定积分与不定积分定义

合集下载

一元函数积分学——不定积分与定积分的概念、性质及应用

一元函数积分学——不定积分与定积分的概念、性质及应用


原式=∫
x2 − x
1 dx

2∫
1 dx
1− x2
=

xdx


dx x

2
arcsin
x
= 1 x2 − ln x − 2arcsin x + C
2
例4
求积分

1
+
1 cos
2
x
dx.

原式=

1+
1 2 cos2
x
dx −1
=
1 2

1 cos2
x
dx
= 1 tan x + C.
2
13
∫ 例5 求积分
如 cos x 的原函数的一般表达式为
sin x + C(C为任意常数)
1 在(0,+∞)的原函数的一般表达式为
x ln x + C(C为任意常数)
4
定义3.2(不定积分的定义)
若F(x) 是 f (x)在区间I内的一个原函数,则 f (x) 的原函数的一般表达式 F(x) + C (C为任意常数)
∫3
2
例2 求积分
( x2 −
)dx. 1− x2
1
1

原式= 3∫ x2 dx − 2∫
dx 1− x2
= − 3 − 2arcsin x + C x
9
2. 基本积分公式
实例
x µ+1 ′ = x µ
µ +1
∫ ⇒ xµdx = xµ+1 + C . µ+1 (µ ≠ −1)

定积分分部积分法和不定积分分部积分法的区别

定积分分部积分法和不定积分分部积分法的区别

定积分分部积分法和不定积分分部积分法
的区别
1、不定积分和定积分的区别是定积分确切的说是一个数,或者说是关于积分上下限的二元函数,也可以成为二元运算,不定积分也可以看成是一种运算,但最后的结果不是一个数,而是一类函数的集合.不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减。

2、在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。

3、定积分与不定积分的运算法则相同,并且积分公式,计算方法也相同。

从牛顿-莱布尼茨公式看出,定积分与不定积分联系紧密,相互转换共用。

积分的定义与基本性质

积分的定义与基本性质

积分的定义与基本性质积分是高等数学中的一个重要概念,是微积分的核心内容之一。

积分的定义与基本性质是我们学习微积分的基础,下面我们来详细了解一下。

一、积分的定义积分是微积分中的一种重要概念,它是求解曲线下面的面积、求解函数的平均值、求解图形的重心等问题的工具。

积分的定义可以分为定积分和不定积分两种。

1. 定积分对于一个函数 f(x),如果其在区间 [a,b] 内的任意一个小区间内都是有界的并且连续的,那么我们就可以在这个区间内求出这个函数的面积。

这时候,我们就可以使用积分的概念来求出该区间内 f(x) 函数的定积分。

具体而言,定积分的定义如下:若函数 f(x) 在区间 [a,b] 内连续,则将 [a,b] 分成 n 个等分,即:a = x0 < x1 < x2 < … < xn-1 < xn = b并令Δ xi = xi+1 - xi,Δ xi 是区间 [xi, xi+1] 的长度。

则若存在一个极限 I,满足当 n 趋近于无穷时,有:I = lim ∑f(xi*) * Δxin → ∞ i = 0其中,xi*是区间 [xi, xi+1] 内任意一点,上式中的极限值 I 就是 f(x) 在区间 [a,b] 内的定积分,可以表示为:∫b∫ f(x) dxa该式意思是对 f(x) 在 [a,b] 区间内的所有小区间的面积求和,得到的总面积就是该函数在该区间内的定积分。

2. 不定积分不定积分也叫原函数或者积分常数,是指函数的某一导函数。

具体而言:若函数 y = F(x) 的导数是 f(x),则 f(x) 就是 y = F(x) 的不定积分,可以表示为:∫ f(x) dx = F(x) + C其中,C 是任意常数,称为积分常数。

二、积分的基本性质积分有许多基本性质,这些性质在进行积分运算的时候非常实用。

下面,我们来介绍一下积分的基本性质:1. 积分的线性性设 f(x) 和 g(x) 是区间 [a,b] 上的两个连续函数,k 是任意常数,则有:∫ (k f(x) + g(x)) dx = k ∫ f(x) dx + ∫ g(x) dx这条性质表明,积分运算具有线性性,可以将常数提出来进行运算。

不定积分与定积分的区别与联系

不定积分与定积分的区别与联系

不定积分与定积分的区别与联系不定积分计算的是原函数(得出的结果是一个式子)定积分计算的是具体的数值(得出的借给是一个具体的数字)不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减积分积分,时一个积累起来的分数,现在网上,有很多的积分活动。

象各种电子邮箱,qq等。

在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。

在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的.一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。

其中:[F(x) + C]' = f(x)一个实变函数在区间[a,b]上的定积分,是一个实数。

它等于该函数的一个原函数在b的值减去在a的值.定积分就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。

实际上,定积分的上下限就是区间的两个端点a,b.不定积分设F(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数的不定积分的过程叫做对这个函数进行积分.由定义可知:求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C,就得到函数f(x)的不定积分.定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。

把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:如果定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。

不定积分与定积分的计算方法

不定积分与定积分的计算方法

不定积分与定积分的计算方法在数学中,积分是求解函数定积分和不定积分的一种重要方法。

不定积分和定积分之间有着不同的计算方法和应用场景。

本文将介绍不定积分和定积分的计算方法及其应用。

一、不定积分的计算方法不定积分,又称为原函数,是求解函数的反导函数。

不定积分记作∫f(x)dx,其中f(x)为被积函数,dx表示对x的积分。

不定积分的计算方法主要有以下几种:1. 常数项法则:如果f(x)是常函数,即f(x) = C,那么∫f(x)dx = Cx + k,其中k为常数。

2. 幂函数法则:对于幂函数f(x) = x^n,其中n≠-1,那么∫f(x)dx = (1/(n+1))x^(n+1) + k。

3. 三角函数法则:对于三角函数f(x) = sin x、cos x、tan x等,以及其倒数,可以利用基本积分公式进行计算。

4. 代换法则:当被积函数比较复杂时,可以通过代换变量来简化计算过程。

常用的代换包括三角代换、指数代换、倒数代换等。

二、定积分的计算方法定积分是对给定区间上的函数进行积分,可以得到一个数值结果。

定积分记作∫[a,b]f(x)dx,表示在区间[a,b]上对函数f(x)进行积分。

定积分的计算方法主要有以下几种:1. 几何意义法:定积分可以表示函数f(x)与x轴之间的有向面积,利用几何图形的面积计算方法来求解定积分。

2. 分割求和法:将积分区间[a,b]分成若干个小区间,通过求和来逼近定积分的值。

常用的分割求和方法有矩形法、梯形法、辛普森法等。

3. 牛顿-莱布尼兹公式:如果函数F(x)是f(x)的一个原函数,那么∫[a,b]f(x)dx = F(b) - F(a)。

利用牛顿-莱布尼兹公式,可以通过求解原函数来计算定积分。

三、不定积分与定积分的应用不定积分和定积分在数学和各个应用领域都有广泛的应用。

1. 几何应用:定积分被广泛用于计算曲线与x轴之间的面积、曲线长度、曲线的旋转体体积等几何问题。

2. 物理学应用:定积分在物理学中有着重要的应用,例如计算质点的位移、速度、加速度等问题。

不定积分与定积分的计算与应用

不定积分与定积分的计算与应用
与应用方法。假设我们需要计算函数f(x) = 2x在区间[1, 3]上的定积分。根据定积分的定义,我们可以计算如下:
∫[1, 3] 2x dx
根据定积分的运算规则法,我们可以得到:
= [x^2]1^3
= (3^2) - (1^2)
= 9 - 1
= 8
因此,函数f(x) = 2x在区间[1, 3]上的定积分为8。
不定积分与定积分的计算与应用
在数学中,积分是微积分的重要概念之一。不定积分与定积分是积分的两种形式,它们在实际问题求解中具有广泛的应用。本文将深入探讨不定积分与定积分的计算方法以及它们在应用中的具体应用。
一、不定积分的计算与应用
不定积分,也叫原函数或者反导数,是求导运算的逆运算。不定积分的计算方法主要有一些常见的积分公式和积分技巧,例如线性积分法、换元积分法、分部积分法等等。在应用中,不定积分可以用来求函数的原函数,进而求解定积分或者解微分方程。
除了计算曲线下的面积之外,定积分还可以用来解决一些变化率相关的问题。例如,在物理学中,可以通过对速度函数进行定积分,求解位移函数,进而分析物体的运动情况。在经济学中,可以通过对需求函数进行定积分,求解消费总量,进而分析市场的变化情况。
结论
综上所述,不定积分与定积分是积分的两种形式,它们在数学中具有重要的地位和广泛的应用。通过合理的计算方法和技巧,可以准确地求解函数的不定积分和定积分,并在实际问题中得到具体的应用。不定积分可以用来求函数的原函数,解微分方程等;定积分可以用来计算曲线下的面积,求解平均值,分析变化率等。在学习和应用中,我们应该深入理解积分的概念和性质,掌握不同类型积分的计算方法和应用技巧,提高数学分析和问题求解的能力。
下面我们通过一个具体的例子来说明不定积分的计算与应用方法。假设我们需要计算函数f(x) = 3x^2 + 2x + 1的不定积分。首先我们可以利用幂函数积分的常见公式来计算x的幂函数的不定积分:

不定积分、定积分与反常积分及定积分的应用

不定积分、定积分与反常积分及定积分的应用

不定积分、定积分与反常积分及定积分的应⽤不定积分、定积分与反常积分不定积分⼀、不定积分概念1.定义\begin{align} &原函数:设对于区间I上的任意⼀点x均有F'(x)=f(x),则称F(x)为f(x)在区间I上的⼀个原函数\\ &不定积分:设函数f(x)于区间I上有原函数,则其余原函数的全体称为f(x)于区间I上的不定积分,记为\int{f(x)dx}\\ &线性:\int[\alpha f(x)+\beta g(x)]dx=\alpha\int f(x)dx+\beta\int g(x)dx\\ \end{align}2.计算\begin{align} &计算⽅法\begin{cases}&1.基本公式\\&2.线性\\&3.积分法\begin{cases}&1.换元法\\&2.分部积分法\\\end{cases}\\\end{cases}\\ \end{align}(1)第⼀换元法(凑微分)\begin{align} &设F'(u)=f(u),则\int{f(\Phi(x))\Phi'(x)}dx=\int{f(\Phi(x))d(\Phi(x))}=F(\Phi(x))+C\\ &注解:找到合适的凑微分\Phi'(x)dx=d(\Phi(x)) \end{align}常见凑微分:\begin{align} &1.\int{f(ax+b)dx=\frac{1}{a}\int{f(ax+b)d(ax+b)}}(a\neq0)\\ &eg1.\int{\sin (2x+3)}dx=\frac{1}{2}\int\sin (2x+3)d(2x+3)=\frac{1}{2}\cos{(2x+3)}+C\\\ &2.\int{f(ax^n+b)x^{n-1}dx}=\frac{1}{na}\int{f(ax^n+b)d(ax^n+b)}\\ &eg2.\int{\cos(2x^4+3)x^3dx}=\frac{1}{4*2}\int{\cos(2x^4+3)d(2x^4+3)}=\frac{1}{8}\cos{(2x^4+3)}+C\\ &3.\int{f(a^x+c)a^xdx}=\frac{1}{\ln{a}}\int{f(a^x+c)}d(a^x+c)\\ &eg3.\int{\sin(2^x+3)2^xdx}=\frac{1}{\ln2}\int{\sin{(2^x+3)}d(2^x+3)}=\frac{1}{\ln 2}\cos{(2^x+3)}\\ &4.\int{f(\frac{1}{x})\frac{1}{x^2}}dx=-\int{f(\frac{1} {x})}d(\frac{1}{x})\\ &eg4.\int{\ln(\frac{1}{x})}\frac{1}{x^2}dx=-\int\ln (\frac{1}{x})d({\frac{1}{x}})+C\\ &5.\int{f(\ln |x|})\frac{1}{x}d(x)=\int{f(\ln{|x|)}}{d(\ln|x|)}\\ &eg5.\int{\sin ({\ln{|x|}}})\frac{1} {x}dx=\int{\sin(\ln(|x|)d(\ln{|x|})}=\cos(\ln x)+C\\ &6.\int{f(\sqrt x)\frac{1}{\sqrt x}}dx=2\int{f(\sqrt x)}d(\sqrt x)\\ &7.\int f(\sin x)\cos xdx=-\int{(\sin x)}d(\sin x)\\ &8.\int{f(\cos x)\sin dx}=\int{f(\cos x)d(\cos x)}\\ &9.\int{f(\tan x)\sec^2 xdx}=\int{f(\tan x)d(\tan x)}\\ &10.\int{f(\cot x)\csc^2xdx}=-\int{f(\cot x)d{(\cot x)}}\\ &11.\int{f{(\arcsin x)\frac{1}{\sqrt{1-x^2}}}}dx=\int{f(\arcsin x)d({\arcsin x})}\\ &12.\int{f(\arccos x)(-\frac{1}{\sqrt{1-x^2}}})dx=\int{f(\arccos x)d(\arccos x)}\\ &13.\int{f(\arctan x)\frac{1}{1+x^2}dx}=\int{f(\arctan x)d(\arctan x)}\\ &14.\int{f(\sqrt{x^2+a})}\frac{x} {\sqrt{x^2+a}}dx=\int{f(\sqrt{x^2+a})}d(\sqrt{x^2+a})\\ &注解:(\sqrt{x^2\pm a})'=\frac{x}{\sqrt{x^2+a}},(\sqrt{a^2-x^2})'=\frac{-x}{\sqrt{a^2-x^2}}\\ \end{align}(2)第⼆换元法\begin{align} &设F'(u)=f(\Phi(u))\Phi'(u),则\\ &\int{f(x)dx}\overset{x=\Phi(u)}{=}\int{f(\Phi(u))\Phi'(u)du}=F(u)+C=F(\Phi^{-1}(x))+C\\ &注解:找到合适的x=\Phi(u)\\ \end{align}1)三⾓换元\begin{align} &x=a\sin u,x=a\tan u,x=a \sec u\\ &\sqrt{a^2-x^2}\overset{x=a\sin u}{=}a\cos u,u\in[-\frac{\pi}{2},\frac{\pi}{2}],x\in[-a,a]\\ &\sqrt{a^2+x^2}\overset{x=a\tan u}{=}a\sec u,u\in{(-\frac{\pi}{2},\frac{\pi}{2})},x\in{(-\infty,\infty)}\\ &\sqrt{x^2-a^2}\overset{x=a\sec u}{=}a\tan u,u\in(\frac{\pi}{2},\pi]\cup(0,\frac{\pi}{2}]\\ \end{align}2)倒变换\begin{align} &x=\frac{1}{u}常⽤于含\frac{1}{x}的函数\\ \end{align}3)指数(或对数)变换\begin{align} &a^x=u或x=\frac{\ln u}{\ln a}常⽤于含a^x的函数\\ \end{align}4)⽤于有理化的变换\begin{align} &\frac{1}{\sqrt{x}+\sqrt[3]{x}}⽤x=u^6\\ &\sqrt[n]{\frac{ax+b}{cx+d}}⽤u=\sqrt[n]{\frac{ax+b}{cx+d}}或x=-\frac{du^n-b}{cu^n-a}\\ \end{align}(3)分部积分法\begin{align} &\int{u(x)v'(x)dx}=\int{u(x)d(v(x))}=u(x)v(x)-\int{v(x)u'(x)dx}\\ &注解:找到合适的u(x),v(x)\\ \end{align}1)降幂法\begin{align} &\int{x^ne^{ax}dx},\int{x^n\sin axdx},\int{x^n\cos ax dx}\\ &取u(x)=x^n\\ \end{align}2)升幂法\begin{align} &\int{x^a\ln xdx},\int{x^a\arcsin xdx},\int{x^a\arccos x dx},\int{x^a\arctan x dx}\\ &取u(x)=\ln x\\ \end{align}3)循环法\begin{align} &\int{e^{ax}\sin ax dx},\int{e^{ax}\cos {ax} dx}\\ &取u(x)=e^{ax}或\sin{ax} \end{align}4)递推公式法\begin{align} &与n有关的结果I_n,建⽴递推关系I_n=f(I_{n-1})或f(I_{n-2})\\ \end{align}定积分⼀、定积分概念1.定义\begin{align} &定义:设函数f(x)在区间[a,b]上有定义且有界\\ &(1)分割:将[a,b]分成n个[x_{i-1},x_{i}]⼩区间\\ &(2)求和:[x_{i-1},x_{i}]上取⼀点\xi_{i},\sum_{i=1}^{n}{f(\xi_{i})\Deltax_i},\lambda=\max{\Delta x_{1},\Delta x_{2},...,\Delta x_{n}}\\ &(3)取极限:若\lim_{\lambda \rightarrow 0}{\sum_{i=1}^{n}f(\xi_{i})\Delta x}\exist,且极值不依赖区间[a,b]分发以及点\xi_{i}的取法,则称f(x)在区间[a,b]上可积,\\ &\int^{b}_{a}{f(x)dx}=\lim_{\lambda \rightarrow 0}{f(\xi)\Delta x_{i}} &\\ &注解:\\ &(1)\lambda \rightarrow0 \rightarrow \nleftarrow n\rightarrow \infty\\ & (2)定积分表⽰⼀个值,与积分区间[a,b]有关,与积分变化量x⽆关\\ &\int_{a}^{b}{f(x)dx}=\int_{a}^{b}{f(t)dt}\\ &(3)如果积分\int_{0}^{1}{f(x)dx}\exist,将[0,1]n等分,此时\Delta{x_{i}}=\frac{1}{n},取\xi_{i}=\frac{i}{n},\\ &\int_{0}^{1}f(x)dx=\lim_{\lambda \rightarrow 0}{\sum_{i=1}{n}{f(\xi_{i})\Delta x_{i}}}=\lim_{n\rightarrow \infty}\sum_{i=1}^{n}f(\frac{i}{n})\\ \end{align}\begin{align} &\int^{b}_{a}{f(x)dx}=\lim_{\lambda \rightarrow 0}\sum^{n}_{i=1}f(\xi_i)\Delta_i=\begin{cases}&\lim_{n\rightarrow \infty}{\sum_{i=1}^{n}{f(a+(i-1)\frac{b-a}{n})\frac{b-a}{n}}},左侧\\&\lim_{n\rightarrow \infty}{\sum_{i=1}^{n}{f(a+i\frac{b-a}{n})\frac{b-a}{n}}},右侧\\\end{cases}\\ &中点:\Phi_i=a+(i-1)\frac{b-a}{n}+\frac{b-a}{2n}\\ \end{align}Processing math: 0%定理:(线性)\begin{align} &\int[\alpha f(x)+\beta g(x)]dx=\alpha\int f(x)dx+\beta\int g(x)dx\\ \end{align}注解:积分⽆⼩事\begin{align} &\int{e^{\pm x^2}dx,\int{\frac{\sin x}{x}}}积不出来\\ &F'(x)=f(x),x\in I,连续函数⼀定存在原函数,⽆穷多个\\ &[F(x)+C]'=f(x) \end{align}2.定积分存在的充分条件\begin{align} &若f(x)在[a,b]上连续,则\int^{b}_{a}{f(x)dx}必定存在\\ &若f(x)在[a,b]上有上界,且只有有限个间断点,则\int^{b}_{a}{f(x)dx}必定存在\\ &若f(x)在[a,b]上只有有限个第⼀类间断点,则\int^{b}_{a}{f(x)dx}必定存在\\ \end{align}3.