完整版)三角形知识点总结

合集下载

直角三角形知识点总结

直角三角形知识点总结

直角三角形知识点总结直角三角形是一种特殊的三角形,其中包含一个内角为90度的角。

本文将对直角三角形的定义、性质及相关定理进行总结。

一、直角三角形的定义和性质1. 定义:直角三角形是指其中一个角为90度的三角形。

2. 性质:(1) 直角三角形的两条边相互垂直。

(2) 直角三角形的两条边叫做直角边,另一条边叫做斜边。

(3) 直角三角形的斜边是直角边的最长边。

二、直角三角形的相关定理1. 勾股定理:直角三角形的任意两条直角边的平方和等于斜边的平方。

设直角三角形的两条直角边分别为a和b,斜边为c,则有:a² + b² = c²2. 相关角定理:(1) 正弦定理:在直角三角形中,以直角边和斜边为参照,边长之间的比例关系如下:正弦定理可表示为:sinA = a / c,sinB = b / c(2) 余弦定理:在直角三角形中,以直角边和斜边为参照,利用余弦定理可以求得直角边之间的夹角大小关系,以及直角边与斜边的夹角大小关系:余弦定理可表示为:cosA = b / c,cosB = a / c3. 边长比例定理:在直角三角形中,直角边与斜边的长度之比为根号2与1的比值:a / c = 1 / √2,b /c = 1 / √24. 特殊直角三角形:(1) 等腰直角三角形:两条直角边相等的直角三角形。

特殊性质是两条直角边的边长相等。

(2) 30度-60度-90度特殊直角三角形:其中一个角为直角,另外两个角为30度和60度。

特殊性质是斜边的长度是直角边的两倍,直角边之间的长度比为1: √3 : 2。

(3) 45度-45度-90度特殊直角三角形:其中一个角为直角,另外两个角为45度。

特殊性质是斜边的长度是直角边的根号2倍,直角边之间的长度比为1 : 1 : √2。

总结:本文总结了直角三角形的定义、性质以及相关定理。

通过了解直角三角形的特点和定理,我们可以在求解相关问题时依据这些知识点进行推导和计算。

三角形的边知识点总结

三角形的边知识点总结

三角形的边知识点总结一、三角形边的基本概念。

1. 定义。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

这三条线段叫做三角形的边。

2. 表示方法。

- 三角形用符号“△”表示,三角形ABC记作“△ABC”,其三条边分别为AB、BC、CA(或a、b、c,通常用小写字母表示边,其中a对应BC,b对应AC,c对应AB)。

二、三角形边的关系。

1. 三角形三边关系定理。

- 三角形两边之和大于第三边。

例如在△ABC中,AB + BC>AC,AB+AC > BC,BC + AC>AB。

- 理论依据:两点之间线段最短。

因为如果两边之和不大于第三边,就无法构成三角形,这三条线段就会在同一条直线上或者无法首尾相接。

2. 三角形三边关系推论。

- 三角形两边之差小于第三边。

在△ABC中,AB - BC<AC,AB - AC<BC,BC - AC<AB。

- 这个推论可以由三边关系定理推导得出。

例如,由AB+BC > AC可得AC -BC<AB,同时AC - AB < BC。

3. 判断三条线段能否构成三角形。

- 只需要判断较短的两条线段之和是否大于最长的线段。

如果大于,则这三条线段可以构成三角形;如果不大于,则不能构成三角形。

例如,三条线段长分别为3、4、5,因为3 + 4>5,所以能构成三角形;若三条线段长为1、2、4,因为1+2<4,所以不能构成三角形。

三、特殊三角形的边的性质。

1. 等腰三角形。

- 定义:有两边相等的三角形叫做等腰三角形。

相等的两边叫做腰,另一边叫做底边。

- 性质:两腰相等,即AB = AC(在等腰△ABC中,AB、AC为腰)。

等腰三角形的两腰之和大于底边,两腰之差小于底边。

2. 等边三角形。

- 定义:三边都相等的三角形叫做等边三角形。

- 性质:三条边都相等,即AB = BC = AC。

等边三角形是特殊的等腰三角形,它满足等腰三角形边的一切性质,并且它的任意两边之和是第三边的2倍。

(完整版)初中三角形知识点总结

(完整版)初中三角形知识点总结

图形的初步认识:三角形考点一、三角形1、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角平等边;等边平等角;大角对大边;大边对大角。

4、三角形的面积三角形的面积 = 1×底×高2考点二、全等三角形1、全等三角形的观点能够完整重合的两个三角形叫做全等三角形。

2、三角形全等的判断三角形全等的判断定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“ SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“ SSS”)。

(4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“ AAS”)。

直角三角形全等的判断:关于特别的直角三角形,判断它们全等时,还有 HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“ HL”)3、全等变换只改变图形的地点,不改变其形状大小的图形变换叫做全等变换。

全等变换包含一下三种:(1)平移变换:把图形沿某条直线平行挪动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折 180°,这类变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转必定的角度到另一个地点,这类变换叫做旋转变换。

考点三、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边平等角)推论 1:等腰三角形顶角均分线均分底边并且垂直于底边。

