一元一次不等式解法步骤

合集下载

一元一次不等式解题技巧

一元一次不等式解题技巧

一元一次不等式解题技巧解一元一次不等式,教材中介绍的是基本方法,但题目千变万化,遇到每一个题目要擅长观察所给不等式的特点,结合其他知识,灵活巧妙地变通解题步骤,才可收到事半功倍的效果。

1、巧去括号例1 解不等式分析:因为,所以先去中括号比先去小括号简便。

解:先去中括号,得两边同时减去,得。

2、巧添括号例2 解不等式分析:不等式两边都有(x-17),所以我们不是去括号,而是添括号,将各项整理出(x-17)。

解:原不等式可化为:即3、巧用分式基本性质例3 解不等式。

分析:直接去分母较繁,若先用分式的基本性质,能够使化小数为整数和去分母一次到位。

解:由分式的基本性质,得即。

4、巧化分母为1例4 解不等式分析:此题按常规应先利用分数的基本性质将不等式中的小数化为整数,然后按步骤求解。

但我们发现。

巧妙地去掉分母,从而简化理解题过程。

解:原式可化为。

移项合并,得,即。

5、巧凑整例5 解不等式。

分析:观察各项未知数的系数和常数项,注意到,,所以把各项拆开移项凑整,比直接去分母简便。

解:原不等式可化为。

移项合并,得。

所以。

6、巧组合例6 解不等式。

分析:注意到左边的第一项和右边的第二项中的分母有公约数3,左边的第二项和右边的第一项的分母有公约数4,移项局部通分化简,可简化解题过程。

解:移项通分,得。

化简,得。

去分母,得。

解得。

7、巧变形例7 解不等式。

解:原不等式可化为即,即。

解一元一次不等式的六个技巧

解一元一次不等式的六个技巧

解一元一次不等式的六个技巧解一元一次不等式的基本方法是五步法:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.但,怎样才能正确而迅速地解一元一次不等式呢同学们可结合一元一次不等式的特点,采取一些灵活、简捷的方法与技巧.现撷取几例介绍,供大家参考:一、巧抵消例1、 解不等式53x —23-x >9+426x - 解析:由于426x -=-23-x ,原不等式可变为:53x —23-x >9-23-x 则:53x >9,所以x >15 评注:把原不等式中相关的式子变形,然后进行抵消,使解题过程变得简捷.其中蕴含着整体思想.二 、巧凑整例2 、解不等式25.0125.05.2x x +-<-. 两边同乘以4得 x x 2210--<-.移项、合并同类项得 x<-12.评注:本题若两边同乘以2,直接去分母,也可以解决问题.但,考虑到分子中的小数,由不等式的性质,不等式两边同乘以一个适当的数“2”,可将小数转化为整数,这样,为下面的运算提供了方便.三、巧拆分例3、 解不等式13965401072814+-<---x x x . 由不等式变形得 132)82(42+-<---x x x .去括号、移项、合并同类项得 8x<4.则x<21 评注:当分子里包含的各项系数能被分母整除时,可以把它拆开,这样省去了去分母这一步骤,也就简化了运算过程,这样还能少犯运算错误,直可谓是一举两得.四、巧分配例4、 解不等式x x ---]21432[23)(>-1 解析:注意到13223=⨯,采用乘法分配律去括号时,可由外往里, 则有:x x ---314>-1,所以43x ->3,故,x <-4. 评注:去括号一般是内到外,也就是,按小、中、大括号的顺序进行.但,有时可反其道而行之,即由外到内去括号,这往往能另辟捷径.五、巧合并例5、 解不等式 )2()1(41)2(3)1(43--->---x x x x . 由不等式变形得 )2()2(3)1(41)1(43--->-+-x x x x . 去括号、移项、合并同类项得 -x>-3.∴x<3.评注:直接去括号较繁,注意到左边各项均含有因式(x-1) 、(x-2),根据不等式括号内代数式的特征把 (x-1) 、(x-2) 看作一个整体,先带括号进行移项、合并同类项运算就会简便得多.六、巧整合例6、 解不等式 3{2x-1-[2(2x-1)+3]}>-3.解析: 把2x-1看作一个整体,则有: 3{(2x-1)-[2(2x-1)+3]}>-3. 大、中括号得,3(2x-1)-6(2x-1)-9>-3,整体合并,得-3(2x-1)>6,所以有,x <21-. 评注:本题如果按照常规解法,也是可行的,但运算量较大.这种方法中,把2x-1看作一个整体,去括号、合并同类项后,再解不等式,就显得轻松多了.可见得,在解题过程中,若恰当运用整体思想,则大有收益,妙不可言.。