定积分的⼏何意义\begin{align} &(1)f(x)\geqslant{0},\int_{a}^{b}{f(x)dx}=S\\ \end{align}\begin{align} &(2)f(x)\leqslant{0},\int_{a}^{b}{f(x)dx}=-S\\ \end{align}\begin{align} &(3)f(x)\geqslant{0}\cup f(x)\leqslant{0},\int_{a}^{b}{f(x)dx}=S_1+S_3-S_2\\ \end{align}注解:\begin{align} &(1)当f(x)\geq0时,定积分的⼏何意义是,以区间[a,b]为底,y=f(x)为曲边的曲边梯形⾯积\\ &(2)定积分是⼀个常数,只与f和区间[a,b]有关,与积分变量⽤什么字母⽆关\\ &\int_a^b{f(x)}dx=\int_a^b{f(t)dt}\\ &(3)\int_a^bdx=b-a\\ &(4)\int_{a}^{a}f(x)=0,\int_a^bf(x)dx=-\int_b^a{f(t)}dt \end{align}⼆、定积分的性质1.不等式性质\begin{align} &(1)保序性:若在区间[a,b]上f(x)\leqslant{g(x)},则\int_a^{b}{f(x)dx}\leqslant{\int_a^{b}{g(x)dx}}\\ &推论:\\ &(1)f(x)\geq0,\forall x\in[a,b],则\int_a^b{f(x)dx}\geq0\\ & (2)f(x)\geq0,\forall x\in[a,b],且[c,d]\subset[a,b],则\int_a^b{f(x)dx}\geq\int_c^d{f(x)dx}\\ &(3)|\int_a^bf(x)dx|\leq\int_a^b{|f(x)|dx}\\ &-|f|\leq f\leq |f|\Rightarrow \int_a^b-|f|\leq \int_a^bf\leq \int_a^b|f|\Rightarrow |\int_a^bf|\leq\int_a^b|f|\\ &如:x^2\leq x^3,x\in[0,1],则\int_0^1{x^3dx}\leq\int_0^1{x^2dx}\\ \end{align}\begin{align} &(4)(估值不等式)若M及m分别是f(x)在[a,b]上的最⼤值和最⼩值,\\ &则m(b-a)\leqslant{\int_a^{b}{f(x)dx}\leqslant{M(b-a)}}\\ \end{align}\begin{align} &证明:M(b-a)=S_{AFDC}=S_1+S_2+S_3\\ &m(b-a)=S_{EBDC}=S_3\\ &\int_a^{b}{f(x)dx}=S_{ADBC}=S_2+S_3\\ &S_3\leqslant{S_2+S_3\leqslant{S_1+S_2+S_3}}\\&\Leftrightarrow{m(b-a)\leqslant{\int_a^{b}{f(x)dx}\leqslant{M(b-a)}}}\\ \end{align}\begin{align} &(3)|\int_a^{b}{f(x)dx}|\leqslant{\int_a^{b}{|f(x)|dx}}\\ \end{align}2.中值定理\begin{align} &(1)若f(x)在[a,b]上连续,则\int_a^{b}{f(x)dx}=f(\xi)(b-a),(a<\xi<b)\\ &称\frac{1}{b-a}{\int_{a}^{b}{f(x)dx}为函数y=f(x)在区间[a,b]上的平均值}\\ &注解:F'(x)=f(x),F(b)-F(a)=\int_a^b{f(x)dx},f(\xi)(b-a)=F'(\xi)(b-a)\\ &(2)若f(x),g(x)在[a,b]上连续,g(x)不变号,则\int_{a}^{b}{f(x)g(x)dx}=f(\xi)\int_a^b{g(x)dx}\\ \end{align}注解:\begin{align} &\int_0^1{\frac{x}{\sin x}}dx\\ &f(x)=\begin{cases}&\frac{x}{\sin x},x\in[0,1]\\&1,x=0\\\end{cases}\\ &结论:有限处点的函数不影响定积分\\ &f(x)={\begin{cases}&x+1,[1,2]\\&x, [0,1]\\\end{cases}}\\ &\int_0^2{f(x)dx}=\int_0^1{xdx}+\int_1^2{(x+1)dx}\\ \end{align}\begin{align} &证明:\frac{1}{2}\leq\int_0^{\frac{1}{2}}\frac{1}{\sqrt{1-x^n}}dx\leq\frac{\pi}{6}\\ &估值积分:x\in[0,\frac{1}{2}]\\ &\\ \end{align}例题:\begin{align} &1.求极限\lim_{n\rightarrow \infty}\int_0^1{\frac{x^ne^x}{1+e^x}dx}\\ &根据积分容易知道0\leq\frac{x^ne^x}{1+e^x}\leq x^n,x\in[0,1],n\in N^*\\ &⽤积分的保号性\\&0\leq\int_0^1{\frac{x^ne^x}{1+e^x}dx}\leq \int_0^1{x^n}dx=\frac{1}{n+1}\\ &⽤夹逼定理\\ &\lim_{n\rightarrow\infty}\frac{1}{n+1}=0\\ &\lim_{n\rightarrow \infty}\int_0^1{\frac{x^ne^x}{1+e^x}dx}=0\\ \end{align}\begin{align} &2.设I_1=\int_0^{\frac{4}{\pi}}\frac{\tan x}{x}dx,I_2=\int_0^{\frac{4}{\pi}}\frac{x}{\tan x}dx则\\ &(A)I_1>I_2>1(B)1>I_1>I_2(C)I_2>I_1>1(D)1>I_2>I_1\\ &解:⽤保序性a<b,f(x)\leq g(x),\int_a^b f(x)\leq \int_a^b g(x)\\ &\tan x>x,x\in[0,\frac{\pi}{2}]\\ &\frac{\tan x}{x}>1>\frac{x}{\tan x},x\in[0,\frac{\pi}{4}]\\ &根据保序性\\ &\int_0^{\frac{\pi}{4}}\frac{\tan x}{x}dx>\int_0^{\frac{\pi}{4}}1dx=\frac{\pi}{4}>\int_0^{\frac{\pi}{4}}\frac{x}{\tan x},x\in[0,\frac{\pi}{4}]\\ &证:\int_0^{\frac{\pi}{4}}\frac{\tan x}{x}与1的关系\\ &积分中值定理\\ &\int_0^{\frac{\pi} {4}}\frac{\tan x}{x}=f(\xi)(\frac{\pi}{4}-0)=\frac{\tan \xi}{\xi}*\frac{\pi}{4},\xi\in{[0,\frac{\pi}{4}]}\\ &根据\frac{\tan x}{x}在x\in[0,\frac{\pi}{4}]上单调递增\\ &0<f(\xi)<\frac{4}{\pi},0<\int_0^{\frac{\pi} {4}}\frac{\tan x}{x}<1\\ &选(B)\\ \end{align}三、积分上限函数\begin{align} &如果f(x)在区间[a,b]上连续,则\Phi(x)=\int_a^b{f(t)dt}在[a,b]上可导,且\int_a^b{f(t)dt})\\ &(\int_a^xf(t)dt)'=f(x),(\int_a^{x^2}f(t)dt)'=f(x^2)*2x\\ &如果f(x)在区间[a,b]上连续,\phi_1(x),\phi_2(x)为可导函数,则\Phi(x)=\int_a^b{f(t)dt}在[a,b]上可导,且(\int_{\phi_1(x)}^{\phi_2(x)}{f(t)dt})'\\ &=f[\phi_2(x)]*\phi_2'(x)-f[\phi_1(x)]*\phi_1'(x)=(\int_{\phi_1(x)}^0{f(t)dt}+\int_{\phi_2(x)}^0{f(t)dt})'\\ &设函数f(x)在[-l,l]上连续,则\\ &如果f(x)为奇函数,那么\int_0^xf(t)dt必为偶函数\\ &如果f(x)为偶函数,那么\int_0^xf(t)dt必为奇函数\\\end{align}\begin{align} &任取x\in[a,b),取\Delta x>0,使x+\Delta x\in[a,b)\\ &\frac{\Delta F}{\Delta x}=\frac{F(x+\Delta x)-F(x)}{\Delta x}=\frac{1}{\Delta x}[\int_a^{x+\Delta x}f(t)dt-\int_a^xf(t)dt]=\frac{1} {\Delta x}\int_x^{x+\Delta x}f(t)dt=f(x+\sigma\Delta x)\rightarrow f(x)(\Delta x\rightarrow 0^+)\\ \end{align}推论:\begin{align} &若f(x)、\phi'(x)、\psi(x)于[a,b]上连续,则\\ &(1)(\int_a^{\phi(x)}f(t)dt)'=f(\phi(x))\phi'(x)\\ &(2)(\int_b^{\psi(x)}f(t)dt)'=-f(\psi(x))\psi'(x)\\ &(3)(\int_{\psi(x)}^{\phi(x)}f(t)dt)'=f(\phi(x))\phi'(x)-f(\psi(x))\psi'(x)\\ \end{align}例题\begin{align} &1.设函数f(x)在R上连续,且是奇函数,则其原函数均是偶函数.当f(x)是偶函数时?是周期函数?\\ &证:\\ &令F_0(x)\int_0^xf(t)dt,x\in R\\ &F_0(-x)=\int_0^{-x}f(t)dt\overset{t=-u} {=}\int_0^xf(-u)d(u)=\int_0^xf(u)du=F_0(x)\Rightarrow F_0(x)为偶函数\\ \end{align}\begin{align} &求变现积分导数\\ &(1)F(x)=\int_x^{e^{-x}}f(t)dt\\ &(2)F(x)=\int_0^{x^2}(x^2-t)f(t)dt\\ &(3)F(x)=\int_0^{x}f(x^2-t)dt\\ &(4)设函数y=y(x)由参数⽅程\begin{cases}&x=1+2t^2\\&y=\int_1^{1+2\ln t}\frac{e^u}{u}du\\\end{cases}(t>1),求\frac{d^2y}{dx^2}|_{x=9}\\ &解:\\ &(1)F(x)'=(\int_x^{e^{-x}}f(t)dt)'=f(e^{-x})(-e^{-x})-f(x)\\ &(2)F(x)'=(\int_0^{x^2}(x^2-t)f(t)dt)'=(\int_0^{x^2}x^2f(t)dt-\int_0^{x^2}tf(t)dt)'\\ &=2x\int_0^{x^2}f(t)dt+x^2f(x^2)2x-x^2f(x^2)2x=2x\int_0^{x^2}f(t)dt\\ &(3)F(x)=\int_0^{x}f(x^2-t)dt=-\frac{1}{2}\int_0^xf(x^2-t^2)d(x^2-t^2)\overset{u=x^2-t^2}{=}-\frac{1}{2}\int_0^xf(u)du\\ &F(x)'=\frac{1}{2}f(x^2)2x=xf(x^2)\\ &(4)\frac{dy}{dx}=\frac{\frac{e^{1+2\ln t}}{1+2\ln t}\frac{2}{t}}{4t^2}=\frac{e}{2(1+2\ln t)}\\ &\frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=\frac{e}{2}(-\frac{\frac{2}{t}}{(1+2\ln t)^2})\frac{1}{4t}\\ \end{align}\begin{align} &2.