全等三角形知识点归纳

全等三角形知识点归纳

全等三角形知识点归纳全等三角形是初中数学中的重要内容,它对于解决几何问题有着关键作用。

下面就来对全等三角形的相关知识点进行一个全面的归纳。

一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

全等用符号“≌”表示,读作“全等于”。

二、全等三角形的性质1、全等三角形的对应边相等。

也就是说,如果两个三角形全等,那么它们相对应的边的长度是一样的。

2、全等三角形的对应角相等。

对应角的度数完全相同。

3、全等三角形的周长相等。

因为对应边相等,所以三条边相加的总和也相等。

4、全等三角形的面积相等。

由于形状和大小完全相同,所占的空间大小也就一样。

三、全等三角形的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。

比如有三角形 ABC 和三角形 DEF,如果 AB = DE,BC = EF,AC = DF,那么三角形 ABC ≌三角形 DEF。

2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

例如在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么这两个三角形全等。

3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

假设三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC ≌三角形 DEF。

4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。

比如三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,这两个三角形就是全等的。

5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

在直角三角形 ABC 和直角三角形 DEF 中,如果斜边 AC =斜边DF,直角边 BC =直角边 EF,那么这两个直角三角形全等。

四、寻找全等三角形的对应边和对应角的方法1、有公共边的,公共边是对应边。

例如三角形 ABC 和三角形 ABD,AB 就是两个三角形的公共边,是对应边。

三角形知识点复习总结

三角形知识点复习总结

三角形复习1.三角形的定义:由不在同一亶线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点•组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内 角;相邻两边的公共端点是三角形的顶点,三角形ABC 用符号表示为△ ABC,三角形ABC 的边AB 可用边AB 所对的 角C 的小写字母C 表示,AC 叮用b 表示,BC 町用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接:(2) 三角形是一个封闭的图形:(3) A ABC 是三角形ABC 的符号标记,单独的△没有意义•2.三角形的分类:(1)按边分类: (2)按角分类:I 等边三角形不等边三勿形直角三欽形锐角三角形钝角三角形3. 三角形的主要线段的定义:(1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段. 表示法J 是厶ABC 的BC 匕的中线.-DC 巧 BC.注意:①三角形的中线是线段:② 三角形三条中线全在三角形的内部: ③ 三角形三条中线交于三角形内部一点: ④ 中线把三角形分成两个而积相等的三角形.<2)三角形的角平分线 三角形一个内角的平分线匂它的对边相交,这个角顶点与交点之间的线段 表示法J 是AABC 的ZBAC 的平分线.等腰三角形底边和腰不相等的等腰三角形三角形AD C注意:①三角形的角平分线是线段:② 三角形三条角平分线全在三角形的内部; ③ 三角形三条角平分线交于三角形内部一点: ④ 用角器画三角形的角平分线.(3) 三角形的高 从三角形的一个顶点向它的对边所在的宜线作垂线,顶点和垂足之间的线段.表示法J 是A ABC 的BC 上的高线. 丄BC 于D.3. Z ADB=Z ADC=90\注意:①三角形的高是线段:② 锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外; ③ 三角形三条高所在直线交于一点•4. 三角形的主要线段的表示法: 三角形的角平分线的表示法:如图1.根据具体情况使用以下任意一种方式表示:① AD 是ABC 的角平分线: ② AD 平分BAC,交BC 于D :③ 如果人D 是ABC 的角平分线,那么DAU 丄BAC.2⑵三角形的中线表示法:根据具体情况使用以下任意一种方式表示: 人BC 的中线:人BC 中BC 边上的中线:(3) 三角线的高的表不法J如图2,根据具体情况,使用以下任意一种方式表示: ① AM 是A8C 的高:② AM 是A8C 中BC 边上的高:③ -◎ 如果AM 是 ABC 中BC 边上高,那么AM fiC,垂足是E; ⑤如果AM 是 人BC 中BC 边上的高,那么 &M8=人MU90 .5. 在画三角形的三条角平分线,三条中线,三条高时应注意:(1) 如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2) 如图4.三角形的三条中线交点一点,交点都在三角形内部.如图567,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部, 钝角三角形的三条高的交点在三角形的外部•直角三角形的三条高的交点在直角三角如图1, ①Af 是③如果处是赵的中纯那么严 AD C CB图156•三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;(2)用成三角形的条件是任意两边之和大于第三边.7.三角形的角与角之间的关系: (:L)三角形三个内角的和等于180 ;(2) 三角形的一个外角等于和它不相邻的两个内角的和: (3) 三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余.三角形的内角和;4^理宦理:三角形的内角和等于180。

关于三角形的知识点总结

关于三角形的知识点总结

关于三角形的知识点总结一、三角形的定义三角形是由不在同一直线上的三条线段首尾顺次相接所组成的封闭图形。

二、三角形的分类1、按角分类11 锐角三角形:三个角都小于 90 度的三角形。

12 直角三角形:有一个角等于 90 度的三角形。

13 钝角三角形:有一个角大于 90 度小于 180 度的三角形。

2、按边分类21 不等边三角形:三条边都不相等的三角形。

22 等腰三角形:有两条边相等的三角形。

221 等边三角形:三条边都相等的三角形,也称为正三角形。

三、三角形的性质1、三角形内角和为 180 度。

2、三角形的任意两边之和大于第三边,任意两边之差小于第三边。

四、三角形的高、中线和角平分线1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

2、三角形的中线:连接三角形的一个顶点和它所对边的中点的线段叫做三角形的中线。

3、三角形的角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

五、三角形的全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质:全等三角形的对应边相等,对应角相等。

3、全等三角形的判定方法31 “边边边”(SSS):三边对应相等的两个三角形全等。

32 “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

33 “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

34 “角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。

35 “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

六、三角形的相似1、相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。

2、相似三角形的性质21 相似三角形的对应角相等,对应边成比例。

22 相似三角形的对应高的比,对应中线的比与对应角平分线的比都等于相似比。

23 相似三角形周长的比等于相似比。

三角形知识点总结完

三角形知识点总结完

三角形知识点全面总结1、三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、HL (RtA^RtA)2、等腰三角形的判定及性质性质:①两腰相等②等边对等角(即“等腰三角形的两个底角相等”)③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)判定:①有两边相等的三角形是等腰三角形②有两个角相等的三角形是等腰三角形(等角对等边)结论总结:等腰三角形底边上的任意一点到两腰的距离之和等于一腰【即:DE+DF=CP,(D为BC上的任意一点)】3、等边三角形的性质及判定定理性质:①三条边都相等②三个角都相等,并且每个角都等于60度③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)④等边三角形是轴对称图形,有3条对称轴。

判定:①三条边都相等的三角形是等边三角形②三个角都相等的三角形是等边三角 形。

③有一个角是60度的等腰三角形是等边三角形。

结论总结:①高二亘边【即: AD =巨AB 】 2 2②面积二三3边2【即:S=三3AB 2】4 A ABC 4 4、直角三角形的性质及判定 性质:①两锐角互余②勾股定理③30°角所对的直角边等于斜边的一半。