华师大版七年级下册数学练习课件-第8章-8.2 3 第3课时一元一次不等式的解法

华师大版七年级下册数学练习课件-第8章-8.2 3 第3课时一元一次不等式的解法
3
基础过关
1.下列不等式中,属于一元一次不等式的是( D )
A.3x-2>y
B.2x2>0
C.x3-2<1x
D.x7<x
2.已知12(m+4)x|m|-3+6>0 是关于 x 的一元一次不等式,则 m 的值为( A )
A.4
B.±4
C.3
D.±3
4
▪ 3.【2019·四川凉山中考】不等式1-x≥x-1C的解集是( ) ▪ A.x≥1 B.x≥-1 ▪ C.x≤1 D.x≤-1
第8章 一元一次不等式
8.2 解一元一次不等式
3 解一元一次不等式
第三课时 一元一次不等式的解法
名师点睛
▪ 知识点1 一元一次不等式
▪ 只含有一个未知数,并且含未知数的式子都是整式,未知数 的次数都是1的不等式叫做一元一次不等式.
▪ 提示:一元一次不等式的两边都应满足以下条件:(1)都是整 式;(2)只含有一个未知数(若有其他字母,按常数对待);(3) 未知数的次数都是1.
15.若代数式x-3 5+1 的值不小于x+2 1-1 的值,则 x 的取值范围是____x≤_-__1___.
12
16.小明解不等式1+2 x-2x+3 1≤1 的过程如下图. 解:去分母,得 3(1-x)-2(2x+1)≤1.① 去括号,得 3+3x-4x+1≤1.② 移项,得 3x-4x≤1-3-1.③ 合并同类项,得-x≤-3.④ 两边都除以-1,得 x≤3.⑤
5
▪ 4.【2019·辽宁大连中考】不等式5x+1≥3x-1的解集在数 轴B 上表示正确的是( )
6
5.关于 x 的方程 3x-2m=1 的解为正数,则 m 的取值范围是( B )
A.m<-12
B.m>-12

中考数学中如何求解一元一次不等式

中考数学中如何求解一元一次不等式

中考数学中如何求解一元一次不等式关键信息项1、一元一次不等式的定义及一般形式名称:____________________________解释:____________________________2、求解一元一次不等式的基本步骤步骤 1:____________________________步骤 2:____________________________步骤 3:____________________________步骤 4:____________________________步骤 5:____________________________3、常见的不等式符号及其含义符号 1:____________________________含义 1:____________________________符号 2:____________________________含义 2:____________________________符号 3:____________________________含义 3:____________________________4、不等式的性质性质 1:____________________________性质 2:____________________________性质 3:____________________________11 一元一次不等式的定义一元一次不等式是指只含有一个未知数,且未知数的次数是 1,不等号两边都是整式的不等式。

其一般形式为:$ax + b > 0$(或$ax + b < 0$,$ax + b \geq 0$,$ax + b \leq 0$),其中$a$、$b$为常数,且$a \neq 0$。

111 与一元一次方程的区别一元一次方程是等式,而一元一次不等式是用不等号连接的式子。

方程的解是使等式成立的未知数的值,而不等式的解是使不等式成立的未知数的取值范围。

人教版七年级数学下册《一元一次不等式第1课时:一元一次不等式的概念和解法》精品教学课件

人教版七年级数学下册《一元一次不等式第1课时:一元一次不等式的概念和解法》精品教学课件

概念:含有一个未知数,未知数的次数是1的不等式,叫做一元一 次不等式(linear inequality in one unknown).


