可以 进一步提高K-means算法的 性能和适用性,使其在更 多的实际应用中得到广泛
应用
第3部分 应用场景
应用场景
应用场景

Kmeans聚类算法ppt课件

Kmeans聚类算法ppt课件

(5)对于“噪声”和孤立点数据敏感。
精选版课件ppt
8
K-means缺点以及改进 (1)要求用户必须事先给出要生成的簇的数目k。这个k并不是最好的。 解决:肘部算法 肘部算法是一种启发式方法来估计最优聚类数量,称为肘部法则(Elbow Method)。
各个类畸变程度(distortions)之和;每个类的畸变程度等于该类重心与其内 部成员位置距离的平方和;最优解以成本函数最小化为目标,其中uk是第k个 类的重心位置
第一次
第二次
精选版课件ppt
17
八、K-means聚类算法
在第五次迭代时,得到的三个簇与第四迭代结果相同,而且准则函数E收敛,迭代 结束,结果如下表所示:
k为迭代次数
精选版课件ppt
18
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
精选版课件ppt
精选版课件ppt
3
八、K-means聚类算法
2. K-means聚类算法原理 K-Means算法的工作框架:
(1)给出 n 个数据样本,令 I 1,随机选择 K 个初始聚类中心 Z j (I) , j 1, 2,3,, K ;
(2)求解每个数据样本与初始聚类中心的距离 D xi , Z j I ,i 1, 2,3,, n
假设A、B、C、D的D(x)如上图所示,当算法取值Sum(D(x))*random 时,该值会以较大的概率落入D(x)较大的区间内,所以对应的点会以 较大的概率被选中作为新的聚类中心。
精选版课件ppt
10
八、K-means聚类算法
3 K-means聚类算法特点及应用 3.2 K-means聚类算法应用
i=1,2
精选版课件ppt

kmeans算法实例

kmeans算法实例

kmeans算法实例1. 算法介绍kmeans算法是一种常用的聚类算法,它将数据点根据其特征进行分组,每个分组称为一个簇,使得簇内的数据点相似度尽可能高,而簇间的相似度尽可能低。

kmeans算法通过迭代的方式不断优化簇的分配,最终达到较好的聚类效果。

2. 算法步骤kmeans算法的步骤如下:2.1 初始化1.指定簇的个数k,随机选择k个数据点作为初始聚类中心。

2.2 分配数据点2.对于每个数据点,计算其与各个聚类中心的距离,并将其分配给最近的聚类中心。

2.3 更新聚类中心3.根据每个簇中的数据点,重新计算聚类中心,即取簇内数据点的平均值。

2.4 重复迭代4.重复步骤2和步骤3,直到聚类中心的变化很小或达到设定的迭代次数。

3. 实例演示下面通过一个实例演示kmeans算法的应用过程。

3.1 数据准备我们假设有一组二维数据点,共有6个点,如下所示: |数据点|横坐标|纵坐标| |—|—|—| |A|1|1| |B|1|2| |C|4|5| |D|5|7| |E|6|6| |F|7|9|3.2 初始化假设我们将数据分为3个簇,我们可以随机选择3个数据点作为初始聚类中心,比如选择A、C和F作为初始聚类中心。

3.3 分配数据点计算每个数据点与聚类中心的距离,并将其分配给最近的聚类中心。

根据欧氏距离公式,我们可以计算每个数据点与聚类中心的距离:对于数据点A,与聚类中心的距离依次为:0、4、10对于数据点B,与聚类中心的距离依次为:1、5、11对于数据点C,与聚类中心的距离依次为:0、8、13对于数据点D,与聚类中心的距离依次为:2、8、13对于数据点E,与聚类中心的距离依次为:3、9、14对于数据点F,与聚类中心的距离依次为:4、3、0根据距离的计算结果,我们可以得到每个数据点的最近聚类中心:A - 聚类中心1B - 聚类中心1C - 聚类中心2D - 聚类中心2E - 聚类中心2F - 聚类中心33.4 更新聚类中心根据簇内的数据点,重新计算聚类中心。

