数学建模国赛历年
数学建模国赛历年题目
数学建模国赛历年题目
以下是数学建模国赛历年题目的一部分:
1. 2018年题目:某公司想要投资一个新的项目,该项目有一
定的风险,但可能会带来高额的回报。
你被要求通过建立一个数学模型来评估该项目的可行性和预测可能的回报。
2. 2017年题目:某城市的交通拥堵问题日益严重,政府希望
通过优化信号灯的调节策略来缓解交通压力。
你需要建立一个数学模型来确定最佳的信号灯时间调节方案,以最大程度地减少交通拥堵。
3. 2016年题目:在某个城市,政府计划在两个特定的区域之
间修建一个新的道路,并需要确定最佳的路线以及道路的设计参数。
你需要建立一个数学模型来分析各种因素,如交通流量、土地利用等,以确定最佳的道路路线和设计。
4. 2015年题目:某公司生产的产品在市场上的销售量一直在
下降,他们希望通过改变产品的包装和定价策略来提振销售。
你需要建立一个数学模型来分析不同包装和定价方案对销售量的影响,并提出最佳的包装和定价策略。
以上题目只是数学建模国赛历年题目的一小部分,每年的具体题目会有所变化。
完成这些题目需要的技巧包括数学建模、数据分析和优化方法等。
如果你对数学建模感兴趣,建议多参加相关的竞赛和训练,积累经验和提高自己的能力。
历年全国大学生数学建模竞赛成绩
本科
贵州赛区三等奖
宋琴刘兵向程波
教练组
专科
贵州赛区三等奖
柏玉顺周春艳朱志群
教练组
本科
成功参赛奖
杨国源陈娟钱冬梅
教练组
本科
成功参赛奖
罗永国胡忠贤陈超
教练组
教练组
本科
云贵赛区三等奖
陈军、吴德宪、刘江
教练组
本科
云贵赛区三等奖
施婧、夏万阳、赵庆福
教练组
专科
云贵赛区三等奖
朱红、朱志群、曾加敏
教练组
本科
云贵赛区成功参赛奖
熊进、李志能、李秀琴
教练组
本科
云贵赛区成功参赛奖
何强、张祥、钱东梅
教练组
本科
云贵赛区成功参赛奖
吴昊、汪山志、李松
教练组
2007年9月
本科
全国二等奖
历年全国大学生数学建模竞赛成绩
年份
级别
奖项
获奖人
指导教师
2000年9月
大专
贵州赛区一等奖
杨振钦苏文英先艳
教练组
大专
贵州赛区二等奖
林艺颜平张丽荣
教练组
本科
贵州赛区成功参赛奖
杜永新韩立书陈闯
教练组
2001年9月
大专
全国二等奖
李扬陈媛刘览
李伟
大专
贵州赛区一等奖
何曼妮朱有国张军
左建军丁虹
大专
贵州赛区一等奖
张静龙新聂瞬林
安育成
专科
贵州赛二等奖
吴、勾廷远、梅桂森
安育成
专科
贵州赛二等奖
周芳琴、胡连海、宗彦
安育成
2006年9月
本科
历年全国大学生数学建模竞赛-题目(1994-2009)
我国淡水资源有限,节约用水人人有责。洗衣机在家庭用水中占有相当大的 份额,目前洗衣机已非常普及,节约洗衣机用水十分重要。假设在放入衣物和洗 涤剂后洗衣机的运行过程为:加水-漂水-脱水-加水-漂水-脱水-…-加水-漂水脱水(称“加水-漂水-脱水”为运行一轮)。请为洗衣机设计一种程序(包括运 行多少轮、每轮加多少水等),使得在满足一定洗涤效果的条件下,总用水量最 少。选用合理的数据进行计算。对照目前常用的洗衣机的运行情况,对你的模型 和结果作出评价。
1)建立数学模型分析如何可持续捕获(即每年开始捕捞时渔场中各年龄组 鱼群不变),并且在此前提下得到最高的年收获量(捕捞总重量)。
2)某渔业公司承包这种鱼的捕捞业务5年,合同要求鱼群的生产能力不能 受到太大的破坏。已知承包时各年龄组鱼群的数量分别为: 122,29.7,10.1,3.29(×109 条),如果仍用固定努力量的捕捞方式,该公司采取 怎样的策略才能使总收获量最高。
1996 年全国大学生数学建模竞赛
A 题:最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开 发必须适度。一种合理、简化的策略是,在实现可持续收获的前提下,追求最大 产量或最佳效益。
考虑对某种鱼(鲳鱼)的最优捕捞策略:
假设这种鱼分4个年龄组:称1龄鱼,……,4龄鱼。各年龄组每条鱼的平 均重量分别为 5.07,11.55,17.86,22.99(克);各年龄组鱼的自然死亡率均为 0.8(1/年);这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为 1.109 ×105(个);3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和 孵化期为每年的最后4个月;卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产 卵总是 n 之比)为 1.22×1011/(1.22×1011+n).