解一元一次不等式的步骤:

去分母:不等号两边各项都乘所有分母的最小公倍数.

去括号:当括号前是“–”时,要注意括号内各项变号.

移项:从不等号的一边移到另一边,注意变号.
=
2x–1 3
.
如上解何表:在示去数呢分轴?母,得:3(2+x)= 2(2x–1).
去括号,得:6+3x=4x–2.
移项,得:3x – 4x≥–2– 6.
移项,得:3x – 4x= –2– 6.
合并同类项,得:– x ≥ –8. 系数化为1,得:x≤8.
合并同类项,得: – x = –8. 0 系数化为8 1,得:x = 8.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究
解下列不等式,并在数轴上表示解集: (1) 2(1+ x)<3; (2)22+x≥2x3–1 .
总结一下,解一元 一次不等式的解题
步骤是什么?
解:(1) 2(1+ x)<3; 去括号,得:2+2x< 3.
(2)22+x≥2x3–1 . 去分母,得:3(2+x)≥ 2(2x–1).
配套人教版
9.2 一元一次不等式
一元一次不等式
学习目标
1.了解一元一次不等式的概念.

2.掌握一元一次不等式的解法.

3.能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据


一元一次不等式的性质,将一元一次不等式化简为x>a或x<a的形式.

一元一次不等式方程

一元一次不等式方程

1
步骤一
将未知数移到方程的一边,使等号两侧的数字和未知数成为一个一元一次不等式。
2
步骤二
根据不等式符号确定解的范围,可以使用数轴或图像来表示。
3
步骤三
解读解所代表的意义,不等式中的正负号相反的项相 互消去,简化求解过程。
数轴表示
利用数轴表示解的范围,可视化 解的位置和数量。
实际应用
分数分式的应用广泛,如人均消 费、比例关系等。
利用图像解一元一次不等式方程
图像可以直观地展示一元一次不等式方程的解的范围和位置。通过绘制直线或曲线,可以更清楚地理解和解释 解的含义。
常见的一元一次不等式方程类型
大于不等式
表示一个数大于另一个数,使 用大于符号(>)表示。
小于不等式
表示一个数小于另一个数,使 用小于符号(<)表示。
大于等于不等式
比较法
通过比较大小来确定解的范围, 特别适用于不等式中含有相同项 的情况。
同号不等式的解法
加法减法法则
对同号不等式的左右两侧同 时加减同一个数,可以保持 不等式的符号不变。
乘法法则
对同号不等式的左右两侧同 时乘除同一个正数,可以保 持不等式的符号不变。
特殊情况
同号不等式中含有零时,需 特别注意解的情况。
表示一个数大于或等于另一个 数,使用大于等于符号(≥)表 示。
括号的应用
括号在解一元一次不等式方程时起到分组的作用,影响不等式的计算顺序和 解的范围。通过掌握括号的应用,可以更灵活地解题。
分数分式的应用
基本概念
分数分式包含有分数的方程,可 以通过消去分母或通分的方法来 解。
注意事项
需要注意分数分式的定义域和解 的范围,避免进行无效计算。

8.3.1 一元一次不等式组及其解法

8.3.1  一元一次不等式组及其解法
第十七页,编辑于星期五:九点 二十四分。
知2-练
1
(福州)不等式组
x x
1的, 解集在数轴上表示正确的是 2
()
第十八页,编辑于星期五:九点 二十四分。
2
不等式组 A.x<1
x x
1 , 的解集是( 3
B.x≥3
)
C.1≤x<3
D.1<x≤3
知2-练
第十九页,编辑于星期五:九点 二十四分。
易看出,这两个不等式的解集没有公共部分.这时,
这个不等式组无解.
第二十三页,编辑于星期五:九点 二十四分。
总结
知3-讲
解不等式组的关键:一是要正确地求出每个不等 式的解集;二是要利用数轴正确地表示出每个不等式 的解集,并找出不等式组的解集.
第二十四页,编辑于星期五:九点 二十四分。
知2-练
1 解下列不等式组,并把它们的解集在数轴上表示出来:
第八页,编辑于星期五:九点 二十四分。
知1-练
1 下列不等式组是一元一次不等式组的有_________.
(填序号)

x 2 3x 1, 2y 7;