k-means聚类算法原理简析

k-means聚类算法原理简析

k-means聚类算法原理简析k-means聚类算法原理简介概要K-means算法是最普及的聚类算法,也是⼀个⽐较简单的聚类算法。

算法接受⼀个未标记的数据集,然后将数据聚类成不同的组,同时,k-means算法也是⼀种⽆监督学习。

算法思想k-means算法的思想⽐较简单,假设我们要把数据分成K个类,⼤概可以分为以下⼏个步骤:1.随机选取k个点,作为聚类中⼼;2.计算每个点分别到k个聚类中⼼的聚类,然后将该点分到最近的聚类中⼼,这样就⾏成了k个簇;3.再重新计算每个簇的质⼼(均值);4.重复以上2~4步,直到质⼼的位置不再发⽣变化或者达到设定的迭代次数。

算法流程图解下⾯我们通过⼀个具体的例⼦来理解这个算法(我这⾥⽤到了Andrew Ng的机器学习教程中的图):假设我们⾸先拿到了这样⼀个数据,要把它分成两类:我们⼈眼当然可以很快的分辨出来,可以在两个聚类间找到⼀条合理的分界线,那么⽤k-means算法来解决这个问题会是怎样的呢?⾸先我们随机选取两个点作为聚类中⼼(因为已经明确是分为两类):接下来就可以开始计算每个点到红点和蓝点的距离了,离红点近就标记为红⾊,离蓝点近就标记为蓝⾊。

结果为下图:很明显,这样完全不是我们想要的结果,接下来我们进⾏第三步,重新计算聚类中⼼的位置。

红X和蓝X都向中间靠拢了⼀点。

我们可以看到,聚类中⼼发⽣改变后,其他点离两个聚类中⼼的距离也跟随着发⽣了变化。

然后我们重复第⼆步,根据每个点到两个聚类中⼼的距离远近来进⾏重新分类,离红X近的归为红类,离蓝X近的归为蓝类。

之前站错了队伍的⼀些点重新进⾏了调整,现在的分类离我们的⽬标越来越近了,但还没有达到最佳的分类效果。

接下来继续重复上⾯的步骤,重新计算聚类中⼼的位置,再重新分类,不断迭代,直⾄聚类中⼼的位置不再变化(变化范围达到设定值)或达到迭代次数为⽌。

这样我们就利⽤k-means算法把这个数据很好的分为两类啦。

我们可以看到,在整个过程中,我们都没有去监督算法,告诉他具体是分错了还是对了,只是在开始的时候告诉他要把这个数据分成多少类,然后后⾯的操作都是由他⾃⼰完成,完全没有⼈为的让他进⾏分类的学习,也没有帮助他纠正错误,所以k-means算法也是⼀种⽆监督学习⽅法。

k-means聚类算法简介

k-means聚类算法简介

k-means聚类算法简介k-means 算法是一种基于划分的聚类算法,它以k 为参数,把n 个数据对象分成k 个簇,使簇内具有较高的相似度,而簇间的相似度较低。

1. 基本思想k-means 算法是根据给定的n 个数据对象的数据集,构建k 个划分聚类的方法,每个划分聚类即为一个簇。

该方法将数据划分为n 个簇,每个簇至少有一个数据对象,每个数据对象必须属于而且只能属于一个簇。

同时要满足同一簇中的数据对象相似度高,不同簇中的数据对象相似度较小。

聚类相似度是利用各簇中对象的均值来进行计算的。

k-means 算法的处理流程如下。

首先,随机地选择k 个数据对象,每个数据对象代表一个簇中心,即选择k 个初始中心;对剩余的每个对象,根据其与各簇中心的相似度(距离),将它赋给与其最相似的簇中心对应的簇;然后重新计算每个簇中所有对象的平均值,作为新的簇中心。