求变现积分的积分:\\ &(1)设f(x)=\int_0^x{\frac{\sin t}{\pi -t}dt},求\int_0^\pi{f(x)}dx\\ &解:\\ &\int_0^\pi{f(x)}dx=\int_0^{\pi}\int_0^x\frac{\sin t}{\pi -t}dt\space dx\\&=x\int_0^x\frac{\sin t}{\pi t}|_0^{\pi}-\int_0^{\pi}x\frac{\sin x}{\pi -x}dx\\ &=\pi\int_0^{\pi}\frac{\sin x}{\pi t}+\int_0^{\pi}\frac{[(\pi-x)-\pi]\sin x}{\pi-x}dx=\int_0^{\pi}\sin xdx=2\\ &(2)\lim_{x\rightarrow\infty}{\frac{(\int_0^x{e^{t^2}}dt)^2}{\int_0^xe^{2t^2}dt}}=\lim_{x\rightarrow\infty}{\frac{(2\int_0^{x}e^{t^2}dt)e^{x^2}}{e^{2x^2}}}=\lim_{x\rightarrow\infty}\frac{2\int_0^{x}e^{t^2}}{e^{x^2}}=\lim_{x\rightarrow\infty}\frac{1}{2x}=0\\ \end{align}\begin{align} &(3)设f(x)连续,\phi(x)=\int_0^1{f(tx)dt},且\lim_{x\rightarrow0}\frac{f(x)}{x}=A(常数),求\phi'(x)并讨论\phi'(x)在x=0处的连续性\\ &当x\neq0时\\ &令u=tx,t\in[0,1],u=tx\in[0,x],\phi(x)=\int_0^1f(tx)dt\overset{tx=u}{=}\int_0^x{f(u)d(\frac{u}{x})}=\frac{\int_0^xf(u)du}{x}\\ &\phi'(x)=\frac{xf(x)-\int_0^xf(u)du}{x^2}\\ &当x=0时,f(0)=0,\phi(0)=f(0)=0,\phi'(0)=\lim_{x\rightarrow0}\frac{\phi(x)\phi(0)}{x-0}=\lim_{x\rightarrow0}\frac{\int_0^xf(u)du}{x^2}=\lim_{x\rightarrow 0}\frac{f(x)}{2x}=\frac{1}{2}A\\&\lim_{x\rightarrow0}\phi'(x)=\lim_{x\rightarrow 0}{\frac{xf(x)-\int_0^xf(u)du}{x^2}}=A-\frac{1}{2}A=\frac{1}{2}A=\phi'(0)\Leftrightarrow\phi'(x)在x=0处连续\\ \end{align}注解:\begin{align} &注意变限积分进⾏正逆运算时上下限的映射\\ &例如F(x)=\int_0^x{f(t)dt}\overset{t=-u}{=}\int_{-a}^{x}f(-u)d(-u)\\ \end{align}四、定积分的计算1.⽜顿莱布尼茨公式\int_a^bf(x)dx=F(x)|_a^b=F(b)-F(a)2.换元积分法\int_a^bf(x)dx=\int_\alpha^\beta{f(\Phi(t))\Phi'(t)dt}3.分部积分法\int_a^budv=uv|_a^b-\int_a^bvdu4.奇偶性和周期性\begin{align} &直接使⽤奇偶性周期性定义证明\\ &(1)设f(x)为[-a,a]上的连续函数(a>0),则\\ &\int_{-a}{a}f(x)dx=\begin{cases}0,&f(x)奇函数\\2\int_0^af(x)dx,&f(x)偶函数\end{cases}\\ &证:\int_{-a}^0{f(x)dx}\overset{x=-t}{=}\int_0^a{f(-t)d(-t)}=-\int_{0}^{a}f(t)d(t)=-\int_0^a{f(x)dx}\\ \end{align}\begin{align} &(2)设f(x)是以T为周期的连续函数,则对\forall A,有\int_a^{a+T}f(x)=\int_0^T{f(x)dx}\\ &\int_a^{a+T}f(x)dx\overset{x=a+t}{=}\int_0^T{f(a+t)d(a+t)}=\int_0^{a+t}f(a+t)dt\\\end{align}\begin{align} &\Phi:x\in[a,b]\rightarrow y\in[c,d],令\frac{x-a}{b-a}=\frac{y-c}{d-c},y=c+\frac{d-c}{b-a}(x-a)\\ \end{align}\\5.奇偶函数积分后的奇偶性(奇偶函数求导后的奇偶性)1.奇偶函数求导后的奇偶性\begin{align} &(1)f(x)为奇函数:\\ &f(-x)=-f(x)\\ &\Leftrightarrow f'(-x)(-1)=-f'(x)\\ &\Leftrightarrow f'(-x)=f'(x)\\ &\Leftrightarrow f'(x)为偶函数\\ &(2)f(x)为偶函数:\\ &f(-x)=f(x)\\ &\Leftrightarrowf'(-x)=f'(x)\\ &\Leftrightarrow f'(-x)(-1)=f'(x)\\ &\Leftrightarrow f'(-x)=-f'(x)\\ &\Leftrightarrow f'(x)为奇函数\\ \end{align}2.奇偶函数求积分后的奇偶性\begin{align} &设F(x)为f(x)的原函数\\ &(1)f(x)为奇函数:\\ &f(-x)=-f(x)\\ &\Leftrightarrow \int f(-x)dx=-\int f(x)dx\\ &\Leftrightarrow -\int f(-x)d(-x)=-\int f(x)dx\\ &\Leftrightarrow F(-x)=F(x)\\&\Leftrightarrow F(x)为偶函数\\ &(2)f(x)为偶函数:\\ &f(-x)=f(x)\\ &\Leftrightarrow \int f(-x)dx=\int f(x)dx\\ &\Leftrightarrow -\int f(-x)d(-x)=\int f(x)dx\\ &\Leftrightarrow F(-x)=-F(x)\\&\Leftrightarrow F(x)为奇函数\\ \end{align}3.奇偶函数复合后的奇偶性\begin{align} &\exist f(x),g(x),F(x)=f(g(x))\\ &设f(x)为奇函数\\ &(1)g(x)为偶函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &(2)g(x)为奇函数\\ &F(-x)=f(g(-x))=f(-g(x))=-f(g(x))=-F(x),F(x)为奇函数\\ &设f(x)为偶函数\\ &(1)g(x)为奇函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &(2)g(x)为偶函数\\ &F(-x)=f(g(-x))=f(g(x))=F(x),F(x)为偶函数\\ &注解:外偶全偶,外奇奇偶\\\end{align}例题:\begin{align} &1.设M=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\frac{\sin x}{1+x^2}\cos^4xdx},N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{(\sin x^3+\cos^4x)dx},P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x^2\sin^3x-\cos^4x)dx,则\\ &(A)N<P<M(B)M<P<N(C)N<M<P(D)P<M<N\\ &根据对称性判断\\ &M:f_M(x)为奇函数,F_M(x)为偶函数\\ &N:N=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{(\sinx^3+\cos^4x)dx}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin ^3xdx+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos ^4xdx\\ &\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sin ^3xdx=0,\int_{-\frac{\pi}{2}}^{\frac{\pi} {2}}\cos ^4xdx\geq 0,\Rightarrow N\geq 0\\ &P:P=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x^2\sin^3x-\cos^4x)dx=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x^2\sin^3xdx-\int_{-\frac{\pi}{2}}^{\frac{\pi} {2}}\cos^4xdx\\ &\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}x^2\sin^3xdx=0,\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^4xdx\geq0,\Rightarrow P\leq0\\ &\Leftrightarrow P<M<N,\space\space选(D)\\\end{align}\begin{align} &2.设f(x)=\begin{cases}&kx,0\leq x\leq \frac{1}{2}a\\&c,\frac{1}{2}a<x\leq a\\\end{cases},求F(x)=\int_0^xf(t)dt,x\in[0,a]\\ &F(x)=\begin{cases}&\int_0^xktdt=\frac{1}{2}kt^2|_0^x=\frac{1}{2}kx^2,0\leq x\leq \frac{1}{2}a\\&\int_0^{\frac{1}{2}a}ktdt+\int_{\frac{1}{2}a}^c cdt=\frac{1}{8}ka^2+c^2-\frac{1}{2}ac,\frac{1}{2}a<x\leq a\\\end{cases}\\ \end{align} \begin{align} &3.证明:\int_0^{2\pi}f(|\cos x|)dx=4\int_0^{\frac{\pi}{2}}f(|\cos x|)dx\\ \end{align}6.已有公式\begin{align} &(1)\int_0^{\frac{\pi}{2}}{\sin^nxdx=\int_0^{\frac{\pi}{2}}\cos^n xdx=\begin{cases}\frac{n-1}{n}*\frac{n-3}{n-2}*...*\frac{1}{2}*\frac{\pi}{2},&n为偶数\\\frac{n-1}{n}*\frac{n-3}{n-2}*...*\frac{2}{3},&n为⼤于1的奇数\\\end{cases}}\\ &(2)\int_0^{\pi}xf(\sin x)dx=\frac{\pi}{2}\int_0^{\pi}f(\sin x)dx(f(x)为连续函数)\\ \end{align}7.与定积分有关的证明8.