③ 2( x 1) 3x, ④
x
2;

x 1 0,
2
x
3
0

x 4 2 x 3;
x2 1 2x 2, 3x 1;
x 6 1,
式合在一起,就组成了一个一元一次不等式组. 要点精析:(1)这里的“几个”是指两个或两个以上;(2)每
个不等式只能是一元一次不等式;(3)每个不等式必须含 有同一个未知数. 2. 易错警示:判断一个不等式组是否为一元一次不等式组, 常出现以下几种错误:
①不等式组中不都是一元一次不等式;

初中数学 人教版七年级下册 9.2一元一次不等式 课件

初中数学 人教版七年级下册  9.2一元一次不等式  课件


两边同除以a
不等式的基本性质2,3
写不等式的解时,要把表示未知数的字母写在不等号的左边。
练习反馈
4.解下列不等式,并在数轴上表示解集.
(1) -5x ≤10 ;
x ≥ -2
(2)4x-3 < 10x+7 .
x
>
-
5 3
(3) 3x -1 > 2(2-5x) ;
5
x > 13
(4) x 32≥2x23
合并同类项,得 系数化为1,得
2x 1 x 1
2
移项,得 合并同类项,得 系数化为1,得
3x 4x 2 6, x 8,
x 8.
归纳总结 归纳解不等式的一般步骤,并指出每个步骤的根据,完成下表.
步骤
根据

去分母
不等式的基本性质2,3

去括号
去括号法则

移项
不等式的基本性质1

合并同类项
合并同类项法则
-5x >-10
x=2
系数化为1
x<2
总结归纳
解一元一次不等式与解一元一次方程的依据和步骤有什么异同点?
相同之处:

基本步骤相同:去分母,去括号,移项,合并同类项,
一 议
系数它化们为的1依这.据些不步相骤同中. ,要特别注意的是:
解一元一不次等方式程两的边依都乘(或除以)同一个 据是等式负的数性,质必,须解改变不等号的方向.这是 一元一次与不解等一式元的一依次方程不同的地方.
✓ (2)5x+3<5(x-y) ✓
✕ (4)x(x–1)< x2 -2x ✓
✕ (6) x2-3x-5<6

一次函数一元一次方程和一元一次不等式讲解

一次函数一元一次方程和一元一次不等式讲解

一次函数一元一次方程和一元一次不等式讲解1.什么是一次函数一次函数,也称为一次多项式函数或线性函数,是指形如$y=a x+b$的函数,其中$a$和$b$是常数,$x$是自变量,$y$是因变量。

一次函数的图像为一条直线,具有特定的斜率和截距。

一次函数的基本形式为$y=ax+b$,其中$a$表示斜率,决定了函数图像的倾斜程度,$b$表示截距,决定了函数图像与$y$轴的交点。

2.一元一次方程的求解等式性质一元一次方程是指只含有一个变量的一次方程。

解一元一次方程的核心思想是通过运用和**方程统一变形原则**,将方程逐步化简,最终得到变量的解。

求解一元一次方程的一般步骤如下:1.对方程中的项进行整理和合并,使得方程成为$a x+b=0$的形式;2.根据方程统一变形原则,将方程中的常数项移至方程的右侧,得到$a x=-b$;3.利用解方程的等式性质,将方程两边同时乘以$\fr ac{1}{a}$,得到$x=\f ra c{-b}{a}$;4.化简得到最终解,即$x$的值。

