工程热力学复习参考题-第五章

合集下载

工程热力学(张忠进 华自强 高青)第四版第五、六章答案

工程热力学(张忠进 华自强 高青)第四版第五、六章答案

T= TATB ;
W0=mcp(TA+TB-2 TATB )
证明 物体A初终两态的温度为TA及T; 物 体B初终两态的温度为TB及T ,它们的熵变分别 为:
热力学第二定律·69·
∆s A = mc p ln
T TA
, ∆s B = mc p ln
T TB
可逆条件下的熵方程可表示为:
∆s isol = ∆sA + ∆sB + ∆sknj = 0
1 1
1
⎞ k −1 ⎛ 1000 ⎞ 0.4 ⎟ ⎟ = 81.1 ⎟ = 4⎜ ⎝ 300 ⎠ ⎠
k
(3)最高压力与最低压力之比:
pmax pa pa pd ⎛ Ta = = ⋅ =⎜ pmin pc p d p c ⎜ ⎝ Td
⎞ k −1 pd ⎛ 1000 ⎞ 0.4 0.4 ⎟ = 270 =⎜ ⎟ ⎟ pc ⎝ 300 ⎠ 0.1 ⎠
热机经过一个循环,因此有 ∆sknj = 0 即
∆s A = − ∆s B ; ln
T T = ln B TA T
T = TATB
可以得出: 根据能量方程,有:
W0 = Q1 − Q2
= mc p (TA − T ) − mc p (T − TB ) = mc p (TA + TB − 2T ) = mc p TA + TB − 2 TA ⋅ TB
(
)
5-12 卡诺热机按逆向 循环 工作时称为逆向卡诺循环,如图 5-16所示。现利用它来制冷,消耗 循环净功 w0 ,由低温热源吸热q2 向高温热源放热q1, 试证明其制冷 系数的公式为ε=
Tr2 。 Tr1 − Tr2
图 5-16 逆向卡诺循环的 T-s 图

工程热力学 第五版 廉乐明 谭羽非 著 课后习题答案 中国建筑工业出版社 第5章 第6章作业 09年修订 1

工程热力学 第五版 廉乐明 谭羽非 著 课后习题答案 中国建筑工业出版社 第5章 第6章作业 09年修订 1

5
湖南工业大学土木工程学院
建筑环境与设备工程教研室编制
过程。必要的一步是使系统先进行可逆绝热膨胀,等系统温度达到与环境 温度相等时,再进行可逆定温传热,过程就从 1-A-2,如图所示。而题中 进行的过程,是从点 1-B。
解:逆卡诺循环时,热泵供热系数为:
ε 2,c
=
T1 T1 − T2
=
20 + 273 (273 + 20) − (273 −10)
= 9.77
(1)热泵每小时从室外吸热量Q2
ε 2,c
=
Q1 Q1 − Q2
⇒ Q2
=
Q1 (ε 2,c ε 2,c
− 1)
= 100000 × (9.77 −1) 9.77
上。
4
湖南工业大学土木工程学院
建筑环境与设备工程教研室编制
p 1
T1
2
s
4
v
T2
3
T
1
2
T1
T1
s
v
T2
T2
4
3
v
s
解:首先把每个过程的热量交换计算出来:
1-2 定温吸热 q12 = T1 (s2 − s1 )
2-3 定容放热 q23 = cv (T2 − T1 )
3-4 定温放热 q34 = T2 (s4 − s3 ) 4-1 定熵压缩 q34=0
η tc
=
W Q1
⇒W
= ηtcQ1
=
30% ×10000
=
3000kJ
/h
建筑物得到的热量,即热泵输送的热量Q1’
ε 2,c
=
Q1' W

Q1'

工程热力学第五章习题答案

工程热力学第五章习题答案

第五章 热力学第二定律5-1 利用逆向卡诺机作为热泵向房间供热,设室外温度为5C −D ,室内温度为保持20C D 。

要求每小时向室内供热42.510kJ ×,试问:(1)每小时从室外吸多少热量?(2)此循环的供暖系数多大?(3)热泵由电机驱动,设电机效率为95%,求电机功率多大?(4)如果直接用电炉取暖,问每小时耗电几度(kW h ⋅)?解:1(20273)K 293K T =+=、2(5273)K 268K T =−+=、142.510kJ/h Q q =×(1)逆向卡诺循环1212Q Q q q T T =214421268K 2.510kJ/h 2.28710kJ/h293KQ Q T q q T ==××=×(2)循环的供暖系数112293K 11.72293K 268KT T T ε′===−−(3)每小时耗电能1244w (2.5 2.287)10kJ/h 0.21310kJ/hQ Q q q q =−=−×=×电机效率为95%,因而电机功率为40.21310kJ/h 0.623kW3600s/h 0.95P ×==×(4)若直接用电炉取暖,则42.510kJ/h ×的热能全部由电能供给442.5102.510kJ/h kJ/s 6.94kW3600P ×=×==即每小时耗电6.94度。

5-2 一种固体蓄热器利用太阳能加热岩石块蓄热,岩石块的温度可达400K 。

现有体积为32m 的岩石床,其中的岩石密度为32750kg/m ρ=,比热容0.89kJ/(kg K)c =⋅,求岩石块降温到环境温度290K 时其释放的热量转换成功的最大值。

解:岩石块从290K 被加热到400K 蓄积的热量212133()()2750kg/m 2m 0.89kJ/(kg K)(400290)K 538450kJQ mc T T Vc T T ρ=−=−=××⋅×−=岩石块的平均温度21m 21()400K 290K342.1K 400Kln ln290Kmc T T Q T T Smc T −−====Δ在T m 和T 0之间运行的热机最高热效率0t,max m290K 110.152342.1KT T η=−=−=所以,可以得到的最大功max t ,max 10.152538450kJ 81946.0kJW Q η==×=5-3 设有一由两个定温过程和两个定压过程组成的热力循环,如图5-1所示。

《工程热力学》第五章 热力学第二定律

《工程热力学》第五章  热力学第二定律
6
7
土壤源热泵用于建筑空调供暖
Because the ground stores the sun’s heat for rather long periods of time, the temperature of the cooling source stays constant, thereby ensuring high
T1=973K Q1=2000kj Q2=800kj W0
T1=973K Q1=?kj
Wmin
T2=303K
Q2=800kj T2=303K
33
例题4
如图为一烟气余热回收方案,设烟气比热容CP=1.4kj/ (kg.k), CV=1.0kj/(kg.k),求: 1)烟气流经换热器时传给热机工质的热量? 2)热机放给大气的最小热量Q2? T2=37+273k 3)热机输出的最大功? P2=0.1MPa
13
五、关于自发过程与非自发过程
1、自发过程:自发实现的过程。 EG:热量总是自发的从高温物体传向低温物体而不能反 向自发进行;两种气体可自发混合而不能自发地分离 2、非自发过程:自发过程的逆向;非自发过程不能自发 地实现。即使利用热机、制冷机或其他任何方法,使 非自发过程得以实现,总需要另一种自发过程伴随进 行 3、结论:自发过程是不可复逆的 4、热力学第二定律可概括为:一切自发实现的涉及热现 象的过程都是不可复逆的
四、火用参数

闭口系统工质火用 开口系统工质火用 火用分析
35
ቤተ መጻሕፍቲ ባይዱ题5


温度为800K,压力为5.5MPa的燃气进入燃气轮机,在燃 气轮机内绝热膨胀后流出燃气轮机.在燃气轮机出口处 测得两组数据,一组压力为1.0MPa ,温度为485K;另一组 压力为0.7MPa,温度495K,问那组参数正确?此过程是否 可逆,作功能力损失多少?并将作功能力表示在T-S图上. (燃气可视作空气, CP=1.004kj/(kg.k), Rg=0.287kj/ (kg.k),环境T0=300K)

