魔芋葡甘聚糖基水凝胶的研究进展

合集下载

魔芋葡甘聚糖在医学中的研究进展如何?KGM在生物医学材料方面的应用有哪些? ...

魔芋葡甘聚糖在医学中的研究进展如何?KGM在生物医学材料方面的应用有哪些? ...

魔芋葡甘聚糖在医学中的研究进展如何?KGM在生物医学材料方面的应用有哪些? ...魔芋葡甘聚糖( konjac glucomanan,KGM)是从魔芋(amorphophallus konjac)块茎中提取的多糖,是一种低热量、难消化的膳食纤维,具有降血糖、降血脂、减肥、抗肿瘤、增强免疫和润肠通便等特殊作用。

魔芋葡甘聚糖具有良好的膨胀性、乳化性、生物降解性、凝胶特性及pH敏感性,在食品工业及生物医学材料方面有着广泛的应用,本文就魔芋葡甘聚糖的药理作用及生物医学材料方面的应用作一综述。

l KCM的结构KGM是由D.葡萄糖和D.甘露糖通过β-1,4糖苷键以1:1.4-1:1.6摩尔比连接组成的复合多糖(图1),其分子结构中,在甘露糖C3的位置上存在一些支链结构,主链上存在着5%。

10%以酯键结合的乙酰基乙酰基团与魔芋胶有着密切联系,在碱性条件下KCM 会发生脱乙酰反应,利于分子间氢键的形成,使KGM 部分结晶,形成具有三维结构的凝胶。

因此,通过改变pH可调控KGM凝胶促发时间和凝胶程度,利用这种性能可以改变KGM的生物降解性、机械强度。

KCM不同的结构使其具有不同的生物功能和活性,广泛应用于生物医学材料的研发制备。

2 KGM在生物医学材料方面的应用2.1药物缓释用魔芋葡甘聚糖/海藻酸钠/氧化石墨烯( KGM/SA/GO)制备的一种pH敏感的水凝胶,利用氧化石墨烯作为抗癌药物负载和释放的药物结合效应器,抗癌药物5-氟尿嘧啶(5-FU)复合KGM/SA/GO-3水凝胶后,药物释放量为38.02%( pH=1.2,>6h)、84.19%(pH=6.8,>12h),该水凝胶能够较好地控制5-FU的释放。

另外κ-卡拉胶与魔芋胶混合作为骨科支架材料,并且能够缓释药物,对水溶性药物盐酸青藤碱具有良好的体外缓释特性。

在不同的溶液介质中,药物的释放速度不同(0.lmmol/L盐酸溶液>纯水> pH=6.8PBS),缓释是以扩散和溶蚀释药相结合的方式进行‘列。

魔芋葡甘聚糖理化性质及化学改性现状_李娜

魔芋葡甘聚糖理化性质及化学改性现状_李娜

述 食品工业科技
能脱掉乙酰基团, 脱 9:; 在温和的碱性条件下, 乙酰基后的葡甘聚糖有利于分子间羟基的氢键 相 互 交联及成膜性能的改变。 林 晓 艳 *!!, 等 对 9:; 去 乙 酰 基 改 性 的 条 件 及 改 性产 物 的 成 膜 特 性 进 行 了 研 究 : 魔 芋 精 粉 浓 度 !" , (<=) 制膜效果较好, 耐折度及 8% ( 调节 >= 为 !) 时, 抗张强度均有很大程度提高。 当 环 境 的 >= 超 过 !( 时, 去乙酰基的溶胶中会出现絮状物, 即发生了溶胶 向凝胶的转变。
!"#$%&’$(!"#$ %&’#()* +*,*&%)#-*$ ’"* &*(*,’ %./%,(*0*,’ #, ’"* &*$*%&(" 12 ("*0#(%) 01.#2#(%’#1, %,. 3&13*&’4 12 5678 567 "%$ &"*1)1+#(%) 3&13*&’49 +*) 3&13*&’4 %,. :%’*& ;$1)<=#)#’48 >"*0#(%) 01.#2#(%’#1, #,()<.#,+ 1?4+*,%’#1,9 *$’*&#249 +&%2’ (131)40*&#-%’#1, %,. $1 1,8 @#,%))9 ’"* *?3)1#’%’#1, .#&*(’#1, 12 567 #, ’"* 2<’<&* :%$ *?3*(’*.8 )*+ ,-%.#(!"#$%& ’()&"*%##%# A567BC +&%2’ (131)40*&#-%’#1,C (1<3)*’#,+C *$’*&#24C 1?4+*,%’#1,

魔芋葡甘聚糖研究进展

魔芋葡甘聚糖研究进展

魔芋葡甘聚糖研究进展
罗清楠;赵国华;庞杰;吴春华;邓海临
【期刊名称】《食品与发酵工业》
【年(卷),期】2011(037)006
【摘要】魔芋葡甘聚糖(KGM)是魔芋的主要功能活性成分,因其特殊的结构而具有丰富的生物活性功能,已成为多糖研究领域的热点之一。

文中综述了KGM的结构特性、理化特性、生理活性功能,并对其应用性进行了探讨,提出了目前研究中存在的问题,并对未来的研究方向进行了展望。

【总页数】5页(P137-140,145)
【作者】罗清楠;赵国华;庞杰;吴春华;邓海临
【作者单位】西南大学食品科学学院,重庆400715;福建省福建农林大学食品科学学院,福建福州350002;西南大学食品科学学院,重庆400715;重庆市农产品加工技术重点实验室,重庆400715;福建省福建农林大学食品科学学院,福建福州350002;福建省福建农林大学食品科学学院,福建福州350002;福建省福建农林大学食品科学学院,福建福州350002
【正文语种】中文
【中图分类】TS218
【相关文献】
1.魔芋葡甘聚糖基水凝胶的研究进展 [J], 刘瑞雪;李义梦;樊晓敏;李迎博;张浩然
2.魔芋葡甘聚糖基可食膜的成膜机理研究进展 [J], 向飞; 吴考; 肖满; 倪学文
3.魔芋葡甘聚糖在酸奶中应用及其研究进展 [J], 薛海波;吴栋平;许琼;朱玉英;程初林
4.基于魔芋葡甘聚糖与牛奶蛋白相互作用的乳体系稳定性研究进展 [J], 薛海波;许琼;朱玉英;程初林;吴栋平;韩余新
5.魔芋葡甘聚糖基抗菌活性包装膜的研究进展 [J], 夏玉婷;向飞;吴考;倪学文
因版权原因,仅展示原文概要,查看原文内容请购买。

魔芋葡甘聚糖凝胶机理研究

魔芋葡甘聚糖凝胶机理研究

魔芋葡甘聚糖凝胶机理研究李 斌,谢笔钧(华中农业大学食品科技系天然产物化学研究室,武汉 430070)摘要:利用气相色谱、GPC 、红外光谱、DSC 、X 2射线衍射图谱、透射电镜等分析方法表征了魔芋葡甘聚糖凝胶前后分子构象的变化。

结果表明,魔芋葡甘聚糖分子无支链,凝胶后分子链单糖组成和连接方式无变化,分子量变化不大,凝胶干燥后的粉末样品产生明显的结晶区,水溶胶中葡甘聚糖从伸展的空心双螺旋结构变为凝胶交叉缠结结构,提出了魔芋葡甘聚糖的凝胶机理。

关键词:魔芋葡甘聚糖;构象;凝胶Study on the Gelatin Mechanism of K onjac G lucomannansL I Bin ,XIE Bi 2jun(Natural Product Chemistry Research L aboratory ,Food Science Department of Huazhong A gricultural University ,W uhan 430070)Abstract :The transformation of conformation fore 2and 2after gelatin of konjac glucomannans (KGM )was studied by using GC ,GPC ,F T 2IR ,DSC ,XRD and TEM.The result showed that the molecule of KGM has no branches ,the chain ’monose compose and connect way has no change ,the transformation of molecule weight is much little ,and its drying powder sample brings newly evident crystal section.The vacancy di 2spirality struc 2ture of KGM in hydrosol changes from stretch to intercross and entwist after gelatin.As a result ,bring forward mechanism of gelatin of konjac glucomannans.Key words :K onjac glucomannans ;Conformation ;G elatin收稿日期:2001212211基金项目:湖北省“十五”重点科技攻关项目(2001AA207B01)作者简介:李 斌(19722),男,安徽来安人,博士,主要从事食品与天然产物化学研究工作。

魔芋葡甘聚糖功能研究进展

魔芋葡甘聚糖功能研究进展

魔芋葡甘聚糖功能研究进展作者:韩端丹王格格来源:《新生代·下半月》2018年第11期【摘要】:在植物分类中魔芋是天南星科(Araceae)中魔芋属(Amorphophallus Bl.ex Decne)的草本植物,它的主要成分为魔芋的葡甘聚糖,其简称为KMG,是一种可食用植物纤维,不易被消化。

