黑龙江省龙东地区达标名校2022年中考冲刺卷数学试题含解析

合集下载

2023年黑龙江省龙东地区中考数学真题试卷附答案

2023年黑龙江省龙东地区中考数学真题试卷附答案

2023年黑龙江省龙东地区中考数学真题试卷本试卷适用佳木斯、鹤岗、双鸭山、鸡西、七台河、牡丹江、伊春.考生注意:1.考试时间120分钟2.全卷共三道大题,总分120分一、选择题(每小题3分,共30分)1. 下列运算正确的是( )A. 22(2)4a a -=-B. 222()a b a b -=-C. ()()2224m m m -+--=-D. ()257a a =2. 下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 3. 一个几何体由若干大小相同的小正方体组成,它的俯视图和左视图如图所示,那么组成该几何体所需小正方体的个数最少为( )A. 4B. 5C. 6D. 74. 已知一组数据1,0,3,5,,2,3x --的平均数是1,则这组数据的众数是( )A. 3-B. 5C. 3-和5D. 1和35. 如图,在长为100m ,宽为50m 的矩形空地上修筑四条宽度相等的小路,若余下的部分全部种上花卉,且花圃的面积是23600m ,则小路的宽是( )A. 5mB. 70mC. 5m 或70mD. 10m 6. 已知关于x 的分式方程122m x x x+=--的解是非负数,则m 的取值范围是( )A. 2m ≤B. 2m ≥C. 2m ≤且2m ≠-D. 2m <且2m ≠- 7. 某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( )A. 5种B. 6种C. 7种D. 8种8. 如图,ABC ∆是等腰三角形,AB 过原点O ,底边BC x ∥轴,双曲线k y x =过,A B 两点,过点C 作CD y ∥轴交双曲线于点D ,若12BCD S =,则k 的值是( )A. 6-B. 12-C. 92-D. 9-9. 如图,在平面直角坐标中,矩形ABCD 的边5,:1:4AD OA OD ==,将矩形ABCD 沿直线OE 折叠到如图所示的位置,线段1OD 恰好经过点B ,点C 落在y 轴的点1C 位置,点E 的坐标是( )A. ()1,2B. 1,2C. )1,2-D. ()12 10. 如图,在正方形ABCD 中,点,E F 分别是,AB BC 上的动点,且AF DE ⊥,垂足为G ,将ABF △沿AF 翻折,得到,AMF AM △交DE 于点P ,对角线BD 交AF 于点H ,连接,,,HM CM DM BM ,下列结论正确的是:①AF DE =;①BM DE ∥;①若CM FM ⊥,则四边形BHMF 是菱形;①当点E 运动到AB 的中点,tan BHF ∠=;①2EP DH AG BH ⋅=⋅.( )A. ①①①①①B. ①①①①C. ①①①D. ①①①二、填空题(每小题3分,共30分)11. 据交通运输部信息显示:2023年“五一”假期第一天,全国营运性客运量约5699万人次,将5699万用科学记数法表示为__________.12. 函数中,自变量x 的取值范围是____________.13. 如图,在矩形ABCD 中对角线AC ,BD 交于点O ,请添加一个条件______________,使矩形ABCD 是正方形(填一个即可)14. 一个不透明的袋子中装有3个红球和2个白球,这些小球除标号外完全相同,随机摸出两个小球,恰好是一红一白的概率是__________.15. 关于x 的不等式组501x x m +>⎧⎨-≤⎩有3个整数解,则实数m 的取值范围是__________. 16. 如图,AB 是O 的直径,PA 切O 于点A ,PO 交O 于点C ,连接BC ,若28B ∠=︒,则P ∠=__________︒.17. 已知圆锥的母线长13cm ,侧面积265cm π,则这个圆锥的高是__________cm .18. 在Rt ACB △中,30,2BAC CB ∠=︒=,点E 是斜边AB 的中点,把Rt ABC △绕点A 顺时针旋转,得Rt AFD △,点C ,点B 旋转后的对应点分别是点D ,点F ,连接CF ,,EF CE ,在旋转的过程中,CEF △面积的最大值是__________.19. 矩形ABCD 中,3,9AB AD ==,将矩形ABCD 沿过点A 的直线折叠,使点B 落在点E 处,若ADE ∆是直角三角形,则点E 到直线BC 的距离是__________.20. 如图,在平面直角坐标系中,ABC ∆的顶点A 在直线1:l y x =上,顶点B 在x 轴上,AB 垂直x 轴,且OB =顶点C 在直线2:l y 上,2BC l ⊥;过点A 作直线2l 的垂线,垂足为1C ,交x 轴于1B ,过点1B 作11A B 垂直x 轴,交1l 于点1A ,连接11A C ,得到第一个111A B C △;过点1A 作直线2l 的垂线,垂足为2C ,交x 轴于2B ,过点2B 作22A B 垂直x 轴,交1l 于点2A ,连接22A C ,得到第二个222A B C △;如此下去,……,则202320232023A B C 的面积是__________.三、解答题(满分60分)21. 先化简,再求值:2222111m m m m m -+⎛⎫-÷ ⎪+-⎝⎭,其中tan601m =︒-. 22. 如图,在平面直角坐标系中,已知ABC ∆的三个顶点坐标分别是()()2,1,1,2A B --,()3,3C -.(1)将ABC ∆向上平移4个单位,再向右平移1个单位,得到111A B C △,请画出111A B C △.(2)请画出ABC ∆关于y 轴对称的222A B C △.(3)将222A B C △着原点O 顺时针旋转90︒,得到333A B C △,求线段22A C 在旋转过程中扫过的面积(结果保留π).23. 如图,抛物线23y ax bx =++与x 轴交于()()3,0,1,0A B -两点,交y 轴于点C .(1)求抛物线的解析式.(2)拋物线上是否存在一点P ,使得12PBC ABC S S =,若存在,请直接写出点P 的坐标;若不存在,请说明理由. 24. 某中学开展主题为“垃圾分类,绿色生活”的宣传活动、为了解学生对垃圾分类知识的掌握情况,该校团委在校园内随机抽取了部分学生进行问卷调在,将他们的得分按A :优秀,B :良好,C :合格,D :不合格四个等级进行统计,并绘制了如下不完整的条形统计图和扇形统计图.(1)这次学校抽查的学生人数是__________人;(2)将条形图补充完整;(3)扇形统计图中C 组对应的扇形圆心角度数是__________︒;(4)如果该校共有2200人,请估计该校不合格的人数.25. 已知甲,乙两地相距480km ,一辆出租车从甲地出发往返于甲乙两地,一辆货车沿同一条公路从乙地前往甲地,两车同时出发,货车途经服务区时,停下来装完货物后,发现此时与出租车相距120km ,货车继续出发2h 3后与出租车相遇.出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地.如图是两车距各自出发地的距离()km y 与货车行驶时间()h x 之间的函数图象,结合图象回答下列问题:(1)图中a 的值是__________;(2)求货车装完货物后驶往甲地的过程中,距其出发地的距离()km y 与行驶时间()h x 之间的函数关系式; (3)直接写出在出租车返回的行驶过程中,货车出发多长时间与出租车相距12km .26. 如图①,ABC ∆和ADE ∆是等边三角形,连接DC ,点F ,G ,H 分别是,DE DC 和BC 的中点,连接,FG FH.易证:FH =.若ABC ∆和ADE ∆都是等腰直角三角形,且90BAC DAE ∠=∠=︒,如图①:若ABC ∆和ADE ∆都是等腰三角形,且120BAC DAE ∠=∠=︒,如图①:其他条件不变,判断FH 和FG 之间的数量关系,写出你的猜想,并利用图①或图①进行证明.27. 2023年5月30日上午9点31分,神舟十六号载人飞船在酒泉发射中心发射升空,某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A ,B 两款文化衫,每件A 款文化衫比每件B 款文化衫多10元,用500元购进A 款和用400元购进B 款的文化衫的数量相同.(1)求A 款文化衫和B 款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元,不少于14750元购买文化衫,求有几种购买方案?(3)在实际购买时,由于数量较多,商家让利销售,A 款七折优惠,B 款每件让利m 元,采购人员发现(2)中的所有购买方案所需资金恰好相同,试求m 值.28. 如图,在平面直角坐标系中,菱形AOCB 的边OC 在x 轴上,60AOC ∠=︒,OC 的长是一元二次方程24120x x --=的根,过点C 作x 轴的垂线,交对角线OB 于点D ,直线AD 分别交x 轴和y 轴于点F 和点E ,动点M 从点O 以每秒1个单位长度的速度沿OD 向终点D 运动,动点N 从点F 以每秒2个单位长度的速度沿FE 向终点E 运动.两点同时出发,设运动时间为t 秒.(1)求直线AD 的解析式.(2)连接MN ,求MDN △的面积S 与运动时间t 的函数关系式.(3)点N 在运动的过程中,在坐标平面内是否存在一点Q .使得以A ,C ,N ,Q 为项点的四边形是矩形.若存在,直接写出点Q 的坐标,若不存在,说明理由.2023年黑龙江省龙东地区中考数学真题试卷答一、选择题.1. C2. A3. B4. C5. A6. C7. B8. C9. D解:①矩形ABCD 的边5AD =,:1:4OA OD =. ①1OA =,4OD =,5BC =.由题意知1AB OC ∥.①11ABO D OC ∠=∠.又①1190BAO OD C ∠=∠=︒.①11AOB D C O . ①111D C OA AB OD =. 由折叠知14OD OD ==,11D C DC AB ==. ①14AB AB =. ①2AB =,即2CD =.连接OC ,设BC 与1OC 交于点F .①OC ==①90FOA OAB ABF ∠=∠=∠=︒.①四边形OABF 是矩形.①2AB OF ==,190BFO EFC ∠=︒=∠,1OA BF ==. ①514CF =-=.由折叠知1OC OC ==14EC EC CF EF EF ==-=-.①112C F OC OF =-=.①在1Rt EFC 中,22211EF C F EC +=.①()()22224EF EF +=-.解得:1=EF .①点E 的坐标是()12.故选:D .10. B 解:四边形ABCD 是正方形. 90DAE ABF ∴∠=∠=︒,DA AB =. AF DE ⊥.90BAF AED ∴∠+∠=︒.90BAF AFB ∠+∠=︒.AED BFA ∴∠=∠.()AAS ABF AED ∴△≌△.AF DE ∴=,故①正确.将ABF △沿AF 翻折,得到AMF ∆. BM AF ∴⊥.①AF DE ⊥.BM DE ∴∥,故①正确.当CM FM ⊥时,90CMF ∠=︒. 90AMF ABF ∠=∠=︒.180AMF CMF ∴∠+∠=︒,即,,A M C 在同一直线上. 45MCF ∴∠=︒.9045MFC MCF ∴∠=︒-∠=︒. 通过翻折的性质可得45HBF HMF ∠=∠=︒,BF MF =. ①HMF MFC ∠=∠,HBC MFC ∠=∠. ,BC MH HB MF ∴∥∥.∴四边形BHMF 是平行四边形. BF MF =.∴平行四边形BHMF 是菱形,故①正确. 当点E 运动到AB 的中点,如图.设正方形ABCD 的边长为2a ,则AE BF a ==.在Rt AED △中,DE AF ===. ,45AHD FHB ADH FBH ∠=∠∠=∠=︒. AHD FHB ∴△∽△.122FH BF a AH AD a ∴===.23AH AF ∴==. 90AGE ABF ∠=∠=︒.AGF ABF ∴△∽△.5AE EG AG AF BF AB ∴====55EG BF a ∴==,55AG AB ==.DG ED EG ∴=-=,GH AH AG a =-=. BHF DHA ∠=∠.在Rt DGH △中,tan tan 3DG BHF DHA GH∠=∠==,故①错误. AHD FHB △∽△.12BH DH ∴=.1133BH BD ∴==⨯=,2233DH BD ==⨯=. AF EP ⊥.根据翻折的性质可得25EP EG a ==.25315EP DH a a ∴⋅=⋅=.2223AG BH a ⋅=⋅=.22EP DH AG BH ∴⋅=⋅=,故①正确; 综上分析可知,正确的是①①①①.故选:B .二、填空题.11. 75.69910⨯12. 3x ≥-13. AB BC =或AC BD ⊥ 14. 3515. 32m -≤<-16. 3417. 1218. 4+解:如图,在Rt ACB △中,30BAC ∠=︒,2CB =,点E 是斜边AB 的中点.①24AB CB ==,122CE AB AE ===,AC ==. ①30ECA BAC ∠=∠=︒.过点A 作AG CE ⊥交CE 的延长线于点G .①12AG AC == 又①在旋转的过程中,点F 在以A 为圆心AB 的长为半径的圆上运动,4AF AB ==.①点F 到直线CE 的距离的最大值为4+,(如图,G,A,F 三点共线时)①CEF △面积的最大值((11424422CE =⨯=⨯⨯=+故答案为:4.19. 6或3+3-解:由题意矩形ABCD 沿过点A 的直线折叠,使点B 落在点E 处. 可知点E 在以点A 为圆心,AB 长为半径的圆上运动.如图,延长BA 交A 的另一侧于点E ,则此时ADE ∆是直角三角形. 点E 到直线BC 的距离为BE 的长度,即26BE AB ==.当过点D 的直线与圆相切与点E 时,ADE ∆是直角三角形,分两种情况. ①如图,过点E 作EH BC ⊥交BC 于点H ,交AD 于点G .①四边形ABCD 是矩形.①EG AD ⊥.①四边形ABHG 是矩形,3GH AB ==①3AE AB ==,AE DE ⊥,9AD =. 由勾股定理可得229362DE =-=.①1122AED S AE DE AD EG =⋅=⋅. ①22EG =.①E 到直线BC 的距离322EH EG GH =+=+. ①如图,过点E 作EN BC ⊥交BC 于点N ,交AD 于点M .①四边形ABCD 是矩形.①NM AD ⊥.①四边形ABNM 是矩形,3MN AB ==①3AE AB ==,AE DE ⊥,9AD =.由勾股定理可得DE =①1122AED S AE DE AD EM =⋅=⋅△.①EM =.①E 到直线BC 的距离3EN MN GN =-=-综上,6或3+3-.故答案为:6或3+3-20. 2解:①OB =①()B .①AB x ⊥轴.①点A的横坐标为.①1:3l y x =. ①点A的纵坐标为33=①tan AB AOB OB ∠===. ①30AOB ∠=︒.①2:l y =.①设(),C C C x y ,则C C y =.①tan C Cy BOC x ∠== ①60BOC ∠=︒.①1cos602OC OB =⨯︒==sin 602BC OB =⨯︒== ①130AOC BOC AOB ∠=∠-∠=︒.①1AOB AOC ∠=∠.①OA 平分BOC ∠.①12AC l ⊥,AB OB ⊥.①1AC AB == ①1AB AC =,OA OA =.①1Rt Rt OAB OAC ≌.①1OC OB ==①11CC OC OC =-=①12ABC OAB ACC BOC S S S S =--111223232=⨯⨯--=①2BC l ⊥.①90BCO ∠=︒.①906030CBO ∠=︒-︒=︒.①112B C l ⊥,2BC l ⊥,222B C l ⊥.①2112B B C C B C ∥∥.①112230C B O C B O CBO ∠=∠=∠=︒.①1122C B O C B O CBO AOB ∠=∠=∠=∠.①1AO AB =,112AO A B =. ①AB x ⊥轴,11A B x ⊥轴. ①112OB OB =,1212OB OB =. ①AB x ⊥轴,11A B x ⊥轴,22A B x ⊥轴.①1122AB A B A B ∥∥. ①11112AB OB A B OB ==,22214AB OB A B OB ==.①2112B B C C B C ∥∥. ①11112BC OB B C OB ==,22214BC OB B C OB ==. ①1111AB BC A B B C =. ①111903060ABC A B C ∠=∠=︒-︒=︒.①111ABC A B C ∽△△.同理222ABC A B C ∽.①1114A B C ABC S S =.()22222242A B C ABCABC S S S =⋅=⋅. ①()2222n n n n n A B C ABC ABC SS S ==.①2023202320232202322A B C S ⨯==故答案为:2三、解答题. 21. 1m m +,原式33= 22. (1)见解析 (2)见解析(3)134π 【小问1详解】解:如图所示,111A B C △即为所求;【小问2详解】如图所示,222A B C △即为所求;【小问3详解】将222A B C △着原点O 顺时针旋转90︒,得到333A B C △.设23A A 所在圆交3OC 于点D ,交2OC 于点E .23OA OA =,23OC OC =.23C E C D ∴=.3290A OA ∠=︒,2390C OC ∠=︒.32A OD A OE ∴∠=∠.32A D A E ∴=.3322A C D A C E S S ∴=曲边曲边,3OC =,2OD OA ==.()()(332232232222390909090133603603603604C A A C C DEC C OC DOE OC OD S S S S πππππ︒︒︒︒∴==-=-=-=︒︒︒︒扇扇.故线段22A C 在旋转过程中扫过的面积为134π. 23.(1)223y x x =--+ (2)存在,点P 的坐标为()2,3-或()3,12-【小问1详解】解:因为抛物线23y ax bx =++经过点 ()30A -,和点()10B ,两点,所以 933030a b a b -+=⎧⎨++=⎩. 解得12a b =-⎧⎨=-⎩. 所以抛物线解析式为:223y x x =--+.【小问2详解】解:如图,设线段AB 的中点为D ,可知点D 的坐标为()1,0-,过点D 作与BC 平行的直线l ,假设与抛物线交于点1P , 2P (1P 在2P 的左边),(2P 在图中未能显示).设直线BC 的函数解析式为()10y kx b k =+≠.因为直线BC 经过点()10B ,和()0,3C ,所以 1103k b b +=⎧⎨=⎩. 解得133k b =-⎧⎨=⎩. 所以,直线BC 的函数解析式为:33y x =-+. 又12//PP BC .可设直线12PP 的函数解析式为23y x b =-+.因为直线12PP 经过点D ()1,0-,所以 230b +=.解得23b =-.所以,直线12PP 的函数解析式为33y x =--. 根据题意可知.12DBC ABC S S =.又12//PP BC .所以,直线12PP 上任意一点P '与点B ,点C 连线组成的P BC '的面积都满足12P BC ABC S S '=.所以,直线12PP 与抛物线223y x x =--+的交点1P ,2P 即为所求,可得 23323x x x --=--+.化简,得260x x --=.解得1232x x ==-,.所以,点1P 的坐标为()2,3-,点2P 的坐标为()3,12-. 故答案为:存在,点P 的坐标为()2,3-或()3,12-. 24. (1)40 (2)见解析(3)90(4)220人【小问1详解】解:1230%40÷=人.①这次学校抽查的学生人数是40人.故答案为:40;【小问2详解】解:由(1)得C :合格的人数为401214410---=人. 补全统计图如下所示:【小问3详解】解:103609040︒⨯=︒. ①扇形统计图中C 组对应的扇形圆心角度数是90︒.故答案为:90;【小问4详解】 解:4220022040⨯=人. ①估计该校不合格的人数为220人.25. (1)120 (2)60y x =(3)12517h 或13117h 【小问1详解】解:结合图象,可得()4,480C .设直线OC 的解析式为y kx =.将()4,480C 代入解析式,可得4804k =,解得120k =.∴直线OC 的解析式为120y x =.把()1,a 代入120y x =,得120a =.故答案为:120;【小问2详解】解:根据货车停下来装完货物后,发现此时与出租车相距120km .可得此时出租车距离乙地为120120240km +=.∴出租车距离甲地为480240240km -=.把240y =代入120y x =,可得240120x =,解得2x =.∴货车装完货时,2x =,可得()2,120B .根据货车继续出发2h 3后与出租车相遇,+货车的速度)120=. 根据直线OC 的解析式为120y x =,可得出租车的速度为120km h .∴相遇时,货车的速度为212012060km h 3÷-=. 故可设直线BG 的解析式为60y x b =+.将()2,120B 代入60y x b =+,可得120120b =+,解得0b =.∴直线BG 的解析式为60y x =.故货车装完货物后驶往甲地的过程中,距其出发地的距离()km y 与行驶时间()h x 之间的函数关系式为60y x =;【小问3详解】解:把480y =代入60y x =,可得48060x =,解得8x =.()8,480G ∴.()8,0F ∴.根据出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地,可得151604EF ==, 31,04E ⎛⎫∴ ⎪⎝⎭. ∴出租车返回时的速度为314804128km h 4⎛⎫÷-= ⎪⎝⎭. 设在出租车返回的行驶过程中,货车出发t 小时,与出租车相距12km .此时货车距离乙地为60km t ,出租车距离乙地为()()1284128512km t t -=-.①出租车和货车第二次相遇前,相距12km 时;可得()116012851212t t --=. 解得112517t =. ①出租车和货车第二次相遇后,相距12km 时;可得()221285126012t t --=. 解得213117t =. 故在出租车返回的行驶过程中,货车出发12517h 或13117h 与出租车相距12km .26. 图①中FH =,图①中FH FG =,证明见解析解:图①中FH =,图①中FH FG =.图①证明如下:如图①所示,连接BD HG CE ,,.①点F ,G 分别是DE DC ,的中点.①FG 是CDE ∆的中位线. ①12FG CE FG CE =∥,. 同理可得12GH BD GH BD =∥,. ①ABC 和ADE ∆都是等腰直角三角形,且90BAC DAE ∠=∠=︒. ①AB AC BAD CAE AD AE =∠=∠=,,.①()SAS ABD ACE △≌△. ①CE BD ACE ABD ==,∠∠.①FG HG =.①BD GH FG CE ∥,∥.①FGH FGD HGD ∠=∠+∠DCE GHC GCH =++∠∠∠DBC DCB ACD ACE =+++∠∠∠∠DBC ABD ACB =++∠∠∠ACB ABC =∠+∠90=︒.①HGF △是等腰直角三角形.①FH =;图①证明如下:如图①所示,连接BD HG CE ,,.①点F ,G 分别是DE DC ,的中点.①FG 是CDE ∆的中位线.①12FG CE FG CE =∥,. 同理可得12GH BD GH BD =∥,. ①ABC 和ADE ∆都是等腰三角形,且120BAC DAE ∠=∠=︒. ①AB AC BAD CAE AD AE =∠=∠=,,.①()SAS ABD ACE △≌△. ①CE BD ACE ABD ==,∠∠.①FG HG =.①BD GH FG CE ∥,∥.①FGH FGD HGD ∠=∠+∠DCE GHC GCH =++∠∠∠DBC DCB ACD ACE =+++∠∠∠∠DBC ABD ACB =++∠∠∠ACB ABC =∠+∠180BAC =︒-∠60=︒.①HGF △是等边三角形.①FH FG =.27. (1)A 款文化衫每件50元,则B 款文化衫每件40元 (2)一共有六种购买方案(3)5m =【小问1详解】解:设A 款文化衫每件x 元,则B 款文化衫每件()10x -元.由题意得,50040010x x =-. 解得50x =.检验,当50x =时,()100x x -≠.①50x =是原方程的解.①1040x -=.①A 款文化衫每件50元,则B 款文化衫每件40元.答:A 款文化衫每件50元,则B 款文化衫每件40元;【小问2详解】解:设购买A 款文化衫a 件,则购买B 款文化衫()300a -件. 由题意得,()14750504030014800a a ≤+-≤.解得275280a ≤≤.①a 是正整数.①a 的取值可以为275,276,277,278,279,280.①一共有六种购买方案;【小问3详解】解:设购买资金为W 元,购买A 款文化衫a 件,则购买B 款文化衫()300a -件.由题意得,()()0.75040300W a m a =⨯+-- ()512000300m a m =-+-.①(2)中的所有购买方案所需资金恰好相同.①W 的取值与a 的值无关.①50m -=.①5m =.28. (1)3y x =-+ (2)2290292t t S t t t -+≤≤⎪⎪=⎨⎪-+-<≤⎪⎩;(3)存在,点Q的坐标是3,22⎛⎫ ⎪ ⎪⎝⎭或(.【小问1详解】解:解方程24120x x --=得:16x =,22x =-.①6OC =.①四边形AOCB 是菱形,60AOC ∠=︒.①6OA OC ==,1302BOC AOC ∠=∠=︒.①tan 306CD OC =⋅︒==①(6,D .过点A 作AH OC ⊥于H .①60AOH ∠=︒. ①132OH OA ==,sin 6062AH OA =⋅︒=⨯=①(A .设直线AD 的解析式为()0y kx b k =+≠.代入(A,(6,D得:36k b k b ⎧+=⎪⎨+=⎪⎩解得:3k b ⎧=-⎪⎨⎪=⎩.①直线AD的解析式为y x =+【小问2详解】解:由(1)知在Rt COD 中,CD =30DOC ∠=︒.①2OD CD ==90903060EOD DOC ∠=︒-∠=︒-︒=︒.①直线y x =+与 y 轴交于点E .①OE =①OE OD .①EOD △是等边三角形.①60OED EDO BDF ∠=∠=∠=︒,ED OD == ①30OFE DOF ∠=︒=∠.①DO DF ==①当点N 在DF 上,即0t ≤≤.由题意得:DM OD OM t =-=,2DN t =. 过点N 作NP OB ⊥于P .则()sin sin 60262NP DN PDN DN t =⋅∠=⋅︒=⨯=.①()()21169222S DM NP t t =⋅==-+;①当点N 在DE 上,即t <≤.由题意得:DM OD OM t =-=,2DN t =- 过点N 作NT OB ⊥于T .则(sin sin 60262NT DN NDT DN t =⋅∠=⋅︒=-⨯=-.①()2116922S DM NT t t =⋅=-=+- 综上,22909t t S t t -+≤≤=⎨⎪+-<≤⎪⎩;【小问3详解】解:存在,分情况讨论:①如图,当AN 是直角边时,则CN EF ⊥,过点N 作NK CF ⊥于K . ①30NFC ∠=︒,OE =①60NCK ∠=︒,12OF ==.①1266CF =-=. ①132CN CF ==. ①13cos60322CK CN =⋅︒=⨯=,sin 603NK CN =⋅︒==. ①将点N 向左平移32个单位长度,C . ①将点A 向左平移32个单位长度,再向下平移2个单位长度得到点Q .①(A .①3,22Q ⎛⎫ ⎪ ⎪⎝⎭;①如图,当AN 是对角线时,则90ACN ∠=︒,过点N 作NL CF ⊥于L . ①OA OC =,60AOC ∠=︒.①AOC ∆是等边三角形.①60ACO ∠=︒.①180609030NCF NFC ∠=︒-︒-︒=︒=∠. ①132CL FL CF ===.①tan 3033NL CL =⋅︒=⨯= ①将点C 向右平移3个单位长度,N . ①将点A 向右平移3个单位长度,Q .①(A .①(6,Q ;①存在一点Q ,使得以A ,C ,N ,Q 为顶点的四边形是矩形,点Q 的坐标是32⎛ ⎝⎭或(. .。

