高中数学基础知识汇总[经典版]

合集下载

高中数学最基础的知识点汇总,谢谢

高中数学最基础的知识点汇总,谢谢

高中数学最基础的知识点汇总一、自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)二、一次函数的性质:1、y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数b取任何实数)2、当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1、作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3、k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点;当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

高中数学知识点归纳

高中数学知识点归纳

高中数学知识点归纳一、集合与函数概念。

1. 集合。

- 集合的定义:一些元素组成的总体。

- 集合的表示方法:列举法(如{1,2,3})、描述法(如{xx > 0})。

- 集合间的关系:- 子集:若集合A中的元素都在集合B中,则A⊆ B。

- 真子集:A⊆ B且A≠ B,则A⊂neqq B。

- 集合相等:A = B当且仅当A⊆ B且B⊆ A。

- 集合的运算:- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B ={xx∈ A或x∈ B}。

- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。

2. 函数及其表示。

- 函数的概念:设A,B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

- 函数的三要素:定义域、值域、对应关系。

- 函数的表示方法:解析法(如y = x^2+1)、图象法、列表法。

3. 函数的基本性质。

- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。

- 减函数:当x_1时,都有f(x_1)>f(x_2),则函数y = f(x)在区间D上是减函数。

- 奇偶性:- 偶函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

- 奇函数:对于函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数。

二、基本初等函数(Ⅰ)1. 指数函数。

- 指数与指数幂的运算:- 根式:sqrt[n]{a^m}=a^(m)/(n)(a > 0,m,n∈ N^*,n > 1)。

- 有理数指数幂的运算性质:a^r· a^s=a^r + s,(a^r)^s=a^rs,(ab)^r=a^rb^r(a > 0,b > 0,r,s∈ Q)。

高中数学基础知识汇总[经典版].pdf

高中数学基础知识汇总[经典版].pdf

高中数学基础知识汇总[经典版]高中数学知识归纳汇总目录第一部分集合 (3)第二部分函数与导数 (4)第三部分三角函数、三角恒等变换与解三角形 (8)第四部分立体几何 (10)第五部分直线与圆 (12)第六部分圆锥曲线 (14)第七部分平面向量 (16)第八部分数列 (17)第九部分不等式 (19)第十部分复数 (20)第十一部分概率 (21)第十二部分统计与统计案例 (22)第十三部分算法初步 (23)第十四部分常用逻辑用语与推理证明 (24)第十五部分推理与证明 (25)第十六部分理科选修部分 (26)第一部分 集合1.N ,Z ,Q ,R 分别表示自然数集、整数集、有理数集、实数集;2.交集,}.{B x A x x B A ∈∈=且I 并集,}.{B x A x x B A ∈∈=或Y 符号区分; 3.(1)含n 个元素的集合的子集数为2n ,非空子集数为2n -1;真子集数为2n -1;非空真子集的数为2n -2; (2);B B A A B A B A =⇔=⇔⊆Y I 注意:讨论的时候不要遗忘了φ=A 的情况。

(3));()()();()()(B C A C B A C B C A C B A C I I I I I I Y I I Y == 4.φ是任何集合的子集,是任何非空集合的真子集。

第二部分 函数与导数1.定义域:①抽象函数;已知[k(x)]f 定义域,求[g(x)]f 定义域,(x)k 与(x)g 值域相同。

(具体可以参考本节第4点复合函数定义域求法)。

②具体函数。

分母不为0,偶次根号下不为负数,0a 中a 不为0,tan θ ,log a x 中的x 为正数。

2.值域:①一元二次方程配方法 ;②换元法;③分离参数法 ;3.解析式:①配方法 ;②换元法;③待定系数和;④消去法。

4.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤g(x)≤b 解出;② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x ∈[a,b]时,求g(x)的值域。

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)高中数学知识点大全一、集合、简易逻辑1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。

二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。

四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。

五、平面向量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面向量的坐标表示;5、线段的定比分点;6、平面向量的数量积;7、平面两点间的距离;8、平移。

六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含绝对值的不等式。

七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简单线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。

八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简单几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简单几何性质;6、抛物线及其标准方程;7、抛物线的简单几何性质。

高中数学的基本知识点总结

高中数学的基本知识点总结

高中数学的基本知识点总结高中数学的基本知识点总结总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它是增长才干的一种好办法,让我们一起来学习写总结吧。

总结怎么写才是正确的呢?以下是小编精心整理的高中数学基本知识点总结,仅供参考,希望能够帮助到大家。

高中数学基本知识点总结 1(1)不等关系感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式①经历从实际情境中抽象出一元二次不等式模型的过程。

②通过函数图象了解一元二次不等式与相应函数、方程的联系。

③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的`程序框图。

(3)二元一次不等式组与简单线性规划问题①从实际情境中抽象出二元一次不等式组。

②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。

③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。

(4)基本不等式①探索并了解基本不等式的证明过程。

②会用基本不等式解决简单的(小)值问题。

高中数学基本知识点总结 2简单随机抽样的定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

简单随机抽样的特点:(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n 的`样本时,每次抽取一个个体时任一个体被抽到的概率为___;在整个抽样过程中各个个体被抽到的概率为____。

(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等。

(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础。

(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。

简单抽样常用方法:(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法。

高中数学基础知识汇总

高中数学基础知识汇总

高中数学基础知识汇总一、集合、简易逻辑(14课时,8个)1、集合;2.子集、补集;3.交集、并集;4.逻辑连结词;5.四种命题;6.充要条件。

二、函数(30课时,12个)1、映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩展;7.有理指数幂的运算性质;8.指数函数;9.对数;10.对数的运算性质;11.对数函数。

三、数列(12课时,6个)1、数列的有关概念;2.等差数列;3.等差数列的前n项和;4.数列求和的常用方法。

四、三角函数(46课时,17个)1、角的概念的扩展;2.弧度的概念;3.任意的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.期中轴线对称、伸缩变换和图象的间断点;11.函数的图象与性质;12.还请大家注意平移和伸缩变换,它们是研究图象的基本方法。