KMG具有复杂的结构,因而其具有多种生理功能,如其具有热量极低、黏度大、吸水性强、膨胀率高的特点,所以葡甘聚糖在减肥、均衡饮食、干扰癌细胞代谢、洁胃、排毒通便、造纸、瓷器上有很大功效。

因此其在食品行业、医药行业、农业、以及工业等领域中具有广泛的发展前景。

【关键词】:魔芋葡甘聚糖理化性质功能进展魔芋葡甘聚糖由于具有良好的理化性质,因此一度成为研究热点,对其功能研究较多但大多集中于其降脂降血糖以及减肥作用,对其他功能研究甚少。

国外对其大分子研究较多,基于对其一级结构较清楚的现状,现今国内外多集中于对其进行改造,研究其改造后的特性,以便适用于更多领域。

魔芋葡甘聚糖具有以下理化性质及其功能。

1.1 热量极低KGM是一种优良的高纤维膳食,与其他膳食纤维一样难以消化,但其有独特的性质即热量低,而且还是一种可发酵的能水溶性的膳食纤维。

食用魔芋后其会在胃中吸水膨胀,形成粘性较大的魔芋胶溶液,延长胃的排空时间,延缓人体产生饥饿感,使人体摄入食物量减少,减轻体重,因此其非常有利于减肥人员食用。

不光这样,KGM之所以能达到减少体内脂肪目的,是通过和胆固醇在消化道内相结合,然后有效的减少胆固醇和脂肪等在消化道的吸收,通过自身吸收胆酸,减少胆酸含量,这样就可以降低回肠粘膜的主动运转,阻断胆汁酸在肝肠中的自主循环,通过这样一系列的抑制作用,肝脂含量降低,内固醇排出量增加,体内脂肪含量也就随之降低。

KGM可用来制作魔芋葡甘聚糖胶囊而成为保健减肥产品服用,或者进一步成为降血糖辅助药物食用。

魔芋葡甘聚糖因为其特性不能被消化酶所水解,可是在腸道内因其可被大肠微生物所吸收发酵所产生的低能量被民众认为是种有益身体健康的膳食纤维。

魔芋葡甘聚糖基热可逆凝胶研究进展

魔芋葡甘聚糖基热可逆凝胶研究进展

魔芋葡甘聚糖基热可逆凝胶研究进展
石文娟;苗丽坤;孙炜炜;乔冬玲;姜发堂;陈胜
【期刊名称】《中国食品学报》
【年(卷),期】2022(22)5
【摘要】魔芋葡甘聚糖(KGM)凝胶具有良好的生物降解性、生物相容性,以及环境敏感性、保水性、吸水性、抗菌性等特殊性能,被广泛应用于食品、医药、化工、
功能材料领域等。

然而,传统魔芋葡甘聚糖凝胶为单一组分凝胶,具有如低内聚性、
较弱的机械性能和结构完整性、对加工和环境条件的稳定性不足、外观不可接受、保质期短以及明显的脱水收缩等局限性。

魔芋葡甘聚糖基热可逆凝胶是将魔芋葡甘聚糖与其它多糖共混形成的,分子之间通过很强的协同相互作用形成稳定性更好、
弹性更高的凝胶。

本文从分子组装的角度综述了魔芋葡甘聚糖分别与卡拉胶、琼脂、纤维素衍生物、结冷胶、黄原胶和刺槐豆胶等多糖形成热可逆凝胶的协同增效作用,旨在为改善魔芋葡甘聚糖基热可逆凝胶的强度和体系的稳定性,扩大其应用范围提
供参考。

【总页数】12页(P422-433)
【作者】石文娟;苗丽坤;孙炜炜;乔冬玲;姜发堂;陈胜
【作者单位】湖北工业大学生物工程与食品学院;武汉黄鹤楼新材料科技开发有限
公司
【正文语种】中文
【中图分类】TS2
【相关文献】
1.魔芋葡甘聚糖基水凝胶的研究进展
2.魔芋葡甘聚糖基干凝胶的制备与性能表征
3.魔芋葡甘聚糖基干凝胶的制备与性能表征
4.魔芋葡甘聚糖基水凝胶的研究进展
5.可逆性魔芋葡甘聚糖凝胶的制备工艺
因版权原因,仅展示原文概要,查看原文内容请购买。

魔芋葡甘聚糖/聚二甲基二烯丙基氯化铵互穿聚合物网络水凝胶的制备与性能研究

魔芋葡甘聚糖/聚二甲基二烯丙基氯化铵互穿聚合物网络水凝胶的制备与性能研究

研究采用连续 IN法 ,以魔芋葡甘聚糖( G , P K M) 一种具有 良好的生物相容性、可降解性 的水溶性多糖 ,和 P A MA D D C作为网络基质 , 进行 IN水凝胶 的制备 , P 表征其形貌 , 探讨其在不同条件下的溶胀行为, 为开 发新 型 智能材 料 提供基 础 数据 .
于 8时 ,则呈 下降趋 势 . 关 键词 :KG P DMA M/ DA c;I N;凝胶 ;溶 胀 P
中图分 类号 : 3 -; Q 1. 06 1 T 3 66 2
文献 标 志码0 1 50 3 —3 1 0 .842 1) —0 40 0
图 1 未 交联 P DMAC 和 IN 型 的 KG P AD C 的 S M 图片 . 者是 A,后 者 为 B 是 DA P M/D MA E 前 .可 以看
出 , 交联 P DMAC 的表 面平滑 ,IN 型水凝 胶 的表 面有 密集 的 凸 凹形 貌 . 表 明成功 制备 了 IN型 的 未 DA P 这 P K GM/DA P DMA C水凝 胶 .实验 过程 中发 现 ,前 者在 空气 中放 置 1 钟后 触摸 ,有 发 粘 的感 觉 ,后 者则 没 0分 有 . 表 明 ,IN 凝 胶化 作用 改 善 了 P ADMAC的 吸湿性 . 这 P D
摘要 :以连续互穿聚合物 网络( N) I 方法制备魔芋葡甘聚糖(G / P K M) 聚二甲基二烯丙基氯化铵 (DA P DMA 水 凝胶 .用扫描 电镜 (E 表征 形 貌 ,并探 讨其在 不 同浓度 和 不 同 p 值 的 Na 溶 C) S M) H C1 液 中的溶胀 行 为.实验 表 明 KG P A M/ D DMAc水凝胶 具 有 密集 的表 面凸 凹的 IN 分子 结构 特征 ; P 该 IN 水凝胶 的 溶胀 率随 着 Na 1 液浓度 的增 加 而下 降 ,随 p 值 增加 而缓 慢增 加 ,当 p 大 P C溶 H H

魔芋葡甘聚糖的研究进展及应用现状综述_刘楠

魔芋葡甘聚糖的研究进展及应用现状综述_刘楠

魔芋葡甘聚糖的研究进展及应用现状综述刘楠1,杨芳1,2(1.安康学院农学与生命科学院,陕西安康725000;2.陕西省富硒食品工程实验室,陕西安康725000)摘要:魔芋葡甘聚糖是魔芋的主要经济成分。

近年来,关于魔芋葡甘聚糖的研究与应用都有很大进展。

本文综述了魔芋葡甘聚糖在化学结构、理化性质和提纯等方面的研究进展,及其在医学、生物材料、食品等领域的应用现状,并对魔芋葡甘聚糖的应用前景提出了展望。

关键词:魔芋葡甘聚糖;研究进展;应用现状中图分类号:Q53文献标识码:A 文章编号:1674-0092(2011)04-0095-042011年8月第23卷第4期安康学院学报Journal of Ankang University Aug.2011Vol.23No.4收稿日期:2011-02-25基金项目:安康学院大学生科技专项(2010akxydxs22)作者简介:刘楠,女,陕西西安人,安康学院农学与生命科学院本科生,主要从事糖生物学研究;杨芳,女,陕西安康人,安康学院农学与生命科学院讲师,硕士,主要从事糖生物学研究。

魔芋葡甘聚糖(KGM )是魔芋块茎中所含的中型非离子性线性多糖,是由葡萄糖和甘露糖以β-1,4糖苷键结合形成的高分子化合物,是一种优良的膳食纤维,具亲水性,凝胶性,粘结性,可食性,抗菌性,成膜性等特性。

1魔芋葡甘聚糖的研究现状1.1魔芋葡甘聚糖的化学结构魔芋葡甘聚糖是由D-葡萄糖和D-甘露糖约按1:1.6(mol/mol )的比例,以β-1,4-糖苷键连接的高分子多糖[1],在主链甘露糖的C3位上存在着以β-1,3键结合的支链结构。