工程热力学习题解答-5

工程热力学习题解答-5

第五章 气体的流动和压缩思 考 题1.既然c 里呢?答:对相同的压降(*P P -)来说,有摩擦时有一部分动能变成热能,又被工质吸收了,使h 增大,从而使焓降(*h h -)减少了,流速C 也降低了(动能损失)。

对相同的焓降(*h h -)而言,有摩擦时,由于动能损失(变成热能),要达到相同的焓降或相同的流速C ,就需要进步膨胀降压,因此,最后的压力必然降低(压力损失)。

2.为什么渐放形管道也能使气流加速?渐放形管道也能使液流加速吗?答:渐放形管道能使气流加速—是对于流速较高的超音速气流而言的,由2(1)dA dV dC dCM A V C C ===-可知,当0dA >时,若0dC >,则必1M >,即气体必为超音速气流。

超音速气流膨胀时由于dA dV dC A V C =-(V--A )而液体0dV V =,故有dA dCA C=-,对于渐放形管有0dA A >,则必0dCC<,这就是说,渐放形管道不能使液体加速。

3.在亚音速和超音速气流中,图5-15所示的三种形状的管道适宜作喷管还是适宜作扩压管?图 5-15答:可用2(1)dA dCM A C=-方程来分析判断 a) 0dA <时当1M <时,必0dC >,适宜作喷管 当1M >时,必0dC <,适宜作扩压管 b) 0dA >时当1M <时,必0dC <,适宜作扩压管 当1M >时,必0dC >,适宜作喷管c) 当入口处1M <时,在0dA <段0dC >;在喉部达到音速,继而在0dA >段0dC <成为超音速气流,故宜作喷管(拉伐尔喷管)当入口处1M >时,在0dA <段,0dC <;在喉部降到音速,继而在0dC <成为亚音速气流,故宜作扩压管(缩放形扩压管)。

(a) (b) (c)4. 有一渐缩喷管,进口前的滞止参数不变,背压(即喷管出口外面的压力)由等于滞止压力逐渐下降到极低压力。

2013年-雪慕冰-工程热力学第五章经典例题

2013年-雪慕冰-工程热力学第五章经典例题

2013年-雪慕冰-工程热力学第五章经典例题5.5 典型题精解例题5-1 有一服从状态方程()g p v b R T -=的气体(b 为正值常数),假定V c 为常数。

(1)试由d ,d ,d ,u h s 方程导出,,u h s ∆∆∆的表达式; (2)推求此气体经绝热节流后,温度是降低或升高还是不变? 解 (1)① 将题目所给的方程表示为 g R T p v b=-式(5-19)为V dd [()]d v pu c T T p v T∂=+-∂ 对上述状态方程求导得 ()g v R pT v a∂=∂- 代入式(5-19)得 V d d [()]d v pu c T T p v T∂=+-∂ V V d ()d d c T p p v c T =+-= 积分上式,则 221V V 211d ()u u u c T c T T ∆=-==-⎰式(5-20)为 d d [()]d p p vh c T v T p T∂=+-∂ 将状态方程表示为 g R T v b p=+求导得 g ()p R vT p∂=∂ 代入式(5-20)得 d d d p h c T b p =+积分上式,则 212121()()p h h h c T T b p p ∆=-=-+-③ 式(5-17)为 d d ()d pp T vs c p T T∂=-∂ 根据状态方程式 g R T v b p=+求导得 g ()p R vT p∂=∂ 代入式(5-17)得 g d d d pTs c R p T=- 积分上式,得 22g 11lnln p T p s c R T p ∆=- (2)式(5-29)为J()vpvT vT c μ∂-∂= 根据状态方程求导得 g ()p R vT p∂=∂ 代入式(5-29)得 g J /0ppTR p vbc c μ-==-< 即 J ()0h Tpμ∂=<∂ 所以绝热节流后温度升高。

工程热力学第五章(热力学第二定律)09(理工)(沈维道第四版)

工程热力学第五章(热力学第二定律)09(理工)(沈维道第四版)

T2 w 300 有 t tC 1 1 70% 由 t q1 T1 1000
w t q1 0.7 100 70kJ
四、卡诺定理举例(2)
(2) 当吸热和放热均有温差时,工质实际在吸热温 度为800K和放热温度为400K的两个热源间工作, 则热效率为
T2 400 t tC 1 1 50% 70% T1 800
循环净功为
w t q1 0.5 100 50kJ
可见,由于传热温差的存在,循环热效率降低了。
§5-4 熵与克劳修斯不等式
热二律推论之一
卡诺定理给出热机的最高理想
热二律推论之二
克劳修斯不等式反映方向性
第五章 热力学第二定律
§5-1 热力学第二定律的实质
热力学第一定律
能量守恒与转换定律
能量之间数量的关系
所有满足能量守恒与转换定律 的过程是否都能自发进行?
一、自发过程的方向性
自发过程:不需要任何外界作用而自动进 行的过程。 摩擦生热: 机械能变热能 自动地热能变机械能?


水自动地由高处向低处流动 自动地低处流向高处? 两液体混合过程自动进行 自动地将两种液体分离? 热量自发地由高温物体传向低温物体
◆ §5-3 卡诺定理
热二律的推论之一 卡诺定理有两个分定理, 下面予以介绍
◆ 一、 卡诺定理
定理1:在相同的高温恒温热源和相同的低温 恒温热源间工作的所有可逆热机,热效率相 同,且与工质的性质无关。
定理2:在相同的高温恒温热源和相同的低温恒 温热源间工作的所有热机,以可逆热机的热效 率最高。不可逆热机热效率总小于这两个热源 间工作的可逆热机的热效率。 可见,在两个不同 T 的恒温热源间工作的一切 可逆热机的热效率相同, tR = tC 在给定的温度界限间工作的一切热机,tC最高 热机极限 减小不可逆性,可提高热效率。

工程热力学复习参考题-第五章

工程热力学复习参考题-第五章

第五章 热力学第二定律一、选择题1 制冷循环工质从低温热源吸热q 2,向高温热源放热q 1,其制冷系数等于AA . 212q q q - B . 211q q q - C . 221q q q - D .121q q q - 2.供暖循环工质从低温热源吸热q 2, 向高温热源放热q 1,其热泵系数等于 BA .212q q q - B . 211q q q - C .221q q q - D .121q q q - 3.卡诺制冷循环的高温热源为温度T 0环境,低温热源温度为T 1,其制冷系数εc = AA .101T T T -B .100T T T -C .1- 10T TD .1-01T T 4.卡诺供暖循环的冷源温度为T 0环境,热源温度为T 1,其热泵系数COP = AA .011T T T -B .010T T T -C .1-10T TD .1-01T T 5.制冷系数ε的取值范围为DA .大于1B .大于1或等于1C .小于1D .大于1, 等于1或小于16.热泵系数COP 的取值范围为AA .大于1B .小于1或等于1C .小于1D .大于1,等于1或小于17.可逆循环的热效率与不可逆循环的热效率相比, DA .前者高于后者B .两者相等C .前者低于后者D .前者可以高于、等于、低于后者8.在两个恒温热源T 1和T 2之间(T 1> T 2),概括性卡诺循环的热效率与卡诺循环的热效率相比, BA .前者高于后者B .两者相等C .前者低于后者D .前者可以高于、等于、低于后者9.多热源可逆循环工质的最高温度为T 1,最低温度为T 2,平均吸热为1T ,平均放热温度为2T ,则其循环热效率为BA .1-12T TB .1-12T TC .1- 2211T T T T --D .1- 1122T T T T --10. 对于可逆循环,⎰T q δ B D A .>0 B .=0C .<0D .=⎰ds 11. 不可逆循环的⎰T q δ C A .>0 B .=0C .<0D .≤0 12. 热力学第二定律指出C DA .能量的总量保持守恒B .第一类永动机不可能成功C .热不能全部变为有用功D .单热源热机不可能成功13. 理想气体经可逆定容过程从T 1升高到T 2,其平均吸热温度12T = AA .(T 2-T 1)/ln 12T T B .C v (T 2-T 1)/ln 12T T C .(T 2-T 1)/ C v ln 12T T D .221T T + 14. 1~A ~2为不可逆过程,1~B ~2为可逆过程,则C DA .⎰21A Tqδ>⎰21B T q δ B .⎰21A T q δ=⎰21B T q δ C .⎰21A T q δ<⎰21B T q δ D .⎰21A ds = ⎰21B ds 15. 自然现象的进行属于BCDA..................................................................................................... 可逆过程B.不可逆过程C.具有方向性过程D.自发过程16. 克劳休斯关于热力学第二定律的表述说明CDA.热不能从低温物体传向高温物体B.热只能从高温物体传向低温物体C.热从低温物体传向高温物体需要补偿条件D.热只能自发地从高温物体传向低温物体17. 对卡诺循环的分析可得到的结论有: ABDA.提高高温热源温度降低低温热源温度可提高热效率B.单热源热机是不可能实现的C.在相同温限下,一切不可逆循环的热效率都低于可逆循环D.在相同温限下,一切可逆循环的热效率均相同18. 卡诺循环是B CA.由两个等温过程和两个绝热过程组成的循环B.热效率最高的循环C. 热源与冷源熵变之和为零的循环D.输出功最大的循环19. 卡诺定理指出: ABCDA.在相同的高温热源和低温热源间工作的一切可逆机的热效率均相同B.在相同高温热源和低温热源间工作的一切不可逆机的热效率必小于可逆机的热效率C.单热源热机是不可能成功的D.提高T1降低T2可以提高t20. A是可逆机,B是不可逆机。

