紫外可见光谱法

合集下载

5.紫外-可见吸收光谱法

5.紫外-可见吸收光谱法

•双波长分光光度计
双波长分光光度计的优点:是可以在有 背景干忧或共存组分吸收干忧的情况下 对某组分进行定量测定。 岛津UV-2700双光束双波长的
5.4 分析条件的选择 (一)显色反应的选择及类型 选择显色反应时应考虑的因素:
灵敏度高、选择性高、生成物稳定、显色剂在测定波 长处无明显吸收,两种有色物最大吸收波长之差:“对比 度”,要求△ > 60nm。
吸光度A与显色剂用量CR 的关系会出现如图所示的几种 情况。选择曲线变化平坦处。
2.反应体系的酸度
在相同实验条件下,分别测定不同pH值条件 下显色溶液的吸光度。选择曲线中吸光度较大且 恒定的平坦区所对应的pH范围。
3.显色时间与温度
由实验确定。
4.溶剂
一般尽量采用水相测定。
(三) 波长的选择
一般根据待测组分的吸收光谱,选择最大 吸收波长作为测定波长。
收物质最大限度的吸光能力,也反映了光度法测定该物质可 能达到的最大灵敏度。 (5)εmax越大表明该物质的吸光能力越强,用光度法测定该 物质的灵敏度越高。 ε>105:超高灵敏; ε=(6~10)×104 :高灵敏;
ε<2×104 :不灵敏。
3. 吸光度A与透光度T的关系
透过光的强度It与入射光的强度Io之比称 为透光度或透光率,用T表示。 T = I t / I0
⑶ π→π*跃迁
所需能量较小,吸收波长处于远紫外区的近紫外端或近 紫外区,摩尔吸光系数εmax一般在104 L· mol-1· cm-1以上,属于
强吸收。不饱和烃、共轭烯烃和芳香烃类均可发生该类跃迁 。如:乙烯π→π*跃迁的λmax为162 nm,εmax为1×104 L·mol1· cm-1。
在波长200-750nm内,基于分子内电子跃迁的吸收 光谱来确定物质的组成、含量,推测物质结构的一种 分析方法,又称为紫外-可见分光光度法。它属于分子 吸收光谱法。