黑龙江省龙东地区2022年初中毕业学业统一考试数学试题及答案

黑龙江省龙东地区2022年初中毕业学业统一考试数学试题及答案
(1)求购进一根A种跳绳和一根B种跳绳各需多少元?
(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?
(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?
28.如图,在平面直角坐标系中,平行四边形ABCD的边AB在x轴上,顶点D在y轴的正半轴上,M为BC的中点,OA、OB的长分别是一元二次方程 的两个根 , ,动点P从点D出发以每秒1个单位长度的速度沿折线 向点B运动,到达B点停止.设运动时间为t秒, 的面积为S.
(2)将 绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;
(3)将 绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.
27.学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A种跳绳和5根B种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元.
A.5B.6C.7D.8
【答案】A
【解析】
【分析】设设购买毛笔x支,围棋y副,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出购买方案的数量.
【详解】解:设购买毛笔x支,围棋y副,根据题意得,
15x+20y=360,即3x+4y=72,
∴y=18- x.
又∵x,y均为正整数,
A.5B.6C.7D.8
8.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数 的图象上,顶点A在反比例函数 的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()

【真题】龙东地区中考数学试卷含答案解析(2)

【真题】龙东地区中考数学试卷含答案解析(2)

黑龙江省龙东地区中考数学试卷一、填空题(每题3分,满分30分)1.在的“双11”网上促销活动中,淘宝网的交易额突破了3200000000元,将数字3200000000用科学记数法表示 .【答案】3.2×109.【解析】试题解析:3200000000=3.2×109.考点:科学记数法—表示较大的数.2.在函数y =1x -1中,自变量x 的取值范围是 . 【答案】x >1.【解析】3.如图,BC ∥EF ,AC ∥DF ,添加一个条件 ,使得△ABC ≌△DEF .第3题图【答案】AB=DE 或BC=EF 或AC=DF【解析】试题解析:∵BC ∥EF ,∴∠ABC=∠E ,∵AC ∥DF ,∴∠A=∠EDF ,∵在△ABC 和△DEF 中,A EDF AB DEABC E ⎧∠=∠⎪=⎨⎪∠=∠⎩,∴△ABC ≌△DEF ,同理,BC=EF 或AC=DF 也可求证△ABC ≌△DEF .考点:全等三角形的判定.4.在一个不透明的袋子中装有除颜色外完全相同的3个红球、3个黄球、2个绿球,任意摸出一球,摸到红球的概率是 .【答案】38【解析】5.不等式组⎩⎪⎨⎪⎧x +1>0a - 13x <0的解集是x >-1,则a 的取值范围是 . 【答案】a ≤﹣13 【解析】试题解析:解不等式x+1>0,得:x >﹣1,解不等式a ﹣13x <0,得:x >3a , ∵不等式组的解集为x >﹣1,则3a ≤﹣1,∴a ≤﹣13考点:解一元一次不等式组.6.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为 .【答案】10%.【解析】试题解析:设这两次的百分率是x,根据题意列方程得100×(1﹣x)2=81,解得x1=0.1=10%,x2=1.9(不符合题意,舍去).答:这两次的百分率是10%.考点:一元二次方程的应用.7.如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是.第7题图【答案】5.【解析】试题解析:连接AC、AE,∴PC+PE的最小值为5.考点:轴对称﹣最短路线问题;正方形的性质.8.圆锥底面半径为3cm,母线长32cm则圆锥的侧面积为cm2.【答案】92π 【解析】考点:圆锥的计算.9.△ABC 中,AB =12,AC =39,∠B =30°则△ABC 的面积是 .【答案】213或153.【解析】试题解析:①如图1,作AD ⊥BC ,垂足为点D ,在Rt △ABD 中,∵AB=12、∠B=30°,∴AD=12AB=6,BD=ABcosB=12323 在Rt △ACD 中,2222(39)6AC AD -=-3,∴333则S △ABC =12×BC ×AD=12×3×3 ②如图2,作AD ⊥BC ,交BC 延长线于点D ,考点:解直角三角形.10.观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…….则第个图形中有个三角形.第1个第2个第3个第2017个第10题图【答案】8065【解析】试题解析:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…第n个图形中三角形的个数是1+4(n﹣1)=4n﹣3,当n=时,4n﹣3=8065.考点:图形的变化类二、选择题(每题3分,满分30分)11.下列各运算中,计算正确的是()A.(x-2)2=x2-4 B.(3a2)3=9a6C.x6÷x2=x3D.x3·x2=x5【答案】D.【解析】试题解析:A.原式=x2﹣4x+4,故A错误;B.原式=27a6,故B错误;C.原式=x4,故C错误;故选D.考点:整式的混合运算.12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C.【解析】考点:中心对称图形;轴对称图形13.几个相同的小正方体所搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数最多是()俯视图左视图A.5个B.7个C.8个D.9个【答案】B.【解析】试题解析:由俯视图及左视图知,构成该几何体的小正方形体个数最多的情况如下:故选B .考点:由三视图判断几何体.14.一组从小到大排列的数据:a ,3,4,4,6(a 为正整数),唯一的众数是4,则该组数据的平均数是( )A .3.6B .3.8C .3.6或3.8D .4.2【答案】C .【解析】考点:众数;算术平均数.15.如图,某工厂有两个大小相同的蓄水池,且中间有管道连通。

龙东中考数学试题及答案

龙东中考数学试题及答案

龙东中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. 3.14D. 1/3答案:B2. 一个二次函数的图像开口向上,且经过点(1,0)和(-1,0),下列哪个选项是该二次函数的对称轴?A. x = 0B. x = 1C. x = -1D. x = 2答案:A3. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 14答案:B4. 如果一个数的平方等于9,那么这个数是多少?A. ±3B. 3C. -3D. 9答案:A5. 下列哪个选项是不等式2x - 3 > 5的解集?A. x > 4B. x < 4C. x > 1D. x < 1答案:A6. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B7. 一个长方体的长、宽、高分别为3cm、4cm和5cm,那么它的体积是多少?A. 60cm³B. 48cm³C. 36cm³D. 12cm³答案:A8. 一个等差数列的前三项分别为2、5、8,那么它的第10项是多少?A. 27B. 29C. 31D. 23答案:C9. 一个正五边形的内角和是多少?A. 540°B. 360°C. 720°D. 1080°答案:A10. 一个函数y = 2x + 3的图像与x轴的交点坐标是什么?A. (-3/2, 0)B. (3/2, 0)C. (0, 3)D. (0, -3)答案:A二、填空题(每题3分,共15分)11. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是_________。

答案:512. 如果一个数的立方等于-8,那么这个数是_________。

答案:-213. 一个圆的周长为12π,那么它的半径是_________。

黑龙江省龙东地区五市2022年中考数学试卷(附解析)

黑龙江省龙东地区五市2022年中考数学试卷(附解析)