全国大学生数学建模竞赛历年参赛情况统计
全国大学生数学建模竞赛
(CUMCM)
历年参赛情况统计(按赛区统计)1、1994年至2001年各赛区参赛院校数
2、1994年至2001年各赛区参赛队数
注:1.全国已成立26个赛区。
赛区顺序及总校数取自教育部高教司和高教社编写的《中国大学生手册》2000年版(不包括军事院校)。
2.1999年、2000年参赛队数中符号 / 前后的数字分别为普通组和大专组队数。
3、2001年至2003年各赛区参赛情况
说明:1. 第2列数字来自教育部出版的2003年大学生手册(统计至2003年3月),
为学校总数(普通院校/职业技术院校),不包括军事院校。
2. 参赛校数和队数均为本科组与大专组之和。
3. 组织优秀奖一栏中为获奖的年份。
4、2004-2006年各赛区参赛情况
说明:1. 第2列数字来自教育部出版的2005
年大学生手册(统计至2005年3
月),为学校总数(普通院校/职业技术院校),不包括军事院校。
2. 参赛校数和队数均为甲、乙组之和。
3. 优秀组织工作奖一栏中为获奖的年份。
5、2006-2008年各赛区参赛情况
说明:1. 第2列数字来自教育部出版的2006年大学生手册(统计至2006年5月),为学校总数(普通院校/职业技术院校),不包括军事院校。
2. 参赛校数和队数均为本科、专科组之和。
3. 优秀组织工作奖一栏中为获奖的年份。
中国大学生数学建模竞赛发展史
2000网易杯全国大学生数学建模竞赛举行,27省(市、自治区)517所院校的3210队参加,其中608队参加大专组竞赛,香港城市大学有1个队首次参赛
2000.12.6~8
2000年各赛区负责人工作会议暨颁奖仪式在中山大学珠海校区举行,119队获一等奖(其中大专组23队),245队获二等奖(其中大专组55队)。
1998年全国大学生数学建模竞赛举行,26省(市、自治区)400所院校的2103队参加。
1998.12.10~13
1998年各赛区负责人工作会议暨颁奖仪式在上海华东理工大学举行,79队获一等奖,153队获二等奖。
1999.2.6~8
1999年美国大学生数学建模竞赛举行,我国参赛院校43个,占总数的19%,参赛队155个,占总数的32%,浙江大学获一项特等奖。从1999年起增加交叉学科建模竞赛(作为C题)。
2003.2
2003年美国大学生数学建模竞赛(MCM)和交叉学科竞赛(ICM)举行,我国共参加300队,占总数的47%,浙江大学、北京大学、东南大学、东华大学各一队获特等奖。
2003.9.22~25
2003高教社杯全国大学生数学建模竞赛举行,30省(市、自治区)637所院校的5406队参加。
2003.12.6~7
2003年各赛区工作会议暨颁奖仪式在厦门举行,厦门大学承办,608队获全国奖,其中本科组一等奖151队,二等奖306队,大专组一等奖48队,二等奖103队。
2004.2
2004年美国大学生数学建模竞赛(MCM)和交叉学科竞赛(ICM)举行,我国共参加398队,占总数的54%,成都电子科技大学一队获特等奖。
数学建模发展史
1992.11.27~29
1992年部分城市大学生数学模型联赛举行,这是全国性的首届竞赛,10省(市)79所院校的314队参加。
历年全国赛数学建模题目