紫外可见吸收光谱法的应用

紫外可见吸收光谱法的应用

紫外可见吸收光谱法的应用
紫外可见吸收光谱法是一种利用物质对紫外光和可见光的吸收特性进行分析的光谱技术。

它在化学、生物、医药、环境等领域有着广泛的应用,以下是一些常见的应用:
1. 化学分析:紫外可见吸收光谱法可以用于分析物质的组成和结构。

通过测量物质在特定波长下的吸收光谱,可以确定物质中存在的官能团、化学键等信息,从而推断出物质的结构和组成。

2. 定性分析:紫外可见吸收光谱法可以用于定性分析。

不同的物质在特定波长下的吸收光谱是不同的,因此可以通过比较吸收光谱来鉴定物质的种类。

3. 定量分析:紫外可见吸收光谱法可以用于定量分析。

通过测量物质在特定波长下的吸光度,可以计算出物质的浓度。

这种方法常用于测定溶液中的化学物质浓度、药物含量等。

4. 反应动力学研究:紫外可见吸收光谱法可以用于研究化学反应的动力学。

通过测量反应物和生成物在特定波长下的吸光度随时间的变化,可以确定反应速率常数、反应级数等信息。

5. 环境监测:紫外可见吸收光谱法可以用于环境监测。

例如,可以利用该方法检测水中的有机物、重金属等污染物的含量。

6. 生物分析:紫外可见吸收光谱法可以用于生物分析。

例如,可以利用该方法检测蛋白质、核酸等生物大分子的含量和结构。

紫外可见吸收光谱法是一种简单、快速、灵敏的分析方法,在化
学、生物、医药、环境等领域有着广泛的应用。

紫外可见光谱测试

紫外可见光谱测试

紫外可见光谱测试紫外可见光谱测试是一种化学分析技术,通过分析物质在紫外及可见光波段的吸收和散射来确定其物质结构和特性。

这种分析方法因其高效、准确和易于操作而广泛应用于化学、生物、医学、环保等领域。

下面,我们来详细了解一下紫外可见光谱测试的基本原理和应用。

一、基本原理紫外可见光谱测试的基本原理是,当物质受到一定波长的光照射后,会吸收部分光谱能量并发生能级变化。

然后,物质会以不同的光强度来辐射出吸收的光谱能量,从而产生不同的吸光度和散射光强度,形成吸收光谱和散射光谱。

通过对吸收和散射光谱的测量和分析,可以确定物质的化学成分、结构、浓度等特性。

二、测试方法紫外可见光谱测试有多种测试方法,其中最常用的是紫外吸收光谱法和可见吸收光谱法。

2.1 紫外吸收光谱法紫外吸收光谱法是通过在紫外区域(200nm~400nm)测量物质的吸光度来分析物质的结构和特性。

具体测试步骤如下:步骤1:先获取纯溶液。

将有机物或无机物样品加入合适的溶剂中,并搅拌溶解得到纯溶液。

步骤2:设置基线。

使用溶剂作为基准样品,设置基准线。

步骤3:进行测试。

通过测试仪器,在一定波长范围内(常见的是200nm~800nm),分别测定纯溶液和待测溶液在不同波长下的吸光度值。

步骤4:比较测试结果。

比较待测溶液与纯溶液的波长和吸光度值差异,分析目标物质的吸收特性和性质。

2.2 可见吸收光谱法可见吸收光谱法是通过在可见光区域(400nm~800nm)测量物质的吸光度来分析物质的结构和特性。

具体测试步骤如下:步骤1:制备溶液。

将待测物质溶于水或其他合适的溶剂中,制备出所需测试的溶液。

步骤2:设置基线。

使用纯溶剂作为基准样品,设置基准线。

步骤3:进行测试。

通过测试仪器,在一定波长范围内(常见的是400nm~800nm),分别测定纯溶液和待测溶液在不同波长下的吸光度值。

步骤4:比较测试结果。

比较待测溶液与纯溶液的波长和吸光度值差异,分析目标物质的吸收特性和性质。

紫外-可见吸收光谱法全

紫外-可见吸收光谱法全

8. B带
芳香族化合物ππ*跃迁产生的特征精细结 构吸收带。
特点: ➢ 230~270nm 呈 一 宽 峰 , 中 心 为 255nm 左 右 ,
且具有精细结构;(用于识别芳香族化合 物) ➢ε~200 L·mol-1·cm-1; ➢ 于极性溶剂中可能消失。
9. E带 也是芳香族化合物ππ*跃迁产生的特征吸 收带。可分为E1和E2带。 特点: E1带约为180nm(ε> 104 L·mol-1·cm-1 ); E2带约为200nm(ε~ 7000L·mol-1·cm-1 )。
测定同一化合物在不同极性溶剂中n* 跃迁吸收带,就能计算其在极性溶剂中氢键 的强度。
例:在水中,丙酮的n*吸收带为264.5 nm,
能量452.99 kJ·mol-1;在己烷中,该吸收带为
279 nm,能量为429.40 kJ·mol-1。
丙酮在水中形成的氢键强度为452.99 - 429.40 =
9.1.2 无机化合物的紫外-可见吸收光谱 9.1.2.1 电荷转移跃迁(强吸收) 1. 金属配合物或水合离子
(FeSCN)2+、Cl-(H2O)n 2. 谱峰位置与给受电子能力有关。
Mn+-Lb- hν M(n-1)+-L(b-1)-
电子受体 电子给体
9.1.2.2 配位场跃迁 d-d跃迁和f-f跃迁 特点:ε小,一般位于可见区。
4. 溶剂的选择 ➢ 尽量选用非极性溶剂或低极性溶剂; ➢ 溶剂能很好地溶解被测物,且形成的溶
液具有良好的化学和光化学稳定性; ➢ 溶剂在样品的吸收光谱区无明显吸收。
9.1.4.3 pH的影响
9.2 紫外-可见分光光度计 9.2.1 仪器的基本构造
光源 单色器 吸收池 检测器 信号指示系统

有机波谱分析--紫外-可见光谱法

有机波谱分析--紫外-可见光谱法
λmax=230~270nm; εmax=200~7000 L·mol-1·cm-1。
②呈一宽峰,且有精细结构。 ③当苯环被烷基以外的基团取代或溶剂极性增大时,精细
结构将会减弱甚至消失。
(4)E 带:芳香族化合物的特征谱带。
Ethylene
●E1带:苯环中“乙烯键”的π→π*跃迁产生的吸收带。 λmax=180~200nm,远紫外区; εmax=5×104L·mol-1·cm-1,强吸收。(不常用)
3.互变异构
4.氢键效应 1)溶质分子间氢键
使n→*共轭受限,轨道能差增大,波长蓝移。
2)分子内氢键:能差减小,波长红移。
例如:邻硝基苯酚和间硝基苯酚
分子内氢键
max=278nm =6.6103
无分子内氢键
max=273nm =6.6103
邻硝基苯酚, 由于分子内氢键的形成,红移了5nm。
3)溶质与溶剂间形成的氢键(属于溶剂效应)
波谱范围:10~800nm
(1)远紫外光区10~200nm (2)近紫外光区200~400nm (3)可见区400~800nm.
一般的紫外光谱是指近紫外区。
1、紫外光谱产生的条件
2、有机分子的化学键类型
★构成分子的化学键主要有 键、 键,还 有未成键孤
对电子构成的非键(n 键)。
★ 5种轨道分别是:
54
2)单环共轭烯烃(乙醇溶剂) ◆母体值: ①共轭二烯不在同一环内
217nm
②共轭二烯在同一环内
◆扩展共轭: ◆取代基增加值: 烷基 卤素 ◆环外双键
253nm
+30nm
+5nm +17nm +5nm
55
●注意: (1)母体值只是指共轭二烯母体本身的λ值,不包括C=C-C=C