通过以上步骤,可以求得一元一次方程的解。

3.一元一次不等式的求解等式性质一元一次不等式是指只含有一个变量的一次不等式。

求解一元一次不等式的方法与求解一元一次方程类似,同样可以运用和**不等式统一变形原则**。

求解一元一次不等式的一般步骤如下:1.对不等式中的项进行整理和合并,使得不等式成为$a x+b<c$或$a x+b>c$的形式;2.根据不等式的性质,将常数项移至不等式的右侧;3.根据不等式统一变形原则,将不等式两边同时乘以正数或除以负数,注意在乘或除的过程中要考虑到反号问题;4.根据不等式的性质,得到不等式的最终解。

需要注意的是,在进行不等式符号的翻转时,需要根据乘或除的正负进行对应,以确保不等式符号的方向正确。

4.总结一次函数、一元一次方程和一元一次不等式在数学中起着重要的作用。

掌握了一次函数的概念和性质,以及求解一元一次方程和不等式的方法,能帮助我们更好地理解和解决数学问题。

解一元一次不等式的五步法

解一元一次不等式的五步法

解一元一次不等式的五步法一元一次不等式是初中数学中的重要内容,解决不等式问题是数学学习过程中必不可少的一环。

本文将介绍解决一元一次不等式的五步法,帮助初学者更好地掌握不等式的解法。

第一步:化简不等式化简不等式是解不等式的第一步,将不等式中的所有系数和常数移到一边,将未知数移到另一边,使不等式变成如下形式:ax + b > 0 或 ax + b < 0其中a、b为已知数,x为未知数。

第二步:确定不等式的符号确定不等式的符号是解不等式的第二步,根据不等式中的关系符号(大于号或小于号)确定解的范围,即解集的符号,如下所示:当ax + b > 0时,解集为x > -b/a当ax + b < 0时,解集为x < -b/a第三步:画数轴画数轴是解不等式的第三步,将解集的符号标在数轴上,如下所示:当ax + b > 0时,解集为x > -b/a,将解集标在数轴上,如下图所示:———o———————————————>第四步:确定解集确定解集是解不等式的第四步,根据数轴上的标注,确定解集的范围,如下所示:当ax + b > 0时,解集为x > -b/a,数轴上标注的解集为从-b/a 开始向右延伸的无限区间。

当ax + b < 0时,解集为x < -b/a,数轴上标注的解集为从-b/a 开始向左延伸的无限区间。

第五步:检验解集检验解集是解不等式的最后一步,将解集代入原不等式,检验解集是否符合原不等式的条件,如下所示:当ax + b > 0时,将解集x > -b/a代入原不等式,若原不等式成立,则解集为正确解集,否则解集错误。

当ax + b < 0时,将解集x < -b/a代入原不等式,若原不等式成立,则解集为正确解集,否则解集错误。

总结解一元一次不等式的五步法包括化简不等式、确定不等式的符号、画数轴、确定解集和检验解集五个步骤,若按照这五个步骤顺序进行,能够正确解决一元一次不等式问题,帮助初学者更好地掌握不等式的解法。

一元一次不等式知识点及典型例题

一元一次不等式知识点及典型例题

一元一次不等式 考点一、不等式的概念 1、不等式:用不等号表示不等关系的式子,叫做不等式。

例 判断如下各式是否是一元一次不等式? word-x≥5 2x-y<02x 34x 5x22 x532、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数二 不等式的解 :的值,都叫做这个不等式的解。

三 不等式的解集:3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简 例 判断如下说法是否正确,为什么?称这个不等式的解集。

X=2 是不等式 x+3<2 的解。

X=2 是不等式 3x<7 的解。

不等式 3x<7 的4、求不等式的解集的过程,叫做解不等式。

解是 x<2。

X=3 是不等式 3x≥9 的解5、用数轴表示不等式的方法四 一元一次不等式:考点二、不等式根本性质例 判断如下各式是否是一元一次不等式1、不等式两边都加上〔或减去〕同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以〔或除以〕同一个正数,不等号的方向不变。