不断重复以上这个过程,直到准则函数收敛,也就是簇中心不发生明显的变化。

通常采用均方差作为准则函数,即最小化每个点到最近簇中心的距离的平方和。

新的簇中心计算方法是计算该簇中所有对象的平均值,也就是分别对所有对象的各个维度的值求平均值,从而得到簇的中心点。

例如,一个簇包括以下 3 个数据对象{(6,4,8),(8,2,2),(4,6,2)},则这个簇的中心点就是((6+8+4)/3,(4+2+6)/3,(8+2+2)/3)=(6,4,4)。

k-means 算法使用距离来描述两个数据对象之间的相似度。

距离函数有明式距离、欧氏距离、马式距离和兰氏距离,最常用的是欧氏距离。

k-means 算法是当准则函数达到最优或者达到最大的迭代次数时即可终止。

当采用欧氏距离时,准则函数一般为最小化数据对象到其簇中心的距离的平方和,即。

其中,k 是簇的个数,是第i 个簇的中心点,dist(,x)为X 到的距离。

2. Spark MLlib 中的k-means 算法Spark MLlib 中的k-means 算法的实现类KMeans 具有以下参数。

kmeans聚类算法的 步骤

kmeans聚类算法的 步骤

一、介绍K-means聚类算法是一种常见的无监督学习算法,用于将数据集划分成多个不相交的子集,从而使每个子集内的数据点都彼此相似。

这种算法通常被用于数据挖掘、模式识别和图像分割等领域。

在本文中,我们将介绍K-means聚类算法的步骤,以帮助读者了解该算法的原理和实现过程。

二、算法步骤1. 初始化选择K个初始的聚类中心,这些聚类中心可以从数据集中随机选择,也可以通过一些启发式算法进行选择。

K表示用户事先设定的聚类个数。

2. 聚类分配对于数据集中的每个数据点,计算其与K个聚类中心的距离,并将其分配到距离最近的聚类中心所属的子集中。

3. 更新聚类中心计算每个子集中所有数据点的均值,将均值作为新的聚类中心。

4. 重复第二步和第三步重复进行聚类分配和更新聚类中心的步骤,直到聚类中心不再发生变化,或者达到预设的迭代次数。

5. 收敛当聚类中心不再发生变化时,算法收敛,聚类过程结束。

三、算法变体K-means算法有许多不同的变体,这些变体可以根据特定的场景和需求进行调整。

K-means++算法是K-means算法的一种改进版本,它可以更有效地选择初始的聚类中心,从而提高聚类的准确性和效率。

对于大规模数据集,可以使用Mini-batch K-means算法,它可以在迭代过程中随机选择一部分数据进行计算,从而加快算法的收敛速度。

四、总结K-means聚类算法是一种简单而有效的聚类算法,它在各种领域都得到了广泛的应用。

然而,该算法也存在一些局限性,例如对初始聚类中心的选择比较敏感,对异常值比较敏感等。

在实际使用时,需要根据具体情况进行调整和改进。

希望本文对读者有所帮助,让大家对K-means聚类算法有更深入的了解。

K-means聚类算法作为一种经典的无监督学习算法,在进行数据分析和模式识别时发挥着重要作用。

在实际应用中,K-means算法的步骤和变体需要根据具体问题进行调整和改进。

下面我们将进一步探讨K-means聚类算法的步骤和变体,以及在实际应用中的注意事项。

k-means聚类算法原理及python实现

k-means聚类算法原理及python实现

k-means聚类算法原理及python实现K-means聚类算法是一种无监督学习方法,被广泛应用于数据挖掘和机器学习领域。

它的目的是将一组数据分成K个簇(cluster),使得同一个簇内的数据相似度较高,不同簇的数据相似度较低。

K-means算法的基本原理是从初始的K 个质心(centroid)开始,迭代地执行以下两个步骤:(1)将每个数据点分配到离其最近的质心所在的簇中;(2)根据每个簇中数据点的平均值来更新该簇的质心。

这两个步骤不断迭代,直到簇不再发生变化或达到预设的迭代次数为止。

在Python中,可以使用scikit-learn库实现K-means聚类算法。

下面是一个简单的实现示例:```pythonfrom sklearn.cluster import KMeansimport numpy as np# 生成随机数据X = np.random.rand(100,2)# 定义K-means模型kmeans = KMeans(n_clusters=3)# 拟合模型kmeans.fit(X)# 打印簇的质心坐标print(kmeans.cluster_centers_)# 打印每个数据点所属的簇print(bels_)```在上面的代码中,我们首先生成了100个二维随机数据点。