天然的魔芋葡甘聚糖是由放射状排列的胶束组成,具有与肝素相近似的骨架结构,单体分子中C2,C3,C6位上的-OH ,均具有较强的反应活性,其平均分子量为1.1×106。

1.2魔芋葡甘聚糖的理化性质魔芋葡甘聚糖具有优良的束水性、胶凝性、增稠性、粘结性、可逆性、悬浮性、成膜性、赋味性等多种特性,被广泛应用于医学,食品,生物学等各个领域。

魔芋葡甘聚糖的改性与应用研究进展

魔芋葡甘聚糖的改性与应用研究进展
20 08年 9 月
广西师范学院学报( 自然科学版 ) J un l f un x T ahr E uainU i ri ( aua c ne dt n ora o a gi eces d ct nv sy N t l i c io ) G o e t r Se E i
Sp 2 0 e .0 8 V i 5 N . o. o3 2
中图 分 类 号 :I 1r C 3. l 6 文献标识码 : A
魔 芋葡甘聚 糖 ( ojc lcmann K M) K na uo n a , G 是一种水 溶性非离 子型 高分子 复合 多糖 , g 主要 来源 于魔芋 ( mopohl s ojc的提取 物 , 平均分 子量 因产地 、 A rhp au na) l k 其 品种 、 工方法不 同 而有差 异 , 多在 加 大 1 数量级 . M 具有一 般聚 多糖 的普遍 特性 , 0 KG 吸水性强 、 在水 中溶胀 度高 、 溶胶 的流 变性 和稳定 性差 , 限制 了它 的进一步开 发应用 . 但是 , G 分 子链上存 在 大量活 泼 的羟基 , K M 使之 易于 发生 各种 化学 反应 , 提供 了广 阔的结构修 饰空 间 , 而且 KG 及 其 衍生 物具 有 良好 的生 物 降解 性 、 物相 容 性和 生物 活性 , M 生
胶 化作用 , 成热可 逆凝胶 . 在氢 氧化钠 、 酸钾 、 酸钾 等碱性 条件 下加 热 , 形 但 碳 磷 则形 成热不 可逆 凝胶 .
1 5 结 晶性 . K M 分子结构 中因有大量羟基发生氢键作用而产生结晶 , G 其结晶形态主要有甘露糖 I 和甘露糖 I I 两种结晶变体. 天然 的 K M 多为甘露糖 I , G 型 即脱水多 晶型, 晶体 中不存 在水分子 ; 经过碱处理 的 K M 多为甘露糖 I 型, G I 即水合多晶型, 晶体中结合有水分子 ; 高分子量的 K M 多 以甘露糖 I形态存 G I 在, 而低分子量的 K M 多以甘露糖 I G 形态存在. 这些结晶变体的形成取决于 K M 的大分子结构和制 G 备条件 ( 温度 、 质极 性等 ) 介 .

魔芋葡甘露聚糖药理作用研究进展

魔芋葡甘露聚糖药理作用研究进展

组 和 治 疗 组 , 鼠血 清 TG 和 TC水 平 、 细 胞 脂 肪 蛮 性 度 大 肝 和范 围 明 显低 于模 型 组 , 使 A T 水 平 明 显 降 低 , 咧 KGM 也 L 说
7 8
对 实 验性 脂 肪 肝 有 预 防 和 治 疗 作 用 。
3 降 血 糖 作 用
摘要 : 目的 为 更 好 地 开发 利 用 魔 芋 葡 甘 露 聚 糖 , 述 魔 芋 葡 综
健 康 与 生 命 安 危 , 此 , 订 严 格 的 质量 标 准 势 在 必 行 。笔 者 因 制 对 丹 参 的 质 量 标 准 影 响 因 素 加 以 总 结 , 丹 参 药 材 及 含 丹 参 为 的制剂的质量标准制订提供参考 。
[5 李 磊 , 先 春 , 1] 黎 王小 如 . 参 品质 鉴定 和评 价 的 HP C指 丹 L 纹条 形码 技 术 [] 中草 药 ,0 3 3 ( ) 7 . J. 20 ,4 7 :9
较 高脂 组 降低 2 , 9 TC降 低 3 , 2 HDLC升 商 3 , 商 借 — 5 组 比较 P< o 0 , 示 魔 芋 低 聚 糖 有 降 脂 和 降 素 氮 作 用 . 1提 有 研 究 观 察 到 大 鼠 饲 料 含 质 量 分 数 5 和 1 魔 芋 能 明 显 降 0
有 少 量 乙 酰 基 存 在 , 对 分 子 质 量 为 2 ~ 2 0万 D 。笔 者 就 相 0 0 a KGM 在 诸 多 功 效 中 的药 理作 用 作 一 综 述 。
1 抗 癌 作 用
_] 时 珍 国 医 国药 ,0 9 2 () 4 24 3 J. 2 0 ,O 2 :2—2 . [] 李 磊 , 广 林 , rn C 丹 参 抗 氧 化 成 分 及 其 分 布 特 性 6 胡 F a kS .

魔芋葡甘聚糖功能研究进展_谢建华

魔芋葡甘聚糖功能研究进展_谢建华

!"# 的衍生物。如从酶解魔芋干粉中提取分子量在
采用吡啶 ’ 氯 磺 酸 35** 左右的葡甘露低聚糖 A=BCD, 法制备了它的硫酸酯衍生物 $’A=BCD, 本身无抗单纯 (9$E’& ) 活 性 的 A=BCD 硫 酸 酯 化 后 产 疱疹病毒 & 型 生了抗病毒活性, 5**/F***$G H IJ 的 $’A=BCD 能 很 好 地 抑 制 9$E ’& 引 起 的 EKLC 细 胞 病 变 , 而 在
葡甘聚糖 (012 ) 是一种优良的膳食纤维 , 由 !*
3*葡萄糖和 !*3*甘露糖以 %4%&+ 或 %4%&+/ 的摩尔比
以 !*% , . 吡喃糖苷键结合构成的,在主链甘糖的 5( 位上存在通过 !*% , 每 (# 个糖 ( 键结合的支链结构, 残基上有 ( 个左右的支链,支链只有几个残基的长 度, 并且每 %/ 个糖残基上有一个乙酰基团。 012 具 有与肝素相近似的骨架结构, 其单体分子中 5#、 5(、 5+ 位 上 的 *67, 均 具 有 较 强 的 反 应 活 性 8%9, 其分子结构 见图 % 。 012 的这种结构特点使它具有多方面的生 理活性和药理活性。
$%’
葡甘聚糖的空间结构对生物活性的影响
!"# 位 于 侧 链 的 % ’,’#-M 在 分 子 抗 肿 瘤 活 性
!""# 年第 $! 期
!"!
食品工业科技


!"#$%"$ &%’ ($")%*+*,- *. /**’ 0%’1234有报道, 大鼠长期食用 !"# 可延缓脑神经胶质 细胞、 心肌细胞和大中动脉内膜皮细胞的老化进程, 降低 分析可能的机理为: !"# 减少胆酸的肠肝循环, 了胆固醇的浓度,这样就防止了高脂血症对内 皮 细 胞的损伤,减少了构成脂褐素 (细胞老化的重 要 标 志) 的主要成分, 起到延缓老化的作用。

魔芋功能活性成分的研究进展_吴春华

魔芋功能活性成分的研究进展_吴春华
CH2OOCCH3 H H OH O OH H H H H OH O H H OH
G-M……Ac
M = 甘露糖 G = 葡萄糖 Ac =乙酰基, CH3CO x = 聚合度
CH2OH O H H O
图1
KGM 结构示意图
近年来,近年来有关研究应用现代仪器分析与计算机分子模拟相结合的方法系统研究了葡甘聚糖分子 链结构特征。 李斌、谢笔钧采用采用原子力显微镜及透射电镜等现代分析手段研究KGM的分子链形态,认为KGM 为伸展的有一定刚性的半屈曲性直链分子[14]。Yui,T等利用红外光谱等光谱分析方法发现KGM具有二折螺 旋结构[15]。庞杰等应用计算机分子模拟方法模拟出了KGM的可能构象,图2所示为聚合度为1时KGM的稳 定构象[16]。
Research Advances in Functional Active Components of Amurphophallus Konjac
WU Chunhua, PANG Jie
(College of Food science, Fujian Agriculture and Forestry University, Fuzhou 350002,China) Abstract: Konjac glucomannan, is the main functional active component of konjac, it is rich of biological activity for its special structure and turns out to be one of research focuses in polysaccharide field. In this paper, the progress in the research of KGM were reviewed, including chemical composition and structure, physical and chemical properties, physiological activity, and the future application of KGM was discussed as well. The present research problems were suggested and the future research directions were forecasted, and then provide theoretical foundation and scientific basis for the deep use of KGM. Keywords: konjac glucomannan, structure, physical and chemical properties, physiological activity, application 魔芋(Amurphophallus konjac)是天南星科魔芋属(Amorphnphallus Blame)单子叶植物纲多年生宿茎草本 植物,别名“蒟蒻”。魔芋块茎可作为中医药,具有较高的药用、食用价值,其主要功能活性成分是魔芋葡 甘聚糖(konjac glucomannan,简称 KGM)[1-2]。KGM 是一种功能性多糖,以其独特的结构,理化性质和生 物活性广泛应用于食品、医疗、卫生、环保等领域,尤其是改性后 KGM 应用更加广泛,可开发出多种的 新型功能材料[3-5]。 近年来能源危机、环境恶化和健康保健的热点问题刺激了天然高分子材料的发展。天然高分子因其安 全,环境相容等优越性能在食品和医药领域倍受重视[6-9]。KGM 是继淀粉和纤维素之后,又一种令人感兴 趣的天然高分子多糖,逐渐成为具有应用前景的环境友好生物材料。