-x<5 2x-y<02x 3x22 x 5 ≥3x3、不等式两边都乘以〔或除以〕同一个负数,不等号的方向改变。

例 五.不等式的根本性质问题4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运 例 1 指出如下各题中不等式的变形依据算改变。

②如果不等式乘以 0,那么不等号改为等号所以在题目中,要求出乘以的 数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的1〕由 3a>2 得 a> 2 32) 由 3+7>0 得 a>-7数就不等为 0,否如此不等式不成立; 考点三、一元一次不等式3〕由-5a<1 得 a>- 1 54)由 4a>3a+1 得 a>11、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是 1, 例 2 用>〞或<〞填空,并说明理由且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

一元一次不等式

一元一次不等式

一元一次不等式一元一次不等式是数学中的基本概念之一,它在解决实际问题中具有广泛的应用。

本文将详细介绍一元一次不等式的定义、性质以及解法,并通过实例进行说明。

1. 一元一次不等式的定义一元一次不等式是指一个变量的一次方程与不等式的组合,形如ax + b > 0(或 < 0),其中a和b为已知实数,且a ≠ 0。

这种不等式通常用于表示某些量的范围或条件。

2. 一元一次不等式的基本性质(1)性质1:两个一元一次不等式可以进行加减运算,得到的结果仍然是一个一元一次不等式。

(2)性质2:一元一次不等式两边同时乘(或除)一个正数,不等式的方向不变;两边同时乘(或除)一个负数,不等式的方向发生改变。

(3)性质3:对于一元不等式ax + b > 0,如果a > 0,则该不等式的解集是x > -b / a;如果a < 0,则该不等式的解集是x < -b / a。

3. 解一元一次不等式的步骤(1)将不等式转化为等式:将不等式中的大于号(或小于号)改为等号。

(2)求解等式:解一元一次方程ax + b = 0,得到方程的解为x = -b / a。

(3)确定解的范围:根据一元一次不等式的性质,确定解的范围。

(4)表示解集:将解的范围写成不等式的形式,并表示为解集。

4. 实例演示假设有一元一次不等式2x - 3 > 5,我们按照上述步骤来解决这个不等式。

(1)转化为等式:2x - 3 = 5。

(2)求解等式:2x = 8,x = 4。

(3)确定解的范围:由于系数2 > 0,所以解的范围为x > 4。

(4)表示解集:解集可以表示为(4, +∞)。

通过以上步骤,我们成功解决了一元一次不等式2x - 3 > 5,得出解集为(4, +∞)。

总结:一元一次不等式在数学中具有广泛的应用,特别是在实际问题的建模和解决过程中。

对于一元一次不等式的解法,我们需要明确其定义和基本性质,然后按照一定的步骤进行求解,最终得到表示解集的形式。

一元一次不等式(组)的解法课件(共22张PPT)

一元一次不等式(组)的解法课件(共22张PPT)
我们在初中已经知道,在上述问题情境列出的不 等式中,未知数的个数是1,且它的次数为1,这样的 整式不等式称为一元一次不等式.使不等式成立的未 知数的值的集合,通常称为这个不等式的解集. 试一试:利用一元一次不等式解答本章导语中提到的 问题(2).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
很多实际问题,通过设未知数列关系式,得到
的是一元一次不等式.上面解一元一次不等式的步 骤对于任意一个一元一次不等式都有效.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例 1.解不等式2x 1 x 2>7x 1
32
解:由原不等式可得
数学
基础模块(上册)
第二章 不等式
2.2.2 一元一次不等式(组)的解法
人民教育出版社
第二章 不等式 2.2.2 一元一次不等式(组)的解法
学习目标
知识目标 能力目标
理解一元一次不等式(组)概念及其解集的学习,掌握一元一次不等式(组) 的解题方法
学生运用分组探讨、合作学习,掌握一元一次不等式(组)的解题方法,提 高一元一次不等式(组)解决实际问题能力
12(x+1)+2(x-2)>21x-6,(原式两边同乘以6)
12x+12+2x-4>21x-6,
(分配律)
12x-14
(合并同类项)
x<2.
(不等式的性质)
所以,原不等式的解集是{x丨x<2},即(- ,2).