目录1996年全国大学生数学建模竞赛题目 (2)A题最优捕鱼策略 (2)B题节水洗衣机 (2)1997年全国大学生数学建模竞赛题目 (3)A题零件的参数设计 (3)B题截断切割 (4)1998年全国大学生数学建模竞赛题目 (5)A题投资的收益和风险 (5)B题灾情巡视路线 (6)1999创维杯全国大学生数学建模竞赛题目 (7)A题自动化车床管理 (7)B题钻井布局 (8)C题煤矸石堆积 (9)D题钻井布局(同 B 题) (9)2000网易杯全国大学生数学建模竞赛题目 (10)A题 DNA分子排序 (10)B题钢管订购和运输 (12)C题飞越北极 (15)D题空洞探测 (15)2001年全国大学生数学建模竞赛题目 (17)A题血管的三维重建 (17)B题公交车调度 (18)C题基金使用计划 (20)D题公交车调度 (20)2002高教社杯全国大学生数学建模竞赛题目 (21)A题车灯线光源的优化设计 (21)B题彩票中的数学 (21)C题车灯线光源的计算 (23)D题赛程安排 (23)2003高教社杯全国大学生数学建模竞赛题目 (24)A题 SARS的传播 (24)B题露天矿生产的车辆安排 (28)C题 SARS的传播 (29)D题抢渡长江 (30)2004高教社杯全国大学生数学建模竞赛题目 (31)A题奥运会临时超市网点设计 (31)B题电力市场的输电阻塞管理 (35)C题饮酒驾车 (39)D题公务员招聘 (39)2005高教社杯全国大学生数学建模竞赛题目 (42)A题: 长江水质的评价和预测 (42)B题: DVD在线租赁 (43)C题雨量预报方法的评价 (44)D题: DVD在线租赁 (45)2006高教社杯全国大学生数学建模竞赛题目 (46)A题:出版社的资源配置 (46)B题: 艾滋病疗法的评价及疗效的预测 (46)C题: 易拉罐形状和尺寸的最优设计 (47)D题: 煤矿瓦斯和煤尘的监测与控制 (48)2007高教社杯全国大学生数学建模竞赛题目 (53)A题:中国人口增长预测 (53)2008高教社杯全国大学生数学建模竞赛题目 (56)A题数码相机定位 (56)B题高等教育学费标准探讨 (57)C题地面搜索....................................................................................................... 错误!未定义书签。
全国研究生数学建模竞赛历年题目
全国研究生数学建模竞赛历年题目
以下是全国研究生数学建模竞赛历年题目的一些例子:
1. 2019年题目:小型机翼气动弹性特性分析及优化设计
2. 2018年题目:风险规避投资组合模型
3. 2017年题目:基于某高速磁悬浮列车系统动力学模型的优化设计
4. 2016年题目:区域旅游吸引力与经济发展耦合对策研究
5. 2015年题目:地铁线网方案设计
6. 2014年题目:基于对抗博弈的恶意代码入侵防御策略设计
7. 2013年题目:煤矿安全监控系统优化设计
8. 2012年题目:基于机器学习的电子商务推荐系统设计
以上只是一些例子,每年竞赛的题目都不同,但都涵盖了数学建模的基本内容,如模型构建、问题分析、数据处理、优化设计等。
具体的题目可以通过全国研究生数学建模竞赛的官方网站或相关渠道获取。
全国大学生数学建模竞赛历年赛题
全国大学生数学建模竞赛历年赛题1992:A 施肥效果分析 B 实验数据分解1993:A 非线性交调的频率设计 B 足球队排名次1994:A 逢山开路 B 锁具装箱1995:A 一个飞行管理问题 B 天车与冶炼炉的作业调度1996:A 最优捕鱼策略 B 节水洗衣机1997:A 零件参数 B 截断切割1998:A 投资的收益和风险 B 灾情巡视路线1999:A 自动化车床管理 B 钻井布局 C 煤矸石堆积 D 钻井布局2000:A DNA序列分类 B 钢管购运 C 飞越北极 D 空洞探测2001:A 血管三维重建 B 公交车调度 C 基金使用2002:A 车灯线光源 B 彩票中数学 D 赛程安排2003:A SARS的传播 B 露天矿生产 D 抢渡长江2004:A 奥运会临时超市网点设计 B 电力市场的输电阻塞管理C 饮酒驾车D 公务员招聘2005:A 长江水质的评价和预测 B DVD在线租赁C 雨量预报方法的评价D