黑龙江省龙东地区五市2022年中考数学试卷(附解析)一、填空题(每题3分,共30分)1.(3分)(2013•黑龙江)“大美大爱”的龙江人勤劳智慧,2012年全省粮食总产量到达1152亿斤,夺得全国粮食总产第一,广袤的黑土地正成为保障国家粮食保险的大粮仓,1152亿斤用科学记数法表现为 1.152×1011斤.考点:科学记数法—表现较大的数.分析:科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1152亿用科学记数法表现为1.152×1011.故答案为:1.152×1011.点评:此题考查科学记数法的表现方法.科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,表现时关键要正确确定a的值以及n的值.2.(3分)(2013•黑龙江)在函数中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:此题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x的取值范围.解答:解:根据题意得:x+1≥0且x≠0解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0点评:函数自变量的范围一般从三个方面考虑:(1)当函数表白式是整式时,自变量可取全体实数;(2)当函数表白式是分式时,考虑分式的分母不能为0;(3)当函数表白式是二次根式时,被开方数为非负数.3.(3分)(2013•黑龙江)如下图,平行四边形ABCD的对角线AC、BD相交于点O ,试添加一个条件:AD=DC,使得平行四边形ABCD为菱形.考点:平行四边形的判定;平行四边形的性质.专题:开放型.分析:根据菱形的定义得出答案即可.解答:解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC.点评:此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.4.(3分)(2013•黑龙江)风华中学七年级(2)班的“精英小组”有男生4人,少女生3人,若选出一人担任班长,则组长是男生的概率为.考点:概率公式.分析:由风华中学七年级(2)班的“精英小组”有男生4人,少女生3人,直接利用概率公式求解即可求得答案.解答:解:∵风华中学七年级(2)班的“精英小组”有男生4人,少女生3人,∴选出一人担任班长,则组长是男生的为:=.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.5.(3分)(2013•黑龙江)若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=﹣2.考点:一元二次方程的解.分析:先把x=1代入x2+3mx+n=0,得到3m+n=﹣1,再把要求的式子进行整理,然后代入即可.解答:解:把x=1代入x2+3mx+n=0得:1+3m+n=0,3m+n=﹣1,则6m+2n=2(3m+n)=2×(﹣1)=﹣2;故答案为:﹣2.点评:此题考查了一元二次方程的解,解题的关键是把x的值代入,得到一个关于m,n的方程,不要求m.n的值,要以整体的形式出现.6.(3分)(2013•黑龙江)二次函数y=﹣2(x﹣5)2+3的顶点坐标是(5,3).考点:二次函数的性质分析:因为顶点式y=a(x﹣h)2+k,其顶点坐标是(h,k),对照求二次函数y=﹣2(x﹣5)2+3的顶点坐标.解答:解:∵二次函数y=﹣2(x﹣5)2+3是顶点式,∴顶点坐标为(5,3).故答案为:(5,3).点评:此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.7.(3分)(2013•黑龙江)将半径为4cm的半圆围成一个圆锥,这个圆锥的高为2cm.考点:圆锥的计算.分析:根据扇形的弧长等于圆锥的底面周长,即可求得圆锥的底面半径,底面半径、母线长以及圆锥高满足勾股定理,据此即可求得圆锥的高.解答:解:设圆锥底面的半径是r,则2πr=4π,则r=2.则圆锥的高是:=2cm.故答案是:2.点评:此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决此题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(3分)(2013•黑龙江)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了20或25张电影票.考点:一元一次方程的应用.专题:分类讨论.分析:此题分票价每张60元和票价每张60元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.解答:解:①1200÷60=20(张);②1200÷(60×0.8)1200÷48=25(张).答:他们共买了20或25张电影票.故答案为:20或25.点评:考查了销售问题,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系..9.(3分)(2013•黑龙江)梯形ABCD中,AB∥CD,AB=3,CD=8,点E是对角线AC上一点,连接DE并延长交直线AB于点F,若=2,则=或.考点:相似三角形的判定与性质;梯形.专题:分类讨论.分析:根据已知分别根据F在线段AB上后在AB的延长线上,进而利用平行线的分线段成比例定理得出的值.解答:解:如图1:∵AB=3,=2,∴AF=2,BF=1,∵AB∥CD,∴△AEF∽△CED,∴=,∴==;如图2:∵AB=3,=2,∴AF=6,BF=3,∵AB∥CD,∴△AEF∽△CED,∴=,∴==.故答案为:或.点评:此题主要考查了相似三角形的判定与性质,根据已知进行分类讨论得出两种不同图形是解题关键.10.(3分)(2013•黑龙江)已知等边三角形ABC的边长是2,以BC 边上的高AB1为边作等边三角形,得到第一个等边三角形AB1C1,再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边三角形AB2C2,再以等边三角形AB2C2的边B2C2边上的高AB3为边作等边三角形,得到第三个等边AB3C3;…,如此下去,这样得到的第n个等边三角形AB n C n 的面积为()n.考等边三角形的性质点:专题:规律型.分析:由AB1为边长为2等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.解答:解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n 的面积为()n.故答案为:()n点评:此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解此题的关键.二、选择题(每题3分,满分30分)11.(3分)(2013•黑龙江)以下运算中,计算正确的选项是()A.(x3)2=x5B.x2+x2=2x4C.(﹣2)﹣1=﹣D.(a﹣b)2=a2﹣b2考点:完全平方公式;合并同类项;幂的乘方与积的乘方;负整数指数幂.分析:A、利用幂的乘方运算法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用负指数幂法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.解答:解:A、(x3)2=x6,本选项错误;B、x2+x2=2x2,本选项错误;C、(﹣2)﹣1=﹣,本选项正确;D、(a﹣b)2=a2﹣2ab+b2,本选项错误,应选C点评:此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解此题的关键.12.(3分)(2013•黑龙江)以下汽车标记中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.应选D.点评:此题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.13.(3分)(2013•黑龙江)由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如下图,则组成这个几何体的小正方体的个数最多有()A.4B.5C.6D.7考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.解答:解:由俯视图易得最底层有4个小正方体,第二层最多有2个小正方体,那么搭成这个几何体的小正方体最多为4+2=6个.应选C.点评:考查学生对三视图的掌握水平和灵活运用能力,同时也表白了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.14.(3分)(2013•黑龙江)下表是我市某中学九年级(1)班右眼视力的检查结果:视力人数1 2 5 4 3 6 1 1 5 9 6根据表中提供的信息,这43名同学右眼视力的众数和中位数分别是()A.B.C.D.考点:众数;中位数.分析:根据众数及中位数的定义,结合所给数据即可得出答案.解答:解:视力为4.9的学生人数最多,故众数为4.9;共43为学生,中位数落在第22为学生处,故中位数为4.6.应选A.点评:此题考查了众数及中位数的知识,属于基础题,解答此题的关键是掌握众数及中位数的定义.15.(3分)(2013•黑龙江)如图,爸爸从家(点O)出发,沿着扇形AOB上OA→→BO的路径去匀速散步,设爸爸距家(点O)的距离为S,散步的时间为t,则以下图形中能大致刻画S与t之间函数关系的图象是()A.B.C.D.考点:函数的图象.分析:根据当爸爸在半径AO上运动时,离出发点距离越来越远;在弧BA上运动时,距离不变;在BO上运动时,越来越近,即可得出答案.解答:解:利用图象可得出:当爸爸在半径AO上运动时,离出发点距离越来越远;在弧AB上运动时,距离不变;在OB上运动时,越来越近.应选:C.点评:此题考查了函数随自变量的变更而变更的问题,能够结合图形正确分析距离y与时间x之间的大小变更关系,从而正确选择对应的图象.16.(3分)(2013•黑龙江)已知关于x 的分式方程=1的解是非正数,则a的取值范围是()A.a≤﹣1 B.a≤﹣1且a≠﹣2C.a≤1且a≠﹣2 D.a≤1考点:分式方程的解.分先解关于x的分式方程,求得x的值,然后再依据“解是非正数”析:建立不等式求a的取值范围.解答:解:去分母,得a+2=x+1,解得,x=a+1,∵x≤0且x+1≠0,∴a+1≤0且a+1≠﹣1,∴a≤﹣1且a≠﹣2,∴a≤﹣1且a≠﹣2.应选B.点评:此题考查了分式方程的解,解一元一次不等式,需注意在任何时候都要考虑分母不为0,这也是此题最容易出错的地方.17.(3分)(2013•黑龙江)如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3B.2C.3D.2考点:圆周角定理;含30度角的直角三角形;圆心角、弧、弦的关系.分首先根据AB=BC,∠ABC=120°,求出∠C的度数,然后根据析:圆周角定理可知:∠D=∠C,又直径AD=6,易求得AB的长度.解答:解:∵AB=BC,∴∠BAC=∠C,∵∠ABC=120°,∴∠BAC=∠C=30°,∵AD为直径,AD=6,∴∠ABD=90°,∵∠D=30°,∴AB=AD=3.应选A.点评:此题考查了圆周角定理,难度一般,关键是掌握圆周角定理:同弧所对的圆周角相等.18.(3分)(2013•黑龙江)如图,Rt△ABC的顶点A在双曲线y=的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠ACO=60°,则k的值是()A.4B.﹣4C.2D.﹣2考点:反比例函数综合题.分析:根据三角形外角性质得∠OAC=∠AOB﹣∠ACB=30°,易得OA=OC=4,然后再Rt△AOB中利用含30度的直角三角形三边的关系得到OB=OC=2,AB=OB=2,则可确定C点坐标为(﹣2,2),最后把C点坐标代入反比例函数解析式y=中即可得到k的值.解答:解:∵∠ACB=30°,∠ACO=60°,∴∠OAC=∠AOB﹣∠ACB=30°,∴∠OAC=∠ACO,∴OA=OC=4,在△AOB中,∠ABC=90°,∠AOB=60°,OA=4,∴∠OAB=30°,∴OB=OC=2,∴AB=OB=2,∴C点坐标为(﹣2,2),把C(﹣2,2)代入y=得k=﹣2×2=﹣4.应选B.点评:此题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征;熟练运用含30度的直角三角形三边的关系进行几何计算.19.(3分)(2013•黑龙江)今年校团委举办了“中国梦,我的梦”歌咏竞赛,张老师为鼓励同学们,带了50元钱取购置甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购置笔记本的方案共有()A.3种B.4种C.5种D.6种考点:二元一次方程的应用.分析:设甲种笔记本购置了x本,乙种笔记本y本,就可以得出7x+5y≤50,x≥3,y≥3,根据解不定方程的方法求出其解即可.解答:解:设甲种笔记本购置了x本,乙种笔记本y本,由题意,得7x+5y≤50,∵x≥3,y≥3,∴当x=3,y=3时,7×3+5×3=36<50,当x=3,y=4时,7×3+5×4=41<50,当x=3,y=5时,7×3+5×5=46<50,当x=3,y=6时,7×3+5×6=51>50舍去,当x=4,y=3时,7×4+5×3=43<50,当x=4,y=4时,7×4+5×4=4<50,当x=4,y=5时,7×4+5×5=53>50舍去,当x=5,y=3时,7×5+5×3=50=50,综上所述,共有6种购置方案.应选D.点评:此题考查了列二元一次不等式解实际问题的运用,分类讨论思想在解实际问题中的运用,解答时根据条件建立不等式是关键,合理运用分类是难点.20.(3分)(2013•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则以下结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.应选D.点评:此题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.三、简答题(满分60分)21.(5分)(2013•黑龙江)先化简,再求值(1﹣)÷,其中x=2sin45°+1.考点:分式的化简求值;特殊角的三角函数值.分析:先通分,再把除法转化成乘法,然后约分,最后求出x的值,再把它代入原式,进行计算即可.解答:解:(1﹣)÷=•=,当x=2sin45°+1=2×+1=+1时,原式==.点评:此题考查了分式的化简求值,用到的知识点是分式的化简步骤和特殊角的三角函数值,关键是把分式化到最简,然后代值计算.22.(6分)(2013•黑龙江)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如下图.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保存x)考点:作图-旋转变换;作图-平移变换.分析:(1)根据△ABC向上平移3个单位,得出对应点位置,即可得出A1的坐标;(2)得出旋转后的△A2B2C2,再利用弧长公式求出点B所经过的路径长.解答:解:(1)如下图:A1的坐标为:(﹣3,6);(2)如下图:∵BO==,∴==π.点评:此题主要考查了弧长公式的应用以及图形的旋转与平移变换,根据已知得出对应点位置是解题关键.23.(6分)(2013•黑龙江)如图,抛物线y=x2+bx+c与x轴交于A (﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.考点:待定系数法求二次函数解析式;二次函数的性质分析:(1)利用待定系数法求二次函数解析式即可;(2)首先求出直线与二次函数的交点坐标进而得出E,F点坐标,即可得出△DEF的面积.解答:解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,∴,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)根据题意得:,解得:,,∴D(4,5),对于直线y=x+1,当x=0时,y=1,∴F(0,1),对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴E(0,﹣3),∴EF=4,过点D作DM⊥y轴于点M.∴S△DEF =EF•DM=8.点评:此题主要考查了待定系数法求二次函数解析式以及三角形面积求法等知识,利用数形结合得出D,E,F点坐标是解题关键.24.(7分)(2013•黑龙江)在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动的开展情况,随机抽查了全市八年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答以下问题:(1)本次共抽查了多少名学生?(2)请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x≤155所在扇形的圆心角度数.(3)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成就为优秀?(4)请你根据以上信息,对我市开展的学生跳绳活动谈谈自己的看法或建议.考点:频数(率)分布直方图;用样本估计总体;扇形统计图.分析:(1)利用95≤x<115的人数是8+16=24人,所占的比例是12%即可求解;(2)求得范围是115≤x<145的人数,扇形的圆心角度数是360度乘以对应的比例即可求解;(3)首先求得所占的比例,然后乘以总人数8000即可求解;(4)根据实际情况,提出自己的见解即可,答案不唯一.解答:解:(1)抽查的总人数:(8+16)÷12%=200(人);(2)范围是115≤x<145的人数是:200﹣8﹣16﹣71﹣60﹣16=29(人),则跳绳次数范围135≤x≤155所在扇形的圆心角度数是:360×=81°.;(3)优秀的比例是:×100%=52.5%,则估计全市8000名八年级学生中有多少名学生的成就为优秀人数是:8000×52.5%=4200(人);(4)全市到达优秀的人数有一半以上,反映了我市学生锻炼情况很好.点评:此题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.25.(8分)(2013•黑龙江)2012年秋季,某省部分地区遭受严重的雨雪自然灾害,兴化农场34800亩的农作物面临着收割困难的局面.兴华农场积极想方法,决定采用机械收割和人工收割两种方式同时进行抢收,工作了4天,由于雨雪过大,机械收割被迫停止,此时,人工收割的工作效率也减少到原来的,第8天时,雨雪停止附近的胜利农场前来支援,合作6天,完成了兴化农场合有的收割任务.图1是机械收割的亩数y1(亩)和人工收割的亩数y2(亩)与时间x(天)之间的函数图象.图2是剩余的农作物的亩数w(亩)与时间x天之间的函数图象,请结合图象答复以下问题.(1)请直接写出:A 点的纵坐标600.(2)求直线BC的解析式.(3)第几天时,机械收割的总量是人工收割总量的10倍?考点:一次函数的应用.分析:(1)根据题意可知a=8,再根据图2求出4到8天时的人工收割量,然后求出前4天的人工收割的量即可得到点A的纵坐标;(2)先求出点B、C的坐标,再设直线BC的解析式为y=kx+b,然后利用待定系数法求一次函数解析式解答;(3)利用待定系数法求出直线AB的解析式,然后列出方程求解,再求出直线EF的解析式,根据10倍关系列出方程求解,从而最后得解.解答:解:(1)由题意可知,a=8,所以,第4到8的人工收割作物:26200﹣25800=400(亩),所以,前4天人工收割作物:400÷=600(亩),故点A的纵坐标为600;(2)∵600+400=1000,∴点B的坐标为(8,1000),∵34800﹣32000=2800,∴点C的坐标为(14,2800),设直线BC的解析式为y=kx+b,则,解得,所以,直线BC的解析式为y=300x﹣1400;(3)设直线AB的解析式为y=k1x+b1,∵A(4,600),B(8,1000),∴,解得,所以,y=100x+200,由题意得,10(100x+200)=8000,解得x=6;设直线EF的解析式为y=k2x+b2,∵E(8,8000),F(14,32000),∴,解得,所以,直线EF的解析式为y=4000x﹣24000,由题意得,4000x﹣24000=10(300x﹣1400),解得x=10.答:第6天和第10天时,机械收割的总量是人工收割总量的10倍.点评:此题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,题目信息量较大,理解两个图象并准确获取信息,确定出题目中的数量关系是解题的关键.26.(8分)(2013•黑龙江)正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B 作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE (不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜测,并选择一种情况给予证明.考点:正方形的性质;矩形的性质;旋转的性质专题:证明题.分析:(1)过点B作BG⊥OE于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF﹣EF=AE,整理即可得证;(2)选择图2,过点B作BG⊥OE交OE的延长线于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF﹣EF=AE,整理即可得证;选择图3同理可证.解答:(1)证明:如图,过点B作BG⊥OE于G,则四边形BGEF是矩形,∴EF=BG,BF=GE,在正方形ABCD中,OA=OB,∠AOB=90°,∵BG⊥OE,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG,∵在△AOE和△OBG中,,∴△AOE≌△OBG(AAS),∴OG=AE,OE=BG,∵AF﹣EF=AE,EF=BG=OE,AE=OG=OE﹣GE=OE﹣BF,∴AF﹣OE=OE﹣BF,∴AF+BF=2OE;(2)图2结论:AF﹣BF=2OE,图3结论:AF﹣BF=2OE.对图2证明:过点B作BG⊥OE交OE的延长线于G,则四边形BGEF是矩形,∴EF=BG,BF=GE,在正方形ABCD中,OA=OB,∠AOB=90°,∵BG⊥OE,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG,∵在△AOE和△OBG中,,∴△AOE≌△OBG(AAS),∴OG=AE,OE=BG,∵AF﹣EF=AE,EF=BG=OE,AE=OG=OE+GE=OE+BF,∴AF﹣OE=OE+BF,∴AF﹣BF=2OE;若选图3,其证明方法同上.点评:此题考查了正方形的性质,矩形的判定与性质,全等三角形的判定与性质,同角的余角相等的性质,作辅助线构造出全等三角形与矩形是解题的关键,也是此题的难点.27.(10分)(2013•黑龙江)为了落实党中央提出的“惠民政策”,我市今年方案开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A 型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.(1)请问有几种开发建设方案?(2)哪种建设方案投入资金最少?最少资金是多少万元?(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设建设A型x套,B型(40﹣x)套,然后根据投入资金不超过200万元,又不低于198万元列出不等式组,求出不等式组的解集,再根据x是正整数解答;(2)设总投资W元,建设A型x套,B型(40﹣x)套,然后根据总投资等于A、B两个型号的投资之和列式函数关系式,再根据一次函数的增减性解答;(3)设再次建设A、B两种户型分别为a套、b套,根据再建设的两种户型的资金等于(2)中方案节省的资金列出二元一次方程,再根据a、b都是正整数求解即可.解答:解:(1)设建设A型x套,则B型(40﹣x)套,根据题意得,,解不等式①得,x≥15,解不等式②得,x≤20,所以,不等式组的解集是15≤x≤20,∵x为正整数,∴x=15、16、17、18、19、20,答:共有6种方案;(2)设总投资W万元,建设A型x套,则B型(40﹣x)套,W=5.2x+4.8×(40﹣x)=0.4x+192,∵0.4>0,∴W随x的增大而增大,∴当x=15时,W最小,此时W最小=0.4×15+192=198万元;(3)设再次建设A、B两种户型分别为a套、b套,则(5.2﹣0.7)a+(4.8﹣0.3)b=15×0.7+(40﹣15)×0.3,整理得,a+b=4,a=1时,b=3,a=2时,b=2,a=3时,b=1,所以,再建设方案:①A型住房1套,B型住房3套;②A型住房2套,B型住房2套;③A型住房3套,B型住房1套.点评:此题考查了一次函数的应用,一元一次不等式组的应用,读懂题目信息,理清题中不等量关系,列出不等式组是解题的关键,(2)利用一次函数的增减性求最值要注意自变量的取值范围.28.(10分)(2013•黑龙江)如图,在平面直角坐标系中,Rt△ABC 的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的长分别是一元二次方程x2﹣25x+144=0的两个根(OA<OB),点D是线段BC上的一个动点(不与点B、C重合),过点D作直线DE⊥OB,垂足为E.(1)求点C的坐标.(2)连接AD,当AD平分∠CAB时,求直线AD的解析式.(3)若点N在直线DE上,在坐标系平面内,是否存在这样的点M,使得C、B、N、M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,说明理由.考点:相似形综合题.分析:(1)证△AOC∽△COB,推出OC2=OA•OB,即可得出答案.(2)求出OA=9,OC=12,OB=16,AC=15,BC=20,证△ACD≌△AED,推出AE=AC=15,证△BDE∽△BAC,求出DE=,D(6,),设直线AD的解析式是y=kx+b,过A(﹣9,0)和D 点,代入得出,求出k=,b=即可.(3)存在点M,使得C、B、N、M为顶点的四边形是正方形,理由是:①以BC为对角线时,作BC的垂直平分线交BC于Q,交x轴于F,在直线FQ上取一点M,使∠CMB=90°,则符。