五、平面解析几何(16课时,7个)1、平面直角坐标系;2.直线方程;3.圆的方程。

六、不等式(10课时,5个)1、不等式的基本性质;2.一元一次不等式和一元二次不等式;3.不等式的证明。

七、平面向量(12课时,8个)1、向量的基本概念及表示方法;2.向量的运算。

高中语文基础知识汇总一、表达方式:记叙、描写、抒情、议论、说明二、文学体裁:诗歌、小说、散文、剧本、传记文学、报告文学、寓言三、修辞手法:比喻、借代、夸张、对偶、对比、反复、反问、设问、引用、四、表现手法:象征、联想、想象、衬托(正衬、反衬)、烘托(即托与衬的区别)、渲染、用典、动静相衬、虚实相生等五、选材剪材:选材要围绕写作中心,选择感受最深的事来写,选择材料要典型新颖。

剪裁就是对详写和略写的安排。

材料有详有略,才能突出中心。

六、结构安排:包括开头和结尾、段落和层次、过渡和照应,以及伏笔和点睛之笔。

高中数学知识点总结归纳

高中数学知识点总结归纳

高中数学知识点总结归纳一、集合。

1. 集合的概念。

- 集合是由确定的元素组成的总体。

元素具有确定性、互异性、无序性。

例如,集合A = {1,2,3},其中1、2、3是元素,这三个元素是确定的,互不相同(互异性),{1,2,3}和{3,2,1}表示同一个集合(无序性)。

2. 集合的表示方法。

- 列举法:把集合中的元素一一列举出来,写在大括号内,如A={a,b,c}。

- 描述法:用确定的条件表示某些对象是否属于这个集合的方法,如A = {xx^2 - 1=0}。

3. 集合间的基本关系。

- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B。

- 真子集:如果A⊆ B,且A≠ B,那么A是B的真子集,记作A⊂neqq B。

- 相等:如果A⊆ B且B⊆ A,那么A = B。

4. 集合的基本运算。

- 交集:A∩ B={xx∈ A且x∈ B}。

- 并集:A∪ B = {xx∈ A或x∈ B}。

- 补集:设U是全集,A⊆ U,则∁_U A={xx∈ U且x∉ A}。

二、函数。

1. 函数的概念。

- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。

2. 函数的三要素。

- 定义域:自变量x的取值范围。

例如y=(1)/(x)的定义域是{xx≠0}。

- 值域:函数值y的取值范围。

- 对应关系:如y = x^2中的y与x的平方关系。

3. 函数的性质。

- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1时,有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。

- 奇偶性:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于任意x∈ D,都有f(-x)= - f(x),那么函数y = f(x)是奇函数。

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)

高中数学知识点大全(完整版)1. 实数和复数:实数是数轴上的所有数,包括有理数和无理数;复数由实部和虚部组成,可以表示为a+bi的形式,其中a和b 为实数。

2. 幂和根:幂是指数运算,如a的n次幂表示为an;根是幂的逆运算,开x次方根表示为x√a。

3. 代数运算:加法、减法、乘法和除法是代数运算的基本运算,它们遵循相应的运算法则。

4. 贝叶斯定理:条件概率和全概率公式的应用,用于计算事件的概率。

5. 几何:包括平面几何和立体几何,涉及到图形的性质,如平行、垂直、相似、全等等。

6. 向量:具有大小和方向的量,在代数中用坐标表示,可以进行向量的加法、减法和数量乘法等运算。

7. 函数:函数是自变量与因变量之间的依赖关系,常见的函数有线性函数、二次函数、指数函数、对数函数等。

8. 三角函数:包括正弦、余弦、正切、余切等,广泛应用于几何、物理等领域。

9. 极限与连续性:极限是指当自变量趋近于某个特定值时,函数的变化趋势;连续性是指函数在其定义域上无断点。

10. 导数与微分:导数表示函数在某一点处的变化率,微分是导数的几何意义。

11. 积分与不定积分:积分表示函数在一定区间上的面积或曲线长度,不定积分是积分的逆运算。

12. 概率与统计:概率是描述随机事件发生的可能性,统计是收集、整理和分析数据的方法。

13. 矩阵与行列式:矩阵是一个按照一定规则排列的数的矩形阵列,行列式是矩阵的一种特殊表示形式。

14. 数列与数级数:数列是由一个或多个数按一定规律排列而成的序列,数级数是数列的无穷求和。

15. 数论:研究整数性质和整数之间的关系,包括质数、最大公约数、同余等。

16. 解析几何:利用坐标表示几何图形的性质和关系。

17. 空间几何:研究三维空间中图形的性质和关系。

18. 数学证明:用严密的推理和逻辑方法证明数学命题的正确性。

19. 数学建模:将实际问题转化为数学模型,利用数学方法进行求解和分析。

20. 科学计算:利用计算机和数值方法解决数学问题,如差值、插值、数值积分等。

高中数学基础知识汇总(详细版)

高中数学基础知识汇总(详细版)