④斜边中 线等于斜边一半判定:①有一个内角是直角的三角形是直角三角形②勾股定理的逆定理(即“如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

”)5、线段的垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

判定:①定义法②到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

(2)三角形三边的垂直平分线的性质③一边中线等于这边一半的三角形是直角三角形结论总结:直角三角形斜边上的高二 直角边的乘积 斜边(1)线段垂直平分线的性质及判定【即:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

(3)如何用尺规作图法作线段的垂直平分线:分别以线段的两个端点人、B 为圆心, 以大于AB 的一半长为半径作弧,两弧交于点乂、N ;作直线MN ,则直线MN 就是线段 AB 的垂直平分线。

全等三角形知识点总结

全等三角形知识点总结

全等三角形知识点总结
定义:全等三角形是指两个三角形在形状和大小上完全相同,即经过翻转、平移、旋转后,能够完全重合。

性质:全等三角形具有以下性质:
对应角相等:全等三角形的对应角相等。

对应边相等:全等三角形的对应边相等。

对应顶点相等:全等三角形的对应顶点相等。

对应边上的高对应相等:全等三角形的对应边上的高对应相等。

对应角的角平分线相等:全等三角形的对应角的角平分线相等。

对应边上的中线相等:全等三角形的对应边上的中线相等。

面积和周长相等:全等三角形的面积和周长相等。

对应角的三角函数值相等:全等三角形的对应角的三角函数值相等。

判定方法:判定两个三角形是否全等,可以使用以下五种方法:SSS(边边边):如果两个三角形的三边分别相等,则这两个三角形全等。

SAS(边角边):如果两个三角形的两边和它们之间的夹角分别相等,则这两个三角形全等。

ASA(角边角):如果两个三角形的两角和它们之间的夹边分别相等,则这两个三角形全等。

AAS(角角边):如果两个三角形的两个角和其中一个角的对边分别相等,则这两个三角形全等。

HL(斜边、直角边):如果两个直角三角形的一条斜边和一条直角边分别相等,则这两个三角形全等。

总之,全等三角形是几何学中的重要概念,掌握其定义、性质和判定方法对于解决几何问题具有重要意义。

全等三角形的知识点归纳

全等三角形的知识点归纳

全等三角形的知识点归纳1.全等三角形的定义:如果两个三角形的对应的边相等,对应的角也相等,则这两个三角形是全等三角形。

2.全等三角形的符号表示:通常使用三个粗体字母表示全等三角形,例如△ABC≌△DEF,表示△ABC全等于△DEF。

3.全等三角形的性质:a.边-边-边(SSS)全等:如果两个三角形的三条边相等,则这两个三角形全等。

b.顶角-底角-顶角(ASA)全等:如果两个三角形中两个顶角和它们的夹边相等,则这两个三角形全等。

c.底边-底角-底边(SAS)全等:如果两个三角形中两条底边和它们夹的角相等,则这两个三角形全等。

d.直角-直角-斜边(RHS)全等:如果两个直角三角形的一个直角和斜边相等,则这两个直角三角形全等。

e.角-边-角(AAS)全等:如果两个三角形中两个夹角和它们的夹边相等,则这两个三角形全等。

f.边-角-边(ASA)全等:如果两个三角形中一条边和夹角相等,另一条边和夹角的夹边相等,且夹角不是直角,则这两个三角形全等。

4.全等三角形的性质推论:a.如果两个三角形是全等的,则它们对应的边和角是一一对应的。

b.全等三角形的一边等于另一个全等三角形的一边,一角等于另一个全等三角形的一角。

c.全等三角形的对应边和对应角是相等的。

d.全等三角形的对应边平行。

e.全等三角形的对应边垂直。

f.全等三角形的对应角相等。

g.如果一个角等于一个角,两边分别等于两边,那么两个三角形可能全等,也可能不全等。

5.全等三角形的判定方法:a.SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。

b.SAS判定法:如果两个三角形的两条边和夹角相等,则这两个三角形全等。

c.ASA判定法:如果两个三角形的两个夹角和一条边相等,则这两个三角形全等。

d.RHS判定法:如果两个直角三角形的一个直角和斜边相等,则这两个直角三角形全等。

6.全等三角形的性质应用:a.利用全等三角形的性质,可以证明两个三角形的各边之比相等。

(完整版)第十八章三角形知识点总结

(完整版)第十八章三角形知识点总结

(完整版)第十八章三角形知识点总结一、基本概念三角形是由三条线段所围成的封闭图形,它是几何学中非常重要的一个概念。

在研究三角形知识时,需要掌握以下基本概念:1. 三边:三角形由三条线段组成,分别称为三边。

记作AB、BC、CA,也可以用小写字母a、b、c表示。

三边:三角形由三条线段组成,分别称为三边。

记作AB、BC、CA,也可以用小写字母a、b、c表示。

2. 三角形的顶点:三角形的一个角的顶点叫做该三角形的顶点,记作A。

三角形的顶点:三角形的一个角的顶点叫做该三角形的顶点,记作A。

3. 三个内角:三角形内部的角叫做三角形的内角。

记作∠B、∠C、∠A,也可以用小写字母α、β、γ表示。

三个内角:三角形内部的角叫做三角形的内角。

记作∠B、∠C、∠A,也可以用小写字母α、β、γ表示。

4. 三个外角:三角形内部每个内角的补角叫做该内角的外角。

记作∠∠B、∠∠C、∠∠A。

三个外角:三角形内部每个内角的补角叫做该内角的外角。

记作∠∠B、∠∠C、∠∠A。

二、三角形的分类根据三边的关系,三角形可以分为以下几种类型:1. 等边三角形:三条边的边长相等,记作ABC。

等边三角形的每个内角都是60°,每个外角都是120°。

等边三角形:三条边的边长相等,记作ABC。

等边三角形的每个内角都是60°,每个外角都是120°。

2. 等腰三角形:两条边的边长相等,记作ABC。

等腰三角形的底边上的两个角是等角。

等腰三角形:两条边的边长相等,记作ABC。

等腰三角形的底边上的两个角是等角。

3. 直角三角形:其中一个角是直角(90°),记作ABC。

直角三角形的斜边是其他两条边的最长边。

直角三角形:其中一个角是直角(90°),记作ABC。

直角三角形的斜边是其他两条边的最长边。

4. 锐角三角形:三个内角都是锐角(小于90°)的三角形。

锐角三角形:三个内角都是锐角(小于90°)的三角形。

完整版)解三角形知识点归纳总结

完整版)解三角形知识点归纳总结

完整版)解三角形知识点归纳总结第一章解三角形一、正弦定理:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 sinA/a = sinB/b = sinC/c = 2R (其中R是三角形外接圆的半径)。