魔芋葡甘聚糖在果蔬保鲜中应用研究进展

魔芋葡甘聚糖在果蔬保鲜中应用研究进展

为研究 开发果蔬 天然 多糖 复合 防腐 保鲜 剂提 供借 鉴 。
1 魔芋 葡甘聚糖 的化 学结 构
K M 是 】 纪末 在 日本 发现 的 。 ob G 9世 R iu等认 为 魔 芋 中的黏 稠物质 是 由甘 露糖 组成 的甘 露聚糖 ( 为 实 葡甘聚糖 )并于 19 , 8 5年用 英文 发表 了“ 甘露聚糖 为人
多地 用于 果品 、 蔬菜 的保鲜 和 生 产各 种食 品 。考 虑 到 目前 中 国保鲜 技 术 的落 后 给 人 民身 体 健康 带 来 的 极大 危害 , 究者们 更 加关注 食 品 的安全 性与环 境友 研
好性 , 不断探 索安全 、 天然 、 降解 的保 鲜材 料 以及无 可
鲜 品质 的重 要影 响 因素 。 因此 , 深入 系统地研 究 KG M 的结构是 保鲜 领域 迫 切需 要解 决 的难题 。 2 魔 芋 葡甘 聚糖 的保 鲜机 理 2 1 果 蔬腐 变机 理 果蔬 的腐败 变质 可分 为生 物败 . 坏 和 非 生物 败 坏 两种 形 式 。前者 主 要是 由于 果 蔬贮 藏 中受 细菌 、 菌 、 母等 微 生物 的破坏 而引起败 坏 , 霉 酵
菜产量 4 . t水 果产 量 已愈 6 0 4亿 , 0 0万 t两 者相加 已 ,
比率 以 . , 糖苷键连 接成 , 主链上 , 14 在 每约 6 个糖残 8 基存在 1 支链 , 链长度 3 4个糖残基 , . , 个 支 - 以占 1 3糖 苷键连 接在 Ma n的 C 3位上 , M 的支 化度很 低 。 () KG Yi u T等 K 对 GM 的高级 结构研 究 发现葡 甘聚糖链 的
其 中影 响果 蔬微 生物 繁殖 的因素有 温度 、 湿度 、 量 适 氧气、 化学 稳定 性等 。其 次 , 由于其 本 身发生 正常 是 的老化 过 程 所造 成 的 。这类 果 蔬在 贮 藏过 程 中一 直

化学改性魔芋葡甘聚糖成膜性能的研究进展

化学改性魔芋葡甘聚糖成膜性能的研究进展
Gl c ia n n u u on n a a d s mma ie h pr r a c f o ie ojcg cm na ,i h oeo rv ig rz s t e e o fm neo d d kna l o an n n tehp f oi n m f i u p d
变为 固态或半凝固状态 , 冷却后 又恢复为液态 。 独特的
19 年 , 9 0 胡敏 等[干法条 件下使 魔芋 葡甘 聚糖 磷酸 酯 4 1 化 , 化后魔芋葡甘 聚糖 薄膜具有 均匀 、 整 、 滑等 酯 平 光 特点 , 膜的性能大为改善。 探讨魔芋葡甘聚糖酯化产物 的结 构和性能之 间的关 系发现 : G K M酯化后 ,其分 子 链上接上磷酸基 团, 羟基数 目相对增加 , 芋精粉的球 魔 晶结构受到一定程度的破坏 , 晶体结 构变得不规则 , 混
子, 即脱水多 晶型 ; 碱处理后的葡甘聚糖多为甘露糖 Ⅱ
结 构 的变 化 赋 予材 料 性 能 的提 高 ,研 究 显示 :
K M脱 乙酰后 显示 了较强 的力 学性 能 ,膜 的拉 伸强 G 度、 断裂 伸长 率分别 提 高 了1 1 1 5 %、9%, 吸湿增 重 降 低 5 “ 耐折度 、 3 l 。 耐水性 、 耐洗刷性 都显著 提高 , 综合
wiey u e n f o d l s d i o d,p a ma e t a ,c e c la d bo o i a ed .Ths p p rd s u s d t tu tr n h r c ui l h mia n ilgc lf l s c i i a e ic s e he sr cu e a d
的高 山或丘 陵 区域 。在 我 国已有 200 0 多年 的栽 培历
展 。 乙酰 、 脱 酯化 、 交联等化学改性方法广泛应用 , 大 极

浅谈魔芋葡甘聚糖的功能及研究进展

浅谈魔芋葡甘聚糖的功能及研究进展

浅谈魔芋葡甘聚糖的功能及研究进展作者:李雪晨周玉娇苏雅瑜何志龙黄国钞来源:《农家科技下旬刊》2015年第08期摘要:魔芋葡甘聚糖,也叫KGM,是一种天然的高分子量的可溶性膳食纤维,在膳食纤维中是优良品,不仅不提供热能、有饱腹感,而且还能减少和阻止葡萄糖的吸收以及脂肪酸的合成,具有很好的瘦身减肥功能。

关键词:魔芋;KGM多年生草本植物的魔芋,含有大量的葡甘聚糖。

葡甘聚糖不仅是魔芋的贮备性多糖,也是一种可食半纤维的多糖类。

魔芋葡甘聚糖是由葡萄糖和甘露糖按11:6的比例以β一1,4糖苷键结合而形成的一种非离子型多糖,能够清肠道,可以改善耐糖能力,还可以预防肥胖、改善胆固醇代谢等。

一、KGM的理化性质魔芋葡甘聚糖不仅有很好的水溶性和保水性,胶凝性、增稠性、粘结性,还有极好的可逆性、悬浮性、成膜性以及赋味性等多种特性,在医学,食品,生物学等各个领域中被广泛应用。

二、 KGM的功能性质1.调节肠道的功能魔芋葡甘聚糖能够预防和治疗便秘,且保水能力很好,食用后能增加粪便容积,促进肠道蠕动和排便,有“肠道清道夫”之称。

张茂玉等学者观察了便秘者食用魔芋食品前后肠道茵群的变化,发现食用魔芋食品后,其肠道内以双歧菌为指示菌的厌氧菌占优势,而双岐杆菌是无任何毒性的菌群,具有明显的免疫赋活作用。

所以,魔芋葡甘聚糖对防治便秘和肠癌等有良好的作用。

2. 防治肥胖的功能魔芋葡甘聚糖是一种热量很低的减肥食品,吸水膨胀性很强,可以增加饱腹感,在某些程度上可以控制饮食;魔芋葡甘聚糖还能通便润肠,让某些没有被吸收的营养物质跟随着粪便一起排出,达到通便减肥的目的。

孙格选等学者将魔芋精粉添加进高脂肪高营养的饲料.饲喂出生24天的SD大鼠,发现魔芋葡甘聚糖能减少脂肪的堆积,起到减肥作用。

3.防治糖尿病的功能魔芋葡甘聚糖作为一种优质的食物纤维,在人体内不能被消化,热量超低,可以使血糖水平降低,因此在糖尿病的治疗中被广泛应用。

魔芋葡甘聚糖分子量大、粘性强,能阻止葡萄糖的吸收,使胰岛的负担减轻,从而使糖尿病人处在良性循环状态中。

魔芋葡甘聚糖凝胶的研究进展

魔芋葡甘聚糖凝胶的研究进展

魔芋葡甘聚糖凝胶的研究进展
邱诗波;邓鹏鹏;钱虹;姜发堂
【期刊名称】《武汉工程大学学报》
【年(卷),期】2022(44)4
【摘要】魔芋葡甘聚糖(KGM)凝胶具有毒性低、生物相容好、可生物降解性、力
学性能可控等优点,已广泛应用于食品和医药等领域。