高中数学基础知识汇总(详细版)一、集合:(1)集合:由一组具有特定关系的元素构成的对象,如{a,b,c}由3个元素a,b,c构成。

(2)定义域(Domain):集合中的所有元素组成的定义域,如定义域 {a,b,c}中包含元素a,b和c。

(3)基数:一个集合中元素的数目叫做其基数,基数等于集合中定义域的数目。

(4)子集:一个集合是另一个集合的子集,如果它包含另一个集合中的所有元素,叫做子集。

(5)相等集:两个集合满足基数相等以及所有定义域相等时,两个集合叫做相等集。

二、函数:(1)函数(Function):将每个元素映射为另一个元素的规则的关系,如f(x)=2x+1。

(2)可逆性:如果f是可逆的,则f(x)和f在对应位置上有一个可逆的函数(f-1)(x)。

(3)偶函数:任何一个f(x)都可以写成两个函数f1(x)和f2(-x),如果f1(x)=f2(-x),则称f(x)为偶函数。

(4)函数的图形表示:用函数的定义域和它的值域的点的集合表示函数的图形。

三、统计:(1)分类数据:以某种类别划分的一组数据。

(2)频率:一个类别出现的次数,频率可以用于判断一类数据的分布。

(3)分布规律:一种数据的出现频率在一段时间内的变化规律,常用折线图表示。

(4)算术平均数:研究序列某个变量在一段时间内全体数据的平均值。

(5)众数:一组数据中出现次数最多的数。

四、代数:(1)多项式:由常系数乘常数的多项式,可以表示为axn+bxn-1+……+c的形式,其中a,b,c都是常数,n是正整数且大于0,x是变量。

(2)一次项:只有一个未知量的多项式,如1x+2、a-3x。

(4)根式:当n为偶数时,其中一项是常数,就是根式,如4x2+3x+1,根式是4x2+1。

(5)代数和式:当两个或多个未知量相加时,叫做代数和式,如2x+3y+4z。

(6)乘法:两个多项式及其系数相乘时,称为乘法,如(2x+3)·(x-1)=2x2-x-3。

高中数学基础知识汇总

高中数学基础知识汇总

三角1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的初步性质如下表:4.如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .三角函有向线段MP 为正弦线;有向线段OM 为余弦线;有向线段AT 为正切线【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ )(3)角α终边上点P 的坐标为(-12,32),那么sin α=32,cos α=-12;同理角α终边上点Q的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.( × ) (4)α∈(0,π2),则tan α>α>sin α.( √ )(5)α为第一象限角,则sin α+cos α>1.( √ ) 1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2.下列各角的终边与角α的终边的关系终边终边【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin(π+α)=-sin α成立的条件是α为锐角.( × )(4)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.( √ ) 1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × )(2)常数函数f (x )=a 是周期函数,它没有最小正周期.( √ ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) (5)y =sin |x |是偶函数.( √ ) (6)若sin x >22,则x >π4.( × ) 1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质π【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)y=sin x在第一、第四象限是增函数.(×)(2)常数函数f(x)=a是周期函数,它没有最小正周期.(√)(3)正切函数y=tan x在定义域内是增函数.(×)(4)已知y=k sin x+1,x∈R,则y的最大值为k+1.(×)(5)y=sin |x|是偶函数.(√)(6)若sin x >22,则x >π4.( × ) 1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β (C (α-β)) cos(α+β)=cos_αcos_β-sin_αsin_β (C (α+β)) sin(α-β)=sin_αcos_β-cos_αsin_β (S (α-β)) sin(α+β)=sin_αcos_β+cos_αsin_β (S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β (T (α-β))tan(α+β)=tan α+tan β1-tan αtan β (T (α+β))2.二倍角公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ ) 1.公式的常见变形 (1)1+cos α=2cos 2α2;1-cos α=2sin 2α2;(2)1+sin α=(sin α2+cos α2)2;1-sin α=(sin α2-cos α2)2.(3)tan α2=sin α1+cos α=1-cos αsin α.2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ), 其中sin φ=b a 2+b 2,cos φ=aa 2+b 2. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)y =3sin x +4cos x 的最大值是7.( × ) (2)设α∈(π,2π),则1-cos (π+α)2=sin α2.( × )(3)在非直角三角形中有:tan A +tan B +tan C =tan A tan B tan C .( √ ) (4)设5π2<θ<3π,且|cos θ|=15,那么sin θ2的值为155.( × )(5)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( × ) 1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .3.在△ABC中,已知a、b和A时,解的情况如下:a=b sin A b sin A<a<b a≥b a>b判断下面结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.(×)(2)在△ABC中,若sin A>sin B,则A>B.(√)(3)在△ABC的六个元素中,已知任意三个元素可求其他元素.(×)(4)当b2+c2-a2>0时,三角形ABC为锐角三角形;当b2+c2-a2=0时,三角形为直角三角形;当b2+c2-a2<0时,三角形为钝角三角形.(×)(5)在三角形中,已知两边和一角就能求三角形的面积.(√)1.仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).2.方向角相对于某正方向的水平角,如南偏东30°,北偏西45°等.3.方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).导数1.导数与导函数的概念(1)函数y=f(x)在x=x0处的瞬时变化率是limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx,我们称它为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.(2)如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,其导数值在(a,b)内构成一个新函数,这个函数称为函数y=f(x)在开区间内的导函数.记作f′(x)或y′.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即k=f′(x0).3.基本初等函数的导数公式4.若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)[f(x)g(x)]′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y 对x的导数等于y对u的导数与u对x的导数的乘积.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)与(f(x0))′表示的意义相同.(×)(2)求f′(x0)时,可先求f(x0)再求f′(x0).(×)(3)曲线的切线不一定与曲线只有一个公共点.(√)(4)与曲线只有一个公共点的直线一定是曲线的切线.(×)(5)函数f(x)=sin(-x)的导数是f′(x)=cos x.(×)1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值一般地,当函数f(x)在点x0处连续时,(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.(×)(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(3)函数的极大值不一定比极小值大.(√)(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×)(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√)1.定积分的概念在ʃb a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.2.定积分的性质(1)ʃb a kf(x)d x=kʃb a f(x)d x(k为常数);(2)ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x;(3)ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).3.微积分基本定理一般地,如果f(x)是在区间[a,b]上的连续函数,且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.其中F(x)叫做f(x)的一个原函数.为了方便,常把F(b)-F(a)记作F(x)|b a,即ʃb a f(x)d x=F(x)|b a=F(b)-F(a).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)设函数y=f(x)在区间[a,b]上连续,则ʃb a f(x)d x=ʃb a f(t)d t.(√)(2)若函数y=f(x)在区间[a,b]上连续且恒正,则ʃb a f(x)d x>0.(√)(3)若ʃb a f(x)d x<0,那么由y=f(x),x=a,x=b以及x轴所围成的图形一定在x轴下方.(×)(4)若f(x)是偶函数,则ʃa-a f(x)d x=2ʃa0f(x)d x.(√)(5)若f(x)是奇函数,则ʃa-a f(x)d x=0.(√)(6)曲线y=x2与y=x所围成的面积是ʃ10(x2-x)d x.(×)函数1.函数与映射(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.4.常见函数定义域的求法【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)对于函数f:A→B,其值域是集合B.(×)(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.(×)(3)映射是特殊的函数.(×)(4)若A=R,B={x|x>0},f:x→y=|x|,其对应是从A到B的映射.(×)(5)分段函数是由两个或几个函数组成的.(×)1.函数的单调性(1)单调函数的定义图象描述自左向右看图象是上升的自左向右看图象是下降的(2)如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.( × )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f(1)<f (3),则f (x )为增函数.( × ) 1.函数的奇偶性 (1)周期函数:对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.( × )(2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( √ )(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质定义域(-∞,+∞)(-∞,+∞)2.(1)定义:形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α是常数.(2)幂函数的图象比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②幂函数的图象过定点(1,1);③当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ④当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a.( × )(2)二次函数y =ax 2+bx +c ,x ∈R ,不可能是偶函数.( × )(3)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( √ )(4)函数y =2x 12是幂函数.( × )(5)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (6)当n <0时,幂函数y =x n 是定义域上的减函数.( × ) 1.分数指数幂(1)规定:正数的正分数指数幂的意义是a m n=na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是am n=1n a m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a r a s =a r +s ,(a r )s =a rs ,(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q .2.