变形:1) sinA/sinB/sinC = (a/b/c)/(2R),化边为角;2) a:b:c = = sinA/sinB,化角为边;3) a = 2RsinA,b = 2RsinB,c = 2RsinC,化边为角;4) sinA = a/2R,sinB = b/2R,sinC = c/2R,化角为边。

利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,求解:由A+B+C=180°,求角A,由正弦定理求出b与c。

②已知两边和其中一个角的对角,求其他两个角及另一边。

例:已知边a,b,A,求解:由正弦定理求出角B,由A+B+C=180°求出角C,再使用正弦定理求出c边。

4.在△ABC中,已知锐角A,边b,则①a<bsinA时,B无解;②a=bsinA或a≥b时,B有一个解;③bsinA<a<b时,B有两个解。

二、三角形面积1.SΔABC = absinC = bcsinA = acsinB;2.SΔABC = (a+b+c)r,其中r是三角形内切圆半径;3.SΔABC = p(p-a)(p-b)(p-c),其中p=(a+b+c)/2;4.SΔABC = abc/4R,R为外接圆半径;5.SΔABC = 2R²sinAsinBsinC,R为外接圆半径。

三、余弦定理余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即 a² = b² + c² -2bccosA,b² = a² + c² - 2accosB。

(完整版)直角三角形知识点总结,推荐文档

(完整版)直角三角形知识点总结,推荐文档

a A
∠的对边
(1)角A的正弦:锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,
即sinA=
(2)角A的余弦:锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,
即cosA=
(3)角A的正切:锐角A的对边与邻边的比叫做∠A的正切,记作t an A,
即t an A=
(4)角A的余切:锐角A的邻边与对边的比叫做∠A的余切,记作c ot A,
即c ot A=
2.直角三角形中的边角关系
(1)三边之间的关系:a2+b2=c2
(2)锐角之间的关系:A+B=90°
(3)边角之间的关系:
sinA=cosB=,cosA=sinB=
t an A=c ot B=, cot A=t an B=
3.三角函数的关系
(1)同角的三角函数的关系
1)平方关系:sinA2+cosA2=1
2)倒数关系:t an A·c ot A=1
3)商的关系:t an A=,c ot A=
(2)互为余角的函数之间的关系
sin(90°-A)=cosA,cos(90°-A)=sinA
t an(90°-A)=c ot A, cot(90°-A)=t an A
4.一些特殊角的三角函数值
角函数值都是正值

(3)坡角:坡面与水平面的夹角叫做坡角,用字母α表示,则tanα=
(4)方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角.。

八年级数学上册第十一章三角形知识点总结归纳完整版(带答案)

八年级数学上册第十一章三角形知识点总结归纳完整版(带答案)