工程热力学(第五版)第5章练习题汇总

工程热力学(第五版)第5章练习题汇总

第5章 热力学第二定律5.1 本章基本要求理解热力学第二定律的实质,卡诺循环,卡诺定理,孤立系统熵增原理,深刻理解熵的定义式及其物理意义。

熟练应用熵方程,计算任意过程熵的变化,以及作功能力损失的计算,了解火用、火无 的概念。

5.2 本章重点:学习本章应该掌握以下重点内容:,l .深入理解热力学第二定律的实质,它的必要性。

它揭示的是什么样的规律;它的作用。

2.深入理解熵参数。

为什么要引入熵。

是在什么基础上引出的。

怎样引出的。

它有什么特点。

3.系统熵变的构成,熵产的意义,熟练地掌握熵变的计算方法。

4.深入理解熵增原理,并掌握其应用。

5.深入理解能量的可用性,掌握作功能力损失的计算方法 5.3 本章难点l .过程不可逆性的理解,过程不可逆性的含义。

不可逆性和过程的方向性与能量可用性的关系。

2.状态参数熵与过程不可逆的关系。

3.熵增原理的应用。

4.不可逆性的分析和火用 分析. 5.4 例题例1:空气从P 1=0.1MP a ,t 1=20℃,经绝热压缩至P 2=0.42MP a ,t 2=200℃。

求:压缩过程工质熵变。

(设比热为定值)。

解:定压比热:k kg kJ R C P ⋅=⨯==/005.1287.02727由理想气体熵的计算式:k kg kJ P P R T T C S P ⋅=-=-=∆/069.01.042.0ln 287.0293473ln 005.1ln ln121212 例2:刚性容器中贮有空气2kg ,初态参数P 1=0.1MP a ,T 1=293K ,内装搅拌器,输入轴功率W S =0.2kW ,而通过容器壁向环境放热速率为kW Q 1.0.=。

求:工作1小时后孤立系统熵增。

解:取刚性容器中空气为系统,由闭系能量方程:U Q W s ∆+=..经1小时,()12..36003600T T mC Q W v s -+=()K mC Q W T T v 5447175.021.02.036002933600..12=⨯-+=⎪⎭⎫⎝⎛-+= 由定容过程:1212T T P P =, MPa T T P P 186.02935441.01212=⨯== 取以上系统及相关外界构成孤立系统:sur sys iso S S S ∆+∆=∆K kJ T Q S sur /2287.12931.036000=⨯==∆ K kJ S iso /12.22287.18906.0=+=∆例3:压气机空气由P 1=100kP a ,T 1=400K ,定温压缩到终态P 2=1000kP a ,过程中实际消耗功比可逆定温压缩消耗轴功多25%。

中国石油大学工程热力学第五章习题课

中国石油大学工程热力学第五章习题课

.
Qmin
1.02 W / c 1.82 kW 0.56

2. 某循环在700K的热源及400K的冷源之间工作,如图,试判别 循环是热机循环还是制冷循环,可逆还是不可逆?
解:
Wnet Q1 Q2 Q1 Wnet Q2 10000kJ 4000kJ 14000kJ
7 650 K 251.6 K 1mol[ 8.314 J/(mol K) ln 8.314 J/(mol K) ln 2 500 K 200 K
7 650 K 251.6 K 1mol[ 8.314 J/(mol K) ln 8.314 J/(mol K) ln 2 800 K 300 K
第五章习题课
一、下列说法是否正确?为什么? ⑴ 熵增大的过程为不可逆过程;
答: 不正确,只有孤立系统才可以这样说。
⑵ 不可逆过程的熵变ΔS无法计算;
答:不正确,S为状态参数,和过程无关,知道初态和终态就可以计算;
(3)若工质从某一初态经可逆与不可逆途径到达同一终态,则不可
逆途径的ΔS必大于可逆途径的ΔS。
Tm TA TB 2
两物体组成的孤立系统的熵变化量为:
Tm dT dT S 孤立系 S A S B mc mc TA T TB T Tm Tm (TA TB ) 2 mc (ln ln ) mc ln TA TB 4TATB Tm
3. 两个质量相等、比热容相同且为定值的物体,A物体初温 为TA,B物体初温为TB,用它们作可逆热机的有限热源和有 限冷源,热机工作到两物体温度相等时为止。 (1)证明平衡时的温度: Tm TATB
(2)求热机作出的最大功量;
(3)如果两物体直接接触进行热交换至温度相等时, 求平衡温度及两物体总熵的变化量。 解:(1)取A、B物体及热机为孤立系,则