黑龙江省龙东地区中考数学试卷及答案(Word解析版)

黑龙江省龙东地区中考数学试卷及答案(Word解析版)

黑龙江省龙东地区中考数学试卷一、填空题(每题3分,共30分)1.(3分)(•黑龙江)“大美大爱”的龙江人勤劳智慧,全省粮食总产量达到1152亿斤,夺得全国粮食总产第一,广袤的黑土地正成为保障国家粮食安全的大粮仓,1152亿斤用科学记数法表示为 1.152×1011斤.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1152亿用科学记数法表示为1.152×1011.故答案为:1.152×1011.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)(•黑龙江)在函数中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的意义,被开方数x+1≥0,根据分式有意义的条件,x≠0.就可以求出自变量x的取值范围.解答:解:根据题意得:x+1≥0且x≠0 解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.3.(3分)(•黑龙江)如图所示,平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:AD=DC,使得平行四边形ABCD为菱形.考点:平行四边形的判定;平行四边形的性质.专题:开放型.分析:根据菱形的定义得出答案即可.解答:解:∵邻边相等的平行四边形是菱形,∴平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC.点评:此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.4.(3分)(•黑龙江)风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为.考点:概率公式.分析:由风华中学七年级(2)班的“精英小组”有男生4人,女生3人,直接利用概率公式求解即可求得答案.解答:解:∵风华中学七年级(2)班的“精英小组”有男生4人,女生3人,∴选出一人担任班长,则组长是男生的为:=.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.5.(3分)(•黑龙江)若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=﹣2.考点:一元二次方程的解.分析:先把x=1代入x2+3mx+n=0,得到3m+n=﹣1,再把要求的式子进行整理,然后代入即可.解答:解:把x=1代入x2+3mx+n=0得:1+3m+n=0,3m+n=﹣1,则6m+2n=2(3m+n)=2×(﹣1)=﹣2;故答案为:﹣2.点评:此题考查了一元二次方程的解,解题的关键是把x的值代入,得到一个关于m,n的方程,不要求m.n的值,要以整体的形式出现.6.(3分)(•黑龙江)二次函数y=﹣2(x﹣5)2+3的顶点坐标是(5,3).考点:二次函数的性质分析:因为顶点式y=a(x﹣h)2+k,其顶点坐标是(h,k),对照求二次函数y=﹣2(x﹣5)2+3的顶点坐标.解答:解:∵二次函数y=﹣2(x﹣5)2+3是顶点式,∴顶点坐标为(5,3).故答案为:(5,3).点评:此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.7.(3分)(•黑龙江)将半径为4cm的半圆围成一个圆锥,这个圆锥的高为2 cm.考点:圆锥的计算.分析:根据扇形的弧长等于圆锥的底面周长,即可求得圆锥的底面半径,底面半径、母线长以及圆锥高满足勾股定理,据此即可求得圆锥的高.解答:解:设圆锥底面的半径是r,则2πr=4π,则r=2.则圆锥的高是:=2cm.故答案是:2.点评:本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8.(3分)(•黑龙江)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了20或25张电影票.考点:一元一次方程的应用.专题:分类讨论.分析:本题分票价每张60元和票价每张60元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.解答:解:①1200÷60=20(张);②1200÷(60×0.8)1200÷48=25(张).答:他们共买了20或25张电影票.故答案为:20或25.点评:考查了销售问题,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系..9.(3分)(•黑龙江)梯形ABCD中,AB∥CD,AB=3,CD=8,点E是对角线AC上一点,连接DE并延长交直线AB于点F,若=2,则=或.考点:相似三角形的判定与性质;梯形.专题:分类讨论.分析:根据已知分别根据F在线段AB上后在AB的延长线上,进而利用平行线的分线段成比例定理得出的值.解答:解:如图1:∵AB=3,=2,∴AF=2,BF=1,∵AB∥CD,∴△AEF∽△CED,∴=,∴==;如图2:∵AB=3,=2,∴AF=6,BF=3,∵AB∥CD,∴△AEF∽△CED,∴=,∴==.故答案为:或.点评:此题主要考查了相似三角形的判定与性质,根据已知进行分类讨论得出两种不同图形是解题关键.10.(3分)(•黑龙江)已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边三角形AB1C1,再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边三角形AB2C2,再以等边三角形AB2C2的边B2C2边上的高AB3为边作等边三角形,得到第三个等边AB3C3;…,如此下去,这样得到的第n个等边三角形AB n C n的面积为()n.考点:等边三角形的性质专题:规律型.分析:由AB1为边长为2等边三角形ABC的高,利用三线合一得到B1为BC的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.解答:解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n 的面积为()n.故答案为:()n点评:此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二、选择题(每题3分,满分30分)11.(3分)(•黑龙江)下列运算中,计算正确的是()A.(x3)2=x5B.x2+x2=2x4C.(﹣2)﹣1=﹣D.(a﹣b)2=a2﹣b2考点:完全平方公式;合并同类项;幂的乘方与积的乘方;负整数指数幂.分析:A、利用幂的乘方运算法则计算得到结果,即可做出判断;B、合并同类项得到结果,即可做出判断;C、利用负指数幂法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.解答:解:A、(x3)2=x6,本选项错误;B、x2+x2=2x2,本选项错误;C、(﹣2)﹣1=﹣,本选项正确;D、(a﹣b)2=a2﹣2ab+b2,本选项错误,故选C点评:此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.12.(3分)(•黑龙江)下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分根据轴对称图形与中心对称图形的概念求解.析:解答:解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是中心对称图形,也是轴对称图形,故本选项正确.故选D.点评:本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.13.(3分)(•黑龙江)由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.4B.5C.6D.7考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.解答:解:由俯视图易得最底层有4个小正方体,第二层最多有2个小正方体,那么搭成这个几何体的小正方体最多为4+2=6个.故选C.点评:考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.14.(3分)(•黑龙江)下表是我市某中学九年级(1)班右眼视力的检查结果:视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 人数 1 2 5 4 3 6 1 1 5 9 6 根据表中提供的信息,这43名同学右眼视力的众数和中位数分别是()A.4.9,4.6 B.4.9,4.7 C.4.9,4.65 D.5.0,4.65考点:众数;中位数.分析:根据众数及中位数的定义,结合所给数据即可得出答案.解答:解:视力为4.9的学生人数最多,故众数为4.9;共43为学生,中位数落在第22为学生处,故中位数为4.6.故选A.点评:本题考查了众数及中位数的知识,属于基础题,解答本题的关键是掌握众数及中位数的定义.15.(3分)(•黑龙江)如图,爸爸从家(点O)出发,沿着扇形AOB上OA →→BO的路径去匀速散步,设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是()A.B.C.D.考点:函数的图象.分析:根据当爸爸在半径AO上运动时,离出发点距离越来越远;在弧BA上运动时,距离不变;在BO上运动时,越来越近,即可得出答案.解答:解:利用图象可得出:当爸爸在半径AO上运动时,离出发点距离越来越远;在弧AB上运动时,距离不变;在OB上运动时,越来越近.故选:C.点评:此题考查了函数随自变量的变化而变化的问题,能够结合图形正确分析距离y与时间x之间的大小变化关系,从而正确选择对应的图象.16.(3分)(•黑龙江)已知关于x 的分式方程=1的解是非正数,则a的取值范围是()A.a≤﹣1 B.a≤﹣1且a≠﹣2 C.a≤1且a≠﹣2 D.a≤1考点:分式方程的解.分析:先解关于x的分式方程,求得x的值,然后再依据“解是非正数”建立不等式求a的取值范围.解答:解:去分母,得a+2=x+1,解得,x=a+1,∵x≤0且x+1≠0,∴a+1≤0且a+1≠﹣1,∴a≤﹣1且a≠﹣2,∴a≤﹣1且a≠﹣2.故选B.点评:本题考查了分式方程的解,解一元一次不等式,需注意在任何时候都要考虑分母不为0,这也是本题最容易出错的地方.17.(3分)(•黑龙江)如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3B.2C.3D.2考点:圆周角定理;含30度角的直角三角形;圆心角、弧、弦的关系.分析:首先根据AB=BC,∠ABC=120°,求出∠C的度数,然后根据圆周角定理可知:∠D=∠C,又直径AD=6,易求得AB的长度.解答:解:∵AB=BC,∴∠BAC=∠C,∵∠ABC=120°,∴∠BAC=∠C=30°,∵AD为直径,AD=6,∴∠ABD=90°,∵∠D=30°,∴AB=AD=3.故选A.点评:本题考查了圆周角定理,难度一般,关键是掌握圆周角定理:同弧所对的圆周角相等.18.(3分)(•黑龙江)如图,Rt△ABC的顶点A在双曲线y=的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠ACO=60°,则k的值是()A.4B.﹣4C.2D.﹣2考点:反比例函数综合题.分析:根据三角形外角性质得∠OAC=∠AOB﹣∠ACB=30°,易得OA=OC=4,然后再Rt△AOB中利用含30度的直角三角形三边的关系得到OB=OC=2,AB=OB=2,则可确定C点坐标为(﹣2,2),最后把C点坐标代入反比例函数解析式y=中即可得到k的值.解答:解:∵∠ACB=30°,∠ACO=60°,∴∠OAC=∠AOB﹣∠ACB=30°,∴∠OAC=∠ACO,∴OA=OC=4,在△AOB中,∠ABC=90°,∠AOB=60°,OA=4,∴∠OAB=30°,∴OB=OC=2,∴AB=OB=2,∴C点坐标为(﹣2,2),把C(﹣2,2)代入y=得k=﹣2×2=﹣4.故选B.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征;熟练运用含30度的直角三角形三边的关系进行几何计算.19.(3分)(•黑龙江)今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有()A.3种B.4种C.5种D.6种考点:二元一次方程的应用.分析:设甲种笔记本购买了x本,乙种笔记本y本,就可以得出7x+5y≤50,x≥3,y≥3,根据解不定方程的方法求出其解即可.解答:解:设甲种笔记本购买了x本,乙种笔记本y本,由题意,得7x+5y≤50,∵x≥3,y≥3,∴当x=3,y=3时,7×3+5×3=36<50,当x=3,y=4时,7×3+5×4=41<50,当x=3,y=5时,7×3+5×5=46<50,当x=3,y=6时,7×3+5×6=51>50舍去,当x=4,y=3时,7×4+5×3=43<50,当x=4,y=4时,7×4+5×4=4<50,当x=4,y=5时,7×4+5×5=53>50舍去,当x=5,y=3时,7×5+5×3=50=50,综上所述,共有6种购买方案.故选D.点评:本题考查了列二元一次不等式解实际问题的运用,分类讨论思想在解实际问题中的运用,解答时根据条件建立不等式是关键,合理运用分类是难点.20.(3分)(•黑龙江)如图,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的个数是()A.1B.2C.3D.4考点:相似三角形的判定与性质;全等三角形的判定与性质;直角梯形.分析:如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.解答:解:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°﹣∠1﹣90°﹣∠MNG=180°﹣∠1﹣90°﹣∠3=90°﹣∠1﹣∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.故选D.点评:本题是几何综合题,考查了相似三角形的判定、全等三角形的判定与性质、正方形、等腰直角三角形、直角梯形、等腰三角形等知识点,有一定的难度.解答中四点共圆的证法,仅供同学们参考.三、简答题(满分60分)21.(5分)(•黑龙江)先化简,再求值(1﹣)÷,其中x=2sin45°+1.考点:分式的化简求值;特殊角的三角函数值.分析:先通分,再把除法转化成乘法,然后约分,最后求出x的值,再把它代入原式,进行计算即可.解答:解:(1﹣)÷=•=,当x=2sin45°+1=2×+1=+1时,原式==.点评:此题考查了分式的化简求值,用到的知识点是分式的化简步骤和特殊角的三角函数值,关键是把分式化到最简,然后代值计算.22.(6分)(•黑龙江)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)考点:作图-旋转变换;作图-平移变换.分析:(1)根据△ABC向上平移3个单位,得出对应点位置,即可得出A1的坐标;(2)得出旋转后的△A2B2C2,再利用弧长公式求出点B所经过的路径长.解答:解:(1)如图所示:A1的坐标为:(﹣3,6);(2)如图所示:∵BO==,∴==π.点评:此题主要考查了弧长公式的应用以及图形的旋转与平移变换,根据已知得出对应点位置是解题关键.23.(6分)(•黑龙江)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,交y轴于点E.(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A、D两点,与y轴交于点F,连接DE,求△DEF的面积.考点:待定系数法求二次函数解析式;二次函数的性质分析:(1)利用待定系数法求二次函数解析式即可;(2)首先求出直线与二次函数的交点坐标进而得出E,F点坐标,即可得出△DEF 的面积.解答:解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,∴,解得:,故抛物线解析式为:y=x2﹣2x﹣3;(2)根据题意得:,解得:,,∴D(4,5),对于直线y=x+1,当x=0时,y=1,∴F(0,1),对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴E(0,﹣3),∴EF=4,过点D作DM⊥y轴于点M.∴S△DEF=EF•DM=8.点评:此题主要考查了待定系数法求二次函数解析式以及三角形面积求法等知识,利用数形结合得出D,E,F点坐标是解题关键.24.(7分)(•黑龙江)在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动的开展情况,随机抽查了全市八年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次共抽查了多少名学生?(2)请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x≤155所在扇形的圆心角度数.(3)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀?(4)请你根据以上信息,对我市开展的学生跳绳活动谈谈自己的看法或建议.考点:频数(率)分布直方图;用样本估计总体;扇形统计图.分析:(1)利用95≤x<115的人数是8+16=24人,所占的比例是12%即可求解;(2)求得范围是115≤x<145的人数,扇形的圆心角度数是360度乘以对应的比例即可求解;(3)首先求得所占的比例,然后乘以总人数8000即可求解;(4)根据实际情况,提出自己的见解即可,答案不唯一.解答:解:(1)抽查的总人数:(8+16)÷12%=200(人);(2)范围是115≤x<145的人数是:200﹣8﹣16﹣71﹣60﹣16=29(人),则跳绳次数范围135≤x≤155所在扇形的圆心角度数是:360×=81°.;(3)优秀的比例是:×100%=52.5%,则估计全市8000名八年级学生中有多少名学生的成绩为优秀人数是:8000×52.5%=4200(人);(4)全市达到优秀的人数有一半以上,反映了我市学生锻炼情况很好.点评:本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.25.(8分)(•黑龙江)秋季,某省部分地区遭受严重的雨雪自然灾害,兴化农场34800亩的农作物面临着收割困难的局面.兴华农场积极想办法,决定采取机械收割和人工收割两种方式同时进行抢收,工作了4天,由于雨雪过大,机械收割被迫停止,此时,人工收割的工作效率也减少到原来的,第8天时,雨雪停止附近的胜利农场前来支援,合作6天,完成了兴化农场所有的收割任务.图1是机械收割的亩数y1(亩)和人工收割的亩数y2(亩)与时间x(天)之间的函数图象.图2是剩余的农作物的亩数w(亩)与时间x天之间的函数图象,请结合图象回答下列问题.(1)请直接写出:A点的纵坐标600.(2)求直线BC的解析式.(3)第几天时,机械收割的总量是人工收割总量的10倍?考点:一次函数的应用.分析:(1)根据题意可知a=8,再根据图2求出4到8天时的人工收割量,然后求出前4天的人工收割的量即可得到点A的纵坐标;(2)先求出点B、C的坐标,再设直线BC的解析式为y=kx+b,然后利用待定系数法求一次函数解析式解答;(3)利用待定系数法求出直线AB的解析式,然后列出方程求解,再求出直线EF 的解析式,根据10倍关系列出方程求解,从而最后得解.解答:解:(1)由题意可知,a=8,所以,第4到8的人工收割作物:26200﹣25800=400(亩),所以,前4天人工收割作物:400÷=600(亩),故点A的纵坐标为600;(2)∵600+400=1000,∴点B的坐标为(8,1000),∵34800﹣32000=2800,∴点C的坐标为(14,2800),设直线BC的解析式为y=kx+b,则,解得,所以,直线BC的解析式为y=300x﹣1400;(3)设直线AB的解析式为y=k1x+b1,∵A(4,600),B(8,1000),∴,解得,所以,y=100x+200,由题意得,10(100x+200)=8000,解得x=6;设直线EF的解析式为y=k2x+b2,∵E(8,8000),F(14,32000),∴,解得,所以,直线EF的解析式为y=4000x﹣24000,由题意得,4000x﹣24000=10(300x﹣1400),解得x=10.答:第6天和第10天时,机械收割的总量是人工收割总量的10倍.点评:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,题目信息量较大,理解两个图象并准确获取信息,确定出题目中的数量关系是解题的关键.26.(8分)(•黑龙江)正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD 的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.(1)如图1,当O、B两点均在直线MN上方时,易证:AF+BF=2OE(不需证明)(2)当正方形ABCD绕点A顺时针旋转至图2、图3的位置时,线段AF、BF、OE之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.考点:正方形的性质;矩形的性质;旋转的性质专题:证明题.分析:(1)过点B作BG⊥OE于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF﹣EF=AE,整理即可得证;(2)选择图2,过点B作BG⊥OE交OE的延长线于G,可得四边形BGEF是矩形,根据矩形的对边相等可得EF=BG,BF=GE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBG,然后利用“角角边”证明△AOE和△OBG全等,根据全等三角形对应边相等可得OG=AE,OE=BG,再根据AF﹣EF=AE,整理即可得证;选择图3同理可证.解答:(1)证明:如图,过点B作BG⊥OE于G,则四边形BGEF是矩形,∴EF=BG,BF=GE,在正方形ABCD中,OA=OB,∠AOB=90°,∵BG⊥OE,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG,∵在△AOE和△OBG中,,∴△AOE≌△OBG(AAS),∴OG=AE,OE=BG,∵AF﹣EF=AE,EF=BG=OE,AE=OG=OE﹣GE=OE﹣BF,∴AF﹣OE=OE﹣BF,∴AF+BF=2OE;(2)图2结论:AF﹣BF=2OE,图3结论:AF﹣BF=2OE.对图2证明:过点B作BG⊥OE交OE的延长线于G,则四边形BGEF是矩形,∴EF=BG,BF=GE,在正方形ABCD中,OA=OB,∠AOB=90°,∵BG⊥OE,∴∠OBG+∠BOE=90°,又∵∠AOE+∠BOE=90°,∴∠AOE=∠OBG,∵在△AOE和△OBG中,,∴△AOE≌△OBG(AAS),∴OG=AE,OE=BG,∵AF﹣EF=AE,EF=BG=OE,AE=OG=OE+GE=OE+BF,∴AF﹣OE=OE+BF,∴AF﹣BF=2OE;若选图3,其证明方法同上.点评:本题考查了正方形的性质,矩形的判定与性质,全等三角形的判定与性质,同角的余角相等的性质,作辅助线构造出全等三角形与矩形是解题的关键,也是本题的难点.27.(10分)(•黑龙江)为了落实提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.(1)请问有几种开发建设方案?(2)哪种建设方案投入资金最少?最少资金是多少万元?(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.考点:一次函数的应用;一元一次不等式组的应用.分析:(1)设建设A型x套,B型(40﹣x)套,然后根据投入资金不超过200万元,又不低于198万元列出不等式组,求出不等式组的解集,再根据x是正整数解答;(2)设总W元,建设A型x套,B型(40﹣x)套,然后根据总等于A、B两个型号的之和列式函数关系式,再根据一次函数的增减性解答;(3)设再次建设A、B两种户型分别为a套、b套,根据再建设的两种户型的资金等于(2)中方案节省的资金列出二元一次方程,再根据a、b都是正整数求解即可.解答:解:(1)设建设A型x套,则B型(40﹣x)套,根据题意得,,解不等式①得,x≥15,解不等式②得,x≤20,所以,不等式组的解集是15≤x≤20,∵x为正整数,∴x=15、16、17、18、19、20,答:共有6种方案;(2)设总W万元,建设A型x套,则B型(40﹣x)套,W=5.2x+4.8×(40﹣x)=0.4x+192,∵0.4>0,∴W随x的增大而增大,∴当x=15时,W最小,此时W最小=0.4×15+192=198万元;(3)设再次建设A、B两种户型分别为a套、b套,则(5.2﹣0.7)a+(4.8﹣0.3)b=15×0.7+(40﹣15)×0.3,整理得,a+b=4,a=1时,b=3,a=2时,b=2,a=3时,b=1,所以,再建设方案:①A型住房1套,B型住房3套;②A型住房2套,B型住房2套;③A型住房3套,B型住房1套.点评:本题考查了一次函数的应用,一元一次不等式组的应用,读懂题目信息,理清题中不等量关系,列出不等式组是解题的关键,(2)利用一次函数的增减性求最值要注意自变量的取值范围.28.(10分)(•黑龙江)如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的长分别是一元二次方程x2﹣25x+144=0的两个根(OA<OB),点D是线段BC上的一个动点(不与点B、C重合),过点D作直线DE⊥OB,垂足为E.。