综述了碱化加热法、硼酸盐
交联法、KGM-多糖复合法、KGM-合成高分子复合法和KGM衍生物基凝胶法等
六种制备KGM凝胶的方法,分析了不同方法的凝胶机理、优缺点和最新研究进展。

重点论述了近年来报道的KGM凝胶在食品添加剂、凝胶食品、食品保鲜和生物医用等领域的作用机理和应用前景。

最后指出丰富KGM凝胶的制备方法、聚焦于高附加值KGM凝胶产品的研发和生产是今后KGM凝胶的发展方向。

【总页数】8页(P355-362)
【作者】邱诗波;邓鹏鹏;钱虹;姜发堂
【作者单位】武汉淡雅香生物科技有限公司;湖北工业大学生物工程与食品学院【正文语种】中文
【中图分类】O636
【相关文献】
1.魔芋葡甘聚糖基水凝胶的研究进展
2.魔芋葡甘聚糖基水凝胶的研究进展
3.魔芋葡甘聚糖及氧化魔芋葡甘聚糖对益生菌生长及乳糖代谢作用的体外研究
4.魔芋葡甘
聚糖复合凝胶网络结构的研究进展5.魔芋葡甘聚糖基热可逆凝胶研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。

魔芋葡甘低聚糖抗氧化功能及其硒酸酯化的初步研究

魔芋葡甘低聚糖抗氧化功能及其硒酸酯化的初步研究

魔芋葡甘低聚糖抗氧化功能及其硒酸酯化的初步研究下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!魔芋葡甘低聚糖的抗氧化功能及其硒酸酯化初步探讨一、引言魔芋葡甘露聚糖,作为一种天然的多糖,因其独特的生物活性和健康效益,近年来在食品科学和营养学领域引起了广泛关注。

魔芋葡甘聚糖/聚乙烯吡咯烷酮水凝胶的制备及缓释性能研究

魔芋葡甘聚糖/聚乙烯吡咯烷酮水凝胶的制备及缓释性能研究

糖( G 为原料的水凝胶作为药物的控制释放的研究却较少。 K M) 魔芋葡甘聚糖是一种水溶性、 非离子型天然高分子多聚糖, 其主链为 3 %下 干燥备用。 7
葡萄糖和甘露糖 的残基通过 B一 ,一糖苷键 聚合而成的一种多糖 , 14 由于
射仪( 北京普析通用仪器责任有限公司)L J l ,G — 8型冷冻干燥机( 北京四 环科学仪器厂生产) 。 12 水凝胶的合成及药物的装载 . 称取 20克 K M, . G 加入20 l 0m 的蒸馏水, 搅拌 1 小时后, p 调 H为30 . 左右, 半小时后加入一定 比例的 P P 然后滴入不同体积的质量分数为 V, 5 %的戊二醛( A , %下反应 l G )3 0 2小时, 置于4 ℃冰箱中 1 小时, 2 室温下 放置6 小时, 水洗除去戊二醛及未反应的物质, 7C 3  ̄下干燥至恒重, 密封 保存。 将干凝胶浸入由适量的模型药物盐酸多西环素配成的水溶液中,4 2 小时后取出, 多次水洗, 以除去表面沉积的药物。所得载药凝胶于真空
和药物 的释药过程。 1 实验部分
用傅立叶红外光谱仪(pcu X,S 测量样品的化学结构( B setmG UA) r Kr 压片) 样品的衍射图谱使用 x一 。 射线衍射仪( D一 , X 3北京普析通用仪器 责任有限公司) 测量, 采用C k u 射线( 0 1 0 r ) 电压为 3 V 电 = .5 6u , 4 n 6K , 流为2 A, 0m 每分钟扫描速度为4 , _ 。衍射角度(0范围为5 一 O 。水凝 2) 。 5。 胶放置到一 5 6℃环境中冷冻干燥后, 表面在 1P 的真空度下进行喷金处 3a 理后, 用扫描电子显微镜( ici 40 , p ) Ht hS一 80J a 测量。 a an 14 水凝胶溶胀率的测量 . 准确称取一定量的干凝胶 , 将其分别浸入蒸馏水中, 3℃下使 在 7 复合凝胶达到溶胀平衡。然后取出溶胀平衡的凝胶, 用滤纸轻轻吸去表 面多余的水分, 称重( )其平衡溶胀率(h qi rm sei t , , Teeuii l gri l u w l ao b n s) R 根据方程式( ) 1 计算:

魔芋葡甘聚糖减肥作用及其机理研究进展

魔芋葡甘聚糖减肥作用及其机理研究进展

食品科学H A I X I A K E X U E年第期(总第6期)海峡科学魔芋葡甘聚糖减肥作用及其机理研究进展福建农林大学食品科学学院薛丽华陈继承冯瑞庞杰[摘要]当今社会,肥胖现象越来越严重,它能引起多种并发症,危害人类健康,减肥成为人们关注的热点。

魔芋葡甘聚糖是魔芋的主要成分,具有抗衰老、调节胃肠道、降血脂、降血糖等多种功能特性,魔芋葡甘聚糖的减肥效果也受到普遍关注,该文对国内外关于魔芋减肥作用的研究进行了综述,介绍了魔芋葡甘聚糖减肥机理,并为开发魔芋减肥产品提出一些建议。

[关键词]魔芋减肥机理综述0引言魔芋又名鬼头、鬼芋,学名叫蒟蒻,属天南星科多年生草本植物[1],魔芋的球茎含有魔芋葡甘聚糖(Konjac Glucomannan ,简称KGM)约60%。

KGM 是一种高分子量的非离子型多糖,其平均相对分子质量在20~200万之间,由β-D-葡萄糖和β-D-甘露糖以1:1.6的摩尔比通过β-1,4糖苷键结合构成,在主链甘露糖的C3位上存在β-1,3糖苷键支链结构[2]。

因KGM 独特的结构,决定其优良特性,可作为增稠剂、胶凝剂、乳化剂、稳定剂、添加剂、填充剂等,在环保、医药、食品及其他领域中得到广泛应用。

联合国食品卫生组织已认定魔芋为“宝贵的天然保健食品”。

魔芋的药用价值在《本草纲目》早有记载,“有解毒消肿、化痰散结、化於等功效”,常用作治疗咳嗽、疝气、乳痛、积滞、闭经和跌打损伤、烧伤、蛇咬等[3]。

现代研究表明,KGM 具有抗衰老、调节胃肠道、降血脂、减肥、降血糖、抗肿瘤和调节免疫等诸多功效[4]。

近年来,肥胖现象越来越普遍,目前中国肥胖人口已达3.25亿。

它能够导致很多并发症,引起人体生理、生化、病理、神经体液调节的一系列变化,使人体的工作能力降低,对疾病的抵抗力下降,甚至缩短寿命。

减肥成为人们关注的热点,减肥药物应运而生,但减肥药物会对健康产生一定的危害,例如苯丁胺、氟苯丙胺等减肥药物在产生减肥效果的同时产生了很大的副作用,能够造成心脏瓣膜变形,严重危害身体健康[5]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