第三章 紫外-可见吸收光谱法

第三章    紫外-可见吸收光谱法

3-1 概述
3-1 概述
紫外光
波长为10-400nm的电磁辐射,分为远紫外光 的电磁辐射, 波长为 的电磁辐射 (10-200nm)和近紫外光(200-400nm)。 )和近紫外光( )。 远紫外光可被大气中的水气、 远紫外光可被大气中的水气、氮、氧和二氧化 碳所吸收,只能在真空中研究, 碳所吸收,只能在真空中研究,故又称真空紫 外光。我们讨论近紫外光谱。 外光。我们讨论近紫外光谱。
紫外-可见吸收光谱法 第三章 紫外 可见吸收光谱法
UltravioletUltraviolet-Visible Absorption Spectrometry UV-Vis UV-
章节内容
第一节 概述 紫外-可见吸收光谱 第二节 紫外 可见吸收光谱 第三节 紫外-可见分光光度计 紫外 可见分光光度计 紫外-可见吸收光谱法的应用 第四节 紫外 可见吸收光谱法的应用
(5)出射狭缝 紫外-可见分光光度计使用石英棱镜。 棱镜单色器的缺点在于色散率随波长变 化,得到的光谱呈非均匀排列,而且传递 光的效率较低。 光栅单色器在整个光学光谱区具有良好 的几乎相同的色散能力。因此现代紫外-可 见分光光度计 多采用光栅单色器。 (三)吸收池 (四)检测器 (五)信号显示器
二、分光光度计的构造类型
的配位体强度小于NH 如:H2O的配位体强度小于 3的, 的配位体强度小于 所以, ( 所以,Cu(H2O)6呈浅蓝色,吸收峰 ) 呈浅蓝色, 794nm;Cu(NH3)6深蓝色,吸收峰 深蓝色, ; ( 663nm。 。 一些常见配位体配位场强弱顺序: 一些常见配位体配位场强弱顺序: I-<Br-<Cl-<F-<OH-<C2O4-=H2O<SCN-< 吡啶=NH3<乙二胺 联吡啶 邻二氮菲 乙二胺<联吡啶 吡啶 乙二胺 联吡啶<邻二氮菲 <NO2-<CN-

仪器分析-紫外可见光光谱分析

仪器分析-紫外可见光光谱分析
1,3,5-己三烯
正己烷
258
n=4
1,3,5,7-辛四烯
环己烷
304
不共轭双键不发生红移。
C=O双键同C=C双键的共轭作用使n→*和→*跃迁的吸收峰都发生红移。
3)溶剂效应
01
02
03
04
05
极性溶剂使π-π*跃迁发生红移。
pH值
Note: 测UV-Vis应注明溶剂
pH增大,苯酚π-π*吸收带发生红移。
1
2
特点:灵敏度高,实际工作中常用。
1
常将M与某L(显色剂)生成具有电荷迁移的配合物,然后进行含量测定。
2
-* 跃迁 配体具有双键的金属络合物
3
2.3光的吸收定律
郎伯-比尔(Lambert-Beer )定律 入射光强度 吸光强度 反光强度 透光强度 + IS 散射光强度 均匀溶液,散射光小,可忽略
由于n—π共轭参与,使分子整体共轭效应增强。
取代基 苯环或烯烃(吸电子基)上的H被各种取代基取代,多发生红移。 空间异构
蓝移(紫移):使化合物的吸收波长向短波方向移动效应。 影响蓝移因素: 1)溶剂效应 极性溶剂使n-π*跃迁发生蓝移 2)pH值 pH值减小,苯胺的π-π*吸收带蓝移n—π共轭参与少,使分子整体π共轭效应减少。
分子转动-转动能级(rotation)
分子整体能级 E=Ee+Ev+Er
01
03
02
04
05
分子从基态能级跃迁到激发态能级
当有一频率v , 如果辐射能量hv恰好等于该分子较高能级与较低能级的能量差时,即有:
激发态
基态
ΔE电=1-20eV ΔE振=0.05-1eV ΔE转 在分子能级跃迁所产生的能量变化,电子跃迁能量变化最大,它对应电磁辐射能量主要在区紫外—可见区。