工程热力学第五章 习题解答

工程热力学第五章 习题解答

第五章 习题解答5-1 ⑴ 12,187331364.14%873t c T T T η--===⑵ 0,10.641410064.14 kW t c W Q η==⨯= ⑶ ()()2,1110.641410035.86 kW t c Q Q η=-=-⨯= 5-2 12,1100040060%1000t c T T T η--=== 0,10.61000600 kJ < 700 kJ t c W Q η==⨯= 该循环发动机不能实现5-3 ()()121 1.011000300707 kJ/kg p q c T T =-=⨯-=133323331221.41.41lnln ln 300 0.287300ln 362.8 kJ/kg1000p pT q RT RT RT p p T κκ--⎛⎫=== ⎪⎝⎭⎛⎫=⨯⨯=- ⎪⎝⎭12707362.8344.2 kJ/kg w q q =+=-=1344.248.68%707w q η=== 5-4 12,1100030070%1000t c T T T η--=== ,10.7707495 kJ/kg t c w q η==⨯= 5-5 ⑴221126310000089765 kJ/h 293T Q Q T ==⨯= ⑵12,122939.77293263c T T T ε===-- 12,1000002.84 kW 9.773600cQ P ε===⨯⑶100000100000 kJ/h 27.78 kW 3600P ===5-6 ⑴12,1229314.65293273c T T T ε===-- 12,2010000.455 kW 9.773600cQ P ε⨯===⨯由()1221212003600T T T PT T -⨯=-220t =℃ 得1313 K 40T ==℃5-7 2,10.351000015000 kJ/h t c Q Q ηε==⨯⨯= 5-8 ()()2111000010.37000 kJ/h t Q Q η=-=⨯-=215000700022000 kJ/h Q Q Q =+=+=总 5-9 可逆绝热压缩终态温度2T1 1.411.422110.3300410.60.1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭K可逆过程0Q U W =∆+=,不可逆过程0Q U W ''=∆+= 且 1.1W W '=,则 1.1U U '∆=∆()()21211.1v v mc T T mc T T '-=-()()21211.1300 1.1410.6300421.7T T T T '=+-=+⨯-=K 2211421.70.3ln ln 0.1 1.01ln 0.287ln 3000.1p T p S m c R T p '⎛⎫⎛⎫∆=-=⨯- ⎪ ⎪⎝⎭⎝⎭=0.00286 kJ/kg.K5-10 理论制冷系数:21,122587.37293258c T T T ε===-- 制冷机理论功率:21,1257004.74 kW 7.373600cQ P ε===⨯散热量:12125700 4.743600142756 kJ/h Q Q P =+=+⨯=冷却水量:21H O 1427564867.2 kg/h 4.197Q mc t ===∆⨯5-11 ⑴ 1111003070 kJ W Q U =-∆=-=热源在完成不可逆循环后熵增0.026kJ/kg.K 则第二个过程热源吸热:120.0261006000.026115.6 kJ Q Q T T ⎛⎫=+=+⨯= ⎪⎝⎭工质向热源放热:()22115.63085.6 kJ W Q U =-∆=---=- 5-12 可逆定温压缩过程熵变:211ln0.287ln 0.66 kJ/kg K 0.1p s R p ∆=-=-⨯=-⋅ 可逆过程耗功:1120.1ln0.287400ln 264 kJ/kg 1p w RT p ==⨯⨯=- 实际耗功:()1.25 1.25264330 kJ/kg w w '==⨯-=- 因不可逆性引起的耗散损失:()33026466 kJ/kg q w w ''=-=---=- 总熵变:0660.660.44 kJ/kg K 300q s s T ''∆=∆+=-+=-⋅ 5-13 ()121v q c T T =-,()231p q c T T =-()()31313121121212111111111p v c T T T T v v q wq q c T T T T p p ηκκ---==-=-=-=---- 5-14 1112lnp q RT p =,()421223ln v pq c T T RT p =-+ ()412412223321111122lnln 1111lnlnv p T T pc T T RT T p p q p p q RT T p p κη--++-=-=-=-5-15 ⑴11940 K T '=,2660 K T '=216601166%1940T T η'=-=-=' ⑵01100066%660 kJ W Q η==⨯=20,max11600110001700 kJ 2000T W Q T ⎛⎫⎛⎫=-=⨯-= ⎪ ⎪⎝⎭⎝⎭0,max 0700660 kJ 40 kJ W W W δ=-=-=5-16 11114000.10.445 kg 0.287313p V m RT ⨯===⨯ 22222000.10.238 kg 0.287293p V m RT ⨯===⨯ ()()11220v v U m c T T m c T T ∆=-+-=1122120.4453130.238293306 K 0.4450.238m T m T T m m +⨯+⨯===++()()12120.4450.2380.2873060.3 MPa 0.10.1m m RT p V V ++⨯⨯===++ 1122121122 ln ln ln ln 3060.3 0.4451.01ln 0.287ln 3130.43060.3 0.2381.01ln 0.287ln 0.0093 kJ/K2930.2p p S m s m s T p T p m c R m c R T p T p ∆=∆+∆⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=⋅-⋅ ⎪⎝⎭⎛⎫+-⋅= ⎪⎝⎭5-17 ⑴2211400 2.51000 K pT T p ==⨯=()()1210.7231000400433.8 kJ/kg v q c T T =-=⨯-=12331ln 0.287400ln 264.3 kJ/kg 10v q RT v ==⨯=-⑵12433.8264.3169.5 kJ/kg w q q =-=-=21264.31139.0%433.8q q η=-=-=5-18 ⑴()12201s R T T W m w m κκκ'-===- ()()21201201.41298258.2 K 0.5 1.40.287T T m R κκ'--=-=-=⨯⨯⑵1 1.412 1.42112980.4229.4 K p T T p κκ--⎛⎫==⨯= ⎪⎝⎭()()120.287298229.40.5 1.41 1.4134.5 kWs R T T W m w m κκκ-⨯-===⨯⨯--= 5-19 1 1.311.322111303515.5 K 0.1n np T T p --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()21 1.3 1.40.287515.53031 1.31 1.4150.8 kJ/kgv n q c T T n κ--=-=⨯⨯----=- 环境熵变:1050.80.175 kJ/kg K 290q s T ∆===⋅空气熵变:22211ln ln p T ps c R T p ∆=-515.511.005ln 0.287ln 0.127 kJ/kg K 3030.1=⨯-=-⋅孤立系统熵变:120.1750.1270.048 kJ/kg K iso s s s ∆=∆+∆=-=⋅ 5-20 1 1.411.422110.2800505.1 K 1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()120.2968800505.1218.8 kJ/kg 1 1.41R T T w κ-⨯-===--()()()12120210212112021 505.1800 218.81000.2968167.6 kJ/kg2001000u u v ex ex u u p v v T s s RT RT c T T p p p -=---+-⎛⎫=--- ⎪⎝⎭⎛⎫=-⨯⨯-= ⎪⎝⎭排开环境所作的功为作功能力损失(51.2kJ/kg )5-21 1 1.211.222110.2800611.8 K 1n np T T p --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭()()120.2968800611.8279.3 kJ/kg 1 1.21R T T w n -⨯-===--31110.29688000.237 m /kg 1000RT v p ⨯=== 32220.2968611.80.908 m /kg 200RT v p ⨯=== 22221111ln ln ln ln 11.40.2968611.80.2ln 0.2968ln 0.20 kJ/kg K1.418000.1p T p T p R s c R R T p T p κκ∆=-=--⨯=-=⋅-()()()()()()1212021021120210 10.2968 800611.81000.9080.2373000.21.41 132.5 kJ/kg u u ex ex u u p v v T s s RT T p v v T s κ-=---+-=---+∆-=⨯--⨯-+⨯-= 5-22 1112001013.94 kg 0.287500pV m RT ⨯===⨯ ()()2113.94 1.0056005001400.7 kJ p Q mc T T =-=⨯⨯-=21600ln1.005ln 0.1832 kJ/kg K 500p T s c T ∆==⨯=⋅ 01400.730013.940.1832634.6 kJ q Ex Q T m s =-⋅∆=-⨯⨯= 030013.940.1832766.1 kJ q An T m s =⋅∆=⨯⨯=5-23 ()()12 1.40.287500320180.74 kJ/kg 1 1.41s R T T w κκ-⨯⨯-===--22113200.1lnln 1.005ln 0.287ln 5000.5 0.0134 kJ/kg Kp T p s c R T p ∆=-=⨯-⨯=⋅()()()1212021120 1.0055003203000.0134184.92 kJ/kgh h p ex ex h h T s s c T T T s -=-+-=-+∆=⨯-+⨯=12180.7497.7%184.92s ex h h w ex ex η===-5-24 ⑴21300201167.3%100020T T η'+=-=-='- ⑵013001170%1000t T T η=-=-= ()()110000.70.67327 kJ t L Q ηη=-=⨯-= ⑶()()211100010.673327 kJ Q Q η=-=⨯-=12110211111111 10003270.09 kJ/K9801000300320S Q Q T T T T ⎛⎫⎛⎫∆=-+- ⎪⎪''⎝⎭⎝⎭⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭0iso 3000.0927 kJ L T S =∆=⨯= 符合!。