然后,我们定义了一个K-means模型,设置簇的数量为3。

接着,我们用数据拟合了该模型,并打印出了簇的质心坐标和每个数据点所属的簇。

需要注意的是,K-means算法的结果受到初始质心的影响。

因此,为了得到较好的聚类结果,通常需要多次运行K-means算法,每次使用不同的初始质心,然后选择最优的结果。

K-均值聚类算法

K-均值聚类算法

K-均值聚类算法1. K-均值聚类算法的工作原理:K 均值算法(K-Means algorithm )是最常用的聚类算法之一,属于划分聚类方法。

对于数据样本集 X={x1,x2,…,xn},n 为样本数,设拟划分为 k 个聚类 V={v1,v2,…,vk },cj 为 vj 的中心,j=1,2,…,k 。

k 均值算法将问题转化为组合优化问题:目标函数为),(minF 1j 1j i k ni j i y x d a ∑∑===;约束为:(1.1)αij ∈{0,1};(1.2)1a 1ij =∑=kj ;(1.3)0a 1ij >∑=ni 。

其中,为样本与聚类中心的欧氏距离。

式(1.1)限制一数据样本属于或不属于某一聚类,二者必居其一;式(1.2)规定一数据样本只属于一个聚类;式(1.3)表明聚类非空。

K-means 聚类算法步骤:1)从数据集中随机选择 k 个样本作为初始聚类中心;2)将每个样本分配到与之最近的初始聚类中心;3)将所有样本分配到相应的聚类后,重新计算聚类中心 Cj ;4)循环执行第 2)步和第 3)步,直至聚类中心不再变化,算法终止。

2.K-means 聚类算法的一般步骤(1) 从 n 个数据对象任意选择 k 个对象作为初始聚类中心;(2) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分;(3) 重新计算每个(有变化)聚类的均值(中心对象);(4) 循环(2)到(3)直到每个聚类不再发生变化为止。

3.K-均值聚类算法的总结K 均值算法原理简单、对大数据集计算速度很快,因此应用广泛。

但算法对初始聚类中心选择非常敏感。

此外,基于梯度下降和算法的贪心性,使得算法易于陷入局部极值而无法达到全局最优。

针对 k 均值算法易陷入局部最优的缺陷,许多研究将启发式规则引入算法,使聚类中心的移动产生扰动,取得理想效果。

本文提出将模拟退火算法与 k 均值算法相结合,以提高算法的全局寻优能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

kmeans的聚类算法
K-means是一种常见的聚类算法,它可以将数据集划分为K个簇,每个簇包含相似的数据点。

在本文中,我们将详细介绍K-means算法的原理、步骤和应用。

一、K-means算法原理
K-means算法基于以下两个假设:
1. 每个簇的中心是该簇内所有点的平均值。

2. 每个点都属于距离其最近的中心所在的簇。

基于这两个假设,K-means算法通过迭代寻找最佳中心来实现聚类。

具体来说,该算法包括以下步骤:
二、K-means算法步骤
1. 随机选择k个数据点作为初始质心。

2. 将每个数据点分配到距离其最近的质心所在的簇。

3. 计算每个簇内所有数据点的平均值,并将其作为新质心。

4. 重复步骤2和3直到质心不再变化或达到预定迭代次数。

三、K-means算法应用
1. 数据挖掘:将大量数据分成几组可以帮助我们发现其中隐含的规律
2. 图像分割:将图像分成几个部分,每个部分可以看做是一个簇,从而实现图像的分割。

3. 生物学:通过对生物数据进行聚类可以帮助我们理解生物之间的相似性和差异性。

四、K-means算法优缺点
1. 优点:
(1)简单易懂,易于实现。

(2)计算效率高,适用于大规模数据集。

(3)结果可解释性强。

2. 缺点:
(1)需要预先设定簇数K。

(2)对初始质心的选择敏感,可能会陷入局部最优解。

(3)无法处理非球形簇和噪声数据。

五、K-means算法改进
1. K-means++:改进了初始质心的选择方法,能够更好地避免陷入局部最优解。

2. Mini-batch K-means:通过随机抽样来加快计算速度,在保证精度的同时降低了计算复杂度。

K-means算法是一种常见的聚类算法,它通过迭代寻找最佳中心来实现聚类。

该算法应用广泛,但也存在一些缺点。

针对这些缺点,我们可以采用改进方法来提高其效果。

相关文档
最新文档