八年级数学上册第十一章三角形知识点总结归纳完整版单选题1、下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,2答案:D分析:若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故选:D.小提示:本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.2、要得知作业纸上两相交直线AB,CD所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行答案:C分析:用夹角可以划出来的两条线,证明方案Ⅰ和Ⅱ的结果是否等于夹角,即可判断正误方案Ⅰ:如下图,∠BPD即为所要测量的角∵∠HEN=∠CFG∴MN∥PD∴∠AEM=∠BPD故方案Ⅰ可行方案Ⅱ:如下图,∠BPD即为所要测量的角在△EPF中:∠BPD+∠PEF+∠PFE=180°则:∠BPD=180°−∠AEH−∠CFG故方案Ⅱ可行故选:C小提示:本题考查平行线的性质和判定,三角形的内角和;本题的突破点是用可画出夹角的情况进行证明3、刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是()A.6cm的木条B.8cm的木条C.两根都可以D.两根都不行答案:B分析:利用三角形的三边关系可得答案.解:利用三角形的三边关系可得应把8cm的木条截成两段,如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.故选:B.小提示:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.4、如图,若干个全等的正五边形排成圆环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10B.9C.8D.7答案:D分析:先根据多边形的内角和公式(n−2)·180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.解:∵五边形的内角和为(5−2)×180°=540°,∴正五边形的每一个内角为540°÷5=108°,∴正五边形的每一个外角为180°−108°=72°,如图,延长正五边形的两边相交于点O,则∠1=180°−2×72°=36°,360°÷36°=10,∵已经有3个五边形,∴10−3=7,即完成这一圆环还需7个五边形.故选:D.小提示:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.5、已知△ABC中,D、E分别是边AB、AC上的点,连接DE、BE、DC,下列各式中正确的是().A.S△ADES△ABC =ADABB.S△ADES△ABC=AEACC.S△ADCS△ABC =ADABD.S△ADES△EDC=AEAC答案:C分析:A选项,设点E、C到AB的距离分别为ℎ1,ℎ2,则ℎ1<ℎ2,根据三角形面积公式进行判断即可;B选项设点D、B到AC的距离分别为x,y,则x≠y,x<y,根据三角形面积公式进行判断即可;C选项,设点C到AB距离为h,△ADC=12AD⋅ℎ,S△ABC=12AB⋅ℎ,根据三角形面积公式进行判断即可;D选项,设点D到AC距离为ℎ3,则S△ADE=12AE⋅ℎ3,S△EDC=12CE⋅ℎ3,根据三角形面积公式进行判断即可A选项:设点E、C到AB的距离分别为ℎ1,ℎ2,则ℎ1<ℎ2,S△ADE=12AD⋅ℎ1,S△ABC=12AB⋅ℎ2,∴S△ADES△ABC =12AD⋅ℎ112AB⋅ℎ2=AD⋅ℎ1AB⋅ℎ2≠ADAB,故A错误;B选项:设点D、B到AC的距离分别为x,y,则x≠y,x<y,S△ADE=12AE⋅x,S△ABC=12AC⋅y,S△ADES△ABC=12AE⋅x12AC⋅y=AE⋅xAC⋅y≠AEAC,故B错误;C选项:设点C到AB距离为h,△ADC=12AD⋅ℎ,S△ABC=12AB⋅ℎ,∴S△ADCS△ABC =12AD⋅ℎ12AB⋅ℎ=ADAB,故C正确;D选项:设点D到AC距离为ℎ3,则S△ADE=12AE⋅ℎ3,S△EDC=12CE⋅ℎ3,∴S△ADES△EDC =12AE⋅ℎ312CE⋅ℎ3=AECE=AEAC−AE≠AEAC,故D错误.故选C.小提示:本题考查了与三角形的高有关的计算,掌握三角形的高的定义,根据三角形的面积计算是解题的关键.6、一个多边形截去一个角后,变成16边形,那么原来的多边形的边数为()A.15或16或17B.15或17C.16或17D.16或17或18答案:A分析:分三种情况讨论,当截线不经过多边形的顶点时,当截线经过多边形的一个顶点时,当截线经过多边形的两个顶点时,再利用数形结合的方法可得答案.解:如图,当截线不经过多边形的顶点时,被截后的多边形比原多边形增加一条边,所以当被截后的多边形为16边形,则原多边形为15边形,如图,当截线经过多边形的一个顶点时,被截后的多边形与原多边形边数相同,所以当被截后的多边形为16边形,则原多边形为16边形,如图,当截线经过多边形的两个顶点时,被截后的多边形比原多边形少一条边,所以当被截后的多边形为16边形,则原多边形为17边形,故选:A.小提示:本题考查的是用直线截多边形的一个角后,被截后的多边形的边数与原多边形的边数之间的关系,解题的关键是清晰的分类讨论.7、当n边形边数增加2条时,其内角和增加()A.180°B.360°C.540°D.720°答案:B分析:根据n边形的内角和定理即可求解.解:原来的多边形的边数是n,则新的多边形的边数是n+2.(n+2−2)•180−(n−2)•180=360°.故选:B.小提示:本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度.8、在△ABC中,∠A=12∠B=13∠C,则△ABC为()三角形.A.锐角B.直角C.钝角D.等腰答案:B分析:根据∠A=12∠B=13∠C分别设出三个角的度数,再根据三角形的内角和为180°列出一个方程,解此方程即可得出答案.∵∠A=12∠B=13∠C∴可设∠A=x,∠B=2x,∠C=3x根据三角形的内角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案选择B.小提示:本题主要考查的是三角形的基本概念.9、如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=( )A.35°B.95°C.85°D.75°答案:C分析:根据CE是△ABC的外角∠ACD的平分线,∠ACE=60°,得出∠ACD=120°;再根据三角形的外角等于与它不相邻的两个内角和即可求解.解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD-∠B=120°-35°=85°故选:C.小提示:本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.10、能说明“锐角α,锐角β的和是锐角”是假命题的例证图是().A.B.C.D.答案:C分析:先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案.解:A、如图1,∠1是锐角,且∠1=α+β,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;B、如图2,∠2是锐角,且∠2=α+β,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;C、如图3,∠3是钝角,且∠3=α+β,所以此图说明“锐角α,锐角β的和是锐角”是假命题,故本选项符合题意;D、如图4,∠4是锐角,且∠4=α+β,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意.故选:C.小提示:本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.填空题11、如图,∠A+∠B+∠C+∠D+∠E=______.答案:180度##180°分析:如图,连接BC,记CD,BE的交点为G,先证明∠D+∠E=∠GBC+∠GCB,再利用三角形的内角和定理可得答案.解:如图,连接BC,记CD,BE的交点为G,∵∠D+∠E=180°−∠DGE,∠GBC+∠GCB=180°−∠BGC,∠DGE=∠BGC,∴∠D+∠E=∠GBC+∠GCB,∴∠A+∠ABG+∠GBC+∠GCB+∠ACG=180°,∴∠A+∠ABG+∠ACG+∠D+∠E=180°,所以答案是:180°小提示:本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.12、如图,点D在△ABC的边BA的延长线上,点E在BC边上,连接DE交AC于点F,若∠DFC=3∠B=117°,∠C=∠D,则∠BED=________.答案:102°分析:首先根据∠DFC=3∠B=117°,可以算出∠B=39°,然后设∠C=∠D=x°,根据外角与内角的关系可得39+x+x=117,再解方程即可得到x=39,再根据三角形内角和定理求出∠BED的度数.解:∵∠DFC=3∠B=117°,∴∠B=39°,设∠C=∠D=x°,39+x+x=117,解得:x=39,∴∠D=39°,∴∠BED=180°−39°−39°=102°.所以答案是:102°.小提示:此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.13、已知AD、AE分别是△ABC的高和中线,若BD=2,CD=1,则DE的长为______.答案:0.5或1.5分析:根据题意作出草图,分类讨论即可求解.解:AD、AE分别是△ABC的高和中线,BD=2,CD=1,如图,当△ABC是钝角三角形时,∴BC=BD−CD=1∴DE=BD−BE=BD−12BC=2−12=32当△ABC是锐角三角形时,∵BC=BD+DC=2+1=3∴BE=12BC=32∴DE=BD−BE=2−32=12当△ABC是直角三角形时,CD=0,不合题意,所以答案是:12或32 小提示:本题考查了三角形的高线,中线的定义,线段的和差关系,分类讨论是解题的关键.14、一个多边形外角和是内角和的29,则这个多边形的边数为________. 答案:11分析:多边形的内角和定理为(n −2)×180°,多边形的外角和为360°,根据题意列出方程求出n 的值. 解:根据题意可得:29×(n −2)×180°=360°, 解得:n =11 ,所以答案是:11.小提示:本题主要考查的是多边形的内角和公式以及外角和定理,属于基础题型.记忆理解并应用这两个公式是解题的关键.15、如图,△ABC 中,∠A =60°,∠B =40°,DE ∥BC ,则∠AED 的度数是______.答案:80°分析:根据三角形内角和定理可得∠C =80°,根据平行线的性质即可得答案.∵∠A =60°,∠B =40°,∴∠C =180°﹣∠A ﹣∠B =80°,∵DE ∥BC ,∴∠AED =∠C =80°,所以答案是:80°小提示:本题考查三角形内角和定理及平行线的性质,任意三角形的内角和等于180°;两直线平行,同位角相等;熟练掌握相关性质及定理是解题关键.解答题16、如图,在△ABC中,AD是BC边上的中线,△ABD的周长比△ADC的周长多1,AB与AC的和为11(1)求AB、AC的长;(2)求BC边的取值范围.答案:(1)AB=6,AC=5(2)1<BC<11分析:(1)根据三角形中线的定义,BD=CD.所以△ABD和△ADC的周长之差也就是AB与AC的差,然后联立关于AB、AC的二元一次方程组,利用加减消元法求解即可.(2)根据三角形三边关系解答即可.(1)解:∵AD是BC边上的中线,∴BD=CD,∴△ABD的周长﹣△ADC的周长=(AB+AD+BD)−(AC+AD+CD)=AB−AC=1,即AB−AC=1①,又AB+AC=11②,①+②得:2AB=12,解得AB=6,②−①得:2AC=10,解得AC=5,∴AB和AC的长分别为:AB=6,AC=5;(2)∵AB=6,AC=5;∴1<BC<11.小提示:本题考查了三角形的三边关系,三角形的中线定义,二元一次方程组的求解,利用加减消元法求解是解题的关键.17、如图,在△ABC中,CD平分∠BCA,E为CD延长线上一点,EF⊥AB于点F,已知∠ACB=70°,∠E= 30°.求∠A的度数.答案:25°分析:利用垂直的定义和三角形内角和定理求出∠EDF,利用对顶角的性质求出∠CDB,再利用角平分线的定义求出∠DCB,进而利用三角形内角和定理求出∠B,∠A.解:∵EF⊥AB,∴∠EFD=90°,又∵∠E=30°,∴∠EDF=180°−∠E−∠EFD=60°,∴∠CDB=∠EDF=60°.∵CD平分∠BCA,∠ACB=70°,∴∠DCB=12∠ACB=12×70°=35°.∴∠B=180°−∠CDB−∠DCB=180°−60°−35°=85°,∴∠A=180°−∠B−∠ACB=180°−85°−70°=25°,即∠A的度数为25°.小提示:本题考查角平分线、对顶角、三角形内角和定理的应用,解题的关键是熟练掌握对顶角的性质和三角形内角和定理.18、如图,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).(1)若α=70°,β=40°,求∠DCE的度数;(2)试用α、β的代数式表示∠DCE的度数_________.答案:(1)∠DCE=15°(2)α−β2分析:(1)根据三角形的内角和定理求出∠ACB的值,再由角平分线的性质以及直角三角形的性质求出∠DCE.(2)由(1)的解题思路即可得正确结果.(1)解:∵∠BAC=70°,∠B=40°∴∠ACB=180°−(∠BAC+∠B)=180°−(70°+40°)=70°,∵CE是∠ACB的平分线,∴∠ACE=12∠ACB=35°.∵CD是高线,∴∠ADC=90°,∴∠ACD=90°−∠BAC=20°,∴∠DCE=∠ACE−∠ACD=35°−20°=15°.(2)解:∵∠BAC=α,∠B=β∴∠ACB=180°−(∠BAC+∠B)=180°−(α+β),∵CE是∠ACB的平分线,∴∠ACE=12∠ACB=12×[180°−(α+β)]=90°−α+β2.∵CD是高线,∴∠ADC=90°,∴∠ACD=90°−∠BAC=90°−α,∴∠DCE=∠ACE−∠ACD=90°−α+β2−90°+α=α−β2.小提示:本题主要考查角平分线,高线以及角的转换,掌握角平分线,高线的性质是解题的关键.。