一元一次不等式的解法步骤

一元一次不等式的解法步骤

一元一次不等式的解法步骤
1、确定不等式的基本形式
2、将不等式转化为加减法形式
将不等式中的常数项b移到不等式的右边变为负数,即a某>c-b(或a某<c-b),然后将不等式的系数a除以,如果除以的数是负的,则不等号的方向要反转,即某<c-b/a(或某>c-b/a)。

3、将解集表示出来
将求出的式子表示成类似“某>(或<)解”的形式即可确定解的集合,表示为某∈(解,∞)(或某∈(-∞,解))。

4、检验解的可行性
将得到的解代入不等式中进行检验,如果不等式成立,则该解是可行的,否则就是不可行的。

综上所述,解一元一次不等式的步骤为确定基本形式、转换为加减法形式、将解集表示出来、检验解的可行性。

掌握这些步骤后,就能轻松地解决一元一次不等式问题。

当然,有一些特殊情况需要特别注意,如分母为0、含有根号等,这时我们需要采取一些特殊的方法去解决。

含分母的一元一次不等式组的解法

含分母的一元一次不等式组的解法
10、涓滴之水终可磨损大石,不是由于 它力量 大,而 是由于 昼夜不 舍的滴 坠。只 有勤奋 不懈的 努力才 能够获 得那些 技巧, 因此, 我们可 以确切 地说: 说:不 积跬步 ,无以 致千里 。——贝多芬 11、一定要做最适合自己的事情,不要 迎合别 人的口 味而去 做一件 不属于 自我的 “难事 ”。一 旦“发 现自我 ”,就 要尽力 而为, 但要全 面了解 自己和 周围的 环境, 知道适 可而止 。 12、要有自信,然后全力以赴--假如具有 这种观 念,任 何事情 十之八 九都能 成功。 ——威 尔逊 13、莫找借口失败,只找理由成功。 14、一个有坚强心志的人,财产可以被 人掠夺 ,勇气 却不会 被人剥 夺的。 ——雨 果 15、积极的人在每一次忧患中都看到一 个机会 ,而消 极的人 则在每 个机会 都看到 某种忧 患。 16、不是境况造就人,而是人造就境况 。
x.②
3 x-1>2 x+1,① (2) -2x<-8; ②
导引:根据解不等式组的一般步骤,分别解不等式组中的
每一个不等式,把它们的解集在数轴上表示出来,
找出解集的公共部分,从而得出不等式组的解集.
5x-2>3 x+1,①
(1)
1 2
x-1
7- 3 x;② 2
解:(1)解不等式①,得x>2.5.解不等式②,得x≤4.
1
的解集为-1<x<1,求a,b
的值.
2x+3<1,
2
若不等式组
x>
1(x-3)的整数解是关于x的方程 2
2x-4=ax的根,求a的值.
1、世上没有绝望的处境,只有对处境 绝望的 人。 2、挑水如同武术,武术如同做人。循序 渐进, 逐步实 现目标 ,才能 避免许 多无谓 的挫折 。
___________________________________ ______ ______ ______ ______ ______ ______ ______ 4.她的光辉照耀着每一个有幸看到她 的人。