指数函数的图象与性质(1)R【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)n a n =(na )n =a .( × )(2)分数指数幂a m n可以理解为mn 个a 相乘.( × )(3)(-1)24=(-1)12=-1.( × )(4)函数y =a -x 是R 上的增函数.( × ) (5)函数y =a21+x (a >1)的值域是(0,+∞).( × )(6)函数y =2x-1是指数函数.( × )1.对数的概念如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中 a 叫做对数的底数, N 叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R );④log am M n =nm log a M (m ,n ∈R ,且m ≠0).(2)对数的性质 ①alog a N= N ;②log a a N = N (a >0且a ≠1).(3)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d =log a d .3.对数函数的图象与性质图象(1)定义域:(0,+∞)4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线 y =x 对称. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( × ) (2)log a x ·log a y =log a (x +y ).( × )(3)函数y =log 2x 及y =log 133x 都是对数函数.( × )(4)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × ) (5)函数y =ln 1+x 1-x与y =ln(1+x )-ln(1-x )的定义域相同.( √ )(6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎫1a ,-1,函数图象只在第一、四象限.( √ ) 1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )――――――――→关于x 轴对称y =-f (x ); ②y =f (x )―――――――――→关于y 轴对称y =f (-x ); ③y =f (x )―――――――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――――→关于y =x 对称y =log a x (a >0且a ≠1).⑤y =f (x )――――――――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)伸缩变换①y =f (x )―――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――→a >1,横坐标缩短为原来的1a倍,纵坐标不变0<a <1,横坐标伸长为原来的1a倍,纵坐标不变y =f (ax ).②y =f (x )――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ). 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( × ) (2)函数y =af (x )与y =f (ax )(a >0且a ≠1)的图象相同.( × ) (3)函数y =f (x )与y =-f (x )的图象关于原点对称.( × )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( √ ) (5)将函数y =f (-x )的图象向右平移1个单位得到函数y =f (-x -1)的图象.( × ) 1.函数的零点 (1)函数零点的定义对于函数y =f (x )(x ∈D ),把使f (x )=0的实数x 叫做函数y =f (x )(x ∈D )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个 c 也就是方程f (x )=0的根. 2.二分法对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系2(x 0),(x 0)(x 0) 无交点 判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( × )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( × ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( × ) (4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( √ )集合逻辑1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法 BA B (或B A )A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈B}∁A={x|x∈U,且x∉A}(1)若有限集A中有n个元素,则A的子集个数为2n个,非空子集个数为2n-1个,真子集有2n-1个.(2)A⊆B⇔A∩B=A⇔A∪B=B.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(2)若{x2,1}={0,1},则x=0,1.(×)(3){x|x≤1}={t|t≤1}.(√)(4)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.(√)(5)若A∩B=A∩C,则B=C.(×)(6)含有n个元素的集合有2n个真子集.(×)1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p q,则p是q的必要不充分条件;(5)如果p q,且q p,则p是q的既不充分又不必要条件.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.(×)(2)命题“α=π4,则tan α=1”的否命题是“若α=π4,则tan α≠1”.( × )(3)若一个命题是真命题,则其逆否命题是真命题.( √ ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( √ )(5)当p 是q 的充要条件时,也可说成q 成立当且仅当p 成立.( √ ) (6)若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件.( √ ) 1.命题p ∧q ,p ∨q ,綈p 的真假判断2.全称量词和存在量词4.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)命题p ∧q 为假命题,则命题p 、q 都是假命题.( × ) (2)命题p 和綈p 不可能都是真命题.( √ )(3)若命题p 、q 至少有一个是真命题,则p ∨q 是真命题.( √ ) (4)全称命题一定含有全称量词,特称命题一定含有存在量词.( × ) (5)写特称命题的否定时,存在量词变为全称量词.( √ ) (6)∃x 0∈M ,p (x 0)与∀x ∈M ,綈p (x )的真假性相反.( √ )解析几何1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. (2)范围:直线l 倾斜角的范围是[0,π). 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式判断下面结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (3)直线的倾斜角越大,其斜率就越大.( × ) (4)直线的斜率为tan α,则其倾斜角为α.( × ) (5)斜率相等的两直线的倾斜角不一定相等.( × )(6)经过定点A (0,b )的直线都可以用方程y =kx +b 表示.( × ) (7)不经过原点的直线都可以用x a +yb=1表示.( × )(8)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )1.圆的定义在平面内,到定点的距离等于定长的点的集合叫圆.2.确定一个圆最基本的要素是圆心和半径. 3.圆的标准方程(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径. 4.圆的一般方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F >0,其中圆心为⎝⎛⎭⎫-D 2,-E2,半径r =D 2+E 2-4F2.5.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为 (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F 代入标准方程或一般方程. 6.点与圆的位置关系 点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.( √ )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ )(4)方程x 2+2ax +y 2=0一定表示圆.( × ) (5)圆x 2+2x +y 2+y =0的圆心是⎝⎛⎭⎫1,12.( × ) (6)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)“k =1”是“直线x -y +k =0与圆x 2+y 2=1相交”的必要不充分条件.( × ) (2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(4)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(5)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(6)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.椭圆的概念平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质-a≤x≤a -b≤x≤b【知识拓展】点P(x0,y0)和椭圆的关系(1)点P(x0,y0)在椭圆内⇔x20a2+y20b2<1.(2)点P(x0,y0)在椭圆上⇔x20a2+y20b2=1.(3)点P(x0,y0)在椭圆外⇔x20a2+y20b2>1.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.(×)(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).(√)(3)椭圆的离心率e越大,椭圆就越圆.(×)(4)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)(5)y2a2+x2b2=1 (a≠b)表示焦点在y轴上的椭圆.(×)(6)x2a2+y2b2=1 (a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相等.(√)1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a>|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a【知识拓展】 巧设双曲线方程(1)与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n =1 (mn <0).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线称为共轭双曲线).( √ )1.抛物线的概念平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质【知识拓展】1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径.2.y 2=ax 的焦点坐标为⎝⎛⎭⎫a 4,0,准线方程为x =-a4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × ) (2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是(a4,0),准线方程是x =-a4.( × )(3)抛物线既是中心对称图形,又是轴对称图形.( × )(4)AB 为抛物线y 2=2px (p >0)的过焦点F (p 2,0)的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x (或y )的一元方程:ax 2+bx +c =0 (或ay 2+by +c =0).(1)若a ≠0,可考虑一元二次方程的判别式Δ,有 ①Δ>0⇔直线与圆锥曲线相交; ②Δ=0⇔直线与圆锥曲线相切; ③Δ<0⇔直线与圆锥曲线相离.(2)若a =0,b ≠0,即得到一个一元一次方程,则直线l 与圆锥曲线E 相交,且只有一个交点,①若E 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; ②若E 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=1+k 2|x 2-x 1|=1+1k2|y 2-y 1|. 【知识拓展】过一点的直线与圆锥曲线的位置关系 (1)过椭圆外一点总有两条直线与椭圆相切; 过椭圆上一点有且只有一条直线与椭圆相切; 过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( × ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( × )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( √ ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( √ ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( × )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( √ )。