工程热力学第五章 习题解答

工程热力学第五章 习题解答

第五章 习题解答5-1 ⑴ 12,187331364.14%873t c T T T η--===⑵ 0,10.641410064.14 kW t c W Q η==⨯= ⑶ ()()2,1110.641410035.86 kW t c Q Q η=-=-⨯= 5-2 12,1100040060%1000t c T T T η--=== 0,10.61000600 kJ < 700 kJ t c W Q η==⨯= 该循环发动机不能实现5-3 ()()121 1.011000300707 kJ/kg p q c T T =-=⨯-=133323331221.41.41lnln ln 300 0.287300ln 362.8 kJ/kg1000p pT q RT RT RT p p T κκ--⎛⎫=== ⎪⎝⎭⎛⎫=⨯⨯=- ⎪⎝⎭12707362.8344.2 kJ/kg w q q =+=-=1344.248.68%707w q η=== 5-4 12,1100030070%1000t c T T T η--=== ,10.7707495 kJ/kg t c w q η==⨯= 5-5 ⑴221126310000089765 kJ/h 293T Q Q T ==⨯= ⑵12,122939.77293263c T T T ε===-- 12,1000002.84 kW 9.773600cQ P ε===⨯⑶100000100000 kJ/h 27.78 kW 3600P ===5-6 ⑴12,1229314.65293273c T T T ε===-- 12,2010000.455 kW 9.773600cQ P ε⨯===⨯由()1221212003600T T T PT T -⨯=-220t =℃ 得1313 K 40T ==℃5-7 2,10.351000015000 kJ/h t c Q Q ηε==⨯⨯= 5-8 ()()2111000010.37000 kJ/h t Q Q η=-=⨯-=215000700022000 kJ/h Q Q Q =+=+=总 5-9 可逆绝热压缩终态温度2T1 1.411.422110.3300410.60.1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭K可逆过程0Q U W =∆+=,不可逆过程0Q U W ''=∆+= 且 1.1W W '=,则 1.1U U '∆=∆()()21211.1v v mc T T mc T T '-=-()()21211.1300 1.1410.6300421.7T T T T '=+-=+⨯-=K 2211421.70.3ln ln 0.1 1.01ln 0.287ln 3000.1p T p S m c R T p '⎛⎫⎛⎫∆=-=⨯- ⎪ ⎪⎝⎭⎝⎭=0.00286 kJ/kg.K5-10 理论制冷系数:21,122587.37293258c T T T ε===-- 制冷机理论功率:21,1257004.74 kW 7.373600cQ P ε===⨯散热量:12125700 4.743600142756 kJ/h Q Q P =+=+⨯=冷却水量:21H O 1427564867.2 kg/h 4.197Q mc t ===∆⨯5-11 ⑴ 1111003070 kJ W Q U =-∆=-=热源在完成不可逆循环后熵增0.026kJ/kg.K 则第二个过程热源吸热:120.0261006000.026115.6 kJ Q Q T T ⎛⎫=+=+⨯= ⎪⎝⎭工质向热源放热:()22115.63085.6 kJ W Q U =-∆=---=- 5-12 可逆定温压缩过程熵变:211ln0.287ln 0.66 kJ/kg K 0.1p s R p ∆=-=-⨯=-⋅ 可逆过程耗功:1120.1ln0.287400ln 264 kJ/kg 1p w RT p ==⨯⨯=- 实际耗功:()1.25 1.25264330 kJ/kg w w '==⨯-=- 因不可逆性引起的耗散损失:()33026466 kJ/kg q w w ''=-=---=- 总熵变:0660.660.44 kJ/kg K 300q s s T ''∆=∆+=-+=-⋅ 5-13 ()121v q c T T =-,()231p q c T T =-()()31313121121212111111111p v c T T T T v v q wq q c T T T T p p ηκκ---==-=-=-=---- 5-14 1112lnp q RT p =,()421223ln v pq c T T RT p =-+ ()412412223321111122lnln 1111lnlnv p T T pc T T RT T p p q p p q RT T p p κη--++-=-=-=-5-15 ⑴11940 K T '=,2660 K T '=216601166%1940T T η'=-=-=' ⑵01100066%660 kJ W Q η==⨯=20,max11600110001700 kJ 2000T W Q T ⎛⎫⎛⎫=-=⨯-= ⎪ ⎪⎝⎭⎝⎭0,max 0700660 kJ 40 kJ W W W δ=-=-=5-16 11114000.10.445 kg 0.287313p V m RT ⨯===⨯ 22222000.10.238 kg 0.287293p V m RT ⨯===⨯ ()()11220v v U m c T T m c T T ∆=-+-=1122120.4453130.238293306 K 0.4450.238m T m T T m m +⨯+⨯===++()()12120.4450.2380.2873060.3 MPa 0.10.1m m RT p V V ++⨯⨯===++ 1122121122 ln ln ln ln 3060.3 0.4451.01ln 0.287ln 3130.43060.3 0.2381.01ln 0.287ln 0.0093 kJ/K2930.2p p S m s m s T p T p m c R m c R T p T p ∆=∆+∆⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=⋅-⋅ ⎪⎝⎭⎛⎫+-⋅= ⎪⎝⎭5-17 ⑴2211400 2.51000 K pT T p ==⨯=()()1210.7231000400433.8 kJ/kg v q c T T =-=⨯-=12331ln 0.287400ln 264.3 kJ/kg 10v q RT v ==⨯=-⑵12433.8264.3169.5 kJ/kg w q q =-=-=21264.31139.0%433.8q q η=-=-=5-18 ⑴()12201s R T T W m w m κκκ'-===- ()()21201201.41298258.2 K 0.5 1.40.287T T m R κκ'--=-=-=⨯⨯⑵1 1.412 1.42112980.4229.4 K p T T p κκ--⎛⎫==⨯= ⎪⎝⎭()()120.287298229.40.5 1.41 1.4134.5 kWs R T T W m w m κκκ-⨯-===⨯⨯--= 5-19 1 1.311.322111303515.5 K 0.1n np T T p --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()21 1.3 1.40.287515.53031 1.31 1.4150.8 kJ/kgv n q c T T n κ--=-=⨯⨯----=- 环境熵变:1050.80.175 kJ/kg K 290q s T ∆===⋅空气熵变:22211ln ln p T ps c R T p ∆=-515.511.005ln 0.287ln 0.127 kJ/kg K 3030.1=⨯-=-⋅孤立系统熵变:120.1750.1270.048 kJ/kg K iso s s s ∆=∆+∆=-=⋅ 5-20 1 1.411.422110.2800505.1 K 1p T T p κκ--⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()120.2968800505.1218.8 kJ/kg 1 1.41R T T w κ-⨯-===--()()()12120210212112021 505.1800 218.81000.2968167.6 kJ/kg2001000u u v ex ex u u p v v T s s RT RT c T T p p p -=---+-⎛⎫=--- ⎪⎝⎭⎛⎫=-⨯⨯-= ⎪⎝⎭排开环境所作的功为作功能力损失(51.2kJ/kg )5-21 1 1.211.222110.2800611.8 K 1n np T T p --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭()()120.2968800611.8279.3 kJ/kg 1 1.21R T T w n -⨯-===--31110.29688000.237 m /kg 1000RT v p ⨯=== 32220.2968611.80.908 m /kg 200RT v p ⨯=== 22221111ln ln ln ln 11.40.2968611.80.2ln 0.2968ln 0.20 kJ/kg K1.418000.1p T p T p R s c R R T p T p κκ∆=-=--⨯=-=⋅-()()()()()()1212021021120210 10.2968 800611.81000.9080.2373000.21.41 132.5 kJ/kg u u ex ex u u p v v T s s RT T p v v T s κ-=---+-=---+∆-=⨯--⨯-+⨯-= 5-22 1112001013.94 kg 0.287500pV m RT ⨯===⨯ ()()2113.94 1.0056005001400.7 kJ p Q mc T T =-=⨯⨯-=21600ln1.005ln 0.1832 kJ/kg K 500p T s c T ∆==⨯=⋅ 01400.730013.940.1832634.6 kJ q Ex Q T m s =-⋅∆=-⨯⨯= 030013.940.1832766.1 kJ q An T m s =⋅∆=⨯⨯=5-23 ()()12 1.40.287500320180.74 kJ/kg 1 1.41s R T T w κκ-⨯⨯-===--22113200.1lnln 1.005ln 0.287ln 5000.5 0.0134 kJ/kg Kp T p s c R T p ∆=-=⨯-⨯=⋅()()()1212021120 1.0055003203000.0134184.92 kJ/kgh h p ex ex h h T s s c T T T s -=-+-=-+∆=⨯-+⨯=12180.7497.7%184.92s ex h h w ex ex η===-5-24 ⑴21300201167.3%100020T T η'+=-=-='- ⑵013001170%1000t T T η=-=-= ()()110000.70.67327 kJ t L Q ηη=-=⨯-= ⑶()()211100010.673327 kJ Q Q η=-=⨯-=12110211111111 10003270.09 kJ/K9801000300320S Q Q T T T T ⎛⎫⎛⎫∆=-+- ⎪⎪''⎝⎭⎝⎭⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭0iso 3000.0927 kJ L T S =∆=⨯= 符合!。