(完整版)三角形知识点总结

(完整版)三角形知识点总结

三角形知识点总结一、基础知识1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.(三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点)2、三角形的表示三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示.三个顶点用大写字母A,B,C来表示。

(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)注意:△ABC是三角形ABC的符号标记,单独的△没有意义3、三角形的分类:(1)按边分类:等腰三角形、等边三角形、不等边三角形(2)按角分类:锐角三角形、直角三角形、钝角三角形4、三角形的主要线段的定义:(1)三角形的中线:三角形中,连结一个顶点和它对边中点的线段.如图:(1)AD是△ABC的BC上的中线.(2)BD=DC= BC.注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部且交于三角形内部一点(重心)③中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线:三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段如图:(1)AD是△ABC的∠BAC的平分线.(2)∠1=∠2= ∠BAC.注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部且交于三角形内部一点(内心)③角平分线上的点到角的两边距离相等(3)三角形的高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.如图:①AD是△ABC的BC上的高线;②AD⊥BC于D;③∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形的三条高的交点在三角形内部;钝角三角形的三条高的交点在三角形的外部:直角三角形的三条高的交点在直角顶点上。

三角形三条高所在直线交于一点(垂心)③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)(4)三角形的中垂线:过三角形一条边中点所做的垂直于该条边的线段如图:DE是△ABC的边BC的中垂线;DE⊥BC于D;BD=DC注意:①三角形的中垂线是直线;②三角形的三条中垂线交于一点(外心)小总结:内心:三条角平分线的交点,也是三角形内切圆的圆心.性质:到三边距离相等.外心:三条中垂线的交点,也是三角形外接圆的圆心.性质:到三个顶点距离相等.重心:三条中线的交点.性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍.垂心:三条高所在直线的交点.5、三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是任意两边之和大于第三边.6、三角形的角与角之间的关系:(1)三角形三个内角的和等于180;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.7、三角形的内角和定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。