经典例题:例题1:\begin{align} &\lim_{n\rightarrow \infty}{(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n})}\\ &法1:夹逼定理+基本不等式\\ &\frac{1}{1+x}<\ln(x+1)<x\\ &令x=\frac{1}{n}\\ &得\frac{1}{n+1}=\frac{\frac{1}{n}}{\frac{1}{n}+1}<\ln(\frac{1}{n}+1)=\ln(n+1)-\ln(n)<\frac{1}{n}\\ &得\frac{1}{n+2}<ln(n+2)-ln(n+1)<\frac{1}{n+1}\\ &得\frac{1}{n+n}<\ln(n+n)-\ln(n+n-1)<\frac{1}{n+n-1}\\ &得\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}<ln(2n)-ln(n)=ln2\\ &法2:\lim_{n\rightarrow \infty}{(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n})}中\\ &\frac{1}{n+1}中n为主体,1为变体\\ &\frac{变体}{主体}\rightarrow^{n \rightarrow{\infty}}\begin{cases}0,次(夹逼定理)\\A\neq 0,同(定积分)\end{cases}\\ &\lim_{\lambda \rightarrow 0}{\sum_{i=1}^{n}{f(\xi_i)\Deltax_i}=\lim_{n\rightarrow \infty}\frac{1}{n}\sum_{i=1}^{n}f(\xi_i)(b-a)}=\int_0^1\frac{1}{1+x}=\ln(1+x)|_{0}^{1}=\ln2\\ \end{align}例题2\begin{align} &设f(x)=\int_0^{\pi}{\frac{\sin x}{\pi-t}dt},计算\int_0^{\pi}f(x)dx.\\ &法1:分部积分+换元法\\ &原式=xf(x)|_0^{\pi}-\int_0^{\pi}{\frac{x\sin x}{\pi-x}dx}\\ &=\pi{\int_0^{\pi}{\frac{\sin{t}}{\pi-t}dt}-\int_0^{\pi}{\frac{x\sin x}{\pi-x}}dx}\\ &=\int_0^{\pi}{\frac{(\pi-x)\sin x}{\pi-x}dx}=2\\ &法2:\\ &原式=\int_0^\pi{f(x)d(x-{\pi})}=(x-\pi)f(x)|_0^{\pi}-\int_0^{\pi}{\frac{(x-\pi)\sin x}{\pi-x}dx}=2\\ &法3:⼆重积分转化为累次积分\\ &原式=\int_0^{\pi}{\int_0^{\pi}\frac{x\sin t}{\pi-t}dt}dx\\ \end{align}例题3\begin{align} &法1:构造辅助函数\\ &根据题意f(1)=f(-1)=1,f(0)=-1\Rightarrow f(x)为偶函数,f最低点函数值为-1\\ &可以构造符合题意的辅助函数f(x)=2x^2-1\\ &法2:根据函数的性质直接判断 \end{align}例题4\begin{align} &因为\lim_{x\rightarrow 0}{\frac{ax-\sin x}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}}=c(c\neq 0)\\ &所以\lim_{x\rightarrow 0}{ax-\sin x}=0并且\lim_{x \rightarrow 0}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}=0\\ &化简,使⽤洛必达法则上下求导\\ &\lim_{x\rightarrow 0}{\frac{ax-\sin x}{\int_b^x{\frac{\ln{1+t^3}}{t}dt}}}=\lim_{x\rightarrow 0}{\frac{a-\cos x}{\frac{\ln{1+x^3}}{x}}}=\lim_{x\rightarrow 0}{\frac{a-\cos x}{x^2}}\\ &\Rightarrow a=1,c=\frac{1}{2},b=0\\ \end{align}反常积分⼀、⽆穷区间上的反常积分\begin{align} &(1)\int_a^{+\infty}{f(x)}dx=\lim_{t\rightarrow +\infty}{\int_{a}^{t}f(x)dx}\\ &(2)\int_{-\infty}^{b}{f(x)}dx=\lim_{t\rightarrow -\infty}{\int_{t}^{b}f(x)dx}\\ &(3)\int_{-\infty}^{0}{f(x)}dx和{\int_{0}^{+\infty}f(x)dx}都收敛,则{\int_{-\infty}^{+\infty}f(x)dx}收敛\\ &且{\int_{-\infty}^{+\infty}f(x)dx}=\int_{-\infty}^{0}{f(x)}dx+{\int_{0}^{+\infty}f(x)dx}\\ &如果其中⼀个发散,结果也发散\\ &常⽤结论:\int_a^{+\infty}{\frac{1}{x^p}dx}\begin{cases}&p>1,收敛\\&p\leq1 ,发散\\\end{cases},(a>0)\\ \end{align}⼆、⽆界函数的反常积分\begin{align} &如果函数f(x)在点a的任⼀领域内都⽆界,那么点a为函数f(x)的瑕点(也称为⽆界点).⽆界函数的反常积分也成为瑕积分\\ &(1)设函数f(x)在(a,b]上连续,点a为f(x)的瑕点.如果极限\lim_{t\rightarrow a^+}{\int_{t}^{b}{f(x)dx}}\exist,\\ &则称此极限为函数f(x)在区间[a,b]上的反常区间,记作\int_{a}^{b}f(x)dx,即\int_{a}^{b}f(x)dx=\lim_{t\rightarrow a^+}{\int_{t}^{b}{f(x)dx}}\\ &这时也称反常积分\int_a^b{f(x)dx}收敛,如果上述极限不存在,则反常积分\int_a^b{f(x)dx}发散\\ &(2)设函数f(x)在[a,b)上连续,点b为函数f(x)的瑕点,则可以类似定义函数f(x)在区间[a,b]上的反常积分\int_a^bf(x)dx=\lim_{t\rightarrow b^-}{\int_a^tf(x)dx}\\ &设函数f(x)在[a,b]上除点c(a<c<b)外连续,点c为函数f(x)的瑕点,如果反常积分\int_a^c{f(x)dx}和\int_c^b{f(x)dx}都收敛\\ &则称反常积分\int_a^b{f(x)dx}收敛,且\int_a^b{f(x)dx}=\int_a^c{f(x)dx}+\int_c^b{f(x)dx}\\ &如果⾄少⼀个发散,则称\int_a^b{f(x)dx}发散\\ &常⽤结论:\\ &\int_a^b{\frac{1}{(x-a)^p}}\begin{cases}&p<1,收敛\\&p\geq 1,发散\\\end{cases}\\ &\int_a^b{\frac{1}{(x-a)^p}}\begin{cases}&p<1,收敛\\&p\geq 1,发散\\\end{cases}\\ \end{align}三、例题例题1\begin{align} &\int\frac{1}{\ln^{\alpha}x}d(\ln x)\rightarrow^{\ln x=u}\int{\frac{du}{u^{\alpha+1}}}\begin{cases}&{\alpha-1< 1}\\&{\alpha+1>1}\\\end{cases}\Rightarrow 0<\alpha<2\\\end{align}定积分的应⽤⼀、⼏何应⽤1.平⾯图形的⾯积\begin{align} &(1)若平⾯域D由曲线y=f(x),y=g(x)(f(x)\geq g(x)),x=a,x=b(a<b)所围成,则平⾯域D的⾯积为\\ &S=\int_a^b{[f(x)-g(x)]dx}\\ &(2)若平⾯域D由曲线由\rho=\rho(\theta),\theta=\alpha,\theta=\beta(\alpha<\beta)所围成,则其⾯积为S=\frac{1}{2}\int_{\alpha}^{\beta}{\rho^2(\theta)d\theta} \end{align}2.旋转体的体积\begin{align} &若区域D由曲线y=f(x)(f(x)\geq 0)和直线x=a,x=b(0\leq a<b)及x轴所围成,则\\ &(1)区域D绕x轴旋转⼀周所得到的旋转体体积为V_x=\pi\int_a^b{f^2(x)dx}\\ &(2)区域D绕y轴旋转⼀周所得到的旋转体体积为V_y=2\pi\int_a^b{xf(x)dx}\\ &(3)区域D绕y=kx+b轴旋转⼀周所得到的旋转体体积为V=2\pi\int_D\int{r(x,y)d\sigma}\\ &例如:求y=x,y=x^2在第⼀象限的封闭图形绕转轴的体积\\ \end{align}\begin{align} &V_x=2\pi\int_D\int yd\sigma=2\pi\int_0^1{dx}\int_{x^2}^{x}ydy\\ &V_y=2\pi\int_D\int xd\sigma=2\pi\int_0^1{dx}\int_{x^2}^{x}xdy\\ &V_{x=1}=2\pi\int_D\int (1-x)d\sigma\\ &V_{y=2}=2\pi\int_D\int (2-y)d\sigma\\ \end{align}3.曲线弧长\begin{align} &(1)C:y=y(x),a\leq x\leq b,s=\int_a^b{\sqrt{1+y'^2}dx}\\ &(2)C:\begin{cases}&x=x(t)\\&y=y(t)\\\end{cases},\alpha \leq t\leq \beta,s=\int_{\alpha}^{\beta}{\sqrt{x'^2+y'^2}dx}\\ &(3)C:\rho=\rho(\theta),\alpha \leq \theta\leq \beta,s=\int_{\alpha}^{\beta}{\sqrt{\rho^2+\rho'^2}dx}\\ \end{align}4.旋转体侧⾯积\begin{align} &曲线y=f(x)(f(x)\geq 0)和直线x=a,x=b(0\leq a<b)及x轴所围成的区域绕x轴旋转所得到的旋转体的侧⾯积为\\ &S=2\pi\int_a^b{f(x)\sqrt{1+f'^2(x)}dx}\\ \end{align}⼆、物理应⽤1.压⼒2.变⼒做功3.引⼒(较少考)例题1\begin{align} &分析题意可知,该容器由x^2+y^2=1的圆和x^2+(y-1)^2=1的偏⼼圆组成\\ &根据图像的对称性可以避免不同表达式带来的困难\\ &对圆的⼩带⼦进⾏积分,带⼦长度为x,积分区间为-1到\frac{1}{2},\int_{-1}^{\frac{1}{2}}{\pi x^2dy}\\ &由于图像的对称性,将积分结果乘⼆\\ &(1)V=2\pi\int_{-1}^{\frac{1}{2}}{x^2}dy=2\pi\int_{-1}^{\frac{1}{2}}{(1-y^2)dy}=\frac{9\pi} {4}\\ \end{align}\begin{align} &(2)W=F*S=G*S=mg*S=\rho VSg\\ &上部为W_1=\int_{\frac{1}{2}}^{2}(2y-y^2)(2-y)dy*\rho g\\ &下部为W_2=\int^{\frac{1}{2}}_{-1}(1-y^2)(2-y)dy*\rho g\\ &W=W_1+W_2\\ \end{align}例题2\begin{align} &F_p=P*A=\rho gh*A\\ &将图像分为上部和下部,上部为矩形区域和下部的抛物线围成的⾯积区域,对其进⾏依次求解\\ &P_1=2\rho gh\int_1^{h+1}{h+1-y}dy=\rho gh^2\\ &P_2=2\rho gh\int_0^1{(h+1-y)\sqrt{y}dy=4\rho g(\frac{1}{3}h+\frac{2}{15})}\\ &\frac{P_1}{P_2}=\frac{4}{5}\Rightarrow h=2,h=-\frac{1}{3}(舍去) \end{align}。