工程热力学第三版第五章曾丹苓答案

工程热力学第三版第五章曾丹苓答案

工程热力学第三版第五章曾丹苓答案1. 引言《工程热力学第三版》是一本经典的热力学教材,对于工程热力学的基本概念和原理进行了深入浅出的讲解。

本文将针对该教材第五章的习题进行答案解析,解答由曾丹苓老师提供的习题。

2. 习题答案2.1 第1题题目:真空做功的方式有哪些?答案:真空做功的方式有以下几种: - 推动活塞:可将真空作用力转化为机械功; - 翻转电荷:通过翻转电荷的方式改变真空中的电场能; - 控制光束:利用光束对物体施加的压力,在真空中可将光束作用力转化为功; - 利用核力:通过改变核力的方式实现真空做功。

2.2 第2题题目:真空能否传递热量?答案:真空是不具备传递热量的能力的。

传热需要在物质之间进行,真空并不是一种物质,因此不能传递热量。

2.3 第3题题目:真空多壁外壳热量计的特点是什么?答案:真空多壁外壳热量计是一种常用于测量热传导系数和热辐射量的仪器。

其特点包括: - 外壳是由多个壁组成的,壁与壁之间是真空的,这样可以减小热传导的影响; - 外壳表面可通过传热介质(如水)进行冷却,以保持表面温度不变;- 测量时,根据外壳表面上的冷却速率和表面温度,可以计算出所需的热辐射通量。

2.4 第4题题目:真空吸附的传热方式有哪些?答案:真空吸附可以通过以下几种方式进行传热: - 热传导:当真空吸附材料与冷凝物接触时,如果温度差别较大,则会通过热传导将热量传递给冷凝物; - 辐射传热:由于真空吸附材料温度较低,其表面会发出辐射,而冷凝物会吸收这部分辐射能量,实现传热; - 对流传热:在真空吸附材料表面附近,可能会形成对流层,其中的气体传递热量给冷凝物。

2.5 第5题题目:真空制冷的原理是什么?答案:真空制冷是一种利用真空中反磁性气体的磁性逐渐增大的性质来实现制冷的方法。

其原理如下: - 在反磁性气体处于真空状态下时,通过对其施加磁场,反磁性气体的磁矩朝磁场方向排列。

- 将反磁性气体与一个热源接触,通过热力学第二定律,工作物质吸收热量,热源受热。

工程热力学习题解答-5

工程热力学习题解答-5

第五章 气体的流动和压缩思 考 题1.既然()*2c h h=-对有摩擦和无摩擦的绝热流动都适用,那么摩擦损失表现在哪里呢?答:对相同的压降(*P P -)来说,有摩擦时有一部分动能变成热能,又被工质吸收了,使h 增大,从而使焓降(*h h -)减少了,流速C 也降低了(动能损失)。

对相同的焓降(*h h -)而言,有摩擦时,由于动能损失(变成热能),要达到相同的焓降或相同的流速C ,就需要进步膨胀降压,因此,最后的压力必然降低(压力损失)。

2.为什么渐放形管道也能使气流加速?渐放形管道也能使液流加速吗?答:渐放形管道能使气流加速—是对于流速较高的超音速气流而言的,由2(1)dA dV dC dCM A V C C ===-可知,当0dA >时,若0dC >,则必1M >,即气体必为超音速气流。

超音速气流膨胀时由于dA dV dC A V C =-(V--A )而液体0dV V =,故有dA dCA C=-,对于渐放形管有0dA A >,则必0dCC<,这就是说,渐放形管道不能使液体加速。

3.在亚音速和超音速气流中,图5-15所示的三种形状的管道适宜作喷管还是适宜作扩压管?图 5-15答:可用2(1)dA dCM A C=-方程来分析判断 a) 0dA <时当1M <时,必0dC >,适宜作喷管 当1M >时,必0dC <,适宜作扩压管 b) 0dA >时当1M <时,必0dC <,适宜作扩压管 当1M >时,必0dC >,适宜作喷管c) 当入口处1M <时,在0dA <段0dC >;在喉部达到音速,继而在0dA >段0dC <成为超音速气流,故宜作喷管(拉伐尔喷管)当入口处1M >时,在0dA <段,0dC <;在喉部降到音速,继而在0dC <成为亚音速气流,故宜作扩压管(缩放形扩压管)。

工程热力学-第五章热力学第二定律之卡诺循环

工程热力学-第五章热力学第二定律之卡诺循环

即 wnet q1 循环净功小于吸热量,必有放热q2。
3) 若TL TH ,c 0 第二类永动机不可能制成。
4)实际循环不可能实现卡诺循环,原因: a)一切过程不可逆; b)气体实施等温吸热,等温放热困难; c)气体卡诺循环wnet太小,若考虑摩擦, 输出净功极微。
5)卡诺循环指明了一切热机提高热效率的方向。
第五章 热力学第二定律 之
卡诺循环
CONTENTS
01. 卡诺循环 02. 概括性卡诺循环 03. 多热源可逆循环 04. 卡诺定理
01. 卡诺循环
01
卡诺循环及其热效率
1 绝热压缩 2 2 等温吸热3 3 绝热膨胀 4 4 等温放热1
是两个热源的可逆循环
THANK YOU
2. 多热源可逆循环
q
2 1
Tds

Tm

s2

s1

2
Tds
Tm

1
s2

s1
注意:1)Tm 仅在可逆过程中有意义
2)
Tm

T1
T2 2
循环热效率归纳:twnet q1
1 q2 q1
1 Tm放 Tm吸
1 TL TH
适用于一切工质,任意循环 适用于多热源可逆循环,任意工质 适用于卡诺循环,概括性卡诺循环,任意工质
04. 卡诺定理
04 表述一
在相同温度的高温热源和相同的低 温热源之间工作的一切可逆循环, 其热效率都相等,与可逆循环的种 类无关,与采用哪种工质也无关。
表述二
在同为温度T1的热源和同为温度 T2的冷源间工作的一切不可逆循
环,其热效率必小于可逆循环热 效率。

工程热力学第5章习题答案

工程热力学第5章习题答案

第5章 热力学第二定律5-1 当某一夏日室温为30℃时,冰箱冷藏室要维持在-20℃。

冷藏室和周围环境有温差,因此有热量导入,为了使冷藏室内温度维持在-20℃,需要以1350J/s 的速度从中取走热量。

冰箱最大的制冷系数是多少?供给冰箱的最小功率是多少? 解: 制冷系数:22253 5.0650Q T W T T ε====−5-4 有一卡诺机工作于500℃和30℃的两个热源之间,该卡诺热机每分钟从高温热源V吸收1000kJ ,求:(1)卡诺机的热效率;(2)卡诺机的功率(kW )。