DVD在线租赁2006:A出版社的资源配置 B 艾滋病疗法的评价及疗效的预测C易拉罐形状和尺寸的最优设计D 煤矿瓦斯和煤尘的监测与控制2007:A 中国人口增长预测 B 乘公交,看奥运C 手机“套餐”优惠几何D 体能测试时间安排2008:A 数码相机定位 B 高等教育学费标准探讨C 地面搜索D NBA赛程的分析与评价2009:A 制动器试验台的控制方法分析 B 眼科病床的合理安排C 卫星和飞船的跟踪测控 D会议筹备2010:A储油罐的变位识别与罐容表标定B 2010年上海世博会影响力的定量评估C输油管的布置D对学生宿舍设计方案的评价2011: A 城市表层土壤重金属污染分析B 交巡警服务平台的设置与调度C 企业退休职工养老金制度的改革D 天然肠衣搭配问题2012: A 葡萄酒的评价B 太阳能小屋的设计C 脑卒中发病环境因素分析及干预D 机器人避障问题2013: A 车道被占用对城市道路通行能力的影响B 碎纸片的拼接复原C 古塔的变形D 公共自行车服务系统2014: A 嫦娥三号软着陆轨道设计与控制策略B 创意平板折叠桌C 生猪养殖场的经营管理D 储药柜的设计2015: A 太阳影子定位B “互联网+”时代的出租车资源配置C 月上柳梢头D 众筹筑屋规划方案设计。
全国大学生数学建模竞赛历年赛题
全国大学生数学建模竞赛历年赛题Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】1992A 施肥效果分析1992B 实验数据分解1993A 非线性交调的频率设计1993B 足球队排名次1994A 逢山开路1994B 锁具装箱1995A 一个飞行管理问题1995B 天车与冶炼炉的作业调度1996A 最优捕鱼策略1996B 节水洗衣机1997A 零件参数1997B 截断切割1998A 投资的收益和风险1998B 灾情巡视路线1999A 自动化车床管理1999B 钻井布局1999C 煤矸石堆积1999D 钻井布局2000A DNA序列分类2000B 钢管购运2000C 飞越北极2000D 空洞探测2001A 血管三维重建2001B 公交车调度2001C 基金使用2001D 公交车调度2002A 车灯线光源2002B 彩票中数学2002C 车灯线光源2002D 赛程安排2003A SARS的传播2003B 露天矿生产2003C SARS的传播2003D 抢渡长江2004A 奥运会临时超市网点设计2004A 赛题使用数据2004B 电力市场的输电阻塞管理2004C 饮酒驾车2004D 公务员招聘2005A 长江水质的评价和预测2005B DVD在线租赁2005C 雨量预报方法的评价2005D DVD在线租赁2005D 数据2006A 出版社的资源配置2006A 数据2006B 艾滋病疗法的评价及疗效的预测2006B 数据2006C 易拉罐形状和尺寸的最优设计2006D 煤矿瓦斯和煤尘的监测与控制2006D 数据2007A 中国人口增长预测2007A 数据2007B 乘公交,看奥运2007B 数据2007C 手机“套餐”优惠几何2007C 数据2007D 体能测试时间安排2008A 数码相机定位2008B 高等教育学费标准探讨2008C 地面搜索2008D NBA赛程的分析与评价2008D 数据2009A 制动器试验台的控制方法分析2009A 数据2009B 眼科病床的合理安排2009C 卫星和飞船的跟踪测控2009D 会议筹备2010A 储油罐的变位识别与罐容表标定2010B 2010年上海世博会影响力的定量评估2010C 输油管的布置2010D 对学生宿舍设计方案的评价。
2023年历年全国数学建模试题及解法归纳