简述不定积分与定积分的区别与联系

简述不定积分与定积分的区别与联系

简述不定积分与定积分的区别与联系
不定积分和定积分都是数学中重要的概念,它们之间具有密切的联系,又存在着本质的区别。

不定积分是一种有穷数量的数学表达式,它表达的是在几何上分割焦点或曲线之间有关面积、重量等物体的大小,而定积分是一种无穷数量的数学表达式,它表达的是一个函数在一定范围内的积分值。

首先,不定积分和定积分的区别在于,不定积分表达的是在几何上分割焦点或曲线之间有关面积、重量等物体的大小,而定积分则表达的是一个函数在一定范围内的积分值,它可以用来表达特定的函数在一定的区域内的某个特性,例如曲线的长度、图形的面积等。

其次,不定积分和定积分之间还存在本质的联系,即定积分可以用不定积分来计算,因为定积分是无穷数量的积分,可以用特定的函数逐步地分割成若干不定积分项。

因此,在求某函数的定积分值时,首先要先求出该函数的不定积分形式,然后再利用定积分的方法将不定积分求值,得出最后的定积分值。

最后,不定积分和定积分各有其特征,可以为求解函数提供独特的解决方案。

不定积分可以让我们更清晰地看到几何上分割焦点或曲线之间有关面积或重量等物体的大小,而定积分可以让我们更准确地得出一个特定函数在一定范围内的积分值,从而更清晰地表达特定函数在一定的区域内的某个特性,例如曲线的长度、图形的面积等。

综上所述,不定积分和定积分具有明显的区别和联系,不定积分表达的是在几何上分割焦点或曲线之间有关面积、重量等物体的大小,
而定积分则表达的是一个函数在一定范围内的积分值,并且它们之间存在本质的联系,即定积分可以用不定积分来计算。

由于不定积分和定积分的存在,我们可以更加准确地求出一个函数在一定范围内的特性,为日常数学计算提供广泛的解决方案。

不定积分与定积分的定义

不定积分与定积分的定义

不定积分与定积分的定义
(1)
定积分和不定积分是数学中一类常见的概念,它们都可以用来
估算某个面积以及积分。

不定积分又称为抽象积分,是用来估算某个
积分在某个空间内某个函数的值的方法,而定积分就是在一定的函数
和某个限定区间求这个函数的定积分的过程。

不定积分是用来估算函数在某段时间内所取值的积分,它可以用
来估算面积或者某函数在一定空间内的值。

它通常以d比如dx来表示,这里的d意味着对函数求偏导数,而dx表示求偏导时要将函数中的某
变量恒定,通过求偏导数可以估计函数在这一空间内的积分值。

定积分则是在某个限定区间内求函数的一个积分,它的定义是把
这一段区间分解成多个小的区间,积分的值是将每一小段的值加起来
的总和。

它的计算方法有很多种,比如梯形法、辛普森法、龙贝格法等,不同的计算方法都有适合的应用场景。

总的来说,定积分和不定积分都是一类比较常见的概念,它们都
可以用来估算某函数在某一空间内所取值的积分,不定积分用来估计
某函数在某时间段内平均取什么值,而定积分则是在某区间求这个函
数的定积分值,可以综合使用来估算一个完整的函数面积,从而求出
有意义的面积概念。