解:1211500304700.608273500733T T W Q T η−−=====+110000.60810.1360W Q η=⋅=×= kw5-5 利用一逆向卡诺机作热泵来给房间供暖,室外温度(即低温热源)为-5℃,为使室内(即高温热源)经常保持20℃,每小时需供给30000kJ 热量,试求:(1)逆向卡110000100006894.413105.59C W Q =−=−=kJ热泵侧:'C10C C Q W T T T =− '103333105.5922981.3745C C C T Q W T T =⋅=×=− 暖气得到的热量:'1C16894.4122981.3729875.78C Q Q Q =+=+=总kJ5-7 有人声称设计出了一热机,工作于T 1=400K 和T 2=250K 之间,当工质从高温热源吸收了104750kJ 热量,对外作功20kW.h ,这种热机可能吗?解: max 12114002501500.375400400C W T T Q T η−−===== max 11047500.37510.913600C W Q η×=⋅==kW h ⋅<20kW h ⋅∴ 这种热机不可能5-8 有一台换热器,热水由200℃降温到120℃,流量15kg/s ;冷水进口温度35℃,11p 烟气熵变为:22111213731.46 6.41800T T p p n n T T Q T dTS c m c mL L T T T∆====××=−∫∫kJ /K 热机熵变为02.环境熵变为:图5-13 习题5-92210Q S S T ∆==−∆ ∴201()293 6.411877.98Q T S =⋅−∆=×=kJ 3.热机输出的最大功为:0123586.81877.981708.8W Q Q =−=−=kJ5-10 将100kg 、15℃的水与200kg 、60℃的水在绝热容器中混合,假定容器内壁与水之间也是绝热的,求混合后水的温度以及系统的熵变。

工程热力学第五章习题答案

工程热力学第五章习题答案

第五章 热力学第二定律5-1 利用逆向卡诺机作为热泵向房间供热,设室外温度为5C −D ,室内温度为保持20C D 。

要求每小时向室内供热42.510kJ ×,试问:(1)每小时从室外吸多少热量?(2)此循环的供暖系数多大?(3)热泵由电机驱动,设电机效率为95%,求电机功率多大?(4)如果直接用电炉取暖,问每小时耗电几度(kW h ⋅)?解:1(20273)K 293K T =+=、2(5273)K 268K T =−+=、142.510kJ/h Q q =×(1)逆向卡诺循环1212Q Q q q T T =214421268K 2.510kJ/h 2.28710kJ/h293KQ Q T q q T ==××=×(2)循环的供暖系数112293K 11.72293K 268KT T T ε′===−−(3)每小时耗电能1244w (2.5 2.287)10kJ/h 0.21310kJ/hQ Q q q q =−=−×=×电机效率为95%,因而电机功率为40.21310kJ/h 0.623kW3600s/h 0.95P ×==×(4)若直接用电炉取暖,则42.510kJ/h ×的热能全部由电能供给442.5102.510kJ/h kJ/s 6.94kW3600P ×=×==即每小时耗电6.94度。

5-2 一种固体蓄热器利用太阳能加热岩石块蓄热,岩石块的温度可达400K 。

现有体积为32m 的岩石床,其中的岩石密度为32750kg/m ρ=,比热容0.89kJ/(kg K)c =⋅,求岩石块降温到环境温度290K 时其释放的热量转换成功的最大值。

解:岩石块从290K 被加热到400K 蓄积的热量212133()()2750kg/m 2m 0.89kJ/(kg K)(400290)K 538450kJQ mc T T Vc T T ρ=−=−=××⋅×−=岩石块的平均温度21m 21()400K 290K342.1K 400Kln ln290Kmc T T Q T T Smc T −−====Δ在T m 和T 0之间运行的热机最高热效率0t,max m290K 110.152342.1KT T η=−=−=所以,可以得到的最大功max t ,max 10.152538450kJ 81946.0kJW Q η==×=5-3 设有一由两个定温过程和两个定压过程组成的热力循环,如图5-1所示。

工程热力学第五章热力学第二定律(yyp)

工程热力学第五章热力学第二定律(yyp)
• 自发过程都具有方向性
• 若想逆向进行,必付出代价,须补偿自 发过程
• 表述之间等价不是偶然,说明共同本质 • 可以用能量贬值原理把两种表述统一起
来:所有自发过程都是程度不同的不可逆 过程,都伴有能量的降级
15
热一律否定第一类永动机
t >100%不可能
热二律否定第二类永动机
t =100%不可能
热效率最大能达到多少? 又与哪些因素有关?
tR多
1
T2
_
T1
6
5s
28
卡诺定理小结
1、在两个不同 T 的恒温热源间工作的一切
可逆热机 tR = tC
2、多热源间工作的一切可逆热机
tR多 < 同温限间工作卡诺机 tC
3、不可逆热机tIR < 同热源间工作可逆热机tR tIR < tR= tC
∴ 在给定的温度界限间工作的一切热机,
tC最高
热机极限 29
将循环用无数组 s 线细分,则必存在某 个微元循环是不可逆 的
q1 q2 0
T1 T2
q
( T
) irr 0
q T
0
克劳修斯 不等式
q ds 0 T
热源 温度35
不可逆过 q程 不的 具有状态函的 数特 全性 微
T
则不可逆
s 2 q 1T
任意过程
2 q
s
1
T
q
ds T
系统的熵变在可逆时等 于克劳修斯积分,不可 逆时大于克劳修斯积分
Q Q
1a2 T 1b2 T S2 121
1
S2 11 2 S2S1 12
Q T
2
b v 41
五、不可逆绝热过程中熵变的分析:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 热力学第二定律一、选择题1 制冷循环工质从低温热源吸热q 2,向高温热源放热q 1,其制冷系数等于AA . 212q q q - B . 211q q q - C . 221q q q - D .121q q q - 2.供暖循环工质从低温热源吸热q 2, 向高温热源放热q 1,其热泵系数等于 BA .212q q q - B . 211q q q - C .221q q q - D .121q q q - 3.卡诺制冷循环的高温热源为温度T 0环境,低温热源温度为T 1,其制冷系数εc = AA .101T T T -B .100T T T -C .1- 10T TD .1-01T T 4.卡诺供暖循环的冷源温度为T 0环境,热源温度为T 1,其热泵系数COP = AA .011T T T -B .010T T T -C .1-10T TD .1-01T T 5.制冷系数ε的取值范围为DA .大于1B .大于1或等于1C .小于1D .大于1, 等于1或小于16.热泵系数COP 的取值范围为AA .大于1B .小于1或等于1C .小于1D .大于1,等于1或小于17.可逆循环的热效率与不可逆循环的热效率相比, DA .前者高于后者B .两者相等C .前者低于后者D .前者可以高于、等于、低于后者8.在两个恒温热源T 1和T 2之间(T 1> T 2),概括性卡诺循环的热效率与卡诺循环的热效率相比, BA .前者高于后者B .两者相等C .前者低于后者D .前者可以高于、等于、低于后者9.多热源可逆循环工质的最高温度为T 1,最低温度为T 2,平均吸热为1T ,平均放热温度为2T ,则其循环热效率为BA .1-12T TB .1-12T TC .1- 2211T T T T --D .1- 1122T T T T --10. 对于可逆循环,⎰T q δ B D A .>0 B .=0C .<0D .=⎰ds 11. 不可逆循环的⎰T q δ C A .>0 B .=0C .<0D .≤0 12. 热力学第二定律指出C DA .能量的总量保持守恒B .第一类永动机不可能成功C .热不能全部变为有用功D .单热源热机不可能成功13. 理想气体经可逆定容过程从T 1升高到T 2,其平均吸热温度12T = AA .(T 2-T 1)/ln 12T T B .C v (T 2-T 1)/ln 12T T C .(T 2-T 1)/ C v ln 12T T D .221T T + 14. 1~A ~2为不可逆过程,1~B ~2为可逆过程,则C DA .⎰21A Tqδ>⎰21B T q δ B .⎰21A T q δ=⎰21B T q δ C .⎰21A T q δ<⎰21B T q δ D .⎰21A ds = ⎰21B ds 15. 自然现象的进行属于BCDA..................................................................................................... 可逆过程B.不可逆过程C.具有方向性过程D.自发过程16. 克劳休斯关于热力学第二定律的表述说明CDA.热不能从低温物体传向高温物体B.热只能从高温物体传向低温物体C.热从低温物体传向高温物体需要补偿条件D.热只能自发地从高温物体传向低温物体17. 对卡诺循环的分析可得到的结论有: ABDA.提高高温热源温度降低低温热源温度可提高热效率B.单热源热机是不可能实现的C.在相同温限下,一切不可逆循环的热效率都低于可逆循环D.在相同温限下,一切可逆循环的热效率均相同18. 卡诺循环是B CA.由两个等温过程和两个绝热过程组成的循环B.热效率最高的循环C. 热源与冷源熵变之和为零的循环D.输出功最大的循环19. 卡诺定理指出: ABCDA.在相同的高温热源和低温热源间工作的一切可逆机的热效率均相同B.在相同高温热源和低温热源间工作的一切不可逆机的热效率必小于可逆机的热效率C.单热源热机是不可能成功的D.提高T1降低T2可以提高t20. A是可逆机,B是不可逆机。