药物分析中的紫外可见吸收光谱法

药物分析中的紫外可见吸收光谱法

药物分析中的紫外可见吸收光谱法紫外可见吸收光谱法在药物分析中的应用引言:药物分析是研究药物性质和质量的一项重要领域,其中紫外可见吸收光谱法被广泛应用于药物的定性和定量分析。

本文将就药物分析中紫外可见吸收光谱法的原理、仪器设备以及应用案例进行探讨。

一、原理紫外可见吸收光谱法是一种通过测量物质在紫外和可见光波段对电磁辐射的吸收来鉴定和定量分析物质的方法。

其基本原理是根据分子在特定波长的电磁辐射下,电子跃迁从基态到激发态,吸收特定波长的光能,并呈现出吸收峰。

二、仪器设备紫外可见吸收光谱法需要使用紫外可见分光光度计进行分析。

该仪器主要由光源、单色器、试样室、光电倍增管和计算机系统等组成。

光源提供紫外和可见光波段的光线,单色器用于选择特定波长的光线,试样室中放置待测样品,光电倍增管转化光信号为电信号,计算机系统用于数据处理和谱图显示等功能。

三、应用案例1. 药物质量控制紫外可见吸收光谱法可用于药物的定量分析和质量控制。

通过建立药物与特定波长光的吸收关系,可以快速准确地确定药物中特定成分的含量。

例如,对某种药物中有效成分含量进行测定,可以根据其在特定波长处的吸光度与含量之间的线性关系来计算出含量。

2. 药效研究紫外可见吸收光谱法还可用于药效研究中。

通过测量药物在不同波长下的吸光度,可以得到药物的吸收光谱。

根据吸收峰的强度和位置可以判断药物的溶解度、稳定性以及药物与其他物质的相互作用等信息,从而为药效研究提供依据。

3. 药物相互作用研究紫外可见吸收光谱法还可用于研究药物与其他物质之间的相互作用。

例如,通过测量药物与药剂、辅料以及体内代谢产物等物质之间的吸光度变化,可以分析药物在配方中的相互作用情况,为合理选用药剂和优化配方提供依据。

4. 药物稳定性研究药物在贮存和使用过程中会受到光线、温度、湿度等因素的影响,从而导致药物的质量变化。

紫外可见吸收光谱法可用于药物稳定性研究,通过测量药物在不同条件下的吸光度变化,可以评估药物的稳定性,从而为药物的储存和使用提供依据。

紫外可见光谱法的应用范围

紫外可见光谱法的应用范围

紫外可见光谱法(UV-Vis Spectroscopy)是一种非常常用的分析方法,它可以通过检测物质对紫外光和可见光的吸收来分析物质的性质和组成。

该方法具有操作简单、快速、准确、灵敏度高等优点,因此被广泛应用于化学、生物、环境等领域。

以下是紫外可见光谱法的一些应用范围:
1.分析有机化合物:紫外可见光谱法可以用于分析有机化合物的结构和组成,如检测有机物中的芳香族化合物、醇类、醛类、酮类、羧酸类、酯类等。