高中数学基础知识汇总

高中数学基础知识汇总

高中数学基础知识汇总 第一章 集合与简易逻辑: 一.集合1、 集合的有关概念和运算(1)集合的特性:确定性、互异性和无序性;(2)元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;2、子集定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ3、真子集定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂;4、补集定义:},|{A x U x x A C U ∉∈=且;5、交集与并集 交集:}|{B x A x x B A ∈∈=且 ;并集:}|{B x A x x B A ∈∈=或6、集合中元素的个数的计算: 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。

二.简易逻辑:1.复合命题: 三种形式:p 或q 、p 且q 、非p ; 判断复合命题真假:2.真值表:p 或q ,同假为假,否则为真;p 且q ,同真为真;非p ,真假相反。

3.四种命题及其关系:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若⌝p 则⌝q ; 逆否命题:若⌝q 则⌝p ; 互为逆否的两个命题是等价的。

原命题与它的逆否命题是等价命题。

4.充分条件与必要条件: 若q p ⇒,则p 叫q 的充分条件; 若q p ⇐,则p 叫q 的必要条件; 若q p ⇔,则p 叫q 的充要条件;第二章 函数一. 函数1、映射:按照某种对应法则f ,集合A 中的任何一个元素,在B 中都有唯一确定的元素和它对应, 记作f :A →B ,若B b A a ∈∈,,且元素a 和元素b 对应,那么b 叫a 的象,a 叫b 的原象。

2、函数:(1)、定义:设A ,B 是非空数集,若按某种确定的对应关系f ,对于集合A 中的任意一个数x ,集合B 中都有唯一确定的数f (x )和它对应,就称f :A →B 为集合A 到集合B 的一个函数,记作y=f (x ), (2)、函数的三要素:定义域,值域,对应法则;3、求定义域的一般方法:①整式:全体实数R ;②分式:分母0≠,0次幂:底数0≠;③偶次根式:被开方式0≥,例:225x y -=;④对数:真数0>,例:)11(log xy a -=4、求值域的一般方法:①图象观察法:||2.0x y =;②单调函数法: ]3,31[),13(log 2∈-=x x y③二次函数配方法:)5,1[,42∈-=x x x y , 222++-=x x y④“一次”分式反函数法:12+=x xy ;⑥换元法:x x y 21-+= 5、求函数解析式f (x )的一般方法:①待定系数法:一次函数f (x ),且满足172)1(2)1(3+=--+x x f x f ,求f (x ) ②配凑法:,1)1(22xx x x f +=-求f (x );③换元法:x x x f 2)1(+=+,求f (x ) 6、函数的单调性:(1)定义:区间D 上任意两个值21,x x ,若21x x <时有)()(21x f x f <,称)(x f 为D 上增函数; 若21x x <时有)()(21x f x f >,称)(x f 为D 上减函数。

高中数学基础知识汇总[详细版]

高中数学基础知识汇总[详细版]
对于一个给定的集合,集合中的元素一定是不同的.任何两个相同的对象在同一集合 中时,只能算作这个集合中的一个元素.如:由 a ,a2 组成一个集合,则 a 的取值不能是 0
3
或 1. (3)无序性
集合中的元素的次序无先后之分.如:由1,2,3 组成一个集合,也可以写成1,3,2 组成一 个集合,它们都表示同一个集合. 学习集合表示方法时应注意的问题
(1)注意 a 与a 的区别. a 是集合a 的一个元素,而a 是含有一个元素 a 的集合,二 者的关系是 a a. (2)注意 与0 的区别. 是不含任何元素的集合,而0 是含有元素 0 的集合. (3)在用列举法表示集合时,一定不能犯用{实数集}或R来表示实数集 R 这一类错误,
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示 集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。 例如{有理数},{x x 0}分别表示有理数集和正实数集。
定义 2 子集:对于两个集合 A 与 B,如果集合 A 中的任何一个元素都是集合 B 中的元素, 则 A 叫做 B 的子集,记为 A B ,例如 N Z 。规定空集是任何集合的子集,如果 A 是 B 的子集,B 也是 A 的子集,则称 A 与 B 相等。如果 A 是 B 的子集,而且 B 中存在元素不属 于 A,则 A 叫 B 的真子集。 便于理解: A B 包含两个意思:①A 与 B 相等 、②A 是 B 的真子集 定义 3 交集, A B {x x A且x B}.
定义 4 并集, A B {x x A或x B}.
定义 5 补集,若 A I,则C1 A {x x I,且x A}称为 A 在 I 中的补集。
定义 6 集合{x a x b, x R, a b} 记作开区间 (a,b) ,集合