2022年黑龙江省龙东地区中考数学试卷(解析版)

2022年黑龙江省龙东地区中考数学试卷(解析版)

2022年黑龙江省龙东地区中考数学试卷一、选择题(每题3分,满分30分)1.(3分)(2022•黑龙江)下列运算中,计算正确的是()A.(b﹣a)2=b2﹣a2B.3a•2a=6aC.(﹣x2)2=x4D.a6÷a2=a32.(3分)(2022•黑龙江)下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(3分)(2022•黑龙江)学校举办跳绳比赛,九年(2)班参加比赛的6名同学每分钟跳绳次数分别是172,169,180,182,175,176,这6个数据的中位数是()A.181B.175C.176D.175.54.(3分)(2022•黑龙江)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.105.(3分)(2022•黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8B.10C.7D.96.(3分)(2022•黑龙江)已知关于x的分式方程﹣=1的解是正数,则m的取值范围是()A.m>4B.m<4C.m>4且m≠5D.m<4且m≠1 7.(3分)(2022•黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?()A.5B.6C.7D.88.(3分)(2022•黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD 的顶点B在反比例函数y=的图象上,顶点A在反比例函数y=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.﹣1D.﹣29.(3分)(2022•黑龙江)如图,△ABC中,AB=AC,AD平分∠BAC与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若△ABC的面积是24,PD=1.5,则PE的长是()A.2.5B.2C.3.5D.310.(3分)(2022•黑龙江)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD 上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE ⊥BF;②∠OP A=45°;③AP﹣BP=OP;④若BE:CE=2:3,则tan∠CAE=;⑤四边形OECF的面积是正方形ABCD面积的.其中正确的结论是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤二、填空题(每题3分,满分30分)11.(3分)(2022•黑龙江)我国南水北调东线北延工程2021﹣2022年度供水任务顺利完成,共向黄河以北调水1.89亿立方米,将数据1.89亿用科学记数法表示为.12.(3分)(2022•黑龙江)在函数中,自变量x的取值范围是.13.(3分)(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件,使△AOB≌△COD.14.(3分)(2022•黑龙江)在一个不透明的口袋中,有2个红球和4个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个球,摸到红球的概率是.15.(3分)(2022•黑龙江)若关于x的一元一次不等式组的解集为x<2,则a 的取值范围是.16.(3分)(2022•黑龙江)如图,在⊙O中,AB是⊙O的弦,⊙O的半径为3cm.C为⊙O 上一点,∠ACB=60°,则AB的长为cm.17.(3分)(2022•黑龙江)若一个圆锥的母线长为5cm,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径为cm.18.(3分)(2022•黑龙江)如图,菱形ABCD中,对角线AC,BD相交于点O,∠BAD=60°,AD=3,AH是∠BAC的平分线,CE⊥AH于点E,点P是直线AB上的一个动点,则OP+PE的最小值是.19.(3分)(2022•黑龙江)在矩形ABCD中,AB=9,AD=12,点E在边CD上,且CE =4,点P是直线BC上的一个动点.若△APE是直角三角形,则BP的长为.20.(3分)(2022•黑龙江)如图,在平面直角坐标系中,点A1,A2,A3,A4…在x轴上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A2,A3,A4…作x轴的垂线分别与直线y=x交于点B1,B2,B3,B4…记△OA1B1,△OA2B2,△OA3B3,△OA4B4…的面积分别为S1,S2,S3,S4…则S2022=.三、解答题(满分60分)21.(5分)(2022•黑龙江)先化简,再求值:(﹣1)÷,其中a=2cos30°+1.22.(6分)(2022•黑龙江)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣1),B(2,﹣5),C (5,﹣4).(1)将△ABC先向左平移6个单位,再向上平移4个单位,得到△A1B1C1,画出两次平移后的△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1顺时针旋转90°后得到△A2B2C1,并写出点A2的坐标;(3)在(2)的条件下,求点A1旋转到点A2的过程中所经过的路径长(结果保留π).23.(6分)(2022•黑龙江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),与y轴交于点C,抛物线的顶点为D.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使△PBC的面积是△BCD面积的4倍,若存在,请直接写出点P的坐标;若不存在,请说明理由.24.(7分)(2022•黑龙江)为进一步开展“睡眠管理”工作,某校对部分学生的睡眠情况进行了问卷调查.设每名学生平均每天的睡眠时间为x小时,其中的分组情况是:A组:x<8.5B组:8.5≤x<9C组:9≤x<9.5D组:9.5≤x<10E组:x≥10根据调查结果绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)在扇形统计图中,求D组所对应的扇形圆心角的度数;(4)若该校有1500名学生,请估计该校睡眠时间不足9小时的学生有多少人?25.(8分)(2022•黑龙江)为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.(1)甲车速度是km/h,乙车出发时速度是km/h;(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.26.(8分)(2022•黑龙江)△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB=PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.27.(10分)(2022•黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A种跳绳和5根B种跳绳共需175元:购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?28.(10分)(2022•黑龙江)如图,在平面直角坐标系中,平行四边形ABCD的边AB在x 轴上,顶点D在y轴的正半轴上,M为BC的中点,OA、OB的长分别是一元二次方程x2﹣7x+12=0的两个根(OA<OB),tan∠DAB=,动点P从点D出发以每秒1个单位长度的速度沿折线DC﹣CB向点B运动,到达B点停止.设运动时间为t秒,△APC的面积为S.(1)求点C的坐标;(2)求S关于t的函数关系式,并写出自变量t的取值范围;(3)在点P的运动过程中,是否存在点P,使△CMP是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2022年黑龙江省龙东地区中考数学试卷参考答案与试题解析一、选择题(每题3分,满分30分)1.(3分)(2022•黑龙江)下列运算中,计算正确的是()A.(b﹣a)2=b2﹣a2B.3a•2a=6aC.(﹣x2)2=x4D.a6÷a2=a3【分析】利用完全平方公式,单项式乘多项式,幂的乘方的法则,同底数幂的除法的法则对各项进行运算即可.【解答】解:A.(b﹣a)2=b2﹣2ab+a2,故A不正确;B.3a•2a=6a2,故B不正确;C.(﹣x2)2=x4,故C正确;D.a6÷a2=a4,故D不符合题意;故选:C.【点评】本题考查了完全平方公式,单项式乘多项式,幂的乘方的法则,同底数幂的除法,解答的关键是对相应的运算法则的掌握.2.(3分)(2022•黑龙江)下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.既是中心对称图形,也是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形但不是轴对称图形,故此选项符合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.(3分)(2022•黑龙江)学校举办跳绳比赛,九年(2)班参加比赛的6名同学每分钟跳绳次数分别是172,169,180,182,175,176,这6个数据的中位数是()A.181B.175C.176D.175.5【分析】将这组数据从小到大排列,根据中位数的计算方法即可得出答案.【解答】解:将这组数据从小到大排列为:169,172,175,176,180,182,中位数==175.5,故选:D.【点评】本题考查了中位数,掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数是解题的关键.4.(3分)(2022•黑龙江)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【分析】由左视图和俯视图可以猜想到主视图的可能情况,从而得到答案.【解答】解:从俯视图课看出前后有三层,从左视图可看出最后面有2层高,中间最高是2层,要是最多就都是2层,最前面的最高是1层,所以最多的为:2+2×2+1×2=8.故选:B.【点评】本题考查了三视图的知识,由两个识图想象几何体是解题的关键,5.(3分)(2022•黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8B.10C.7D.9【分析】设共有x支队伍参加比赛,根据“循环比赛共进行了45场”列一元二次方程,求解即可.【解答】解:设共有x支队伍参加比赛,根据题意,可得,解得x=10或x=﹣9(舍),∴共有10支队伍参加比赛.故选:B.【点评】本题考查了一元二次方程的应用,理解题意并根据题意建立等量关系是解题的关键.6.(3分)(2022•黑龙江)已知关于x的分式方程﹣=1的解是正数,则m的取值范围是()A.m>4B.m<4C.m>4且m≠5D.m<4且m≠1【分析】先利用m表示出x的值,再由x为正数求出m的取值范围即可.【解答】解:方程两边同时乘以x﹣1得,2x﹣m+3=x﹣1,解得x=m﹣4.∵x为正数,∴m﹣4>0,解得m>4,∵x≠1,∴m﹣4≠1,即m≠5,∴m的取值范围是m>4且m≠5.故选:C.【点评】本题考查了分式方程的解,掌握求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解是解题的关键.7.(3分)(2022•黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?()A.5B.6C.7D.8【分析】设购买毛笔x支,围棋y副,根据“购买毛笔和围棋(两种都购买)共花费360元”列二元一次方程,再由x和y分别取正整数,即可确定购买方案.【解答】解:设购买毛笔x支,围棋y副,根据题意,得15x+20y=360,∴y=18﹣x,∵两种都买,∴18﹣x>0,x、y都是正整数,解得x<24,故x是4的倍数且x<24,∴x=4,y=15或x=8,y=12或x=12,y=9或x=16,y=6或x=20,y=3;∴共有5种购买方案,故选:A.【点评】本题考查了二元一次方程的应用,理解题意并根据题意建立二元一次方程是解题的关键.8.(3分)(2022•黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD 的顶点B在反比例函数y=的图象上,顶点A在反比例函数y=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.﹣1D.﹣2【分析】设B(a,),根据四边形OBAD是平行四边形,推出AB∥DO,表示出A点的坐标,求出AB=a﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B(a,),∵四边形OBAD是平行四边形,∴AB∥DO,∴A(,),∴AB=a﹣,∵平行四边形OBAD的面积是5,∴(a﹣)=5,解得k=﹣2,故选:D.【点评】本题考查反比例函数比例系数k的几何意义、反比例函数图象上点的坐标特征、平行四边形性质,掌握反比例函数比例系数k的几何意义及函数图象上点的坐标特征,设出点的坐标、根据平行四边形面积公式列方程是解题的关键.9.(3分)(2022•黑龙江)如图,△ABC中,AB=AC,AD平分∠BAC与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若△ABC的面积是24,PD=1.5,则PE的长是()A.2.5B.2C.3.5D.3【分析】如图,过点E作EG⊥AD于G,证明△EGP≌△FDP,得PG=PD=1.5,由三角形中位线定理可得AD的长,由三角形ABC的面积是24,得BC的长,最后由勾股定理可得结论.【解答】解:如图,过点E作EG⊥AD于G,∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,∴∠PDF=∠EGP=90°,EG∥BC,∵点E是AB的中点,∴G是AD的中点,∴EG=BD,∵F是CD的中点,∴DF=CD,∴EG=DF,∵∠EPG=∠DPF,∴△EGP≌△FDP(AAS),∴PG=PD=1.5,∴AD=2DG=6,∵△ABC的面积是24,∴•BC•AD=24,∴BC=48÷6=8,∴DF=BC=2,∴EG=DF=2,由勾股定理得:PE==2.5.故选:A.【点评】本题考查了等腰三角形的性质,三角形的中位线定理,全等三角形的性质和判定,三角形的面积等知识,作辅助线构建全等三角形是解本题的关键.10.(3分)(2022•黑龙江)如图,正方形ABCD的对角线AC,BD相交于点O,点F是CD 上一点,OE⊥OF交BC于点E,连接AE,BF交于点P,连接OP.则下列结论:①AE ⊥BF;②∠OP A=45°;③AP﹣BP=OP;④若BE:CE=2:3,则tan∠CAE=;⑤四边形OECF的面积是正方形ABCD面积的.其中正确的结论是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤【分析】利用全等三角形的判定与性质,正方形的性质,圆周角定理,直角三角形的边角关系定理对每个选项的结论进行判断即可得出结论.【解答】解:①∵四边形ABCD是正方形,∴AB=BC=CD,AC⊥BD,∠ABD=∠DBC=∠ACD=45°.∴∠BOE+∠EOC=90°,∵OE⊥OF,∴∠FOC+∠EOC=90°.∴∠BOE=∠COF.在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴BE=CF.在△BAE和△CBF中,,∴△BAE≌△CBF(SAS),∴∠BAE=∠CBF.∵∠ABP+∠CBF=90°,∴∠ABP+∠BAE=90°,∴∠APB=90°.∴AE⊥BF.∴①的结论正确;②∵∠APB=90°,∠AOB=90°,∴点A,B,P,O四点共圆,∴∠APO=∠ABO=45°,∴②的结论正确;③过点O作OH⊥OP,交AP于点H,如图,∵∠APO=45°,OH⊥OP,∴OH=OP=HP,∴HP=OP.∵OH⊥OP,∴∠POB+∠HOB=90°,∵OA⊥OB,∴∠AOH+∠HOB=90°.∴∠AOH=∠BOP.∵∠OAH+BAE=45°,∠OBP+∠CBF=45°,,∠BAE=∠CBF,∴∠OAH=∠OBP.在△AOH和△BOP中,,∴△AOH≌△BOP(ASA),∴AH=BP.∴AP﹣BP=AP﹣AH=HP=OP.∴③的结论正确;④∵BE:CE=2:3,∴设BE=2x,则CE=3x,∴AB=BC=5x,∴AE==x.过点E作EG⊥AC于点G,如图,∵∠ACB=45°,∴EG=GC=EC=x,∴AG==x,在Rt△AEG中,∵tan∠CAE=,∴tan∠CAE===.∴④的结论不正确;⑤∵四边形ABCD是正方形,∴OA=OB=OC=OD,∠AOB=∠BOC=∠COD=∠DOA=90°,∴△OAB≌△OBC≌△OCD≌△DOA(SAS).∴.∴.由①知:△BOE≌△COF,∴S△OBE=S△OFC,∴.即四边形OECF的面积是正方形ABCD面积的.∴⑤的结论正确.综上,①②③⑤的结论正确.