2.分析无机化合物:紫外可见光谱法也可以用于分析无机化合物的结构和组成,如检测水中的溶解氧、铁、氨氮等。

3.分析生物分子:紫外可见光谱法可以用于分析生物分子的结构和组成,如检测蛋白质、核酸、多糖等生物分子的含量和结构。

4.分析材料:紫外可见光谱法可以用于分析材料的结构和组成,如检测聚合物材料的分子量、分子量分布、结构等。

5.分析环境污染物:紫外可见光谱法可以用于分析环境污染物的结构和组成,如检测水中的污染物、空气中的污染物等。

总之,紫外可见光谱法是一种非常常用的分析方法,它在各个领域都有广泛的应用。

紫外可见吸收光谱法及其应用

紫外可见吸收光谱法及其应用

紫外可见吸收光谱法及其应用紫外可见吸收光谱法是一种常用的分析技术,它通过测量物质在紫外可见光区域(200-800 nm)的吸收现象来研究物质的结构和性质。

该方法广泛应用于化学、药学、生物科学等领域。

紫外可见吸收光谱法的原理是,当物质受到特定波长的光线照射时,部分光子被吸收。

被吸收的光子的能量会使物质分子中的电子跃迁到一个较高的能级,而产生的吸收光谱即为物质在该波长下的吸收峰。

根据紫外可见吸收光谱的结果,我们可以得到物质的吸收峰位置、吸收强度和形状等信息。

这些信息可以用于物质的定性分析(判断物质的结构和组分)、定量分析(测定物质的浓度)以及反应动力学研究等。

紫外可见吸收光谱法的应用非常广泛,下面列举一些常见的应用领域和例子:
化学分析:利用紫外可见吸收光谱法可以确定有机化合物的官能团、测定无机化合物的浓度等。

例如,通过分析蛋白质和核酸的吸收光谱,可以研究其结构和浓度。

药学研究:紫外可见吸收光谱法可用于药物的质量控制和稳定性研究。

例如,药物在特定波长下的吸光度与其浓度呈线性关系,因此可以通过测定吸收峰的强度来测定药物的浓度。

环境监测:紫外可见吸收光谱法可以用于分析水体、大气和土壤中的污染物。

通过测定污染物的吸收峰位置和吸光度,可以判断其种类和浓度。

总之,紫外可见吸收光谱法是一种重要的分析技术,它在多个领域中得到了广泛应用,为科学研究和实际应用提供了有力的分析工具。

紫外可见光谱法

紫外可见光谱法
2023-11-10
紫外可见光谱法
contents
目录
• 紫外可见光谱法概述 • 紫外可见光谱法实验技术 • 紫外可见光谱法数据分析 • 紫外可见光谱法在各领域的应用 • 紫外可见光谱法的优势与局限 • 紫外可见光谱法实例分析
01
紫外可见光谱法概述
定义和原理
定义
紫外可见光谱法是一种基于物质吸收光子能量而产生化学反应的测量方法。
中药材中重金属的光谱分析
总结词
紫外可见光谱法可用于中药材中重金属的光 谱分析,通过对光谱特征的识别和解析,可 实现重金属的快速、准确检测。
详细描述
重金属是中药材中常见的污染物,过量摄入 会对人体健康造成严重影响。紫外可见光谱 法通过测量样品在特定波长范围内的吸光度 值,绘制出样品的紫外可见光谱图,从而分 析样品中重金属的种类和含量。该方法具有 操作简便、快速、准确等优点,为中药材中
重金属的监测提供了有力手段。
高分子材料的紫外光谱分析
总结词
紫外可见光谱法可用于高分子材料的紫外光谱分析, 通过对光谱特征的识别和解析,可实现高分子材料的 结构、性能和化学成分的快速、准确检测。
详细描述
高分子材料是一种重要的材料,广泛应用于工业、医 疗、信息等领域。紫外可见光谱法通过测量样品在特 定波长范围内的吸光度值,绘制出样品的紫外可见光 谱图,从而分析样品的结构、性能和化学成分。该方 法具有操作简便、快速、准确等优点,为高分子材料 的研发和应用提供了有力手段。
原理
紫外可见光谱法基于朗伯-比尔定律,物质在特定波长下吸光度与浓度成正比。 通过测量吸光度,可以确定样品中目标物质的浓度。
历史与发展
历史
紫外可见光谱法自20世纪初发展至今,已经广泛应用于各个 领域。

紫外-可见光光谱

紫外-可见光光谱

(1)溶剂应能很好地溶解被测试样,溶剂对溶质应该是惰性的。 即所成溶液应具有良好的化学和光化学稳定性。
(2)在溶解度允许的范围内,尽量选择极性较小的溶剂。
(3)溶剂在样品的吸收光谱区应无明显吸收。
分析应用
应用范围
定性分析
在相同条件下,比较未知物与已知标准物的光谱 图,若两者相同,则可认为待测试样与已知化合物具 有相同的生色团。
在共轭体系中, *跃迁产生的吸收带又称为K带。
分析应用
有机分析
➢苯及其衍生物 苯有三个吸收带,它们都是由*跃迁引起的。E1带出现在
180nm(MAX = 60,000); E2带出现在204nm( MAX = 8, 000 );B带出现在255nm (MAX = 200)。在气态或非极性 溶剂中,苯及其许多同系物的B谱带有许多的精细结构,这是由 于振动跃迁在基态电子上的跃迁上的叠加而引起的。在极性溶剂 中,这些精细结构消失。当苯环上有取代基时,苯的三个特征谱 带都会发生显著的变化,其中影响较大的是E2带和B谱带。
例如,CH3Cl、CH3Br和CH3I的n* 跃迁分别出现在173、204和258nm处。 这些数据不仅说明氯、溴和碘原子引入甲烷后,其相应的吸收波长发生了红移, 显示了助色团的助色作用。
直接用烷烃和卤代烃的紫外吸收光谱分析这些化合物的实用价值不大。但是 它们是测定紫外和(或)可见吸收光谱的良好溶剂。
方法名称
激发方式
作用物质或机理
检测信号
原子发射 光谱法
电弧、火花、 等离子炬等
气态原子的外层电子 紫外、可见光
原子荧光 光谱法
高强度紫外、可见光 气态原子的外层电子
原子荧光
分子荧光 光谱法
紫外、可见光
分子