高中数学基础知识点总结归纳整理

高中数学基础知识点总结归纳整理

高中数学基础知识点总结归纳整理数学是一门基础学科,也是高中学习中的一门重要课程。

掌握数学基础知识点对于高中学习和日后的发展都至关重要。

本文将对高中数学基础知识点进行总结归纳整理,旨在帮助学生复习和巩固相关内容。

一、代数与函数代数与函数是数学中的基础概念,涵盖了方程、不等式、函数、图像等内容。

1. 方程与不等式方程是含有未知数的等式,根据不同的形式可以分为一元一次方程、一元二次方程等。

不等式是关于未知数的不等关系,常见的有一元一次不等式、一元二次不等式等。

2. 函数函数是自变量与因变量之间的关系。

函数的概念包括定义域、值域、图像等要素。

常见的函数类型有线性函数、二次函数、指数函数、对数函数等。

3. 图像与图象图像是函数在坐标系中的几何表示,可以通过绘制函数图像来观察函数的性质。

图象是函数在平面上的几何投影,可以通过变换来研究函数图象的特征。

二、平面几何平面几何是研究平面图形的性质和关系,包括了点、线、面、角等概念。

1. 点与线点是空间中没有大小和形状的对象,线是由无数相邻点组成的直线段。

点与线的性质包括共线、距离、角度等。

2. 面与图形面是由无数相邻线段组成的平面图形,如三角形、四边形等。

图形是由有限条线段所组成的封闭图形,如圆、椭圆等。

常见的图形性质包括边长、面积、周长等。

3. 角与弧角是两条射线共享一个端点的几何图形,包括度量角和绘制角的方法。

弧是圆周上的一段连续的曲线。

三、立体几何立体几何是研究三维空间中的图形和体积的科学,包括了立体图形、体积、表面积等内容。

1. 立体图形立体图形是三维空间中有形体积的图形,如球体、立方体等。

立体图形的性质包括表面积、体积等。

2. 体积与表面积体积是立体图形所围成空间的大小,体积的计算需要了解不同图形的计算方法。

表面积是立体图形外侧的面积,同样需要根据不同图形的特点进行计算。

四、概率与统计概率与统计是数学中与现实生活密切相关的一门学科,主要包括了事件、概率、统计等内容。

高中数学基础知识(文本格式)

高中数学基础知识(文本格式)

第二十六节 高中数学基础知识汇总第一部分 集合1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ; 2.数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.(1)含n 个元素的集合的子集数为2n ,真子集数为2n -1;非空真子集的数为2n -2; (2);B B A A B A B A =⇔=⇔⊆ 注意:讨论的时候不要遗忘了φ=A 的情况。

(3));()()();()()(B C A C B A C B C A C B A C I I I I I I == 4.φ是任何集合的子集,是任何非空集合的真子集。

第二部分 函数与导数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ; ⑤换元法 ;⑥利用均值不等式2222b a b a ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(xa 、x sin 、x cos 等);⑨导数法3.复合函数的有关问题 (1)复合函数定义域求法: ① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x ∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =; ②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数)(u f y =的定义域是内函数)(x g u =的值域。

高中数学知识点总结[超全]

高中数学知识点总结[超全]

高中数学知识点总结[超全]一、初步基础1.集合:包含一定元素的整体2.映射:关联每一个元素到另一个集合元素的一种方式3.函数:一种映射,在不同区间之间限制,且每个元素至多有一个相应元素4.数与运算:加、减、乘、除5.方程、不等式:含有未知量的等式或不等式二、函数与方程1.函数的性质:单调性、奇偶性、周期性、多项式函数、根、零点等2.图像的分析:左、右极限、有孤立点或无穷点等3.解方程和不等式:根、解集、区间、正负等4.函数的运算:四则运算、复合函数、反函数等三、平面与立体几何1.点、线、面、体等基本概念2.图形的面积、周长、体积、等价性等3.相似与全等:图形的比例、相似判定、全等条件等4.三角函数:sin、cos、tan、cot的定义、性质和计算四、导数和微积分1.导数的定义和求法:函数的斜率和变化率2.导数的运算:四则运算、复合函数、反函数等3.微分和微分的应用:近似计算、切线与法线、曲率等4.不定积分和定积分:基本公式、换元积分法等五、数列和数学归纳法1.数列的性质:公差、通项公式、极限等2.数列的运算:求和、部分和、等比等3.数学归纳法的原理和应用六、概率统计1.概率基本概念:事件、样本空间、概率等2.概率的计算:古典概型、加法定理、乘法定理等3.离散与连续型随机变量的概率密度函数、分布函数和期望4.假设检验和区间估计:假设检验的基本原理、一致最有力检验、区间估计等七、解析几何1.空间中的基本概念和坐标系2.点、线、面、平面等的距离计算3.向量与其运算:加、减、数量积、向量积等4.直线和平面的方程:点法式、一般式、截距式等以上就是高中数学中的基本知识点,各知识点都有相应的计算方法和题型,需要学生多做练习。

高中数学知识点总结(最全版)

高中数学知识点总结(最全版)

数学知识点总结引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

选修课程有4个系列:系列1:由2个模块组成。

选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。

选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。

系列3:由6个专题组成。

选修3—1:数学史选讲。

选修3—2:信息安全与密码。

选修3—3:球面上的几何。

选修3—4:对称与群。

选修3—5:欧拉公式与闭曲面分类。

选修3—6:三等分角与数域扩充。

系列4:由10个专题组成。

选修4—1:几何证明选讲。

选修4—2:矩阵与变换。

选修4—3:数列与差分。

选修4—4:坐标系与参数方程。

选修4—5:不等式选讲。

选修4—6:初等数论初步。

选修4—7:优选法与试验设计初步。

选修4—8:统筹法与图论初步。

选修4—9:风险与决策。

选修4—10:开关电路与布尔代数。

2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量 ⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用 ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算高中数学 必修1知识点 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质 示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B = A(B)或B A真子集 A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)A A A = (2)A ∅=∅ (3)A B A ⊆ A B B ⊆ BA并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集U A{|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,()()()U U U A B A B =()()()UU U A B A B =||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值. ④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函yxo数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根n 是偶数时,正数a 的正的n n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n a =;当n 为偶数时, (0)|| (0) a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a =-时,2max 4()4ac b f x a-=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=.(4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =xxxxx x(q)0x xf xfx①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高中数学基础知识点全总结

高中数学基础知识点全总结

高中数学基础知识点全总结1. 代数
•代数基础
•多项式与因式分解
•方程与不等式
•函数与图像
•数列与数学归纳法
2. 几何
•几何基础
•直线和角
•三角形
•四边形
•圆
•空间几何
3. 概率与统计
•随机事件与概率
•数据的收集与处理
•描述统计与推断统计
4. 数论
•整数
•因数与倍数
•最大公约数与最小公倍数
•素数与合数
5. 解析几何
•坐标几何
•直线与圆的方程
•圆锥曲线
6. 空间几何
•空间中的直线和平面
•空间中点、向量、距离
•空间中的立体几何
7. 计算方法
•函数与方程的计算
•解析几何的计算
•统计问题的计算
8. 数学基础概念
•数学符号与公式
•重要的数学规律
•数学思维方法
9. 数学应用
•数学在科学中的应用
•数学在技术中的应用
•数学在日常生活中的应用
这份文档总结了高中数学的基础知识点,包括代数、几何、概率与统计、数论、解析几何、空间几何、计算方法、数学基础概念和数学应用。