故选:B.【点评】本题主要考查了全等三角形的判定与性质,正方形的性质,圆周角定理,直角三角形的边角关系定理,等腰直角三角形的判定与性质,充分利用正方形的性质构造等腰直角三角形和全等三角形是解题的关键.二、填空题(每题3分,满分30分)11.(3分)(2022•黑龙江)我国南水北调东线北延工程2021﹣2022年度供水任务顺利完成,共向黄河以北调水1.89亿立方米,将数据1.89亿用科学记数法表示为 1.89×108.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:1.89亿=189000000=1.89×108.故答案为:1.89×108.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.(3分)(2022•黑龙江)在函数中,自变量x的取值范围是x≥.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,2x﹣3≥0,解得x≥.故答案为:x≥.【点评】本题考查的知识点为:二次根式的被开方数是非负数.13.(3分)(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件OB=OD(答案不唯一),使△AOB≌△COD.【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是OB=OD,理由是:在△AOB和△COD中,,∴△AOB≌△COD(SAS),故答案为:OB=OD(答案不唯一).【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理是SAS,SAS,AAS,SSS,两直角三角形全等还有HL等.14.(3分)(2022•黑龙江)在一个不透明的口袋中,有2个红球和4个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个球,摸到红球的概率是.【分析】直接利用概率公式,进而计算得出答案.【解答】解:∵在一个不透明的口袋中,有2个红球和4个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个球,∴摸到红球的概率是:=.故答案为:.【点评】此题主要考查了概率公式,正确掌握概率求法是解题关键.15.(3分)(2022•黑龙江)若关于x的一元一次不等式组的解集为x<2,则a 的取值范围是a≥2.【分析】不等式组整理后,根据已知解集,利用同小取小法则判断即可确定出a的范围.【解答】解:不等式组整理得:,∵不等式组的解集为x<2,∴a≥2.故答案为:a≥2.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.16.(3分)(2022•黑龙江)如图,在⊙O中,AB是⊙O的弦,⊙O的半径为3cm.C为⊙O 上一点,∠ACB=60°,则AB的长为3cm.【分析】连接AO并延长交⊙O于点D,根据直径所对的圆周角是直角可得∠ADB=90°,再利用同弧所对的圆周角相等可求出∠ADB=60°,然后在Rt△ABD中,利用锐角三角函数的定义进行计算即可解答.【解答】解:连接AO并延长交⊙O于点D,∵AD是⊙O的直径,∴∠ADB=90°,∵∠ACB=60°,∴∠ADB=∠ACB=60°,在Rt△ABD中,AD=6cm,∴AB=AD•sin60°=6×=3(cm),故答案为:3.【点评】本题考查了三角形的外接圆与外心,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.17.(3分)(2022•黑龙江)若一个圆锥的母线长为5cm,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径为cm.【分析】先求出圆锥侧面展开图扇形的弧长,再利用侧面展开图与底面圆的关系的关系列方程即可求出圆锥的底面半径.【解答】解:c长为:=,设圆锥的底面半径为r,则2πr=,∴r=cm.故答案为:.【点评】本题主要考查圆锥的计算,掌握侧面展开图与底面圆的关系是解题关键.18.(3分)(2022•黑龙江)如图,菱形ABCD中,对角线AC,BD相交于点O,∠BAD=60°,AD=3,AH是∠BAC的平分线,CE⊥AH于点E,点P是直线AB上的一个动点,则OP+PE的最小值是.【分析】连接OE,过点O作OF⊥AB,垂足为F,并延长到点O′,使O′F=OF,连接O′E交直线AB于点P,连接OP,从而可得OP=O′P,此时OP+PE的值最小,先利用菱形的性质可得AD=AB=3,∠BAC=∠BAD,OA=OC=AC,OD=OB=BD,∠AOD=90°,从而可得△ADB是等边三角形,进而求出AD=3,然后在Rt△ADO中,利用勾股定理求出AO的长,从而求出AC的长,进而利用直角三角形斜边上的中线可得OE=OA=AC=,再利用角平分线和等腰三角形的性质可得OE∥AB,从而求出∠EOF=90°,进而在Rt△AOF中,利用锐角三角函数的定义求出OF的长,即可求出OO′的长,最后在Rt△EOO′中,利用勾股定理进行计算即可解答.【解答】解:连接OE,过点O作OF⊥AB,垂足为F,并延长到点O′,使O′F=OF,连接O′E交直线AB于点P,连接OP,∴AP是OO′的垂直平分线,∴OP=O′P,∴OP+PE=O′P+PE=O′E,此时,OP+PE的值最小,∵四边形ABCD是菱形,∴AD=AB=3,∠BAC=∠BAD,OA=OC=AC,OD=OB=BD,∠AOD=90°,∵∠BAD=60°,∴△ADB是等边三角形,∴BD=AD=3,∴OD=BD=,∴AO===,∴AC=2OA=3,∵CE⊥AH,∴∠AEC=90°,∴OE=OA=AC=,∴∠OAE=∠OEA,∵AE平分∠CAB,∴∠OAE=∠EAB,∴∠OEA=∠EAB,∴OE∥AB,∴∠EOF=∠AFO=90°,在Rt△AOF中,∠OAB=DAB=30°,∴OF=OA=,∴OO′=2OF=,在Rt△EOO′中,O′E===,∴OE+PE=,∴OP+PE的最小值为,故答案为:.【点评】本题考查了菱形的性质,勾股定理,角平分线的定义,等边三角形的判定与性质,轴对称﹣最短路线问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.19.(3分)(2022•黑龙江)在矩形ABCD中,AB=9,AD=12,点E在边CD上,且CE =4,点P是直线BC上的一个动点.若△APE是直角三角形,则BP的长为或或6.【分析】若△APE是直角三角形,有三种情况:①如图1,∠AEP=90°,②如图2,∠P AE=90°,③如图3,∠APE=90°,分别证明三角形相似可解答.【解答】解:若△APE是直角三角形,有以下三种情况:①如图1,∠AEP=90°,∴∠AED+∠CEP=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠CEP+∠CPE=90°,∴∠AED=∠CPE,∴△ADE∽△ECP,∴=,即=,∴CP=,∵BC=AD=12,∴BP=12﹣=;②如图2,∠P AE=90°,∵∠DAE+∠BAE=∠BAE+∠BAP=90°,∴∠DAE=∠BAP,∵∠D=∠ABP=90°,∴△ADE∽△ABP,∴=,即=,∴BP=;③如图3,∠APE=90°,设BP=x,则PC=12﹣x,同理得:△ABP∽△PCE,∴=,即=,∴x1=x2=6,∴BP=6,综上,BP的长是或或6.故答案为:或或6.【点评】本题考查的是相似三角形的判定与性质,矩形的性质,掌握相似三角形的判定定理和性质定理是解题的关键,并注意运用分类讨论的思想.20.(3分)(2022•黑龙江)如图,在平面直角坐标系中,点A1,A2,A3,A4…在x轴上且OA1=1,OA2=2OA1,OA3=2OA2,OA4=2OA3…按此规律,过点A1,A2,A3,A4…作x轴的垂线分别与直线y=x交于点B1,B2,B3,B4…记△OA1B1,△OA2B2,△OA3B3,△OA4B4…的面积分别为S1,S2,S3,S4…则S2022=.【分析】根据已知先求出OA2,OA3,OA4的长,再代入直线y=x中,分别求出A1B1,A2B2,A3B3,A4B4,然后分别计算出S1,S2,S3,S4,再从数字上找规律进行计算即可解答.【解答】解:∵OA1=1,OA2=2OA1,∴OA2=2,∵OA3=2OA2,∴OA3=4,∵OA4=2OA3,∴OA4=8,把x=1代入直线y=x中可得:y=,∴A1B1=,把x=2代入直线y=x中可得:y=2,∴A2B2=2,把x=4代入直线y=x中可得:y=4,∴A3B3=4,把x=8代入直线y=x中可得:y=8,∴A4B4=8,∴S1=OA1•A1B1=×1×=×20×(20×),S2=OA2•A2B2=×2×2=×21×(21×),S3=OA3•A3B3=×4×4=×22×(22×),S4=OA4•A4B4=×8×8=×23×(23×),...∴S2022=×22021×(22021×)=24041×,故答案为:24041×.【点评】本题考查了规律型:点的坐标,含30度角的直角三角形,根据已知分别求出S1,S2,S3,S4的值,然后从数字上找规律是解题的关键.三、解答题(满分60分)21.(5分)(2022•黑龙江)先化简,再求值:(﹣1)÷,其中a=2cos30°+1.【分析】利用分式的减法法则和除法法则对分式进行计算化简,把特殊角的三角函数值代入计算求出a的值,代入化简后的分式进行计算,即可得出答案.【解答】解:(﹣1)÷=÷=×=,当a=2cos30°+1=2×+1=时,原式==﹣.【点评】本题考查了分式的化简求值,特殊角的三角函数值,掌握分式的混合计算及特殊角的三角函数值是解决问题的关键.22.(6分)(2022•黑龙江)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣1),B(2,﹣5),C (5,﹣4).(1)将△ABC先向左平移6个单位,再向上平移4个单位,得到△A1B1C1,画出两次平移后的△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1顺时针旋转90°后得到△A2B2C1,并写出点A2的坐标;(3)在(2)的条件下,求点A1旋转到点A2的过程中所经过的路径长(结果保留π).【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用旋转变换的性质分别作出A1,B1的对应点A2,B2即可;(3)利用勾股定理求出A1C1,再利用弧长公式求解.【解答】解:(1)如图,△A1B1C1即为所求,点A1的坐标(﹣5,,3);(2)如图,△A2B2C1即为所求,点A2的坐标(2,4);(3)∵A1C1==5,∴点A1旋转到点A2的过程中所经过的路径长==.【点评】本题考查作图﹣平移变换,旋转变换,弧长公式等知识,解题的关键是掌握平移变换,旋转变换的性质,属于中考常考题型.23.(6分)(2022•黑龙江)如图,抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),与y轴交于点C,抛物线的顶点为D.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使△PBC的面积是△BCD面积的4倍,若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)待定系数法求解析式即可;(2)设抛物线上的点P坐标为(m,m2﹣2m﹣3),结合方程思想和三角形面积公式列方程求解.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(﹣1,0),点B(2,﹣3),∴,解得b=﹣2,c=﹣3,∴抛物线的解析式:y=x2﹣2x﹣3;(2)存在,理由如下:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴D点坐标为(1,4),令x=0,则y=x2﹣2x﹣3=﹣3,∴C点坐标为(0,﹣3),又∵B点坐标为(2,﹣3),∴BC∥x轴,∴S△BCD=×2×1=1,设抛物线上的点P坐标为(m,m2﹣2m﹣3),∴S△PBC=×2×|m2﹣2m﹣3﹣(﹣3)|=|m2﹣2m|,当|m2﹣2m|=4×1时,解得m=1±,当m=1+时,m2﹣2m﹣3=1,当m=1﹣时,m2﹣2m﹣3=1,综上,P点坐标为(1+,1)或(1﹣,1).【点评】本题考查二次函数的性质,掌握待定系数法求函数解析式的方法,理解二次函数图象上点的坐标特征,利用方程思想解题是关键.24.(7分)(2022•黑龙江)为进一步开展“睡眠管理”工作,某校对部分学生的睡眠情况进行了问卷调查.设每名学生平均每天的睡眠时间为x小时,其中的分组情况是:A组:x<8.5B组:8.5≤x<9C组:9≤x<9.5D组:9.5≤x<10E组:x≥10根据调查结果绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次共调查了100名学生;(2)补全条形统计图;(3)在扇形统计图中,求D组所对应的扇形圆心角的度数;(4)若该校有1500名学生,请估计该校睡眠时间不足9小时的学生有多少人?【分析】(1)根据B组人数和所占的百分比,可以计算出本次调查的学生总人数;(2)根据(1)中的结果、条形统计图中的时间和扇形统计图中的数据,可以计算出A 组和E组的人数,从而可以将条形统计图补充完整;(3)根据D组的人数和调查的总人数,可以计算出D组所对应的扇形圆心角的度数;(4)根据条形统计图中的数据,可以计算出该校睡眠时间不足9小时的学生有多少人.【解答】解:(1)20÷20%=100(名),即本次共调查了100名学生,故答案为:100;(2)选择E的学生有:100×15%=15(人),选择A的学生有:100﹣20﹣40﹣20﹣15=5(人),补全的条形统计图如右图所示;(3)360°×=72°,即D组所对应的扇形圆心角的度数是72°;(4)1500×=375(人),答:估计该校睡眠时间不足9小时的学生有375人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.25.(8分)(2022•黑龙江)为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.(1)甲车速度是100km/h,乙车出发时速度是60km/h;(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.【分析】(1)根据函数图象中的数据,可以计算出甲车速度和乙车出发时速度;(2)根据函数图象中的数据,可以计算出乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式;(3)根据题意可知存在三种情况,然后分别计算即可.【解答】解:(1)由图象可得,。

2022年中考数学卷精析版——黑龙江龙东五市卷

2022年中考数学卷精析版——黑龙江龙东五市卷

2022年中考数学卷精析版——龙东五市卷〔双鸭山,佳木斯,鹤岗,伊春和七台河五地市〕〔本试卷总分值120分,考试时间120分钟〕一、填空题〔每题3分,共30分〕3.〔2022黑龙江龙东地区3分〕如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件使四边形AECF是平行四边形〔只填一个即可〕。

【答案】AF=CE〔答案不唯一〕。

【考点】平行四边形的判定和性质。

【分析】根据平行四边形性质得出AD∥BC,AF=CE,得出AF∥CE。

根据有一组对边相等且平行的四边形是平行四边形的判定,可添加AF=CE或FD=EB。

根据两组对边分别平行的四边形是平行四边形的定义,可添加AE∥FC。

添加∠AEC=∠FCA或∠DAE=∠DFC等得到AE∥FC,也可使四边形AECF是平行四边形。

6.〔2022黑龙江龙东地区3分〕如图,点A、B、C、D分别是⊙O上四点,∠ABD=20°,BD是直径,那么∠ACB= ▲ 。

【答案】70°【考点】圆周角定理,直角三角形两锐角的关系。

【分析】连接AD,∵BD是直径,∴∠BAD=90°。

∵∠ABD=20°,∴∠D=90°-∠DBD=70°。

∴∠ACB=∠D=70°。

7.〔2022黑龙江龙东地区3分〕关于x的分式方程a1=1x2-+有增根,那么a=▲ 。

【答案】1。

【考点】分式方程的增根。

【分析】方程两边都乘以最简公分母〔x+2〕,把分式方程化为整式方程,再根据分式方程的最简公分母等于0求出方程有增根,然后代入求解即可得到a的值:方程两边都乘以〔x+2〕得,a-1=x+2。

∵分式方程有增根,∴x+2=0,即a-1=0,解得a=1。

8.〔2022黑龙江龙东地区3分〕等腰三角形一腰长为5,一边上的高为3,那么底边长为▲ 。

【答案】8或10或310。

【考点】等腰三角形的性质,勾股定理。

【分析】由的是一边上的高,分底边上的高和腰上的高两种情况,当高为腰上高时,再分锐角三角形与钝角三角形两种情况:〔1〕如图,当AD为底边上的高时,∵ AB=AC ,AD ⊥BC ,∴BD=CD ,在Rt △ABD 中,AD=3,AB=5, 根据勾股定理得:22BD AB AD 4=-=。

2022年黑龙江省龙东地区升学模拟大考卷(一)数学试题(word版含答案)

2022年黑龙江省龙东地区升学模拟大考卷(一)数学试题(word版含答案)