热效率ηA、ηB的可能存在的关系有: ABCD A.ηA<ηB B.ηA>ηB C.ηA≤ηB D.ηA=ηB二、填空题1. 一卡诺机在37℃和717℃之间运行。

为了提高热机效率,一种方法是将高温热源的温度提高到1027℃;另一种方法是降低冷源温度。

冷源温度降低到(℃)就能获得与热源温度提高到1027℃时相同的热效率。

2. 一给定的动力循环,工作流体在440℃的平均温度下接受3150 KJ/Kg的热,而排给20℃的冷源1950 KJ/Kg热量。

这一循环克劳修斯不等式。

3. 一可逆热机从377℃的贮热器获得热量1000KJ,而排热给27℃的另一个贮热器。

两贮热器的熵的变化分别是KJ/K。

4. 两台卡诺机A和B串联运行。

第一台机(A)在627℃的温度接受热量而排给温度为t℃的中间热源。

第二台机(B)接受第一台机所排出的热量,而又将热排给27℃的热源。

两台热机效率相同时中间热源的温度应为℃。

5. 卡诺机在927℃和33℃的温度之间工作,吸热30 KJ。

热机输出的功驱动一台卡诺制冷机从冷库吸取热量270 KJ,并向33℃的环境排热。

冷库的温度应该是℃。

6. 如果卡诺机的热效率为1/6,求在相同温限间工作的卡诺热泵的泵热系数为。

7. 如果卡诺机的热效率为1/5,求在相同温限间工作的卡诺制冷机的制冷系数为。

8. 在刚性绝热容器内的空气(R=0.2897kJ/kgK),其初态为0.1MPa、27℃。

系统内的搅拌轮由外面的电动驱动而搅动空气,使压力升到0.2MPa。

气体熵的变化了(KJ/ Kg•K)。

9. 50kg 0.1MPa、20℃的水与20kg 0.1MPa、90℃的水混合.如混合过程是绝热的且压力不变,70kg水的总熵变为(KJ/K)10. 进入透平的空气(R=0.2897kJ/kgK)为0.6MPa、597℃,绝热的膨胀到0.1MPa、297℃。

如果动能和势能差为零,可判断该过程属于的过程。

11. 某制冷循环,工质从温度为-73℃的冷源吸取热量100KJ,并将热量220KJ 传给温度为27℃的热源,此循环克劳修斯不等式。

12. 若封闭系统经历一过程,熵增为25 kJ/K,从300K的恒温热源吸热8000kJ。

此过程属于的过程。

13. 1kg饱和水蒸气在100℃下凝结为水,在凝结过程中放出热量2257kJ/kg,并被30℃的大气所吸收,该过程的有效能损失为kJ。

14. 压力为180kPa的1kg空气,从450K定容冷却到300K,空气放出的热量全部被大气环境所吸收。

若环境温度为27℃,有效能损失为kJ。

15. 温度为1427℃的恒温热源,向维持温度为500K的工质传热100kJ。

环境温度为300K。

传热过程引起的有效能损失为kJ。

三、简述题1. 热力学第一定律和热力学第二定律是热力学的两条最基本的定律,两者区别何在?热力学第一定律确定了能量的“量”的特性,揭示了热功转换时能量在数量上守恒的规律,但是并没有说明实现热功转换的条件。

热力学第二定律则确定了能量的“质”的特性,是说明了过程进行的方向、条件和深度的定律。

在描述能量的自然属性时,两定律时互补的。

2. 自发过程的逆过程是否不可能进行?为什么?举例解释。

自发过程的逆过程不是不可能进行而是不可能自发地进行,当具备了一定的补充条件就可逆向进行。

3. 热力学第二定律克劳休斯和开尔文的表述有何不同,有何关系?克劳休斯是从热量传递的角度说明:不可能把热量从低温物体传到高温物体而不引起其它变化。

开尔文则是从热功转换角度说明:不可能从单一热源吸取热量使之变为有用功而不产生其它影响。

两者论述的角度不同但本质是相同的,都是说明能量不可能自发升质的自然规律。

若违背一种表述则必然违背另一种表述。

4. 热能与机械能,高温热能与低温热能的品质有何不同?为什么说热力学第二定律指出了能量在质上的变化规律?机械能的品质高,热能的品质低;高温热能的品质高,低温热能的品质低。

因为热力学第二定律指出了品质高的能量可自发地向品质低的转化;而低品质的能不能自发地向高品质转化;即能量的品质自发的贬值,故说是指出了能量品质变化的规律。

5. 从卡诺循环可以得到什么重要启示?从卡诺循环热效率 t =1-12T T 可以看出;(1)提高热效率的方法应该是提高T1,降低T2;(2)卡诺循环热效率不可能为100%,因为T1=∞,和T2=0都是不可能的(3)T1=T2,ηt =0,即无温差的体系热能不可能装化为功(4)有温度高于环境温度的高温热源就可用热能产生功6. 从卡诺定理看出卡诺循环具有怎样的重要意义?卡诺定理指出:在相同的T1,T2间工作的一切可逆热机其热效率都相等。

可以看出:一切可逆循环热效率均为ηt =1-12T T在相同的T1,T2间工作的一切不可逆循环都低于可逆循环的热效率。

可以看出:卡诺循环的热效率是两个不同温度的恒温热源间循环热效率的最高极限。

7. 不可逆过程的熵变与可逆过程的熵变有何区别?由可逆过程ds =T qδ,Δs =⎰21Tq δ 不可逆过程ds>T q δ,Δs>⎰21Tq δ 如⎰T q δ相同,Δs (不可逆)>Δs (可逆),增大部分由不可逆因素造成,如初终态相同Δs (不可逆)=Δs (可逆),因熵是状态参数。

四、计算题1.刚性绝热容器内贮有2.3kg ,98kPa ,60℃的空气,并且容器内装有一搅拌器。

搅拌器由容器外的电动机带动,对空气进行搅拌,直至空气升温到170℃为止。

求此不可逆过程中做功能力的损失。

已知环境温度为18℃。

2. A 、B 两卡诺机串联工作,A 热机在627℃下吸热,向温度为T 的热源放热;B 热机从温度为T 的热源吸入A 热机排出的热量,并向27℃的冷源放热。

试按下列条件计算中间热源的温度T :。

相关文档
最新文档