希望对您的学习有所帮助!。

高中数学基本知识点汇总【推荐】

高中数学基本知识点汇总【推荐】

高中数学基本知识点汇总【推荐】一、函数与导数1. 函数的概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称为f:A→B的一个函数。

(2)函数的定义域、值域、对应法则。

(3)函数的表示法:解析法、表格法、图象法。

2. 函数的性质(1)单调性:增函数、减函数。

(2)奇偶性:奇函数、偶函数、非奇非偶函数。

(3)周期性。

(4)有界性。

3. 基本初等函数(1)常数函数:f(x) = C(C为常数)(2)幂函数:f(x) = x^n(n为实数)(3)指数函数:f(x) = a^x(a > 0且a ≠ 1)(4)对数函数:f(x) = log_a(x)(a > 0且a ≠ 1)(5)三角函数:正弦函数、余弦函数、正切函数等。

4. 导数与微分(1)导数的定义:设函数y = f(x)在点x0处有定义,若极限lim(Δx→0)[f(x0 + Δx) f(x0)]/Δx存在,则称函数y = f(x)在点x0处可导,该极限称为函数y = f(x)在点x0处的导数,记为f'(x0)。

(2)导数的运算法则:四则运算法则、复合函数求导法则、反函数求导法则等。

(3)高阶导数。

(4)微分:设函数y = f(x)在某区间内有定义,若对于该区间内的任意一点x,都有一个非零实数Δy,使得Δy = f'(x)Δx + o(Δx),则称函数y = f(x)在该点可微,Δy称为函数y = f(x)在点x处的微分。

二、三角函数与平面向量1. 三角函数(1)正弦函数、余弦函数、正切函数的定义。

(2)三角函数的图像与性质。

(3)三角恒等变形:和差公式、倍角公式、半角公式、积化和差与和差化积、正弦定理、余弦定理等。

2. 平面向量(1)向量的概念:有大小和方向的量。

(2)向量的表示:几何表示、坐标表示。

(3)向量的运算:加法、减法、数乘、向量积。

高中数学知识点大全

高中数学知识点大全

高中数学知识点大全一、集合与函数概念1. 集合定义:集合是某些确定的、互不相同的对象的全体。

表示方法:列举法、描述法、图示法。

集合间的关系:子集、真子集、相等。

集合的运算:并集、交集、补集、差集。

常用数集:自然数集(N)、整数集(Z)、有理数集(Q)、实数集(R)。

2. 函数概念定义:函数是两个非空数集之间的映射,使得每一个自变量都有唯一的函数值与之对应。

表示方法:列表法、图象法、解析法。

函数的性质:单调性、奇偶性、周期性、最值。

3. 函数的基本类型一次函数:\( y = ax + b \),图象为直线。

二次函数:\( y = ax^2 + bx + c \),图象为抛物线。

指数函数:\( y = a^x \),\( a > 0 \且 a \neq 1 \)。

对数函数:\( y = \log_a x \),\( a > 0 \且 a \neq 1 \)。

三角函数:正弦函数、余弦函数、正切函数等。

二、立体几何1. 空间几何体多面体:棱柱、棱锥、棱台。

旋转体:圆柱、圆锥、圆台、球。

2. 点、线、面的位置关系点与线:点在直线上、点在直线外。

点与面:点在平面上、点在平面外。

线与线:相交、平行、异面。

线与面:线在面上、线与面相交、线与面平行。

面与面:相交、平行。

3. 空间几何体的表面积与体积棱柱:\( V = Sh \),\( S = 2S_{底} + S_{侧} \)。

棱锥:\( V = \frac{1}{3}Sh \),\( S = S_{底} + S_{侧} \)。

圆柱:\( V = \pi r^2 h \),\( S = 2\pi r(h + r) \)。

圆锥:\( V = \frac{1}{3}\pi r^2 h \),\( S = \pi r(l + r) \),其中 \( l = \sqrt{r^2 + h^2} \)。

三、解析几何1. 坐标系直角坐标系:由两条互相垂直的数轴构成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学基础知识汇总[经典版]高中数学知识归纳汇总目录第一部分集合 (3)第二部分函数与导数 (4)第三部分三角函数、三角恒等变换与解三角形 (8)第四部分立体几何 (10)第五部分直线与圆 (12)第六部分圆锥曲线 (14)第七部分平面向量 (16)第八部分数列 (17)第九部分不等式 (19)第十部分复数 (20)第十一部分概率 (21)第十二部分统计与统计案例 (22)第十三部分算法初步 (23)第十四部分常用逻辑用语与推理证明 (24)第十五部分推理与证明 (25)第十六部分理科选修部分 (26)第一部分 集合1.N ,Z ,Q ,R 分别表示自然数集、整数集、有理数集、实数集;2.交集,}.{B x A x x B A ∈∈=且I 并集,}.{B x A x x B A ∈∈=或Y 符号区分; 3.(1)含n 个元素的集合的子集数为2n ,非空子集数为2n -1;真子集数为2n -1;非空真子集的数为2n -2; (2);B B A A B A B A =⇔=⇔⊆Y I 注意:讨论的时候不要遗忘了φ=A 的情况。

(3));()()();()()(B C A C B A C B C A C B A C I I I I I I Y I I Y == 4.φ是任何集合的子集,是任何非空集合的真子集。

第二部分 函数与导数1.定义域:①抽象函数;已知[k(x)]f 定义域,求[g(x)]f 定义域,(x)k 与(x)g 值域相同。

(具体可以参考本节第4点复合函数定义域求法)。

②具体函数。

分母不为0,偶次根号下不为负数,0a 中a 不为0,tan θ ,log a x 中的x 为正数。

2.值域:①一元二次方程配方法 ;②换元法;③分离参数法 ;3.解析式:①配方法 ;②换元法;③待定系数和;④消去法。

4.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤g(x)≤b 解出;② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x ∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y =;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数)(u f y =的定义域是内函数)(x g u =的值域。