历年全国数学建模试题及解法归纳赛题93A非线性交调的频率设计93B足球队排名94A逢山开路94B锁具装箱问题95A飞行管理问题95B天车与冶炼炉的作业调度96A最优捕鱼策略96B节水洗衣机97A零件的参数设计97B截断切割的最优排列98A一类投资组合问题98B灾情巡视的最佳路线99A自动化车床管理99B钻井布局OOA DNA序列分类00B钢管订购和运送01A血管三维重建解法拟合、规划图论、层次分析、整数规划图论、插值、动态规划图论、组合数学非线性规划、线性规划动态规划、排队论、图论微分方程、优化非线性规划非线性规划随机模拟、图论多目的优化、非线性规划图论、组合优化随机优化、计算机模拟0-1规划、图论模式辨认、Fisher判别、人工神经网络组合优化、运送问题曲线拟合、曲面重建赛题01B 公交车调度问题02A 车灯线光源的优化02B 彩票问题03A SARS 的传播03B 露天矿生产的车辆安排04A 奥运会临时超市网点设计04B 电力市场的输电阻塞管理05A 长江水质的评价和预测05B DVD 在线租赁06A 出版社书号问题06B Hiv 病毒问题07A 人口问题07B 公交车问题08A 照相机问题08B 大学学费问题2023年A 题制动器实验台的控制方法分析2023年B 题眼科病床的合理安排2023年C 题卫星监控 解法多目的规划非线性规划单目的决策微分方程、差分方程整数规划、运送问题记录分析、数据解决、优化数据拟合、优化预测评价、数据解决随机规划、整数规划整数规划、数据解决、优化线性规划、回归分析微分方程、数据解决、优化 多目的规划、动态规划、图论、0-1规划非线性方程组、优化数据收集和解决、记录分析、回归分析工程控制排队论,优化,仿真,综合评价几何问题,搜集数据2023年D题会议筹备优化赛题发展的特点:1.对选手的计算机能力提出了更高的规定:赛题的解决依赖计算机,题目的数据较多,手工计算不能完毕,如03B,某些问题需要使用计算机软件,01A。
历届数学建模国赛题
历届数学建模国赛题 及优秀论文赏析
2008 B:高等教育学费标准探讨 问题涉及: 评价(3),预测(2) 主要可用模型或方法: 不定 要求能力: 数据搜索能力,微分方程,个人价值观, 文笔 决胜关键: 结论的合理性,数据的全面程度和准确程 度
2009 A: 制动器试验台的控制方法分析 问题涉及: 计算(3),评价(1),优化(1) 主要可用模型或方法: 物理知识(静动力学分析,转动惯量等), 排列组合,优化算法 要求能力: 大数据处理,大数据计算,优化软件应用, 计算机仿真 决胜关键: 结果正确性
2007 A:中国人口增长预测 问题涉及: 预测(5) 主要可用模型或方法: 微分方程模型,马尔科夫链,计算机仿真 要求能力: 文字信息处理,大量数据处理,函数拟合以及参 数确定,数据搜索能力,高等数学知识(常微分 方程稳定性和矩阵知识) 决胜关键: 微分方程拟合程度,马尔科夫矩阵的处理和求解, 创新点(如参数确定方法等),结论的合理性
预测类问题
优化类问题
计算类问题
必备能力
大数据处理
计算机仿真
总结
从单纯的统计结果看: 1.预测类问题出现情况成波动状,截至09年 处于低谷。 2.优化类问题出现比较稳定。 3.近两年开始偏向于应用专业知识较多的计 3. 算类问题。 4.总的来说竞赛还不成熟,有时在求新求变, 有时则中规中矩。
一些建议
2007 B: 乘公交,看奥运 乘公交, 问题涉及: 优化(5) 主要可用模型或方法: 图论,动态规划算法,最短路径(dijkstra 算法) 要求能力: 大量数据处理,计算机程序设计,优化软 件应用 决胜关键: 程序运行速度,算法的正确性
【免费下载】全国大学生数学建模竞赛历年参赛情况统计
106 101/29 126/40 129/43 173 135/72 158/72 191/72 8 8/0 19/13 29/19 51 45/11 51/21 59/30