紫外可见光谱作用

紫外可见光谱作用

紫外可见光谱(Ultraviolet-Visible Spectroscopy,UV-Vis Spectroscopy)是一种重要的分子光谱技术,其作用主要包括以下几个方面:1. 化合物鉴定与结构分析:- 紫外可见光谱能够揭示化合物分子内部电子的能级跃迁情况,尤其是π-π和n-π跃迁。

通过测量化合物在紫外和可见光区域的吸收峰位置、强度和形状,可以初步推测化合物中存在哪些类型的化学键(如共轭体系、芳香环等)以及它们的相对大小和排列方式。

2. 纯度检测:- 通过对样品的紫外可见光谱进行测定,可以评估化合物的纯度,因为杂质或异构体会导致吸收光谱出现额外的峰或者主峰发生偏移。

3. 定量分析:- 利用朗伯-比尔定律(Beer-Lambert Law),即吸光度与溶液浓度之间的线性关系,可以对目标物质进行定量分析。

4. 络合物配位研究:- 对于金属离子与有机配体形成的配合物,其形成后由于电子云分布的变化,可能会产生新的吸收带,通过观察这些特征吸收,可以确定配合物的组成、稳定常数和配位比。

5. 氢键强度测定:- 在某些情况下,氢键的存在会影响分子的吸收特性,通过比较有无氢键时的光谱变化,可以间接估计氢键的强度。

6. 薄膜能隙测量:- 在材料科学领域,可以通过测量固体薄膜在紫外可见光范围内的光学吸收边来估算半导体材料的带隙宽度。

7. 反应动力学研究:- 紫外可见光谱还可以用于实时监测化学反应过程中的吸光度变化,从而研究反应的动力学参数。

8. 生物分子相互作用研究:- 在生物化学和药理学中,可利用紫外可见光谱分析蛋白质、核酸和其他生物大分子与小分子间的相互作用及其影响。

综上所述,紫外可见光谱法在化学、材料科学、生物学和环境科学等多个领域都有着广泛的应用价值。

紫外可见光谱法

紫外可见光谱法

紫外可见光谱法紫外可见光谱法紫外可见光谱法,也被称为UV-Vis光谱法,是一种广泛应用于化学、生物、医药等领域的分析技术。

它可以快速、准确地测试样品中的化合物的组成和结构,也可以用于质量控制和成份分析等方面。

本文将介绍紫外可见光谱法的原理、应用及优缺点。

一、原理紫外可见光谱法的原理基于样品分子在紫外和可见光区域吸收辐射的现象。

当样品中的化合物受到光的照射时,它会吸收自己所能吸收的波长的光,导致光强度的降低。

通过比较样品前后的光强度差异,就可以确定其所含有的化合物的量。

二、应用紫外可见光谱法在化学、生物、医药等领域中具有重要应用。

以下是一些常见的应用领域:1.化学领域:用于分析化合物的结构和组成、溶液的浓度等。

2.生物领域:用于测定生物分子的含量和结构,如核酸和蛋白质的含量测定。

3.医药领域:用于药品的质量控制,检测药品中残留的杂质等。

4.环境领域:用于测定空气、水、土壤等中的污染物质浓度。

5.食品领域:用于检测食品中的添加剂、色素等成分。

三、优缺点紫外可见光谱法有多种优点,如准确、快速、简单易操作等。

同时,它也有一些缺点:1.受样品的溶液色和浓度等因素的影响较大,会影响测试准确性。

2.无法检测未吸收光的区域,有些化合物可能不会在紫外或可见光谱范围内吸收辐射。

3.分析结构复杂的混合物时,可能需要使用其他检测方法作为辅助手段。

总之,紫外可见光谱法是化学、生物和医学等领域中一种广泛应用的分析技术。

虽然它有一些局限性,但其准确性和简单易操作性仍使其成为研究和应用领域中不可或缺的一部分。

紫外可见吸收光谱分析法

紫外可见吸收光谱分析法

紫外可见吸收光谱分析法紫外可见吸收光谱分析法是一种广泛应用于化学、生物、环境科学等领域的检测方法,通过测定物质对紫外可见光的吸收特性来获得有关物质的结构和浓度等信息。