(完整版)三角形全章知识点总结

(完整版)三角形全章知识点总结

(完整版)三角形全章知识点总结三角形全章知识点总结
1.三角形的定义
三角形是由三条边和三个内角组成的图形。

2.三角形的分类
- 根据边长分类:
- 等边三角形:三条边长度相等。

- 等腰三角形:两条边长度相等。

- 普通三角形:三条边长度都不相等。

- 根据角度分类:
- 直角三角形:有一个内角为直角(90度)。

- 钝角三角形:有一个内角大于直角。

- 锐角三角形:三个内角都小于直角。

3.三角形的性质
- 三角形内角和等于180度。

- 三角形的任意两边之和大于第三边。

- 等边三角形的三个角都相等,每个角为60度。

- 等腰三角形的两个底角相等,顶角大于底角。

- 直角三角形的两个锐角的正弦、余弦、正切关系等于对边、邻边和斜边的比值。

4.三角形的计算公式
- 周长(P):P = a + b + c,其中a、b、c分别为三角形的三边长度。

- 面积(A):A = 1/2 * 底 * 高,其中底为底边长度,高为顶点到底边的垂直距离。

5.三角形的重要定理
- 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的三边长度,A、B、C为对应的内角。

- 余弦定理:c^2 = a^2 + b^2 - 2ab * cosC,其中a、b、c为三角形的三边长度,C为对应的内角。

- 正切定理:tanA = sinA/cosA,其中A为三角形的一个内角。

以上是关于三角形的全章知识点总结。

希望能对您的学习有所帮助!。

初一下册数学《三角形》知识点复习总结

初一下册数学《三角形》知识点复习总结

初一下册数学《三角形》知识点复习总结初一下册数学《三角形》知识点复习总结章一一、三角函数1.定义:在rt△abc中,∠c=rt∠,则sina= ;cosa= ;tga= ;ctga= .2. 特殊角的三角函数值:0° 30° 45° 60° 90°sinαcosαtgα /ctgα /3. 互余两角的三角函数关系:sin(90°-α)=cosα;…4. 三角函数值随角度变化的关系5.查三角函数表二、解直角三角形1. 定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2. 依据:①边的关系:②角的关系:a+b=90°③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

三、对实际问题的处理1. 俯、仰角:2.方位角、象限角:3.坡度:4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

初一下册数学《三角形》知识点复习总结章二一、目标与要求1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。

2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。

3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。

4.三角形的内角和定理,能用平行线的性质推出这一定理。

5.能应用三角形内角和定理解决一些简单的实际问题。

二、重点三角形内角和定理;对三角形有关概念的了解,能用符号语言表示三条形。

三、难点三角形内角和定理的推理的过程;在具体的图形中不重复,且不遗漏地识别所有三角形;用三角形三边不等关系判定三条线段可否组成三角形。

四、知识框架五、知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

三角形的内角知识点总结

三角形的内角知识点总结

三角形的内角知识点总结一、三角形内角和定理。

1. 定理内容。

- 三角形的内角和等于180°。

这是三角形的一个基本性质,无论是锐角三角形、直角三角形还是钝角三角形,其三个内角的和都是180°。

2. 证明方法。

- 方法一:测量法(实验法)- 用量角器分别测量三角形的三个内角的度数,然后将这三个度数相加,会发现其和接近180°。

由于测量存在误差,这种方法只能作为一种直观的感受,不能严格证明。

- 方法二:剪拼法。

- 把三角形的三个角剪下来,然后将它们的顶点拼在一起,可以发现这三个角能拼成一个平角,从而直观地验证三角形内角和为180°。

例如,对于一个三角形ABC,将∠A、∠B、∠C剪下来,顶点A、B、C拼在一起,就形成了一个180°的角。

- 方法三:推理证明法(以平行线的性质为基础)- 已知:△ABC。

- 求证:∠A + ∠B+∠C = 180°。

- 证法:过点A作直线l平行于BC。

- 因为l∥BC,根据两直线平行,内错角相等,所以∠B = ∠1(两直线平行,内错角相等),∠C = ∠2(两直线平行,内错角相等)。

- 又因为∠1+∠A + ∠2 = 180°(平角的定义),所以∠A+∠B + ∠C = 180°。

二、直角三角形的内角特点。

1. 直角三角形的定义。

- 有一个角是直角(90°)的三角形叫做直角三角形。

2. 直角三角形内角关系。

- 在直角三角形中,直角为90°,那么另外两个锐角的和为180° - 90°=90°。

即直角三角形的两个锐角互余。

例如在Rt△ABC中,∠C = 90°,则∠A+∠B = 90°。

三、三角形内角在实际问题中的应用。

1. 求角度。

- 在已知三角形中某些角的度数或角之间的关系时,可以利用三角形内角和定理求出其他角的度数。

- 例如:在△ABC中,已知∠A = 30°,∠B = 50°,求∠C的度数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完整版)三角形知识点总结
三角形知识点总结
三角形是由不在同一直线上的三条线段首尾顺次相接组成的图形,有三条边,三个内角和三个顶点。

组成三角形的线段称为三角形的边,相邻两边所组成的角称为三角形的内角,相邻两边的公共端点是三角形的顶点。

三角形用符号表示为△ABC,其中三个顶点用大写字母A、B、C表示,XXX可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示。

需要注意的是,三条线段要不在同一直线上,且首尾顺次相接。

单独的△没有意义。

根据边和角的不同,三角形可以分为等腰三角形、等边三角形和不等边三角形,以及锐角三角形、直角三角形和钝角三角形。

三角形的主要线段包括中线、角平分线、高和中垂线。

三角形的中线是连结一个顶点和它对边中点的线段,三角形的三
条中线全在三角形的内部且交于三角形内部一点(重心),中线把三角形分成两个面积相等的三角形。

角平分线是一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段,三角形的角平分线全在三角形的内部且交于三角形内部一点(内心),角平分线上的点到角的两边距离相等。