110 145/10 169/11 156/7 66 54/23 55/26 53/30
31 新疆 32 香港
总计
22 1683
11 13 11 7 1 9 14 10 12 17 8 6
29
10
6 9 1
1996 26 11 13 6
11 18 8
13 20 11 14 1 11 18 11 18 28 8 7
40 0 10
13 15
1997 28 10 12 15
11 19 11
13 29 14 16 1 14 15 12 20 33 10 5
60 (35/25) 27 29 29 71 (38/33) 23 26 30
参赛校数
20 1874
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数学建模历年国赛c题
数学建模历年国赛C题1. 引言数学建模是数学学科与实际问题相结合的一种学科交叉。
每年都会有各种各样的数学建模竞赛,其中国家级数学建模竞赛是最高水平的竞赛之一。
本文将对国家级数学建模竞赛历年的C题进行分析与总结,希望能够为参与数学建模竞赛的同学提供一些帮助与指导。
2. 国赛C题概述国家级数学建模竞赛的C题是一道较为综合性的题目,通常涉及到多个数学领域的知识和技巧。
C题的解答过程往往需要多个步骤和推理,并且对数学建模的基本原理和方法都有一定的要求。
下面将对历年的C题进行概述,给出简要的问题描述和解题思路。
2.1 C题年份1问题描述:该年的C题是关于城市交通规划的问题。
给定一个城市的道路网络图,要求设计一种最优的交通规划方案,使得城市中的交通流量最大化,同时减少人们的出行时间和减少环境污染。
解题思路:该问题可以转化为一个最小费用流问题,通过对道路网络图进行建模,确定各条道路的容量和费用,然后使用最小费用流算法求解最优的交通规划方案。
2.2 C题年份2问题描述:该年的C题是关于电力系统的问题。
给定一个电力系统的拓扑结构图和负荷需求,要求设计一种最优的供电方案,使得电力系统的供电可靠性最大化,同时满足负荷需求,最大限度地减少系统的能量损耗。
解题思路:该问题可以转化为一个优化问题,通过对电力系统的拓扑结构图进行建模,确定各个电力节点的供电能力和负荷需求,然后使用整数规划或者动态规划等方法求解最优的供电方案。
2.3 C题年份3问题描述:该年的C题是关于物流配送的问题。
给定若干个配送中心和客户需求,要求设计一种最优的物流配送方案,使得客户的需求能够得到满足,同时最大限度地减少车辆行驶的总路程。
解题思路:该问题可以转化为一个带约束条件的最小路径问题,通过对配送中心和客户需求的位置和距离进行建模,可以使用图论中的最短路径算法求解最优的物流配送方案。
3. 解题方法与技巧国赛C题作为一道较为综合性的数学建模题目,解答过程通常需要运用多种数学知识和技巧。
全国大学生数学建模竞赛历年试题
拟合、规划
足球排名次问题(清华大学: 矩阵论、图论、层次分、整数
蔡大用)
规划
逢山开路问题(西安电子科技 大学:何大可)
图论、插值、动态规划
锁具装箱问题(复旦大学:谭 永基,华东理工大学:俞文 图论、组合数学 此)
飞行管理问题(复旦大学:谭
天车与冶炼炉的作业调度问题 非线性规划、动态规划、层次
永基,华东理工大学:俞文 非线性规划、线性规划
诒勋)
方法
DNA序列分类问题(北京工业 大学:孟大志)
欧氏距离、马氏距离分类法、 Fischer判别模型、神经网络方 法,最小二乘拟合、统计分类
钢管订购和运输问题(武汉大 离散优化、运输问题、最短路
学:费甫生)
、二次规划
血管的三维重建问题(浙江大 学:汪国昭)
曲面重建、曲线拟合、数据挖掘
公交车调度问题(清华大学: 谭泽光)
多目标规划、非线性规划
车灯线光源的优化设计问题 (复旦大学:谭永基,华东理 非线性规划、最优化 工大学:俞文此)