5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....; ⑵)(x f 是奇函数⇔1)()(0)()()()(-=-⇔=+-⇔-=-x f x f x f x f x f x f ;⑶)(x f 是偶函数1)()(0)()()()(=-⇔=--⇔=-⇔x f x f x f x f x f x f ;⑷奇函数)(x f 在原点有定义,则0)0(=f ;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性; 6.函数的单调性 ⑴单调性的定义: ①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时有0)()(21<-x f x f 0)]()([)(2121>-⋅-⇔x f x f x x 0)()(2121>--⇔x x x f x f ;②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时有0)()(21>-x f x f 0)]()([)(2121<-⋅-⇔x f x f x x 0)()(2121<--⇔x x x f x f ;⑵单调性的判定① 定义法:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断符号;② 导数法(见导数部分); ③ 复合函数法; ④ 图像法。

注:证明单调性主要用定义法和导数法。

7.函数的周期性 (1)周期性的定义:对定义域内的任意x ,若有)()(x f T x f =+ (其中T 为非零常数),则称函数)(x f 为周期函数,T 为它的一个周期。

所有正周期中最小的称为函数的最小正周期。

如没有特别说明,遇到的周期都指最小正周期。

(2)三角函数的周期①π2:sin ==T x y ;②π2:cos ==T x y ;③π==T x y :tan ; ④||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y ;⑤||:tan ωπω==T x y ;⑶ 与周期有关的结论①)()(a x f a x f -=+或)0)(()2(>=-a x f a x f ⇒)(x f 的周期为a 2; ②)(x f y =的图象关于点)0,(),0,(b a 中心对称⇒)(x f 周期为2b a -; ③)(x f y =的图象关于直线b x a x ==,轴对称⇒)(x f 周期为2b a -; ④)(x f y =的图象关于点)0,(a 中心对称,直线b x =轴对称⇒)(x f 周期为4b a -;8.基本初等函数的图像与性质⑴幂函数:αx y = ()R ∈α ;⑵指数函数:)1,0(≠>=a a a y x; ⑶对数函数:)1,0(log ≠>=a a x y a ;⑷正弦函数:x y sin =;⑸余弦函数:x y cos = ;(6)正切函数:x y tan =;⑺一元二次函数:02=++c bx ax ; ⑻其它常用函数:① 正比例函数:)0(≠=k kx y ;②反比例函数:)0(≠=k x k y ;特别的xy 1= ② 函数)0(>+=a xax y ; 9.二次函数: ⑴解析式:①一般式:c bx ax x f ++=2)(;②顶点式:k h x a x f +-=2)()(,),(k h 为顶点; ③零点式:))(()(21x x x x a x f --= 。

⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。

⑶二次函数问题解决方法:①数形结合;②分类讨论。

10.函数图象:⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法 ⑵图象变换: ① 平移变换:ⅰ)()(a x f y x f y ±=→=,)0(>a ———左“+”右“-”; ⅱ)0(,)()(>±=→=k k x f y x f y ———上“+”下“-”; ② 伸缩变换:ⅰ)()(x f y x f y ω=→=, ()0>ω———纵坐标不变,横坐标伸长为原来的ω1倍;ⅱ)()(x Af y x f y =→=, ()0>A ———横坐标不变,纵坐标伸长为原来的A 倍;③ 对称变换:ⅰ)(x f y =−−→−)0,0()(x f y --=;ⅱ)(x f y =−→−=0y )(x f y -=;ⅲ )(x f y =−→−=0x )(x f y -=;④ 翻转变换:ⅰ|)(|)(x f y x f y =→=———右不动,右向左翻()(x f 在y 左侧图象去掉); ⅱ|)(|)(x f y x f y =→=———上不动,下向上翻(|)(x f |在x 下面无图象); 11.函数图象(曲线)对称性的证明(1)证明函数)(x f y =图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数)(x f y =与)(x g y =图象的对称性,即证明)(x f y =图象上任意点关于对称中心(对称轴)的对称点在)(x g y =的图象上,反之亦然; (注意上述两点的区别!) 注:①曲线C 1:f(x,y)=0关于点(a,b )的对称曲线C 2方程为:f(2a -x,2b -y)=0; ②曲线C 1:f(x,y)=0关于直线x=a 的对称曲线C 2方程为:f(2a -x, y)=0; ③曲线C 1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C 2的方程为f(y -a,x+a)=0(或f(-y+a,-x+a)=0);④f(a+x)=f(b -x) (x ∈R )−→−y=f(x)图像关于直线x=2ba +对称; 特别地:f(a+x)=f(a -x) (x ∈R )−→−y=f(x)图像关于直线x=a 对称; ⑤函数y=f(x -a)与y=f(b -x)的图像关于直线x=2ba +对称; 12.函数零点的求法:⑴直接法(求0)(=x f 的根);⑵图象法;. 13.导数⑴导数定义:f(x)在点x 0处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim)(00000;⑵常见函数的导数公式: ①'C 0=;②1')(-=n n nxx ;③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥xx e e =')(;⑦ax x a ln 1)(log '=; ⑧xx 1)(ln '=。

⑶导数的四则运算法则:;)(;)(;)(2vv u v u v u v u v u uv v u v u '-'=''+'=''±'='± ⑷(理科)复合函数的导数:;x u x u y y '⋅'=' ⑸导数的应用:①利用导数求切线:注意:ⅰ)所给点是切点吗?ⅱ)所求的是“在”还是“过”该点的切线?②利用导数判断函数单调性:ⅰ )(0)(x f x f ⇒>'是增函数;ⅱ )(0)(x f x f ⇒<'为减函数; ⅲ )(0)(x f x f ⇒≡'为常数;③利用导数求极值:ⅰ求导数)(x f ';ⅱ求方程0)(='x f 的根;ⅲ列表得极值。

④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。

14.(理科)定积分⑴定积分的定义:)(lim )(1i ni ban f nab dx x f ξ∑⎰=∞→-= ⑵定积分的性质:①⎰⎰=babadx x f k dx x kf )()( (k 常数);②⎰⎰⎰±=±baba badx x f dx x f dx x f x f )()()]()([2121; ③⎰⎰⎰+=bcbacadx x f dx x f dx x f )()()( (其中)b c a <<。

相关文档
最新文档