三角形的高是从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角顶点上。

三角形的三条高所在直线交于一点(垂心)。

三角形的中垂线是过三角形一条边中点所做的垂直于该条边的线段,三角形的三条中垂线交于一点(外心)。

总之,三角形的基础知识包括定义、表示和分类,而主要线段包括中线、角平分线、高和中垂线。

理解和掌握这些知识点对于学好三角形及其相关知识非常重要。

的概念和性质
定义:三条边都相等的三角形叫做等边三角形。

性质:等边三角形的三个内角均为60度,也是等腰三角形。

5、三角形的不等式定理
三角形的任意两边之和大于第三边,任意两边之差小于第三边。

注意:这个定理是判断一个三角形是否存在的基本条件,也是判断三条线段能否组成三角形的依据。

6、三角形角的关系
三角形三个内角的和等于180度,一个外角等于不相邻两个内角的和,一个外角大于不相邻任何一个内角。

直角三角形的两个锐角互余。

7、多边形的概念和性质
多边形是由一些线段首尾相接组成的图形,对角线是连接不相邻顶点的线段。

正多边形的各边和各角均相等。

多边形的内角和为(n-2)*180度,外角和为360度。

8、等腰三角形的概念和性质
等腰三角形有两边相等,顶角平分线、底边上的高线、底边上的中线互相集合。

一个三角形有两个角相等,则这两个角所对的边也相等,即等角对等边。

9、等边三角形的概念和性质
等边三角形的三个内角均为60度,也是等腰三角形。

10、三角形的稳定性
三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性。

等边三角形是三边都相等的三角形,它也是等腰三角形的特殊情况,其中底边等于腰。

等边三角形的三条边都相等,每个角都等于60度。

可以判定各边或角都相等的三角形是等边
三角形,或者有一个角等于60度的等腰三角形也是等边三角形。

另外,等边三角形的内心、外心、垂心和重心重合于一点。

其面积等于边长a的平方根的三分之一乘以a的平方。

直角三角形是有一个角为90度的三角形,其中直角相邻
的两条边叫做直角边,而直角所对的边称为斜边或弦。

如果两条直角边长度不同,那么短的那条边叫做勾,长的那条边叫做股。

直角三角形可以分为普通的和等腰的两种情况。

等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,包括稳定性、两直角边相等、直角夹着锐角45度、斜边上中线角平
分线垂线三线合一等。

斜边上的高等于外接圆的半径R。

直角三角形有一些特殊的性质。

其中最著名的是勾股定理,即直角三角形两直角边的平方和等于斜边的平方。

另外,两个
锐角互余,斜边上的中线等于斜边的一半,直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。

还有射影定理和直角三角形斜边中线定理等。

如果有一个锐角等于30度,那么它
所对的直角边等于斜边的一半。

反之,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30度。

首先,取AB中点D,连接CD。

根据直角三角形斜边中
线定理可知CD=BD,因此△BCD是等边三角形。

因为有一个
角是60°的等腰三角形是等边三角形,所以XXX。

接下来,
证明定理的后半部分。

在Rt△ABC中,∠ACB=90°,
BC=AB/2,那么∠A=30°。

取AB中点D,连接CD。

那么
CD=BD=AB/2,又因为BC=AB/2,所以BC=CD=BD,因此
∠B=60°,进而得出∠A=30°。

其次,根据勾股定理,如果直角三角形两直角边分别为a,b,斜边为c,那么a +b =c,即直角三角形两直角边长的平方
和等于斜边长的平方。

如果三角形的三条边a,b,c满足a +b =c,那么这个三角形是直角三角形,称勾股定理的逆定理。

最后,全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。

全等三角形的性质包括对应角相等、对应
边相等、对应顶点能够完全重合、对应边上的高对应相等、对应角的角平分线相等、对应边上的中线相等以及面积和周长相等。

全等三角形的对应角的三角函数值相等。

全等三角形的判定有五种方法:
1.SSS(边边边):三边对应相等的三角形是全等三角形。

2.SAS(边角边):两边及其夹角对应相等的三角形是全
等三角形。

3.ASA(角边角):两角及其夹边对应相等的三角形是全
等三角形。

4.AAS(角角边):两角及其一角的对边对应相等的三角
形是全等三角形。

5.HL(斜边、直角边):在一对直角三角形中,斜边及
另一条直角边相等。

不能验证为全等三角形的方法有AAA
(角角角)和SSA(边边角)。

相似三角形指的是三个角对应相等、三条边对应成比例的两个三角形。

相似三角形的判定有六种方法:
1.平行于三角形一边的直线截其它两边所在的直线,截得
的三角形与原三角形相似。

2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(AA)。

3.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似(SAS)。

4.如果两个三角形的三组对应边成比例,那么这两个三角形相似(SSS)。

5.两个三角形三边对应平行,则两个三角形相似。

6.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(HL)。

全等三角形是特殊的相似三角形,相似比为1:1.
任意两个等腰三角形,如果其中的一个顶角或底角相等,那么这两个三角形相似。

同样地,两个等边三角形,三个内角都是60度,且边边相等,因此它们也相似。

直角三角形被斜边上的高分成的两个直角三角形和原三角形,由于斜边的高形成两个直角,再加上一个公共的角,所以它们相似。

相似三角形的对应角相等,对应边成正比例。

一切对应线段(如对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

相似三角形周长的比等于相似比。

相似三角形面积的比等于相似比的平方。

相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。

若a/b=b/c,即b²=ac,b叫做a,c的比例
中项。

a/b=c/d等同于ad=bc。

这些性质定理适用于不必在同一平面内的三角形。

推论一:腰和底对应成比例的两个等腰三角形相似。

推论二:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论三:如果一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

例如:在Rt△ABC中,∠BAC=90°,AD是斜
边BC上的高,则有射影定理如下:(1)(AD)^2=BD·DC,
(2)(AB)^2=BD·BC,(3)(AC)^2=CD·BC。

等积式(4)ABXAC=BCXAD(可用面积来证明)。

相关文档
最新文档