【高考数学大题核心考点专题训】统计概率比较两类方法或策略分析问题2类常考考点归纳(新高考)原卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四篇 概率与统计
专题04 比较两类方法或者策略的分析问题
常见考点
考点一 比较比较两类方案
典例1.为树立和践行“绿水青山就是金山银山”的理念,三明市某公司将于2022年3月12日开展植树活动,为提高职工的积极性,活动期间将设置抽奖环节,具体方案为:根据植树的棵数可以选择在甲箱或乙箱中摸奖,每箱内各有除颜色外完全相同的10个球,甲箱内有红、黄、黑三种颜色的球,其中a 个红球、b 个黄球、5个黑球(*,N a b ∈),乙箱内有6个红球、4个黄球.若在甲箱内摸球,则每次摸出一个球后放回原箱,摸得红球奖100元,摸得黄球奖50元,摸得黑球则没有奖金;若在乙箱内摸球,则每次摸出两球后放回原箱,两球均为红球奖150元,否则没有奖金.
(1)据统计,每人的植树棵数X 服从正态分布N (15,25),现有1000位植树者,请估计植树的棵数X 在区间(10,25)内的人数(结果四舍五入取整数);
(2)根据植树的棵数,某职工可选择以下两种方案摸奖,方案一:三次甲箱内摸奖机会;方案二:两次乙箱内摸奖机会.请根据奖金的数学期望分析该职工如何选择摸奖方案.
附参考数据:若()2,X N μσ~,则()0.6827P X μσμσ-<≤+≈,
()220.9545P X μσμσ-<≤+≈.
变式1-1.某地区位于甲、乙两条河流的交汇处,夏季多雨,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.2(假设两河流发生洪水与否互不影响),今年夏季该地区某工地有许多大型设备,为保护设备,有以下3种方案:方案一:不采取措施,当一条河流发生洪水时,设备将受损,损失30000元.当两河流同时发生洪水时,设备将受损,损失60000元.方案二:修建保护围墙,建设费为4000元,但围墙只能抵御一条河流发生的洪水,当两河流同时发生洪水时,设备将受损,损失60000元.方案三:修建保护大坝,建设费为9000元,能够抵御住两河流同时发生洪水.
(1)求今年甲、乙两河流至少有一条发生洪水的概率;
(2)从花费的角度考虑,试比较哪一种方案更好,说明理由.
变式1-2.2021年国庆期间,某电器商场为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每消费满8千元,可减8百元.方案二:消费金额超过8千元(含8千元),可抽取小球三次,其规则是依次从装有2个红色小球、2个黄色小球的一号箱子,装有2个红色小球、2个黄色小球的二号箱子,装有1个红色小球、3个黄色小球的三号箱子各抽一个小球(这些小球除颜色外完全相同),其优惠情况为:若抽出3个红色小球则打6折;若抽出2个红色小球则打7折;若抽出1个红色小球则打8折;若没有抽出红色小球则不打折.
(1)若有两名顾客恰好消费8千元,他们都选中第二方案,求至少有一名顾客比选择方案一更优惠的概率;
(2)若你朋友在该商场消费了1万元,请用所学知识帮助你朋友分析一下应选择哪种付款方案.
变式1-3.为庆祝元旦,班委会决定组织游戏,主持人准备好甲、乙两个袋子.甲袋中有3个白球,2个黑球;乙袋中有4个白球,4个黑球.参加游戏的同学每抽出1个白球须做3个俯卧撑,每抽出1个黑球,须做6个俯卧撑
方案①:参加游戏的同学从甲、乙两个袋子中各随机抽出1个球;
方案②:主持人随机将甲袋中的2个球放入乙袋,然后参加游戏的同学从乙袋中随机抽出1个球;
方案③:主持人随机将乙袋中的2个球放入甲袋,然后参加游戏的同学从甲袋中随机抽出1个球.
(1)若同学小北选择方案①,求小北做6个俯卧撑的概率;
(2)若同学小北选择方案,设小北做俯卧撑的个数为X,求X的分布列;
(3)如果你可以选择按方案②或方案③参加游戏,且希望少做俯卧撑,那么你应该选择方案②还是方案③,还是两个方案都一样?(直接写出结论)
考点2
典例2.如图所示,用4个电子元件组成一个电路系统,有两种连接方案可供选择,当且仅当从A 到B 的电路为通路状态时,系统正常工作,系统正常工作的概率称为该系统的可靠性.这4个电子元件中,每个元件正常工作的概率均为()01p p <<,且能否正常工作相互独立,当某元件不能正常工作时,该元件在电路中将形成断路.
(1)求方案①中从A 到C 的电路为通路的概率P .(用p 表示);
(2)分别求出按方案①和方案②建立的电路系统正常工作的概率1P 、2P (用p 表示);比较1P 与2P 的大小,并说明哪种连接方案更稳定可靠.
变式2-1.某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过.方案二:在三门课程中,随机选取两门,这两
门都及格为考试通过.假设某应聘者这三门指定课程考试及格的概率分别是a ,
b ,
c ,且三门课程考试是否及格相互之间没有影响.
(1)若应聘者这三门指定课程考试及格的概率都为0.6,则用方案一和方案二时考试通过的概率分别为多少?
(2)如果你是应聘者,你会选择哪种方案?说明理由.
变式2-2.某网络科技公司在年终总结大会上,为增添喜悦、和谐的气氛,设计了闯
关游戏这一环节,闯关游戏必须闯过若干关口才能成功.其中第一关是答题,分别设
置“文史常识题”“生活常识题”“影视艺术常识题”这3道题目,规定有两种答题方案:
方案一:答题3道,至少有两道答对;
方案二:在这3道题目中,随机选取2道,这2道都答对.
方案一和方案二中只要完成一个,就能通过第一关.假设程序员甲和程序员乙答对这3道题中每一道题的概率都是()()0,1p p ∈,且这3道题是否答对相互之间没有影响.程序员甲选择了方案一,程序员乙选择了方案二.
(1)求甲和乙各自通过第一关的概率;
(2)设甲和乙中通过第一关的人数为ξ,是否存在唯一的p 的值0p ,使得()1E ξ=?并说明理由.
变式2-3.为了推进产业转型升级,加强自主创新,发展高端创造、智能制造,把我国制造业和实体经济搞上去,推动我国经济由量大转向质强,许多企业致力于提升信息化管理水平,一些中小型工厂的规模不大,在选择管理软件时都要进行调查统计.某一小型工厂自己没有管理软件的高级技术员,欲购买管理软件服务公司的管理软件,并让其提供服务.某一管理软件服务公司有如下两种收费方案:
方案一:管理软件服务公司每月收取工厂4800元,对于提供的软件服务每次另外收费200元;
方案二:管理软件服务公司每月收取工厂7600元,若每月提供的软件服务不超过15次,不另外收费;若超过15次,超过部分的软件服务每次另
外收费500元.
(1)设管理软件服务公司月收费为y 元,每月提供的软件服务的次
数为x ,试写出两种方案中y 与x 的函数关系式;
(2)该工厂对该管理软件服务公司为另一个工厂过去20个月提供
的软件服务的次数进行了统计,得到如图所示的条形统计图.依
据条形统计图中的数据,把频率视为概率,从节约成本的角度考
虑,该工厂选择哪种方案更合适,请说明理由.
巩固练习