魔芋葡甘聚糖基水凝胶的研究进展刘瑞雪;李义梦;樊晓敏;李迎博;张浩然【摘要】综述了KGM基水凝胶的增强体系及KGM基水凝胶在药物缓释、伤口敷料、生物组织支架等生物医药方面和作为吸附材料在污水处理方面的应用现状,指出具有代表性的新型高强度和高韧性的水凝胶体系为互穿网络水凝胶和双网络水凝胶,二者的主要区别在于是否对聚合物的类型和交联密度有严格的要求;KGM基水凝胶在药物缓释载体、伤口敷料、生物组织支架和吸附剂材料等方面均具有可观的应用潜力.设计合成高强度、高吸水性和降解速度可控的KGM基水凝胶,寻求更多制备功能性KGM基水凝胶的方法,获得具备较佳凝胶时间及优良降解性能、力学特性和吸水功能的KGM基水凝胶材料,为进一步研究KGM功能材料提供理论基础和参考,最终实现其在药物载体、伤口敷料、组织工程等生物医药和重金属的吸附等材料方面的开发与应用,将是未来的研究方向.【期刊名称】《郑州轻工业学院学报(自然科学版)》【年(卷),期】2018(000)003【总页数】14页(P16-29)【关键词】魔芋葡甘聚糖;水凝胶;生物医药;吸附材料【作者】刘瑞雪;李义梦;樊晓敏;李迎博;张浩然【作者单位】郑州轻工业学院材料与化学工程学院,河南郑州450001;郑州轻工业学院材料与化学工程学院,河南郑州450001;郑州轻工业学院材料与化学工程学院,河南郑州450001;郑州轻工业学院材料与化学工程学院,河南郑州450001;郑州轻工业学院材料与化学工程学院,河南郑州450001【正文语种】中文【中图分类】TQ460.1;TS201.7;X131.20 引言水凝胶,是由亲水性聚合物通过化学或物理作用交联构成的三维网络结构,在水溶液中可以吸收相当于自身质量几十倍甚至上千倍的水分,而且在充分溶胀后还能够保持其完整的聚合物交联网络结构而不发生溶解[1].水凝胶除对电、磁、温度、酸碱等具有刺激响应性之外[2],还具有超低的表面摩擦性、优异的生物相容性、环境友好性、柔软性等独特性质[3],在生物材料、工业、医药和农林等领域具有广泛的应用价值[4].魔芋葡甘聚糖(KGM)是一类具有生物相容性和生物可降解性的可再生天然多糖[5],KGM基水凝胶由于原料来源广泛、无毒无害等特点受到业界关注.天然KGM基水凝胶存在机械强度较低、抗菌性差等缺点,其应用范围受到限制[6],但通过对天然高分子KGM进行改性或与合成聚合物共混,可以改善其性能,扩大其应用领域.目前,KGM基水凝胶材料的应用领域已经从食品行业逐渐扩展到生物医学、废水处理等,其增强化研究具有重要意义.本文拟基于KGM的凝胶化机制,综述KGM 基水凝胶的两种增强体系和KGM基水凝胶应用的研究现状,为进一步研究KGM基水凝胶材料提供理论参考.1 KGM的结构与凝胶机制1.1 KGM结构KGM是从天南星科植物魔芋块茎中提取的一种高分子量天然多糖[7],是继淀粉、纤维素后又一类可生物降解的天然材料.KGM主链是由D-甘露糖和D-葡萄糖按照约1.61的物质的量比通过β-1,4糖苷键连接而成的,乙酰基在侧链随机分布,每10—19个糖残基上会连有1个以酯键结合的乙酰基[8].KGM大分子链上分布有大量的羟基和乙酰基等活性反应基团,因此赋予KGM以良好的水溶性、增稠性、成膜性和凝胶性等功能[9].对KGM的分子结构,业界目前还没有明确的定论,其推测结构如图1所示[10].1.2 凝胶机制KGM分子链是半柔性的,它会自发地卷曲从而形成螺旋状结构,KGM分子链上乙酰基团的空间位阻使其螺旋结构中存在大量的空隙,可以包含大量的水[11].KGM特殊的分子结构赋予其凝胶性能,采用不同的处理方法可得到热不可逆(热稳定)凝胶和热可逆(热不稳定)凝胶.通过向KGM中添加NaOH,Ca(OH)2或NaCO3等形成碱性环境(pH为9~12),在加热条件下可以形成稳定性良好的不可逆凝胶;KGM也可与黄原胶、结冷胶等其他多糖相互作用形成热可逆凝胶,但该类凝胶在加热条件下不稳定,凝胶结构易遭到破坏[12].图1 KGM分子的推测结构[10]Fig.1Projection structure of KGM molecular[10]X.Luo等[13]将KGM用NaOH溶液处理,当反应温度大于55 ℃时,KGM溶液(质量分数为0.5 %)可由溶胶转变为凝胶,其凝胶机制是NaOH溶液抑制KGM分子链在水中的扩散,且在碱性条件下KGM分子链脱去乙酰基变成裸状,分子链间发生缠结或自聚合等,促进了KGM分子链形成局部和连续的凝胶网络结构,即形成了凝胶.碱对KGM分子链的作用如图2所示.在水溶液里,KGM分子链上的羟基与水分子之间形成氢键作用,增大了KGM的溶解性.在NaOH溶液里,碱诱导电子移动靠近KGM分子链上羟基的氧原子,甚至产生氧阴离子,因此,离子化的分子链与OH-之间的静电排斥力抑制了溶液中KGM分子链的扩展.NaOH对KGM中羟基的诱导效应和羟基与水之间的水合作用是竞争关系,作为电解质,碱破坏了分子链与水分子之间的氢键,抑制分子链在溶液中膨胀,当碱溶液中KGM浓度增大时,静电斥力作用明显,分子链没有空间可以自由移动,相邻的分子链相互缠结形成互穿网络结构,从而实现从溶胶到凝胶的转变.2 KGM基水凝胶增强体系天然KGM基水凝胶具有良好的生物相容性、生物降解性和吸水保湿等特性,在众多领域显示出良好的应用前景,然而其凝胶机械强度低、韧性差,很大程度上限制了其在一些需要高力学性能的领域中的应用,比如作为像软骨、韧带、肌腱这些承载软组织的替代物[14].近年来,研究者从多方面考虑,致力于改善KGM基水凝胶体系力学性能差的缺点,目前已经发展形成了很多不同体系的水凝胶,各种新的制备机理带来了一系列新型高强度和高韧性的水凝胶体系,其中具有代表性的是互穿网络水凝胶和双网络水凝胶.图2 碱对KGM分子链作用的示意图[13]Fig.2The schematic diagram of the alkaline effects on the KGM molecular chain[ 13]2.1 互穿网络水凝胶互穿网络水凝胶IPN gel(interpenetrating network hydrogel)是指将两种或两种以上独立水凝胶网络结构相互缠结、相互贯穿形成的具有互穿网络结构的水凝胶[15].IPN水凝胶结构中,聚合物网络相对独立,仅存在物理的贯穿,内部网络结构可以各自保持其原有的物理化学性质[16],结构示意图如图3a)所示.IPN水凝胶中,两个网络组分之间相互作用产生协同效应,使得其性能明显优于各自组分的单网络水凝胶,可通过引入特殊功能或结构的官能团,实现IPN水凝胶的高力学性能和功能化[17],扩展水凝胶的应用领域.根据组成互穿网络水凝胶中聚合物组分交联情况,可将其分为两类:半互穿(semi-IPN)水凝胶和全互穿(full-IPN)水凝胶.合成IPN水凝胶有两种基本方法,即顺序IPN法和同步IPN法.当第二网络在已经合成的第一网络中形成,称为顺序IPN;两种聚合物互不干扰,同时聚合形成网络结构,称为同步IPN[18].Q. Xu等[19]采用两步法,将预先制得的KGM基水凝胶浸泡在含有单体甲基丙烯酸(MAA)、交联剂、引发剂的水溶液中,MAA在KGM网络中交联聚合,通过顺序交联的方法合成了具有pH响应性的KGM/PMAA互穿网络水凝胶.引入KGM 赋予了水凝胶良好的生物相容性和生物降解性,MAA中含有可离子化/去离子化的羧基,随着环境pH值的变化,水凝胶的溶胀行为发生变化,可以通过改变KGM和MAA的比例来调节IPN水凝胶的溶胀度.KGM/PMAA互穿网络水凝胶具有pH敏感性和酶降解的特异性,可以用作结肠特异性药物释放载体的候选物. Z. Li等[20]通过简单的“一锅法”合成了KGM/PAAm半互穿网络水凝胶,该水凝胶综合了天然多糖和合成聚合物的优点,提高了其机械强度和生物相容性.由于PAAm与KGM之间的分子间氢键作用和PAAm结构的转变,KGM/PAAm水凝胶可自由成型,在室温条件下具有自愈合的能力.自愈合后的水凝胶拉伸强度高达66 kPa(为原始凝胶的73%),伸长率高达1200%,自愈合程度较高.KGM/PAAm 半互穿自愈合水凝胶在未来的生物医学领域(如人造皮肤)具有巨大的应用潜力. 2.2 双网络水凝胶双网络水凝胶DN gel(double network hydrogel)是一种由两种具有不同性质的聚合物网络形成的特殊互穿网络水凝胶[21],由于其具有独特的对比鲜明的网络结构和有效的能量消散机制,双网络水凝胶表现出较高的机械强度和柔韧性[22].龚剑萍等[23]报道的双网络水凝胶体系,相比于单一聚合物网络水凝胶,其机械强度和韧性都有显著提高,该课题组总结了制备高强度和高韧性双网络水凝胶的设计原则[24]:刚而脆的聚合物(通常是强聚电解质)作为第一网络,软而韧的聚合物(如中性聚合物)作为第二网络;第二网络单体的摩尔浓度是第一网络单体的20~30倍;第一网络交联密度高,第二网络交联松散.图3b)为双网络水凝胶的结构示意图.聚电解质网络结构为双网络水凝胶提供了“牺牲键”,起到了分散外界应力的作用,而柔软的中性聚合物填补于刚性网络中,为双网络水凝胶提供了支架,保持了水凝胶的外形,两层网络之间的物理或化学交联都加剧了网络体系的缠结,使其力学性能整体增强[25].双网络水凝胶优异的机械性能使其在生物材料领域,特别是人造软骨、人工肌肉等受力软组织替代方面有着广阔的应用前景[26].Z. Li等[27]以KGM,PAAm为原料,聚乙烯醇(PVA)为大分子交联剂,成功制备出具有优异的机械强度和可自由变形能力的新型物理交联的PVA-KGM/PAAm双网络水凝胶.图4为PVA-KGM/PAAm水凝胶的形成机制.