本文将详细介绍紫外可见光谱分析法的原理、仪器和应用等方面,以及其在药物、环境、食品等领域的具体应用。

首先,紫外可见光谱的基本原理是根据物质对不同波长的紫外或可见光的吸收特性来确定其浓度或进行定性分析。

在紫外可见光谱中,紫外光波长范围为200-400nm,可见光波长范围为400-800nm。

当物质吸收光线时,其分子内的电子从基态跃迁到激发态,吸收能量取决于分子内电子的能级跃迁,这将导致光谱吸收峰的出现。

物质的吸收光谱图形反映了不同波长的光线对物质的吸收能力,吸收峰的强度与物质的浓度成正比。

为了进行紫外可见光谱分析,需要使用紫外可见分光光度计。

该仪器由光源、样品室、单色器、检测器和计算机等组成。

光源发出广谱连续光,在单色器中,只有特定波长的光通过,其他波长的光被滤除。

样品放在样品室中,光线穿过样品后到达检测器。

检测器将光强度转换为电信号,并将信号输出到计算机进行分析。

紫外可见光谱分析法在各个领域有广泛的应用。

在药物领域,紫外可见光谱可用于药物成分的定量分析。

例如,可以通过对药物溶液的吸光度测定得到药物的浓度,从而判断药物的纯度和含量。

在环境领域,紫外可见光谱可以用于水质和大气污染物的监测。

通过检测水样中有机物和无机物的紫外可见吸收光谱,可以对水质进行评估和监测。

同时,还可以使用紫外可见光谱分析法来检测大气中的有害气体,如二氧化硫和氮氧化物等。

此外,紫外可见光谱分析法还在食品行业中得到了应用。

例如,可以利用该方法检测食品中的添加剂,如防腐剂和色素等,以确保食品的安全性和质量。

紫外可见光谱分析法还可用于检测食品中的重金属和农药残留物,以保障消费者的健康和权益。

综上所述,紫外可见吸收光谱分析法是一种快速、准确、灵敏的分析方法,可以广泛应用于化学、生物、环境科学等领域。

紫外-可见吸收光谱法精选全文完整版

紫外-可见吸收光谱法精选全文完整版

溶剂极性增大
吸收峰呈规律性蓝移
3、溶剂效应
O
异丙叉丙酮(CH3-C-CH=C
CH3
CH3 )的溶剂效应
吸收带
p → p*
正己烷
230nm
CH3Cl
238nm
CH3OH
237nm
H2 O
243nm
波长
红移
n→ p*
329nm
315nm
309nm

电子跃迁类型主要有四种:σ→σ*、n→σ*、π→π*和
n→π*,各种跃迁所需的能量大小不同,次序为:
σ→σ*> n→σ*≥ π→π* > n →π*,
因此,形成的吸收光谱谱带的位置也不相同。

σ→σ*跃迁:
需要能量最大, λ<200nm ,真空紫外区,εmax > 104
饱和烃(远紫外区);
C-H共价键,如CH4( λmax 125nm)
(I) 顺式二苯乙烯 (II)反式二苯乙烯
2、跨环效应的影响
助色基团虽不共轭,但由于空间排列使电子
云相互影响,使 n→π*吸收峰长移。
O
CH3-C - CH3
O
C
S
lmax156,279 nm
lmax238nm
3、溶剂效应影响
溶剂的极性增大时,n p* 跃迁吸收带蓝移
p p* 跃迁吸收带红移
少,分析速度快。
2 灵敏度高。如在紫外区直接检测抗坏血酸时,其最低检出浓度可
达到10-6g/mL。
3 选择性好。通过适当的选择测量条件,一般可在多种组分共存的
体系中,对某一物质进行测定。
4 精密度和准确度较高。在仪器设备和其他测量条件较好的情况下,

材料表征方法第六章紫外可见光光谱

材料表征方法第六章紫外可见光光谱

b. 助色基(团):
有一些含有n电子的基团(如-OH、-OR、-NH2 等),它们本身没有生色功能(不能吸收λ>200nm的 光),但当它们与生色团相连时,就会发生n—π共 轭作用,增强生色团的生色能力(吸收波长向长波 方向移动,且吸收强度增加),这样的基团称为助 色团。
C.红移与蓝移
有机化合物的吸收谱带 常常因引入取代基或改变溶
D + A hυ D+A-
D+、A-为络合物或一个分子中的两个体系,D是 给电子体,A是受电子体。
例如:黄色的四氯苯醌与无色的六甲基苯形成的 深红色络合物。
O
CL
CL
CL
+ CL
O
O
CL
CL
=
CL
CL
O
(黄色) (无色) (深红色)
f、配位体场微扰的d →d*跃迁
过渡元素的 d 或 f 轨道为简并轨道(Degeneration orbit),当与配位体配合时,轨道简并解除,d 或f 轨 道发生能级分裂,如果轨道未充满,则低能量轨道 上的电子吸收外来能量时,将会跃迁到高能量的 d 或 f 轨道,从而产生吸收光谱。
3、电荷转移跃迁;
4、配位体场的d →d*跃迁 产生。
3.常用光谱术语及谱带分类
常用光谱术语:
a、生色基也称发色基(团):
是指分子中某一基团或体系,由于存在能使分子 产生吸收而出现谱带,这一基团或体系即为生色基。
最有用的紫外-可见光谱是由π→π*和n→π*跃迁产 生的。这两种跃迁均要求有机物分子中含有不饱和基 团。这类含有π键的不饱和基团称为生色团。简单的生 色团由双键或叁键体系组成,如乙烯基、羰基、乙炔 基、亚硝基、偶氮基—N=N—等