不定积分和定积分的区别和联系

不定积分和定积分的区别和联系

不定积分和定积分的区别和联系不定积分和定积分是微积分中非常重要的两个概念,它们的定义、性质、计算方法等方面有很多区别和联系。

下面我们将一一介绍。

1. 定义不同不定积分是函数f(x)的一个函数的集合,它们的导数都等于f(x)。

定积分是函数f(x)在[a,b]区间内的一个实数值,表示函数在该区间内的累计变化量或者说面积。

不定积分所代表的是函数f(x)的原函数的全体,即将f(x)在x轴上的所有点都往上移(或下移)同一个常数c得到的函数的集合。

定积分所代表的是函数f(x)在[a,b]区间上沿x轴方向“累计”的面积,它是二元函数f(x,y)在矩形区域[a,b]x[0,f(x)]上的积分,即∫[a,b]f(x)dx = lim Δx→0 ∑ f(xi)Δx3. 求解方法不同不定积分的求解方法主要是基于导数的运算法则来逆推出原函数,例如:- 常数函数、幂函数、指数函数、三角函数、反三角函数等的不定积分的求法;- 分部积分法、换元积分法、有理函数分解法等的不定积分的求法。

- 牛顿-莱布尼茨公式;- 几何解法:用长方形的面积逼近曲线所围成的面积,随着长方形数的增加,接近真实面积;- Riemann和与定积分;4. 性质不同不定积分的性质:- 常数积分:∫kdx = kx + C,其中C为常数;- 线性性质:①∫[a,b](u(x) + v(x))dx = ∫[a,b]u(x)dx + ∫[a,b]v(x)dx②∫[a,b]k·u(x)dx = k · ∫[a,b]u(x)dx,其中k为任意常数;- 逆运算性质:若F'(x) = f(x),则有∫f(x)dx = F(x) + C。

5. 联系不定积分和定积分之间,最基本的联系是通过牛顿-莱布尼茨公式:即定积分等于一个不定积分在区间[a,b]两个端点处的取值之差。

这说明,在一定条件下,定积分可以用于求出不定积分的取值。

另外,在一些问题中,也可以通过求不定积分来推导出定积分的结果。

不定积分与定积分的区别

不定积分与定积分的区别

不定积分与定积分的区别
不定积分和定积分的区别是定积分确切的说是一个数或者说是关于积分上下限的二元函数也可以成为二元运算,不定积分也可以看成是一种运算,但最后的结果不是一个数而是一类函数的集合,不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减。

1、定积分与不定积分的联系:不定积分与定积分在运算过程中算法基本相同,区别仅为定积分相对不定积分有上下限,运算时仅代入上下限计算便可。

不定积分的几何意义为曲线在"被积函数的整个定义域"内与X轴或Y轴围成的面积而定积分的几何意义为曲线在"积分区间"内与X轴或Y轴围成的面积。

2、定积分的特征:一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。

3、定积分的基本运算:是微分的逆运算,即知道了函数的导函数,反求原函数。

通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

主要分为定积分、不定积分以及其他积分。

积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。

定积分与不定积分的区别与联系

定积分与不定积分的区别与联系

定积分与不定积分的区别与联系大家好,今天我来给大家讲讲不定积分与定积分的区别与联系吧。

不定积分和定积分这两个名字想必大家都不陌生,可能有些人还比较熟悉,而另外一些人可能会觉得很陌生,甚至是闻所未闻。

其实他们就在你的身边,也许在某一天你就会用到它们。

定积分是数学中的基本概念,只有微积分学的内容中才会出现它的身影。

为了简化计算,通常把定积分记作c(n),这时的n可以取任意实数。

不过这种说法太抽象了,于是人们引入了极限的概念,对定积分进行近似求导,发现原来这样操作也是非常方便的。

不定积分又称原函数。

最常见的是不定积分的四种基本类型:第一种是如果f(x)在闭区间[-a,a]上可积且最大值等于f(a),那么就说f(x)=f(a),并且记作|f(x)|;(-a)就是闭区间的上限;如果f(x)=f(a),但f(a)不等于0,那么就说f(x)=0,并且记作|f(x)|。

第二种是设f(x)在区间[a,b]cap[-a,a]上可积,那么就说f(x)等于f(b),并且记作|f(x)|;如果f(x)=f(b),那么就说f(x)=f(a),并且记作|f(x)|。

第三种是设f(x)在区间[a,b]cap[-a,b]上可积,那么就说f(x)大于f(a),并且记作|f(x)|;如果f(x)>f(a),那么就说f(x)>f(b),并且记作|f(x)|。

第四种是设f(x)在区间[a,b]cap[-a,b]上可积,那么就说f(x)小于f(a),并且记作|f(x)|;如果f(x) <f(a),那么就说f(x)<f(b),并且记作|f(x)|。

对于定积分而言,即使是一个很小的常数都可以成为变量的增函数或者减函数。

不定积分呢?是不是比较简单一点?由于不定积分和定积分都是微积分里面的重要概念,所以在后续课程中我们会学习二者之间的联系和区别。

现在,我先来给大家解释一下什么叫做定积分吧!“定积分” [gPARAGRAPH3]说明:给定积分名称,若其上限和下限均有意义,则称为定积分;反之,若其上下限均无意义,则称为不定积分。

不定积分与定积分的计算

不定积分与定积分的计算

不定积分与定积分的计算1.不定积分1.1不定积分的概念原函数:若在区间 上)()(x f x F =',则称)(x F 是的一个原函数.原函数的个数: 若是在区间 上的一个原函数, 则对,都是在区间上的原函数;若也是在区间 上的原函数,则必有.可见,若,则的全体原函数所成集合为{│R}.原函数的存在性: 连续函数必有原函数. 不定积分:的带有任意常数项的原函数称为的不定积分。

记作⎰dx x f )(一个重要的原函数:若)(x f 在区间上连续,I a ∈,则⎰xa dt t f )(是的一个原函数。

1.2不定积分的计算(1)裂项积分法例1:C x x x dx x x dx x x dx x x ++-=++-=++-=++⎰⎰⎰arctan 23)121(121113222424。

例2:⎰⎰⎰+=+=dx x x dx xx x x x x dx )sec (csc sin cos sin cos sin cos 22222222 例3:222222(1)(1)(1)dx x x dx x x x x +-==++⎰⎰221arctan 1dx dx x C x x x -=--++⎰⎰(2)第一换元积分法有一些不定积分,将积分变量进行适当的变换后,就可利用基本积分表求出积分。

例如,求不定积分cos 2xdx ⎰,如果凑上一个常数因子2,使成为()11cos 2cos 2cos 2222xdx x xdx xd x =∙=⎰⎰⎰C x +=2sin 21 例4:()()()23222arctan 111dx d x d x x Cx x x x===++++⎰⎰⎰例5:2222111111111dx d dx x xx x x x ⎛⎫=-=-= ⎪⎝⎭++⎛⎫+ ⎪⎝⎭⎰⎰⎰22111211d x x ⎡⎤⎛⎫-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫+ ⎪⎝⎭⎰1222111112d x x -⎡⎤⎡⎤⎛⎫⎛⎫-++⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎰12221112112C Cx x ⎡⎤⎛⎫⎛⎫=-⋅++=-++⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦例6: ⎰⎰⎰+=====+=+=dt t tx d x x dx x x xx t 21arctan 21arctan 2)1(arctan⎰+=+==c x arctg c arctgt t d t 22)()()(arctan arctan 2.(3)第二换元积分法第二换元积分法用于解决被积函数带根式的不定积分,代换方法如下: 被积函数包含n b ax +,处理方法是令)(1,b t ax t b ax nn -==+; 被积函数包含)0(22>-a x a ,处理方法是令t x t x cos sin ==或;被积函数包含)0(22>+a x a ,处理方法是令t x tan =;被积函数包含)0(22>-a a x ,处理方法是令t x sec =; 例7:计算()220a x dx a ->⎰解:令sin ,,arcsin ,22xx a t t t a x a aππ=-≤≤=-≤≤则,且 22cos cos ,cos ,a x a t a t dx a tdt -===从而22a x dx -⎰=()222cos .cos cos 1cos 22a a t a tdt a tdt t dt ==+⎰⎰⎰=2221sin 2sin cos 2222a a a t t C t t t C ⎛⎫++=++ ⎪⎝⎭由图2.1知22sin cos xa x t t a a -==所以22a x dx -⎰=2222arcsin 22a x a x a x C a a a -+⋅+=222arcsin 22a x x a x C a +-+例8:计算()220dx a x a>-⎰解“令sec ,0sec 22x a t t t x a t πππ=<<<<=当或时,存在反函数arcsinxt a =。

