计算方法实验报告4

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算方法实验报告(四)

(一)线性方程的迭代解法

一、实验问题

利用简单迭代法,两种加速技术,牛顿法,改进牛顿法,弦割法求解习题5-1,5-2,5-3中的一题,并尽可能准确。

选取5-3:求在x=1.5附近的根。

二、问题的分析(描述算法的步骤等)

(1)简单迭代法算法:

给定初始近似值,求的解。

Step 1 令i=0;

Step 2 令(计算);

Step 3 如果,则迭代终止,否则重复Step 2。

(2)Aitken加速法算法

Step 1 令k=0,利用简单迭代算法得到迭代序列;

Step 2 令-(计算得到一个新的序列,其中k=0,1,2…);Step 3 如果,则迭代终止,否则重复Step 2。

(3)插值加速法算法

Step 1 令k=0,利用简单迭代算法得到迭代序列;

Step 2 令+(计算得到一个新的序列,其中k=1,2,3…);

Step 3 如果,则迭代终止,否则重复Step 2。

(4)牛顿法算法

Step 1给定初始近似值;

Step 2令,其中k计算得到的序列;

Step 3如果,则迭代终止,否则重复Step 2。

(5)改进牛顿法的算法

Step 1给定初始近似值;

Step 2令,其中k迭代计算得到的序列;

Step 3如果,则迭代终止,否则重复Step 2。

(6)弦割法算法(双点弦割法)

Step 1给定初始近似值,;

Step 2令其中k计算得到的序列;

Step 3如果,则迭代终止,否则重复Step 2。

三、程序设计

(1)简单迭代法

利用迭代公式进行迭代运算。

#include

#include

#include

double fun(double x)

{

double c=1+x*x;

returnpow(c,1/3.0);

}

void main()

{

double x=1.5;

double y=0;

double D=1;

double e=0.001;

while(D>e)

{

D=0;

y=fun(x);

if(fabs(y-x)>=D)

{

D=fabs(y-x);

}

x=y;

}

cout<

}

(2) )Aitken加速法源程序如下:x1=1.5;

eps=0.0001;

y1=(1+x1^2)^(1/3);

z1=(1+y1^2)^(1/3);

x=z1-(z1-y1)^2/(z1-2*y1+x1); while eps

x=x2;

x1=y1;

y1=(1+x1^2)^(1/3);

z1=(1+y1^2)^(1/3);

x2=z1-(z1-y1)^2/(z1-2*y1+x1); n=n+1;

end

fprintf('迭代次数 n=%.0f\n',n); fprintf('x2=%.5f\n',x2)

(3)插值加速法源程序如下:

x1=0;

x2=1.5;

eps=0.0000001;

y1=0;

z1=0;

n=0;

while eps

x1=x2;

y1=(1+x1^2)^(1/3);

z1=(1+y1^2)^(1/3);

x2=z1+(z1-y1)^2/(z1-2*y1+x1); n=n+1;

end

fprintf('迭代次数 n=%.0f\n',n);

fprintf('x2=%.5f\n',x2)

(4)牛顿法:

利用公式进行迭代运算

程序设计如下:

#include

#include

double fun(double x)

{

double a=2*pow(x,3.0)-pow(x,2.0)+1; double b=3*pow(x,2.0)-2*x;

return a/b;

}

void main()

{

double x=1.5;

double y=0;

double D=1;

double e=0.001;

double f=0;

while(D>e)

{

D=0;

y=fun(x);

if(fabs(y-x)>=D)

{

D=fabs(y-x);

}

x=y;

f++;

}

cout<

cout<<"f="<

}

(5)运用改进牛顿法:

迭代公式:

程序代码如下:

#include

#include

double fun(double x)

{

double a=2*pow(x,3.0)-pow(x,2.0)+1; double b=3*pow(x,2.0)-2*x;

相关文档
最新文档