紫外-可见吸收光谱法(UV-Vis)

紫外-可见吸收光谱法(UV-Vis)
max 1104 ; M 100
max 一般 10
增大

A 1103 7 1 Cmin 1 10 mol L b 1104 1 1107 100 1108 g mL1 1000
3 ~104;灵敏
的 >104;个别的可达 105 106
若λ1= λ2
dA b dC
ε 1 = ε2= ε 在一定的浓度范围内 A= εbC
若λ1≠ λ2
2.303 f1 f 2b 2 ( λ1 λ 2 ) 210 ( λ1 λ 2 )bc d2A 0 λ 1bc λ 2bc 2 2 dC ( f110 f 210 )
1) 液气固介质均适用 2)入射光是单色光,平行光 3)稀溶液
朗伯-比尔定律
A = Kbc
(二)朗伯-比尔定律推导
Ix dIx S I0 db b It
-dIx ∝ Ix adn dn = csdb
-dIx∝ IxaCsdb -dIx/Ix=k Cdb
b dI x I0 I x k 0 cdb It
0
0
C
A = 0.434
(四)吸光系数
1. a ( L · g –1 · cm-1) 2.ε ( L · mol–1 · cm-1)
max
A KCb
A aCb A Cb
C: g / L C: mol/ L
吸光物质结构的特征参数;
吸光物质定量分析的灵敏度参数
3. 检出限与摩尔吸光系数 若可测量的吸光度为0.001
It ln kcb I0 It kcb lg Kcb I 0 2.303
A lg T Kbc
吸光度 与透射率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

紫外可见光谱法
紫外可见光谱法
在分析化学领域中,紫外可见光谱法是一种非常常见的分析方法。

它是利用化合物的吸收和反射能力来确定它们的化学结构和浓度。

该方法可以被广泛应用于许多不同领域,例如生物化学、食品科学、环境科学和医学等。

本文将通过以下五大方面介绍紫外可见光谱法的应用和原理。

一、紫外可见光谱法的基本原理
紫外可见光谱法是一种分析方法,它利用化合物吸收和反射光谱的差异性来确定其化学结构和浓度。

在包括紫外线和可见光线在内的一定波长范围内照射样品时,如果样品中存在带有π电子的化合物,它们会吸收一定波长范围内的紫外线或可见光线,所以样品的吸收谱呈现出一定的规律性。

其中最大吸收峰的位置和强度可以用来确定样品中不同化合物的存在和浓度。

二、紫外可见光谱法在生物化学中的应用
紫外可见光谱法在生物化学研究中被广泛应用。

例如,该方法可以用于检测DNA、RNA和蛋白质等生物分子的含量和损伤。

此外,生物样品的吸收谱也可以用来确定其空间构象和相互作用。

三、紫外可见光谱法在食品科学中的应用
在食品科学中,紫外可见光谱法可以用来检测食品中的营养成分和添加剂。

例如,通过检测胡萝卜素的吸收谱,可以确定食品中维生素A 的含量。

利用这种方法可以提高食品的质量和安全性。

四、紫外可见光谱法在环境科学中的应用
紫外可见光谱法在环境科学中也有着重要的应用。

例如,它可以用于检测水中污染物的含量和种类。

此外,该方法还可以用来检测空气中的有机化合物和大气污染物。

五、紫外可见光谱法在医学中的应用
紫外可见光谱法在医学研究中也被广泛应用。

例如,它可以用来检测血清或尿液中的代谢产物和蛋白质分析。

此外,该方法还可以用来检测药物的吸收、分布和代谢过程。

结论:
综上所述,紫外可见光谱法是一种广泛应用的分析方法。

它在生物化学、食品科学、环境科学和医学等领域中都有着重要的应用。

它的原理是基于化合物吸收和反射光谱的差异性,这使得该方法可以用来确
定样品中不同化合物的存在和浓度。

随着技术的不断发展,这种方法将会在更多领域得到应用和发展。

相关文档
最新文档