彩票中的数学问题(解放军信 单目标决策、多目标决策、概
息工程大学:韩中庚)
率与优化 非线性规划
SARS的传播问题(组委会) 微分方程
露天矿生产的车辆安排问题 (吉林大学:方沛辰)
整数规划、多目标规划
此)
动态规划、图论模型(最短 路)、组合优化
投资的收益和风险问题(浙江 大学:陈淑平)
多目标优化、模糊线性规划、非 线性规划
灾情巡视路线问题(上海海运 学院:丁颂康)
图论、组合优化、线性规划
自动化车床管理问题(北京大 学:孙山泽)
随机优化、计算机模拟
钻井布局问题(郑州大学:林 0-1规划、非线性规划、图论
全国数学建模大赛题目
全国数学建模大赛题目
全国数学建模大赛的题目通常涉及现实生活中的复杂问题,需要参赛者运用数学建模和数据分析的知识来解决。
以下是一些历年的题目:
2019年高教社杯全国大学生数学建模竞赛赛题:“金融风险量化分析”、“光伏发电单元对配电网影响分析”、“基于大数据的快递服务问题”
2018年高教社杯全国大学生数学建模竞赛赛题:“移动通信网络优化”、“城市共享单车调度优化”、“基于随机森林算法的信用卡违约预测”
2017年高教社杯全国大学生数学建模竞赛赛题:“电力市场的输电阻塞管理”、“移动支付用户行为分析”、“城市道路交通状态预测”
2016年高教社杯全国大学生数学建模竞赛赛题:“光伏发电功率预测”、“智能制造中机器人路径规划”、“互联网+时代下的出租车资源配置” 2015年高教社杯全国大学生数学建模竞赛赛题:“电动汽车充电设施规划”、“全球气候变化对人类健康的影响”、“互联网电影推荐系统”
2014年高教社杯全国大学生数学建模竞赛赛题:“快递服务满意度调查分析”、“基金定投策略分析”、“电力市场的输电阻塞管理”
以上只是部分题目,具体每年的题目可能会因实际情况而有所变化。
如果需要更详细的信息,建议查阅全国数学建模大赛的官方网站或相关资料。
历年全国数学建模试题及解法
一、历年全国数学建模试题及解法赛题解法93A 非线性交调的频率设计拟合、规划93B 足球队排名图论、层次分析、整数规划94A 逢山开路图论、插值、动态规划94B 锁具装箱问题图论、组合数学95A 飞行管理问题非线性规划、线性规划95B 天车与冶炼炉的作业调度动态规划、排队论、图论96A 最优捕鱼策略微分方程、优化96B 节水洗衣机非线性规划97A 零件的参数设计非线性规划97B 截断切割的最优排列随机模拟、图论98A 一类投资组合问题多目标优化、非线性规划98B 灾情巡视的最灾情巡视的最佳佳路线图论、组合优化99A 自动化车动化车床床管理随机优化、计随机优化、计算算机模拟99B 钻井布局0-1规划、图论00A DNA 序列分类模式识别式识别、、Fisher 判别判别、、人工神经网络00B 钢管订购和运输组合优化、组合优化、运输运输运输问题问题01A 血管三维重建曲线拟合、线拟合、曲面重建曲面重建01B 工交车调度问题多目标规划02A 车灯线光源光源的优化的优化非线性规划02B 彩票彩票问题问题问题 单目标目标决决策 03A SARS 的传播传播 微分方程、微分方程、差差分方程分方程03B 露天矿生产矿生产的车的车的车辆安辆安辆安排排 整数规划、整数规划、运输运输运输问题问题问题 04A 奥运会临时超市网点奥运会临时超市网点设计设计设计 统计分析、数计分析、数据处据处据处理、优化理、优化理、优化 04B 电力市场电力市场的的输电阻塞输电阻塞管理管理管理 数据拟合、优化拟合、优化 05A 长江长江水水质的评价和预测评价和预测 预测评价预测评价、数、数、数据处据处据处理理 05B DVD 在线租赁租赁 随机规划、整数规划随机规划、整数规划二、赛题发展的特点1.对选手对选手的计的计的计算算机能力提出了更高能力提出了更高的的要求:要求:赛题的解赛题的解赛题的解决依赖决依赖决依赖计计算机,题目的数题目的数据较据较据较多多,手工,手工计计算不能完成,如03B ,某些,某些问题问题问题需要需要需要使用使用使用计计算机软件,01A 。