不定积分与定积分的区别与联系

不定积分与定积分的区别与联系

不定积分与定积分的区别与联系
定积分和不定积分的区别:
1、定积分和不定积分计算的内容不同:不定积分计算的是原函数(得出的结果是一个式子),定积分计算的是具体的数值(得出的借给是一个具体的数字)。

2、定积分和不定积分计算的运算内容不同:不定积分是微分的逆运算,而定积分是建立在不定积分的基础上把值代进去相减积分。

积分,时一个积累起来的分数,现在网上,有很多的积分活动。

象各种电子邮箱,qq等。

在微积分中,积分是微分的逆运算,即知道了函数的导函数,反求原函数。

3、定积分和不定积分计算的应用不同:在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。

定积分和不定积分的联系:定积分与不定积分的运算法则相同,并且积分公式,计算方法也相同。

从牛顿-莱布尼茨公式看出,定积分与不定积分联系紧密,相互转换共用。

不定积分和定积分的区别

不定积分和定积分的区别

不定积分和定积分的区别
这两者是从不同角度定义的不同概念。

不定积分是一个函数的全体原函数,是一个函数族(函数的集合);定积分是与函数有关的一个和式的极限,是一个实数。

从概念而言,这两者是完全不同的、毫无关系的,或者说是风马牛不相及的。

但是牛顿-莱布尼兹公式却把它们联系起来,这就是这两位先驱者的伟大之处,虽然在今人看起来并没有多少深奥,倒反而有人会把这两个概念混淆在一起。

如果当初这两个概念也那么容易相混的话,大概等不到牛顿出生,微积分早被创立了。

牛顿-莱布尼兹公式告诉我们,定积分那个极限,等于被积函数的原函数在积分区间右端点的值减去左端点的值,定积分也就与原函数有了联系,定积分之所以叫定积分大概也是因为这个原因。

但是取这个名也有副作用,因为不定积分比定积分只多了一个“不”字,一些人就认为它们是一样的或者是稍有区别的,这大概也是今天这个问题被提出的原因。

建议学习高等数学的同学们,不要问不定积分与定积分有什么区别,而是把它们作为两个完全不同的概念分别学习好,再也不要搞混在一起。

不定积分和定积分的区别与联系

不定积分和定积分的区别与联系

不定积分和定积分的区别与联系积分是微分学中的一个重要概念,它是对于函数的导数。

微分学里常用两种基本定义:下限和上限。

不定积分与定积分有什么区别和联系呢?区别:定义域不同:一个是所有的实数,另一个是一切实数集合。

意义不同:在不定积分里面是函数的变化率,即求函数变化的快慢,在定积分里面是因变量的范围。

联系:不定积分就是微分,积分里面包含了微分。

也就是说,不定积分可以理解为微分的特殊情况。

公式不同:在不定积分里面主要是积分表达式,而在定积分里面包含了不定积分的计算公式。

由于函数f( x)=ax2+bx+c,且b, c均为实数,又由于其在y=0处的导数值等于零,所以,将上述导数取名为“不定积分”。

定义域为全体实数。

设f: C →R有界函数, f( x)=ax2+bx+c则称为f( x)在[-R, R]上的不定积分。

相反,设f: C→R无界函数, f( x)=x+ay+c则称为f( x)在[R, R]上的定积分。

1、不定积分的定义,比较抽象,如果学生没有微积分的基础,往往难以理解,通过例题讲解或结合定义直接计算更易于掌握;2、利用积分变换法及导数的概念求不定积分。

这样做有助于学生建立函数的表象,从而对不定积分有一个感性认识。

3、熟练地应用定积分的性质求不定积分。

4、掌握不定积分的换元法、分部积分法及有关的[gPARAGRAPH3]函数、泰勒公式等,便于进行简单的变量替换。

5、将两个以上不定积分组合起来进行简单的运算,求出积分和其他简单的几何形式,这些都是求不定积分的常用方法。

通过这些习题训练,可以提高学生应用定积分求不定积分的能力,使之形成技巧,并能加以推广。

6、不定积分计算常与变量替换配合使用。

1、不定积分的定义,比较抽象,如果学生没有微积分的基础,往往难以理解,通过例题讲解或结合定义直接计算更易于掌握;2、利用积分变换法及导数的概念求不定积分。

这样做有助于学生建立函数的表象,从而对不定积分有一个感性认识。

总结不定积分知识点

总结不定积分知识点

总结不定积分知识点一、不定积分的概念1.1 不定积分的定义在微积分中,不定积分是定积分的一个重要概念,它是函数的一个原函数。

给定函数f(x),如果存在函数F(x),使得F'(x) = f(x),则称F(x)是f(x)的一个不定积分,记作∫f(x) dx =F(x) + C,其中C为积分常数。

1.2 不定积分的符号表示不定积分一般用∫f(x) dx表示,其中f(x)为被积函数,dx为积分变量的微元,∫表示积分的符号。

1.3 不定积分的意义不定积分的意义在于求解函数的原函数。

也就是说,通过不定积分,我们可以得到函数f(x)的原函数F(x),使得F'(x) = f(x),并且这个原函数不唯一,因为在不定积分的结果中,需要加上一个常数C。

1.4 不定积分与定积分的关系不定积分与定积分是紧密相关的,它们之间的关系可以通过牛顿-莱布尼茨公式来描述。

牛顿-莱布尼茨公式表明,如果F(x)是f(x)的一个原函数,那么函数f(x)在区间[a, b]上的定积分可以表示为F(b) - F(a)。

二、不定积分的性质2.1 基本性质不定积分具有以下基本性质:(1)线性性质:即∫(af(x) + bg(x)) dx = a∫f(x) dx + b∫g(x) dx,其中a和b为常数。

(2)积分的可加性:即∫[a, b] f(x) dx = ∫[a, c] f(x) dx + ∫[c, b] f(x) dx。

(3)不定积分的性质:若F(x)是f(x)的一个原函数,则F(x) + C也是f(x)的原函数,其中C为任意常数。

2.2 函数的原函数和不定积分在求解不定积分时,我们需要寻找函数的原函数。

要注意的是,不一定所有的函数都有原函数,而且对于一些函数,它的原函数不唯一。

2.3 被积函数的连续性与不定积分存在性要进行不定积分,被积函数需要满足一定的连续性条件,例如在不定积分的区间上是连续的。

2.4 替换积分变量法在不定积分中,有时会通过替换积分变量的方法来简化积分计算。

不定积分与定积分的联系

不定积分与定积分的联系

不定积分与定积分的联系
定积分与不定积分是积分计算中重要的概念,它们描述不同的积分计算方式。

一、联系
1.它们都属于积分计算的范畴;
2.求出的都是函数的定义域的积分;
3.可以由极限的方法求出;
4.都是Riemann积分的推广。

二、区别
1.定积分是该函数定义域上的积分,即在定义域上的确定的一段积分,而不定积分则是该函数定义域上的一般积分;
2.定积分能够通过对函数定义域上的分段积分,通过极限计算求出,而不定积分则要求在参数化求出积分结果;
3.定积分计算上只要求求出函数定义域上的积分,而不定积分则要求求出各参数下函数的积分。

简述不定积分与定积分的联系与区别

简述不定积分与定积分的联系与区别

简述不定积分与定积分的联系与区别
1、不定积分是求导,而定积分是微分。

2、两者的本质区别在于:不定积分是变量之间的关系式;定积分则是函数自身的导数。

3、不定积分与定积分的联系:(1)定积分是不定积分的基础,它可以由已知的不定积分经过有限次运算后求出。

(2)不定积分也可以由已知的定积分经过运算得到。

4、不定积分与定积分的区别:(1)二者概念上的差异,不定积分一般指无穷限区域上的定积分;而定积分通常是一个数值。

(2)二者计算方法上的差异,定积分用的是微元法,而不定积分用的是换元法和分部积分法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分与不定积分定义
定积分和不定积分是高数中的重要概念,它们均有其特定的定义。

定积分是指将复杂函数拆分成一系列简单函数,然后将其求和计算出函数在某一区间上的总和。

它可以用来计算曲线下的面积、曲线的位移以及函数的变化等。

定积分是求取函数积分的一种方法,其定义为:若f(x)是定义在区间[a,b]上的连续
函数,则把[a,b]上f(x)的积分称为定积分,记作:∫abf(x)dx不
定积分是指在求取函数的积分时,没有给定区间,即没有给定函数的定义域,而是由求积分的过程中求出区间。

不定积分是求取函数积分的一种方法,其定义为:若f(x)是定义在实数集
上的连续函数,则把f(x)的不定积分称为不定积分,记作:
∫f(x)dx定积分和不定积分的应用十分广泛,它们在数学、物理、经济学等领域都有着重要的作用。

在求解复杂函数的积分问题时,定积分和不定积分可以通过求取函数的定积分和不定积分等方法来解决。

定积分和不定积分是高数中的重要概念,它们的定义和应用都十分广泛,可以用来解决多种复杂函数的积分问题。

在研究高数中,要深入研究定积分和不定积分的定义和应用,以便更好地理解复杂函数的求积分问题。

相关文档
最新文档