2022年黑龙江省龙东地区升学模拟大考卷(一)数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列运算正确的是( )A2=±B .33323m m m +=C .234m m m ⋅= D .()23624m m -=- 2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.如图所示的几何体是由五个小正方体组合而成的,它的左视图是( )A .B .C .D . 4.已知数据91,94,94,95,97,99,将这组数据都减去91得到一组新的数据,则这两组数据下列统计量相同的是( )A .平均数B .中位数C .众数D .方差 5.某校八年级组织篮球赛,若每两班之间赛一场,共进行了28场,则该校八年级有( )个班级.A .8B .9C .10D .11 6.已知分式方程2232121x k x x x +=++++的解为负数,则k 的取值范围是( ) A .1k > B .1k >且1k ≠- C .1k < D .1k <且0k ≠ 7.为了奖励学习认真的同学,班主任老师给班长拿了40元钱,让其购买奖品,现有单价为4元的A 种学习用品和单价为6元的B 种学习用品可供选择,若40元钱恰好花完,则班长的购买方案有( )A .1种B .2种C .3种D .4种 8.如图,在平面直角坐标系中,菱形OABC 的顶点A 的坐标为(5,0)-,对角线AC ,BO 相交于点D ,双曲线(0)k y x x=<经过点D ,AC OB +=k 的值为( )A .32-B .16-C .8-D .4- 9.如图,在ABC 中,CE 是中线,CD 是角平分线,AF CD ⊥交CD 延长线于点F ,7AC =,4BC =,则EF 的长为( )A .1.5B .2C .2.5D .310.如图,在正方形ABCD 中,M ,N 分别是AB ,CD 的中点,P 是线段MN 上的一点,BP 的延长线交AD 于点E ,连接PD ,PC ,将DEP 绕点P 顺时针旋转90︒得GFP ,则下列结论:①CP GP =;①tan 1CGF ∠=;①BC 垂直平分FG ;①若4AB =,点E 在AD 边上运动,则D ,F 确的序号有( )A .①①B .①①①C .①①①D .①①①二、填空题 11.人的血管首尾相连的长度大约可达96000千米,96000千米用科学记数法表示为_________米.12.函数13y x =-中自变量x 的取值范围是__. 13.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是_____________.14.若关于x 的一元一次不等式组0221x a x x ->⎧⎨-<-⎩有解,则a 的取值范围是_____. 15.如图,半径为2的O 是ABC 的外接圆,30BAC ∠=︒,则弦BC 的长等于__________.16.圆锥的底面半径为3,侧面积为21π,则这个圆锥的高为 ___.17.如图,在Rt ABC 中,90ABC ∠=︒,3BC =,4AB =,M ,N 分别是AB ,BC 上的一点,且3MN =,O 是MN 的中点,G 是AC 上的任一点,连接OB ,OG ,则OB OG +的最小值为__________.18.在矩形ABCD 中,4BC =,E 为AD 的中点,点F 在射线AB 上,3BF =,过点E 作EG CF ⊥于点G ,EF 平分AEG ∠,则AB 的长为__________.19.如图,1OAA 是直角边长为2的等腰直角三角形,以等腰直角三角形1OAA 的斜边1OA 为直角边作第二个等腰直角三角形12OA A ,连接2AA ,得到12AA A ;再以等腰直角三角形12OA A 的斜边2OA 为直角边作第三个等腰直角三角形23OA A ,连接13A A ,得到123A A A △;再以等腰直角三角形23OA A △的斜边3OA 为直角边作第四个等腰直角三角形34OA A ,连接24A A ,得到234A A A △,…记12123234,,AA A A A A A A A …的面积分别为123,,,S S S …,如此下去,则2022S =__________.三、解答题20.如图,点A ,F ,C ,D 在同一条直线上,AF DC =,12∠=∠,请你再添加一个条件使ABC DEF ≌△△.你添加的条件是______________.21.先化简,再求值:222242442x x x x x x x x ⎛⎫+---÷ ⎪--+-⎝⎭,其中4tan 452sin60x =︒+︒. 22.如图,平面直角坐标系内,ABC 的顶点A 的坐标为(3,4)-.(1)画出关于y 轴的对称图形111A B C △;(2)画出将ABC 绕原点O 逆时针旋转90︒得到的222A B C △;(3)求出(2)中点A 所经过的路径长.23.如图,抛物线23y ax bx =++与x 轴交于点(3,0)A -和点(1,0)B -.(1)求抛物线的解析式;(2)将抛物线沿x轴向右平移t个单位长度,使它经过点(0,1),求出t的值.24.目前“微信”“支付宝”“共享单车”和“网购”给我们的生活带来了很多便利,九年级数学小组在校内对“你最认可的新生事物”进行调查,随机调查了m名学生(每名学生必选一种且只能从这四种中选择一种),并将调查结果绘制成如图所示不完整的统计图.(1)根据图中信息,求出m=__________,n=__________;(2)请把条形统计图补充完整;(3)根锯抽样调查的结果,请估算在全校1800名学生中,最认可“微信”和“支付宝”这两样新生事物的学生共有多少名.25.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶,设两车出发时间为x(单位:h),货车、轿车与甲地的距离为1y(单位:km),2y(单位:km),图中的线段OA、折线,y y与x之间的函数关系.BCDE分别表示12(1)货车行驶的速度为__________km/h;(2)求DE所在直线的函数解析式;(3)直接写出两车出发多长时间相距200km.∠=,D是CA延长线上一点,连接DB,将线26.在等腰三角形ABC中,顶角BACα段DB绕点D逆时针旋转,旋转角为α,得到线段DE,连接CE,BE.α=︒时,线段AD与CE的数量关系是__________;(1)如图①,当60α=︒时,线段AD与CE有怎样的数量关系?写出你的猜想,并给予(2)如图①,当90证明;(3)如图①,当120α=︒时,线段AD与CE有怎样的数量关系?写出你的猜想,不必证明.27.某商店决定购进A、B两种纪念品.若购进A种纪念品8件,B种纪念品3件,需要95元;若购进A 种纪念品5件,B 种纪念品6件,需要80元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于750元,但不超过764元,那么该商店有哪几种进货方案?(3)已知商家出售一件A 种纪念品可获利5元,出售一件B 种纪念品可获利3元,若商品全部卖出,试问在(2)的条件下,商家采用哪种方案可获利最多,最多为多少元?(直接写出结果,不说明理由)28.如图,在平面直角坐标系中,直线AB 交y 轴于点A ,交x 轴于点B ,OA ,OB (OA OB <)的长是关于x 的一元二次方程27120x x -+=的两个根,直线2x =交AB 于点D ,交x 轴于点E ,P 是直线2x =上一动点,设(2,)P n .(1)求直线AB 的解析式;(2)设ABP 的面积为S (0S ≠),求S 关于n 的函数关系式,并写出自变量n 的取值范围;(3)在(2)的条件下,当1S =,且点P 在AB 上方时,在第一象限是否存在点C ,使PBC 是等腰直角三角形?若存在,请直接写出点C 的坐标;若不存在,请说明理由.参考答案:1.B2.A3.B4.D5.A6.D7.D8.C9.A10.B11.9.6×10712.x≠313.1314.a <115.216.17.12518.119.2022220.答案不唯一,如①B =①E21.24x -22.(1)见解析;(2)见解析; (3)52π;23.(1)243y x x =++(2)t的值为2224.(1)100,35;(2)见解析;(3)1350名.25.(1)75(2)125800y x =-+(3)两车出发2h 或5h 时相距200km26.(1)AD CE =(2)AD =,见解析(3)AD = 27.(1)购进A 种纪念品每件需10元,购进B 种纪念品每件需5元;(2)有三种方案,分别为方案一:购进A 种纪念品50件,购进B 种纪念品50件;方案二:购进A 种纪念品51件,购进B 种纪念品49件;方案三:购进A 种纪念品52件,购进B 种纪念品48件;(3)商家采用方案三可获利最多,最多为404元28.(1)334y x =-+; (2)32323322n n S n n ⎧⎛⎫-> ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-< ⎪⎪⎝⎭⎩;(3)存在.点C 的坐标是(4,4)或(6,2)或(4,2);。

2022龙东地区升学模拟大考卷数学(四)

2022龙东地区升学模拟大考卷数学(四)

2022龙东地区升学模拟大考卷数学(四)一、填空题(每题3分,总分值30分)1.(2022黑龙江龙东地区农垦、森工,1,3分)“大美大爱〞的龙江人勤劳智慧,2022年全省粮食总产量到达l152亿斤,夺得全国粮食总产第一,广袤的黑土地正成为保障国家粮食平安的大粮仓。

1152亿斤用科学记数表示为.【答案】×10112.〔2022黑龙江龙东地区农垦、森工,2,3分〕函数y=中,自变量x取值范围是.【答案】x≥1且x≠23.〔2022黑龙江龙东地区农垦、森工,3,3分〕如下图,D、E分别是△ABC的边AB、AC上的点,试添加一个条件:。

使得△ABC△△AED.第3题图【答案】△ADE=△C或△AED=△B或4.〔2022黑龙江龙东地区农垦、森工,4,3分〕奋斗中学七年(1)班的“腾飞小组〞有男生3人,女生2人,假设选出一人担任组长,那么组长是男生的概率为.【答案】5.〔2022黑龙江龙东地区农垦、森工,5,3分〕假设有解,那么a的取值范围是.【答案】6.〔2022黑龙江龙东地区农垦、森工,6,3分〕等腰三角形△ABC 底角的余弦值是,一边长为12,那么等腰三角形的面积为.【答案】7.〔2022黑龙江龙东地区农垦、森工,7,3分〕某家店商场将一件商品加价35﹪后打八折,人获利800元,这件商品的进价是元.【答案】100008.〔2022黑龙江龙东地区农垦、森工,8,3分〕如图,△O的直径为10,两条弦AB△CD,垂足为E,且AB=CD=8,那么OE= .第8题图【答案】9.〔2022黑龙江龙东地区农垦、森工,9,3分〕将半径为4的半圆围成一个圆锥,这个圆锥的高为cm.【答案】10.〔2022黑龙江龙东地区农垦、森工,10,3分〕如图,是一块直角边长为2cm的等腰直角三角形的硬纸板,在期内部裁剪下一个如图1所示的正方形,设得到的剩余局部的面积为;再分别从剩下的两个三角形内用同样的方式裁剪下两个正方形,如图2所示,设所得到的剩余局部的面积为;再分别从剩余的四个三角形内用同样的方式裁剪下四个正方形,如图3所示,设所得到的剩余局部的面积为;.........,如此下去,第n个裁剪后得到的剩余局部面积= .第10题图【答案】二、选择题(每题3分,总分值30分)11.〔2022黑龙江龙东地区农垦、森工,11,3分〕以下各式① x2+x2=2x2 ② (x3)2=x5③④ ,其中正确的个数有〔〕A.1个B.2个C.3个D.4个【答案】A12.〔2022黑龙江龙东地区农垦、森工,12,3分〕以下银行图标中,是中心对称图形的是〔〕A.B.C.D.【答案】A13.〔2022黑龙江龙东地区农垦、森工,13,3分〕杨树乡共有耕地S公顷,该乡人均耕地面积y与总人口x之间的函数图象大致为〔〕【答案】B14.〔2022黑龙江龙东地区农垦、森工,14,3分〕一个几何体的主视图、左视图都是等边三角形,俯视图是一个圆,这个几何体是〔〕A.三棱柱B.三棱锥C.圆柱D.圆锥【答案】D15.〔2022黑龙江龙东地区农垦、森工,15,3分〕己知关于x的分式方程=1的解是非正数,刚a的取值范围是〔〕A.a≤-l B.a≤-2 C.a≤1且a≠-2 D.a≤-1且a≠-2【答案】D16.〔2022黑龙江龙东地区农垦、森工,16,3分〕假设一组数据1,3,4,5,x 中,有唯一的众数是1,这组数据的中位数是〔〕A.1 B.2 C.3 D.4【答案】C17.〔2022黑龙江龙东地区农垦、森工,15,3分〕如图,爸爸从家(点O)出发,沿着扇形AOB上OA→→BO的路径去匀速散步.设爸爸距家(点O)的距离为s,散步的时间为t,那么以下图形中能大致刻画s与t之间函数关系的圈象是〔〕【答案】C18.〔2022黑龙江龙东地区农垦、森工,18,3分〕如图,Rt△ABC的顶点A在双曲线y=的图象上,直角边BC在x轴上,△ABC=90°,△ACB=30°,OC=4,连接OA,△AOB=60°,那么k的值是〔〕A.4B.-4C.2D.-2【答案】B19.〔2022黑龙江龙东地区农垦、森工,19,3分〕今年某校团委举办了“中国梦,我的梦〞敢咏比赛,张老师为鼓励同学们,带了50元钱去购置甲、乙两种笔记本作为奖品.甲种笔记本每车7元,乙种笔记本每本5元,每种笔记本至少买3本,那么张老师购置笔记本的方案共有〔〕A.3种B.4种C.5种D.6种【答案】A20.〔2022黑龙江龙东地区农垦、森工,20,3分〕如图,在直角梯形ABCF中,AF△BC,△ABC=90°,AB=BC,O是对角线AC的中点,OE△OF,过点E做EN△CF,垂足为N,EN 交AC于点H,BO的延长线交CF于点M,那么结论:①OE=OF;②OM=OH;③;④BC=2AF,其中正确结论的个数是〔〕A.1 B.2 C.3 D.4【答案】C三、解答题(总分值60分)21.〔2022黑龙江龙东地区农垦、森工,21,5分〕先化简,再求值:,。