数学建模历年国赛c题
数学建模历年国赛c题一、引言数学建模是一门综合性较强的学科,旨在通过数学模型解决实际问题。
历年来,国内外的各类数学建模竞赛都备受青睐,其中国赛C题更是备受关注。
本文将对数学建模历年国赛C题进行回顾与分析,并总结其中的一些经验和技巧。
二、数学建模历年国赛C题回顾1. 20XX年国赛C题:XXX在这一年的国赛C题中,我们需要构建一个数学模型来解决XXX问题。
通过分析问题背景、观察问题特征,并引入一些适当的假设,我们得到了一个完整的数学模型。
接下来,我们采用了XXX方法对模型进行求解,并得到了满意的结果。
该年的国赛C题要求我们充分利用已有的数学知识,并将其应用到实际问题中,通过数学模型的建立与求解,取得了良好的效果。
2. 20XX年国赛C题:XXX本年度的国赛C题涉及到XXX,我们需要利用已有的数据和信息,构建一个合适的数学模型,解决该问题。
通过对问题进行细致的分析和推导,我们提出了一个创新的数学模型,该模型能够考虑到XXX的特点,并在求解时给出准确的结果。
在解决的过程中,我们还结合了XXX的方法,进一步提高了模型的精确度和可靠性。
3. 20XX年国赛C题:XXX这一年的国赛C题要求我们应用数学建模方法解决XXX问题。
我们通过对问题的深入分析,提出了一个合理的数学模型,并利用数值计算方法对模型进行求解。
在求解过程中,我们遇到了XXX困难,但通过反复推敲和不断调整,我们最终找到了合适的解决方案。
该年的国赛C题提示了数学建模过程中的难点和挑战,使我们对数学建模有了更深入的了解和认识。
三、数学建模C题的经验与技巧1. 深入理解问题:在解决数学建模C题时,我们首先要对问题进行深入的理解。
这包括对问题背景、要求和约束条件等方面进行详细分析,确保我们对问题的理解准确无误。
2. 合理建立数学模型:在建模过程中,我们需要根据问题的特点和要求,选择合适的数学方法和模型来描述问题。
在建模过程中,要充分利用已有的数学知识,同时也要灵活运用创新的思维方式,提出新颖的数学模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模国赛历年
中国数学建模国赛(CUMCM,China Undergraduate Mathematical Contest in Modeling)是由中国高等教育学会主办的年度竞赛活动。
该比赛自2002年开始,在国内具有较高的知名度和影响力。
以下是数学建模国赛的历年比赛题目:
1. 2002年:载具最优路径规划问题。
2. 2003年:某种病例发病规律研究与流行趋势预测。
3. 2004年:火山的群体爆发问题。
4. 2005年:寻找最优泊位调度问题。
5. 2006年:渐开线传动机构建模与优化设计。
6. 2007年:数字图书馆文献导航问题。
7. 2008年:草坪生长问题。
8. 2009年:城市排水系统优化设计。
9. 2010年:城市地下热岛效应形成机制与控制。
10. 2011年:航空贸易通航网络优化设计。
11. 2012年:移动互联网2G网络运用效果评估与优化。
12. 2013年:网约车资源调度问题。
13. 2014年:地板砖铺设方案优化设计。
14. 2015年:电视台节目时段规划问题。
15. 2016年:共享单车调度问题。
16. 2017年:基于航班延误的航空公司航线规划问题。
17. 2018年:产品质量维度数学量化研究。
18. 2019年:风力发电场多目标优化规划问题。
19. 2020年:新能源汽车充电站规划问题。
以上只是部分年份的题目,每年的题目都与实际问题紧密相关,考察数学建模的能力和创新思维。