由图4可知,KGM与PVA通过冻融循环形成第一网络,再通过浸泡法在第一网络中引入中性的PAAm 形成第二网络.PVA-KGM/PAAm双网络水凝胶最大压缩应变可达98%,压缩强度高达 65 MPa,远远高于之前报道的所有中性/天然高分子基双网络水凝胶的机械强度,如Agar/PAAm双网络水凝胶为38 MPa[28].该双网络水凝胶制备方法简单,PVA水凝胶和PAAm水凝胶并不是细胞黏附能力很强的材料,引入天然多糖KGM后,复合水凝胶表面的细胞黏附特性得到了很大程度的提高,赋予了PVA-KGM/PAAm双网络水凝胶良好的生物相容性和生物降解性.同时,该双网络水凝胶表现出独特的自由塑形能力,可以快速形成不同的复杂形状,且在施加98%的压缩应变再去除负载后,可完全恢复到凝胶原始的形状.因此,可以通过调节两个网络中单体的用量、控制冻融循环次数来改变凝胶内部交联密度,从而优化双网络水凝胶的性能.PVA-KGM/PAAm双网络水凝胶优良的机械性能和细胞黏附特性,使其可作为关节软骨和其他人造负重软组织的替代物.图3 互穿网络水凝胶和双网络水凝胶结构示意图[16,24]Fig.3The schematic illustration of interpenetrating network hydrogels and doub le network hydrogels图4 PVA-KGM/PAAm水凝胶的形成机制Fig.4Proposed mechanism for the formation of a PVA-KGM/PAAm hydrogel对于传统的双网络水凝胶体系,要求第一网络单体为强聚电解质,且第一网络凝胶在第二单体溶液里达到充分的溶胀,进而聚合形成双网络水凝胶.天然KGM基水凝胶吸水溶胀性能较差,需对KGM分子链作进一步修饰,引入大量的亲水性基团(如—COOH,—NH2,—SO3等)和亲水性侧链来提高凝胶的溶胀程度,以便于引入并形成第二网络.PAAm链间存在强烈的氢键作用,赋予凝胶高度的韧性,目前报道的双网络凝胶中第二网络单体多为丙烯酰胺和丙烯酸,可在KGM基双网络水凝胶第二网络中引入金属离子(如Fe3+),其与—COO-之间产生离子协同作用;第二网络中既有共价键又有非共价键,受外力作用时非共价键破坏后可以再重组,赋予凝胶自愈合性能,同时增强凝胶材料的力学性能与耐疲劳强度,共价键-非共价键混合双网络水凝胶成为KGM基水凝胶增强的研究方向.KGM基水凝胶第二网络可以选用与PAAm网络性质相似的聚合物,如N-羟甲基丙烯酰胺、N-羟乙基丙烯酰胺等单体,制备机械强韧、化学稳定的功能性水凝胶,探索KGM基水凝胶新的性质,扩大其应用领域.综上所述,互穿网络水凝胶中聚合物网络相互贯穿缠结,一种聚合物贯穿于另一种聚合物网络中,各个聚合物都保持各自的性质.相互贯穿、共同作用,增强了凝胶的性能,其对聚合物的类型和交联浓度没有严格的要求.而双网络水凝胶中两个网络之间存在物理或化学交联作用,体系对两个网络中聚合物的类型和交联密度都有要求.两种增强机制为制备力学性能优异的KGM基水凝胶提供了广阔的思路,也为KGM基水凝胶在各个领域的应用提供了理论基础.3 KGM基水凝胶的应用近年来,国内外学者对KGM基水凝胶的研究取得了重大进展,其应用领域也从单一的食品行业逐渐转向生物医药、污水处理等方面,功能化的KGM基水凝胶在人们的生产生活中发挥着越来越重要的作用.3.1 药物缓释载体近几十年来,天然生物高分子由于其优异的性能,如无毒、生物相容性、可再生性、生物降解性和环境敏感性等,被广泛用作控制药物缓释体系的载体.KGM[29],壳聚糖[30],海藻酸钠(SA)[31]等已经被应用于设计控制药物释放体系,但是当单纯的天然生物高分子作为药物载体时,由于其与药物之间相互作用较弱,且生物高分子载体释放药物过程中会快速分解,导致生物高分子载体瞬间释放药物,机械性能较差.因此,研究者通过将KGM与聚合物共混或者接枝单体,以改善生物高分子载体的性能[32-33].最近,生物高分子/纳米材料复合材料作为药物释放载体引起了业界极大的关注.J. Wang等[34]以KGM为基体,海藻酸钠(SA)为pH敏感剂,氧化石墨烯(GO)为抗癌药物结合效应物,成功地制备了KGM/SA/GO纳米复合水凝胶,反应原理如图5所示.GO功能化的KGM/SA/GO纳米复合水凝胶具有良好的溶胀性、生物相容性、优异的pH响应性和装载/释放药物能力,可通过改变环境的pH值控制抗癌药物5-氟尿嘧啶的释放速度,克服了生物高分子载体瞬间释放药物的缺点,KGM/SA/GO复合水凝胶在药物释放载体方面有着巨大的应用前景.图5 KGM/SA/GO纳米复合水凝胶的反应原理示意图[34]Fig.5The possible mechanism of the gelation of KGM/SA/GO hydrogels[34] KGM是一种天然多糖,含有易分离的乙酰基和对电场敏感的糖苷键,且分子链上的羟基可以与很多金属离子发生反应.L.Wang等[35]用钨酸钠(Na2WO4·2H2O)在直流电场诱导下,制备了魔芋葡甘聚糖-钨(KGM-T)电化学可逆水凝胶.施加电场条件下,正极附近溶液呈酸性,WO42-在酸性条件下转变成同多钨酸离子(WxOy)n-吸附在KGM分子链上并与C-6位置的羟基交联,然后带负电荷的KGM分子向正极移动,诱导KGM自组装形成三维网络结构水凝胶,凝胶形成机制如图6所示.这是迄今为止首次利用电场诱导多糖自组装的研究,打破了制备KGM基水凝胶传统方法的限制,该KGM-T水凝胶具有电化学可逆性和较高的热稳定性,其在正极形成,因此可用于携带带负电荷的药物用于控制药物释放载体,在生物医学领域有很大的应用潜力.3.2 医用伤口敷料水凝胶作为一类重要的生物材料,具有吸水溶胶的能力,用作敷料可在伤口处吸收大量体液,维持皮肤表面一个湿润的环境,促进肉芽组织快速形成和表皮细胞再生,有益于伤口愈合[36],因此水凝胶是一类合适的伤口敷料材料.图6 KGM分子链与(WxOy)n-发生交联作用形成凝胶的机制示意图[35]Fig.6 Mechanism diagram of cross-linking between KGM chain and (WxOy)n-from a gel[35]KGM基水凝胶因机械性能较差,限制了其在伤口包扎材料方面的应用.为解决这个问题, L. Fan等[37]先将KGM氧化,使氧化魔芋葡甘聚糖(OKGM)上的醛基与羧甲基壳聚糖(CMCS)上的氨基之间发生希夫碱反应,与此同时加入不同量的纳米添加剂——氧化石墨烯(GO),制备KGM/CMCS/GO复合水凝胶,其合成路线如图7所示.GO容易与多糖相结合,从而提高水凝胶的机械性能.当GO的添加量从0 mg/mL 增加到5 mg/mL时,压缩强度增加144%,弹性模量增加296%.该水凝胶具有良好的溶胀能力、适当的保水能力、优异的生物相容性和与人体软组织相似的压缩模量,它在伤口敷料方面有巨大的临床应用潜力.M. Shahbuddin等[38]利用紫外光引发N-乙烯基吡咯烷酮(NVP)、聚乙二醇二丙烯酸酯(PEGDA)在KGM 溶液中聚合形成KGM/P(NVP-co-PEGDA)半互穿网络,然后硝酸铈铵(Ce(IV))作为KGM主链大分子自由基的来源,引发KGM分子链交联,同时引发P(NVP-co-PEGDA)接枝到KGM分子链上,形成接枝双组分网络水凝胶,各阶段结构示意图如图8所示.该接枝双组分水凝胶具有促进成纤维细胞新陈代谢、刺激成纤维细胞和角质细胞迁移的能力,可作为有效促进伤口愈合的伤口敷料的基础材料.温辉高等[39]先将KGM氧化制备出OKGM,利用OKGM上的醛基与壳聚糖季铵盐上的氨基反应合成HACC/OKGM水凝胶.该水凝胶几乎不引起体外溶血反应,具有良好的血液相容性,可抑制创伤部位的细菌生长,具有良好的溶胀性能和适当的保水率,是一类新型抗菌医用创伤敷料.3.3 生物组织支架KGM基水凝胶具有良好的生物相容性、无毒性,且生物组织中的细胞外基质包括蛋白质、多糖等组分,因此KGM基水凝胶可应用于生物组织支架.Y. Feng等[40]设计了一种用于促进新血管再生的可注射水凝胶支架材料.该水凝胶包含两种具有独特生物活性的多糖:KGM作为水凝胶支架的结构单元,已证实可以刺激巨噬细胞/单核细胞分泌促进血管生成的生长因子(GFs),其原理示意图如图9a)所示;肝素(Hep)是结合GFs的代表性糖胺聚糖分子,可以捕获巨噬细胞分泌的GFs.用酪胺(TA)对两种多糖改性,在酶的催化作用下二者均可以快速形成水凝胶支架KGM-TA/Hep-TA,其凝胶形成机制如图9b)所示.所设计的KGM-TA/Hep-TA可注射水凝胶成功地保留了两组分对巨噬细胞的特定功能和对GFs的亲和功能,一旦植入皮下,就能有效地原位捕获局部产生的GFs并促进血管的形成和成熟.该可注射水凝胶支架,利用内源GFs来促进血管生成,其微孔结构有利于营养/废物交换和细胞向内生长,可适用于各种血管再生的临床应用.图7 KGM/CS/GO水凝胶的合成路线示意图[37]Fig.7Schematic illustration of the synthesis route of the KGM/CMCS/GO hydrog el[37]图8 接枝双组分网络水凝胶各阶段形成结构示意图[38]Fig.8Structural diagrams of grafted two-component network hydrogel at various stages[38]3.4 吸附剂材料水凝胶具有三维孔洞网络结构,分子链上带有丰富的羧基、羟基、磺酸基和酰胺等功能官能团,对有机分子、无机金属离子、聚合物等有良好的吸附作用,可用作吸附剂处理工业废水中难降解的污染物[41].L. Gan等[42]使用CaO为交联剂,制备了GO填充的KGM基水凝胶KGM/GO,形成机理如图10所示.