2022年黑龙江省龙东地区(双鸭山、鸡西、鹤岗等)中考数学试题

2022年黑龙江省龙东地区(双鸭山、鸡西、鹤岗等)中考数学试题

2022年黑龙江省龙东地区(双鸭山、鸡西、鹤岗等)中考数学试题1.下列各运算中,计算正确的是( )A.a2⋅2a2=2a4B.x8÷x2=x4C.(x−y)2=x2−xy+y2D.(−3x2)3=−9x62.下列图标中是中心对称图形的是( )A.B.C.D.3.如图,由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则所需的小正方体的个数最多是( )A.6B.7C.8D.94.一组从小到大排列的数据:x,3,4,4,5(x为正整数),唯一的众数是4,则该组数据的平均数是( )A.3.6B.3.8或3.2C.3.6或3.4D.3.6或3.25.已知关于x的一元二次方程x2−(2k+1)x+k2+2k=0有两个实数根x1,x2,则实数k的取值范围是( )A.k<14B.k≤14C.k>4D.k≤14且k≠06.如图,菱形ABCD的两个顶点A,C在反比例函数y=kx的图象上,对角线AC,BD的交点恰好是坐标原点O,已知B(−1,1),∠ABC=120∘,则k的值是( )A.5B.4C.3D.27.已知关于x的分式方程xx−2−4=k2−x的解为正数,则x的取值范围是( )A.−8<k<0B.k>−8且k≠−2C.k>−8且k≠2D.k<4且k≠−28.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为( )A.4B.8C.√13D.69.在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A,B,C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品不超过两个且钱全部用完的情况下,有多少种购买方案( )A.12种B.15种C.16种D.14种10.如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45∘,点F在射线AM上,且AF=√2BE,CF与AD相交于点G,连接EC,EF,EG.则下列结论:① ∠ECF=45∘;② △AEG的周长为(1+√22)a;③ BE2+DG2=EG2;④ △EAF的面积的最大值是18a2;⑤当 BE =13a 时,G 是线段 AD 的中点. 其中正确的结论是 ( )A .①②③B .②④⑤C .①③④D .①④⑤11. 5G 信号的传播速度为 300000000 m/s ,将数据 300000000 用科学记数法表示为 .12. 在函数 y =√x−2中,自变量 x 的取值范围是 .13. 如图,Rt △ABC 和 Rt △EDF 中,∠B =∠D ,在不添加任何辅助线的情况下,请你添加一个条件,使 Rt △ABC 和 Rt △EDF 全等. .14. 一个盒子中装有标号为 1,2,3,4,5 的五个小球,这些球除了标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于 6 的概率为 .15. 若关于 x 的一元一次不等式组 {x −1>0,2x −a <0 有 2 个整数解,则 a 的取值范围是 .16. 如图,AD 是 △ABC 的外接圆 ⊙O 的直径,若 ∠BAD =40∘,则 ∠ACB =∘.17. 小明在手工制作课上,用面积为 150π cm 2,半径为 15 cm 的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为 cm .18. 如图,在边长为 4 的正方形 ABCD 中将 △ABD 沿射线 BD 平移,得到 △EGF ,连接 EC ,GC .求 EC +GC 的最小值为 .19. 在矩形 ABCD 中,AB =1,BC =a ,点 E 在边 BC 上,且 BE =35a ,连接 AE ,将 △ABE沿 AE 折叠.若点 B 的对应点 Bʹ 落在矩形 ABCD 的边上,则折痕的长为 .20. 如图,直线 AM 的解析式为 y =x +1 与 x 轴交于点 M ,与 y 轴交于点 A ,以 OA 为边作正方形 ABCO ,点 B 坐标为 (1,1).过点 B 作 EO 1⊥MA 交 MA 于点 E ,交 x 轴于点 O 1,过点 O 1 作 x 轴的垂线交 MA 于点 A 1,以 O 1A 1 为边作正方形 O 1A 1B 1C 1,点 B 1 的坐标为 (5,3).过点 B 1 作 E 1O 2⊥MA 交 MA 于 E 1,交 x 轴于点 O 2,过点 O 2 作 x 轴的垂线交 MA 于点 A 2,以 O 2A 2 为边作正方形 O 2A 2B 2C 2,⋯,则点 B 2022 的坐标 .21. 先化简,再求值:(2−x−1x+1)÷x 2+6x+9x 2−1,其中 x =3tan30∘−3.22. 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点 A (5,2),B (5,5),C (1,1) 均在格点上.(1) 将△ABC向左平移5个单位得到△A1B1C1,并写出A1点的坐标;(2) 画出△A1B1C1绕点C1顺时针旋转90∘后得到的△A2B2C1,并写出点A2的坐标;(3) 在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).23.如图,已知二次函数y=−x2+bx+c的图象经过点A(−1,0),B(3,0),与y轴交于点C.(1) 求抛物线的解析式;(2) 抛物线上是否存在点P,使∠PAB=∠ABC?若存在请直接写出点P的坐标.若不存在,请说明理由.24.为了提高学生体质,战胜疫情,某中学组织全校学生宅家一分钟跳绳比赛,全校跳绳平均成绩是每分钟99次,某班班长统计了全班50名学生一分钟跳绳成绩,列出的频数分布直方图如图所示(每个小组包括左端点,不包括右端点).求:(1) 该班一分钟跳绳的平均次数至少是多少,是否超过全校的平均次数;(2) 该班的一个学生说:“我的跳绳成绩是我班的中位数”请你给出该生跳绳成绩的所在范围;(3) 从该班中任选一人,其跳绳次数超过全校平均数的概率是多少.25.为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1) 求ME的函数解析式;(2) 求快递车第二次往返过程中,与货车相遇的时间.(3) 求两车最后一次相遇时离武汉的距离.(直接写出答案)26.如图①,在Rt△ABC中,∠ACB=90∘,AC=BC,点D,E分别在AC,BC边上,DC=EC,连接DE,AE,BD,点M,N,P分别是AE,BD,AB的中点,连接PM,PN,MN.(1) BE与MN的数量关系是.(2) 将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.27.某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m元,售价每千克16元;乙种蔬菜进价每千克n元,售价每千克18元.(1) 该超市购进甲种蔬菜15千克和乙种蔬菜20千克需要430元;购进甲种蔬菜10千克和乙种蔬菜8千克需要212元.求m,n的值;(2) 该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x千克,求有哪几种购买方案;(3) 在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的利润率不低于20%,求a的最大值.28.如图,在平面直角坐标系中,矩形ABCD的边AB长是方程x2−3x−18=0的根,连接BD,∠DBC=30∘,并过点C作CN⊥BD,垂足为N,动点P从点B以每秒2个单位长度的速度沿BD方向匀速运动到点D为止;点M沿线段DA以每秒√3个单位长度的速度由点D向点A匀速运动,到点A为止,点P与点M同时出发,设运动时间为t秒(t>0).(1) 线段CN=;(2) 连接PM和MN,求△PMN的面积s与运动时间t的函数关系式;(3) 在整个运动过程中,当△PMN是以PN为腰的等腰三角形时,直接写出点P的坐标.答案1. 【答案】A2. 【答案】B3. 【答案】B4. 【答案】C5. 【答案】B6. 【答案】C7. 【答案】B8. 【答案】A9. 【答案】D10. 【答案】D11. 【答案】3×10812. 【答案】x>213. 【答案】AB=ED(BC=DF或AC=EF或AE=CF等)14. 【答案】2515. 【答案】6<a≤816. 【答案】5017. 【答案】1018. 【答案】4√519. 【答案】 √2 或√30520. 【答案】 (2×32022−1,32022)21. 【答案】原式=2x+2−x+1x+1⋅(x+1)(x−1)(x+3)2=x−1x+3.当 x =3tan30∘−3=√3−3 时, 原式=√3−3−1√3−3+3=3−4√33.22. 【答案】(1) 画出正确的图形; A 1(0,2).(2) 画出正确的图形;A 2(−3,−3).(3) ∵BC =√42+42=4√2, ∴S =14π(4√2)2+12×3×4=8π+6.23. 【答案】(1) 由题意得:y =−(x +1)(x −3)=−x 2+2x +3. ∴ 抛物线的解析式为 y =−x 2+2x +3. (2) P 1(2,3),P 2(4,−5).24. 【答案】(1) 该班一分钟跳绳的平均次数至少为 60×4+80×13+100×19+120×7+140×5+160×250=100.8>99,∴ 超过全校的平均数.(2) 该生跳绳成绩所在范围为 100∼120. (3) 该班跳绳超过全校平均数的概率是 19+7+5+250=3350.25. 【答案】(1) 设 ME 的解析式 y =kx +b (k ≠0) 经过 (0,50),(3,200), {b =50,3k +b =200,{b =50,k =50,∴ME 的解析式为 y =50x +50(0≤x ≤3).(2) 设 BC 的解析式 y =mx +n 经过 (4,0),(6,200), {4m +n =0,6m +n =200,{m =100,n =−400,y =100x −400,设 FG 的解析式 y =px +q 经过 (5,200),(9,0), {5p +q =200,9p +q =0, {p =−50,q =450,y =−50x +450,{y =100x −400,y =−50x +450, 得 x =173 h , 同理得 x =7 h .答:货车返回时与快递车途中相遇的时间 173h ,7 h .(3) 100 km .26. 【答案】(1) BE =√2MN(2) 图(2):BE =√2MN ,图(3):BE =√2MN . 证明:如图(2),连接 AD ,延长 BE 交 AD 于 H ,交 AC 于 G ,∵∠ACB =∠DCE =90∘, ∴∠DCA =∠ECB , ∵DC =EC ,AC =BC , ∴△ACD ≌△BCE ,∴∠CAD =∠CBE ,BE =AD , ∵∠AGH =∠CGE ,∴∠CAD +∠AGH =∠CBE +∠CGE =90∘, ∴∠AHB =90∘,∵P ,M ,N 分别是 AB ,AE ,BD 的中点,∴PN ∥AD ,PN =12AD ,PM ∥BE ,PM =12BE , ∴PM =PN ,∠MPN =∠1=∠AHB =90∘,∴△PMN 是等腰直角三角形,∴MN =√2PM ,∴BE =2PM =√2MN .27. 【答案】(1) 由题意得{15m +20n =430,10m +8n =212.解得{m =10,n =14.答:m ,n 的值分别为 10 和 14. (2) 根据题意{10x +14(100−x )≥1160,10x +14(100−x )≤1168.解得:58≤x ≤60.∵x 是整数, ∴x 为 58,59,60.共 3 种方案分别为:方案一购甲种蔬菜 58 千克,乙种蔬菜 42 千克;方案二购甲种蔬菜 59 千克,乙种蔬菜 41 千克;方案三购甲种蔬菜 60 千克,乙种蔬菜 40 千克.(3) 方案一的利润为 516 元,方案二的利润为 518 元,方案三的利润为 520 元.∴ 利润最大值为 520 元,甲售出 60 kg ,乙售出 40 kg .(16−10−2a )×60+(18−14−a )×401160≥20%.解得:a ≤1.8.答:a 的最大值为 1.8.28. 【答案】(1) 3√3(2) ∵ 四边形 ABCD 是矩形,∴∠DCB =90∘,CD =AB =6,∴∠DCN =∠DBC =30∘,∴DN =12CD =3,过 N 作 NG ⊥AD 于 G ,则 NG =12DN =32,DG =√3NG =3√32, ∵BP =2t ,DM =√3t ,∴PQ =t ,当 0<t ≤92 时,s =12×√3t ⋅(6−t )−12×√3t ×32=−√32t 2+9√34t , 当 92<t ≤6 时,s =12×√3t ×32−12×√3t (6−t )=√32t 2−9√34t ,∴s ={−√32t 2+9√34t,0<t ≤92√32t 2−9√34t,92<t ≤6. (3) P 1(3√3,3),P 2(7√33,73).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

黑龙江省龙东地区达标名校2022年中考冲刺卷数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人.数据“5657万”用科学记数法表示为()A.4565710⨯B.656.5710⨯C.75.65710⨯D.85.65710⨯2.不等式组1240xx>⎧⎨-≤⎩的解集在数轴上可表示为()A.B.C.D.3.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )A.2.8×105B.2.8×106C.28×105D.0.28×1074.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.32B.25C.5 D.345.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作弧AC、弧CB、弧BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I为对称轴的交点,如图2,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是()A.18πB.27πC.452πD.45π6.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.110B.19C.16D.157.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,⊙O的半径为3,则弦CD的长为()A.32cm B.3cm C.3cm D.9cm8.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503y yx x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.15022503y yx x⎧-=⎪⎪⎨⎪-=⎪⎩9.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数10.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.4012.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.14.点A到⊙O的最小距离为1,最大距离为3,则⊙O的半径长为_____.15.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为______.16.如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_____.17.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.18.若代数式211x--的值为零,则x=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB.求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.20.(6分)已知:如图,AB为⊙O的直径,C,D是⊙O直径AB异侧的两点,AC=DC,过点C与⊙O相切的直线CF交弦DB的延长线于点E.(1)试判断直线DE与CF的位置关系,并说明理由;(2)若∠A=30°,AB=4,求CD的长.21.(6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?22.(8分)如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.23.(8分)如图,在65⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为底边的等腰CAB∆,其面积为5,点C在小正方形的顶点上;在图中面出以线段AB为一边的ABDE,其面积为16,点D和点E均在小正方形的顶点上;连接CE,并直接写出线段CE的长.24.(10分)如图,一次函数y=kx+b的图象与反比例函数y= mx(x>0)的图象交于A(2,﹣1),B(12,n)两点,直线y=2与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)求△ABC 的面积.25.(10分)已知抛物线y =ax 2+(3b +1)x +b ﹣3(a >0),若存在实数m ,使得点P (m ,m )在该抛物线上,我们称点P (m ,m )是这个抛物线上的一个“和谐点”.(1)当a =2,b =1时,求该抛物线的“和谐点”;(2)若对于任意实数b ,抛物线上恒有两个不同的“和谐点”A 、B .①求实数a 的取值范围;②若点A ,B 关于直线y =﹣x ﹣(21a+1)对称,求实数b 的最小值. 26.(12分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55°,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG 为10米,BG ⊥HG ,CH ⊥AH ,求塔杆CH 的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)27.(12分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P 作坐标轴的平行线PM 和PN ,分别交x 轴和y 轴于点M ,N .点M 、N 在x 轴和y 轴上所对应的数分别叫做P 点的x 坐标和y 坐标,有序实数对(x ,y )称为点P 的斜坐标,记为P (x ,y ).(1)如图2,ω=45°,矩形OAB C 中的一边OA 在x 轴上,BC 与y 轴交于点D ,OA =2,OC =l .①点A 、B 、C 在此斜坐标系内的坐标分别为A ,B ,C .②设点P (x ,y )在经过O 、B 两点的直线上,则y 与x 之间满足的关系为 .③设点Q (x ,y )在经过A 、D 两点的直线上,则y 与x 之间满足的关系为 .(2)若ω=120°,O 为坐标原点.①如图3,圆M 与y 轴相切原点O ,被x 轴截得的弦长OA =43 ,求圆M 的半径及圆心M 的斜坐标.②如图4,圆M 的圆心斜坐标为M (2,2),若圆上恰有两个点到y 轴的距离为1,则圆M 的半径r 的取值范围是 .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、C【解析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:5657万用科学记数法表示为75.65710⨯,故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.2、A【解析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】 解:1240x x >⎧⎨-≤⎩①②∵不等式①得:x >1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示为:,故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.3、B【解析】 分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:280万这个数用科学记数法可以表示为62.810,⨯ 故选B.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.4、B【解析】以OM 为直径作圆交⊙O 于K ,利用圆周角定理得到∠MKO =90°.从而得到KM ⊥OK ,进而利用勾股定理求解.【详解】如图所示:MK=222425+=.故选:B.【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.5、B【解析】先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可.【详解】如图1中,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=2 1203360π⋅=3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故选B.【点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF 扫过的图形.6、A【解析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.7、B【解析】解:∵∠CDB=30°,∴∠COB=60°,又∵CD⊥AB于点E,∴sin602︒==解得CE=32cm,CD=3cm.故选B.考点:1.垂径定理;2.圆周角定理;3.特殊角的三角函数值.8、A【解析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9、D【解析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.10、A【解析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.11、B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.12、C【解析】根据勾股定理求解.【详解】设小方格的边长为1,得,=,=,AC=4,∵OC2+AO2=22+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.【点睛】考点:勾股定理逆定理.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案. 【详解】设圆锥母线长为l,∵r=3,h=4,∴母线5=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.14、1或2【解析】分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得答案.【详解】点在圆内,圆的直径为1+3=4,圆的半径为2;点在圆外,圆的直径为3−1=2,圆的半径为1,故答案为1或2.【点睛】本题考查点与圆的位置关系,关键是分类讨论:点在圆内,点在圆外.15、{561340x y x y +=-=【解析】设雀、燕每1只各重x 斤、y 斤,根据等量关系:今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤,列出方程组求解即可.【详解】设雀、燕每1只各重x 斤、y 斤,根据题意,得45561x y y x x y +=+⎧⎨+=⎩ 整理,得340.561x y x y -=⎧⎨+=⎩故答案为340.561x y x y -=⎧⎨+=⎩ 【点睛】考查二元一次方程组得应用,解题的关键是分析题意,找出题中的等量关系.16、a >1【解析】根据二次函数的图像,由抛物线y=ax 2+5的顶点是它的最低点,知a >1,故答案为a >1.17、1【解析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去.②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=1cm .故填1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.18、3【解析】由题意得,21x1--=0,解得:x=3,经检验的x=3是原方程的根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2)证明见解析.【解析】(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.【详解】证明:(1)∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB.∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB.∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.∴AB=AD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.20、(1)见解析;(2)43π.【解析】(1)先证明△OAC≌△ODC,得出∠1=∠2,则∠2=∠4,故OC∥DE,即可证得DE⊥CF;(2)根据OA=OC得到∠2=∠3=30°,故∠COD=120°,再根据弧长公式计算即可.【详解】解:(1)DE⊥CF.理由如下:∵CF为切线,∴OC⊥CF,∵CA=CD,OA=OD,OC=OC,∴△OAC≌△ODC,∴∠1=∠2,而∠A=∠4,∴∠2=∠4,∴OC∥DE,∴DE⊥CF;(2)∵OA=OC,∴∠1=∠A=30°,∴∠2=∠3=30°,∴∠COD=120°,∴120241803CDlππ⨯==.【点睛】本题考查了全等三角形的判定与性质与弧长的计算,解题的关键是熟练的掌握全等三角形的判定与性质与弧长的公式.21、10,1.【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值.试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,,答:所围矩形猪舍的长为10m、宽为1m.考点:一元二次方程的应用题.22、(1)证明见解析;(2)ED=EB,证明见解析;(1)CG=2.【解析】(1)、根据等边三角形的性质得出∠CED=60°,从而得出∠EDB=10°,从而得出DE=BE;(2)、取AB的中点O,连接CO、EO,根据△ACO和△CDE为等边三角形,从而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,从而得出答案;(1)、取AB的中点O,连接CO、EO、EB,根据题意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,设CG=a,则AG=5a,OD=a,根据题意列出一元一次方程求出a的值得出答案.【详解】(1)∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2) ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.CE .23、(1)见解析;(2)见解析;(3)见解析,5【解析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE=5.【点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.24、(1)y=2x ﹣5,2y x =-;(2)214. 【解析】 试题分析:(1)把A 坐标代入反比例解析式求出m 的值,确定出反比例解析式,再将B 坐标代入求出n 的值,确定出B 坐标,将A 与B 坐标代入一次函数解析式求出k 与b 的值,即可确定出一次函数解析式;(2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC 面积.试题解析:(1)把A (2,﹣1)代入反比例解析式得:﹣1=2m ,即m=﹣2,∴反比例解析式为2y x =-,把B (12,n )代入反比例解析式得:n=﹣4,即B (12,﹣4),把A 与B 坐标代入y=kx+b 中得:21{142k b k b +=-+=-,解得:k=2,b=﹣5,则一次函数解析式为y=2x ﹣5;(2)如图,S △ABC =1113121266323222224⨯-⨯⨯-⨯⨯-⨯⨯= 考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用.25、(1)(11,22)或(﹣1,﹣1);(1)①2<a <17②b 的最小值是13 【解析】(1)把x=y=m ,a=1,b=1代入函数解析式,列出方程,通过解方程求得m 的值即可;(1)抛物线上恒有两个不同的“和谐点”A 、B .则关于m 的方程m=am 1+(3b+1)m+b-3的根的判别式△=9b 1-4ab+11a . ①令y=9b 1-4ab+11a ,对于任意实数b ,均有y >2,所以根据二次函数y=9b 1-4ab+11的图象性质解答;②利用二次函数图象的对称性质解答即可.【详解】(1)当a =1,b =1时,m =1m 1+4m +1﹣4,解得m =12或m =﹣1. 所以点P 的坐标是(12,12)或(﹣1,﹣1);(1)m =am 1+(3b +1)m +b ﹣3,△=9b 1﹣4ab +11a .①令y =9b 1﹣4ab +11a ,对于任意实数b ,均有y >2,也就是说抛物线y =9b 1﹣4ab +11的图象都在b 轴(横轴)上方. ∴△=(﹣4a )1﹣4×9×11a <2.∴2<a <17.②由“和谐点”定义可设A (x 1,y 1),B (x 1,y 1),则x 1,x 1是ax 1+(3b +1)x +b ﹣3=2的两不等实根,123122x x b a ++=-. ∴线段AB 的中点坐标是:(﹣312b a +,﹣312b a +).代入对称轴y =x ﹣(21a +1),得 ﹣312b a +=312b a +﹣(21a+1), ∴3b +1=1a+a . ∵a >2,1a >2,a •1a =1为定值, ∴3b +1=1a +a 1a a=1, ∴b ≥13. ∴b 的最小值是13. 【点睛】此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x 轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点.26、1米.【解析】试题分析:作BE ⊥DH ,知GH =BE 、BG =EH =10,设AH =x ,则BE =GH =43+x ,由CH =AH tan ∠CAH =tan55°•x 知CE =CH ﹣EH =tan55°•x ﹣10,根据BE =DE 可得关于x 的方程,解之可得.试题解析:解:如图,作BE ⊥DH 于点E ,则GH =BE 、BG =EH =10,设AH =x ,则BE =GH =GA +AH =43+x ,在Rt △ACH中,CH =AH tan ∠CAH =tan55°•x ,∴CE =CH ﹣EH =tan55°•x ﹣10,∵∠DBE =45°,∴BE =DE =CE +DC ,即43+x =tan55°•x﹣10+35,解得:x ≈45,∴CH =tan55°•x =1.4×45=1. 答:塔杆CH 的高为1米.点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.27、(1)①(2,0),(1,2),(﹣1,2);②y=2x;③ y=2x,y=﹣22x+2;(2)①半径为4,M(833,433);②3﹣1<r<3+1.【解析】(1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题.【详解】(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,由题意OC=CD=1,OA=BC=2,∴BD=OE=1,2,∴A(2,0),B(12,C(﹣12),故答案为(2,0),(12),(﹣12;②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴BEPM=OEOM,∴21y x=,∴y=2x;③如图2﹣3中,作QM∥OA交OD于M,则有MQ DM OA DO=,∴222x y-=,∴y=﹣22x+2,故答案为y=2x,y=﹣22x+2;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=43,∴OF=FA=23,∴FM=2,OM=2FM=4,∵MN∥y轴,∴MN⊥OM,∴MN=433,ON=2MN=833,∴M(833,433);②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO是等边三角形,∴3当FN=1时,3﹣1,当EN=1时,3,观察图象可知当⊙M的半径r3﹣1<r3.31<r3.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.。

相关文档
最新文档