人教版初中数学中考复习 一轮复习 —一元一次不等式(组)解法及含字母(参数)问题

人教版初中数学中考复习  一轮复习  —一元一次不等式(组)解法及含字母(参数)问题

8
4

解:(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
考点二:解不等式(组)并在数轴上表示解(集)
5.(2021•武汉)解不等式组
2x x 1 ① 4x 10 x 1 ②
考点一:不等式的性质
C 1.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5
B.﹣5a<﹣5b
C. a b
cc
D.a+c>b+c
考点一:不等式的性质
2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,
A 则a+b<2b;④若b>0,则 1 1 ,其中正确的个数是( ) ab
性质3:不等式两边同时乘或除同一个负数,不等号的。方向改变
知识点梳理:
二、一元一次不等式(组)及其解法
一元一次不等 含有一个未知数,未知数的次数是
1
式定义
的不等式
解一元一次不 等式的步骤
去分母→去括号→移项→合并同类项→系数化为1
一元一次 一般地,关于同一个未知数的几个一元一次不等式合在一起,
不等式组 就组成一个一元一次不等式组
3.(2021•南京)解不等式1+2(x﹣1)≤3,并在数轴上表示解集. 解: 1+2(x﹣1)≤3, 去括号,得1+2x﹣2≤3. 移项、合并同类项,得2x≤4. 化系数为1,得x≤2.
表示在数轴上为:
考点二:解不等式(组)并在数轴上表示解(集)
Hale Waihona Puke 4.(2021•泰安)(2)解不等式: 1- 7x 1 3x 2

不等式的解法

不等式的解法

3.关于x的方程 2(k+1)x2+4kx+3k-2=0 的两根同号。求实数k的取值范围。
三、分式不等式与高次不等式
x-3 例1:解不等式 x+7 解: 原不等式等价于: (x-3)(x+7)<0
即 -7<x<3
<0
∴原不等式的解集为: {x|-7<x<3}
x-3 若改为: ≤0 x+7
呢?
(x-3)(x+7)≤0
ab 0.
例题
例1 已知 x , y , z , 3 b 9 求证 x 2 y 3z .
例2 已知 x a
2M ,0 y b 2a
, y 0, M ,
求证 xy ab . 证明: ab xy ya ya ab yx a a y b xy
2
(1) x f
( 2) x 3 x 2 0
2
( 3) 4 x 12 x 9 0
2
3 ( 3){ x | x R且x } xa 2 ( 4) 0 (a R ) 2
xa
3 17 3 17 x ( 2){ x | } 2 2
ax bx c 0 在什么条件下解集为
定理探索
当 a b 0 时,显然成立, 当 a b 0时,要证 a b a b . 只要证 a2 2 a b b2 a2 2ab b2, 即证 ab ab. 而 ab ab显然成立.
从而证得 a b a b a b .
a1 a2 an a1 a2 an nn N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式解法步骤
一元一次不等式是数学中常见的一种不等式类型,解决一元一次不等式可以帮助我们找到满足不等式条件的变量取值范围。

下面将介绍一元一次不等式的解法步骤。

1. 理解一元一次不等式的基本形式
一元一次不等式的基本形式为ax + b > c(或ax + b < c),其中a、b、c是已知实数,x是未知数。

不等式中的符号可以是大于号(>)或小于号(<),表示不等式的方向。

2. 移项化简
首先将不等式中的常数项移至一边,即将b移到不等式的另一边。

这样可以使得不等式的右边为0,简化后续计算。

3. 解一元一次方程
将一元一次不等式中的等号去掉,得到对应的一元一次方程。

然后解这个方程,找到方程的根。

这个根将不等式分割成两个区间,分别是满足不等式和不满足不等式的区间。

4. 判断不等号方向
根据一元一次不等式的不等号方向,判断满足不等式的区间。

如果不等号是大于号(>),则满足不等式的区间在方程的根的右侧;如果不等号是小于号(<),则满足不等式的区间在方程的根的左侧。

5. 表示解集
将满足不等式的区间以符号形式表示出来。

如果不等号是大于号(>),则解集可以表示为x > 根;如果不等号是小于号(<),则解集可以表示为x < 根。

6. 检验解集
将解集代入原始的一元一次不等式中,检验解集的准确性。

如果解集中的数值满足原始不等式,那么解集是正确的;如果不满足原始不等式,则需要重新检查解集的求解过程。

通过以上的步骤,我们可以解决一元一次不等式,并得到满足不等式条件的变量取值范围。

在实际应用中,一元一次不等式可以用于解决各种问题,例如线性规划、优化等。

因此,掌握一元一次不等式的解法步骤对于数学学习和实际问题求解都是非常重要的。

相关文档
最新文档