与KGM基水凝胶相比,KGM/GO水凝胶对水溶液中的甲基橙和甲基蓝两种染料表现出优异的吸附能力,吸附行为遵循拟二阶动力学模型和Freundlich模型,且GO和KGM来源广泛,KGM/GO水凝胶制备过程简单,其在水净化的高效吸附剂材料方面具有很大的应用潜力.J. Chen等[43]通过丙烯酸(AA)接枝KGM,制备KGMP水凝胶,该水凝胶可作为金属离子螯合剂,对水溶液中的Cu2+具有良好的吸附能力,在工业废水中有害重金属的去除方面有重要的应用前景.图9 KGM-TA/Hep-TA水凝胶刺激巨噬细胞的原理示意图及其形成机制示意图[40]Fig.9 Schematic illustration of the KGM-TA/Hep-TA hydrogel-stimulated macrophage and its formation mechanism[40]图10 KGM/GO水凝胶的形成机理示意图[42]Fig.10Formation mechanism illustration of KGM/GO hydrogel[42]4 结论本文基于KGM的凝胶化机制,对两种具有代表性的KGM基水凝胶增强体系(互穿网络水凝胶和双网络水凝胶)及KGM基水凝胶在药物缓释、伤口敷料、生物组织支架等生物医药方面和作为吸附材料在污水处理方面的应用现状进行了综述,鉴于KGM基水凝胶在上述领域具有可观的应用潜力,未来应着力做好两方面工作:一是继续着力开发具有高强度、高吸水性和降解速度可控的KGM基水凝胶.可采用如下方式制备:1)双交联网络KGM基水凝胶,以KGM为第一网络,聚电解质等高吸水聚合物(如聚丙烯酰胺、聚乙二醇等)为第二网络;2)多种化学键协同作用增强的KGM基水凝胶,互穿的双交联网络之间引入金属键、氢键等弱键,制备高强度、自修复的KGM基复合水凝胶;3)不同性质的功能性聚合物与KGM进行互穿交联,形成多交联网络、多功能的KGM基水凝胶.二是充分利用我国的KGM天然可再生资源,寻求更多的制备功能性KGM基水凝胶的方法,获得具备较佳的凝胶时间与优良的降解性能、力学特性和吸水功能的KGM基水凝胶材料,为进一步研究KGM基水凝胶用于组织工程提供良好的理论基础,进而拓宽其在药物载体、伤口敷料、组织工程等生物医学以及重金属吸附等材料方面的开发与应用.参考文献:【相关文献】[1]JANG J,LEE J,SEOL Y J,et al.Improving mechanical properties of alginate hydrogel by reinfo rcement with ethanol treated polycaprolactone nanofibers[J].Composites Part B:Engineeri ng,2013,45(1):1216.[2]VASHIST A,SHAHABUDDIN S,GUPTA Y K,et al.Polyol induced interpenetrating networks:Ch itosan-methylmethacrylate based biocompatible and pH responsive hydrogels for drug delivery s ystem[J].Journal of Materials Chemistry B,2013,1(2):168.[3]SPILLER K L,LIU Y,HOLLOWAY J L,et al.A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels:Controlled release for cartil age tissue engineering[J].Journal of Controlled Release,2012,157(1):39.[4]XIANG S,QIAN W,LI T,et al.Hierarchical structural double network hydrogel with high stren gth,toughness,and good recoverability[J].New Journal of Chemistry,2017,41(23):14397.[5] AL-GHAZZEWI F,ELAMIR A,TESTER R,et al.Effect of depolymerised konjac glucomannan on wo und healing[J].Bioactive Carbohydrates & Dietary Fibre,2015,5(2):125.[6]YI Y,LIN W,JIE P,et al.A review of the development of properties and structures based on k onjac glucomannan as functional materials[J].Chinese Journal of Structural Chemistry,2017 ,36(2):346.[7] LIU J,ZHANG L,HU W,et al.Preparation of konjac glucomannan-based pulsatile capsule for colonic drug delivery system and its evaluation in vitro and in vivo[J].Carbohydrate Polymers,2012,87(1):377.[8]NIU C,WU W,WANG Z,et al.Adsorption of heavy metal ions from aqueous solution by cros slinked carboxymethyl konjac glucomannan[J].Journal of Hazardous Materials,2007,141(1): 209.[9] LUAN J,WU K,LI C,et al.pH-sensitive drug delivery system based on hydrophobic modified konjac glucomannan[J].Ca rbohydrate Polymers,2017,171:9.[10] KATSURAYA K,OKUYAMA K,HATANAKA K,et al.Constitution of konjac glucomannan:C hemical analysis and 13 C NMR spectroscopy[J].Carbohydrate Polymers,2003,53(2):183.[11] 王恒洲.魔芋葡甘聚糖薄膜和海绵材料的制备及性能研究[D].武汉:武汉纺织大学,2013.[12] 庞杰,吴春华,温成荣,等.魔芋葡甘聚糖凝胶研究进展及其问题[J].中国食品学报,2011,11(9):181.[13] LUO X,HE P,LIN X.The mechanism of sodium hydroxide solution promoting the gelati on of Konjac glucomannan (KGM)[J].Food Hydrocolloids,2013,30(1):92.[14] ZHAO Y,NAKAJIMA T,YANG J J,et al.Proteoglycans and glycosaminoglycans improve t oughness of biocompatible double network hydrogels[J].Advanced Materials,2014,26(3):4 36.[15] LIU Y Y,FAN X D,WEI B R,et al.pH-responsive amphiphilic hydrogel networks with IPN structure:A strategy for controlled drug release[J].International Journal of Pharmaceutics,2006,308(1/2):205.[16] SINGHA N R R,KARMAKAR M,MAHAPATRA M,et al.Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating polymer network for mere/synergistic superadsorpt ion of dyes/M(Ⅱ):Comprehensive determination of physicochemical changes in loaded hy drogels[J].Polymer Chemistry,2017,8(20):3211.[17] 何银亭,詹秀环,田博士,等.聚丙烯酸/聚乙烯醇互穿网络水凝胶制备及其对结晶紫的控制释放性能的研究[J].化工技术与开发,2010 (11):13.[18] ILAVSKY M,MAMYTBEKOV G,HANYKOVá L,et al.Phase transition in swollen gels 31.Sw elling and mechanical behaviour of interpenetrating networks composed of poly(1-vinyl-2-pyrrolidone) and polyacrylamide in water/acetone mixtures[J].European Polymer Journal,2 002,38(5):875.。

相关文档
最新文档