2019-2020年高考数学压轴题集锦——导数与其应用(五)
精编新版2019高考数学《导数及其应用》专题完整考题(含标准答案)
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设函数()()2,,f x ax bx c a b c R =++∈.若1x =-为函数()xf x e 的一个极值点,则下列图象不可能为()y f x =的图象是( )(2011浙江文10)2.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .12- D .2-(2008全国1理)D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==---- 二、填空题3.设二次函数f (x )=ax 2+bx +c (a ,b ,c 为常数)的导函数为f′(x ).对任意x ∈R ,不等式f (x )≥f′(x )恒成立,则b 2a 2+c 2的最大值为 ▲ .4.已知函数f (x )=e x -ax 在区间(0,1)上有极值,则实数a 的取值范围是 ▲ . 5.已知曲线y=x 2 (x >0)在点P 处切线恰好与圆C :x 2+(y+1)2=1相切,则点P 的坐标为 (,6) .(3分)6. 如图,函数()y f x =的图像在点P 处的切线是l ,则(2)(2)f f '+= 。
xyO(2,0)P()y f x =()y f x '=1 (第10题7.函数y =x 3-3x 2+1的单调递减区间为 ▲ . 8. 函数21ln 2y x x =-的单调递减区间为 __________________. 9.关于x 的不等式(21)ln 0ax x -≥对任意(0,)x ∈+∞恒成立,则实数a 的值为_____. 10.若函数32()4f x x x ax =+--在区间()1,1-恰有一个极值点,则实数a 的取值范围为 。
2020高考数学《导数压轴题》
2020高考数学《导数压轴题》1.已知函数 $f(x)=e^x(1+aln x)$,设 $f'(x)$ 为 $f(x)$ 的导函数。
1) 设 $g(x)=e^xf(x)+x^2-x$ 在区间 $[1,2]$ 上单调递增,求 $a$ 的取值范围;2) 若 $a>2$ 时,函数 $f(x)$ 的零点为 $x$,函数$f'(x)$ 的极小值点为 $x_1$,求证:$x>x_1$。
2.设函数 $f(x)=\frac{x^2-2x+3}{x-1}$,$x\in R$。
1) 求证:当 $x\ge 1$ 时,$f(x)\ge 2$ 恒成立;2) 讨论关于 $x$ 的方程 $f(x)=k$ 的根的个数。
3.已知函数 $f(x)=-x^2+ax+a-e^{-x}+1$,$a\in R$。
1) 当 $a=1$ 时,判断 $g(x)=e^xf(x)$ 的单调性;2) 若函数 $f(x)$ 无零点,求 $a$ 的取值范围。
4.已知函数 $f(x)=\frac{ax+b}{x-1}$,$x\in R$。
1) 求函数 $f(x)$ 的单调区间;2) 若存在 $f(f(x))=x$,求整数 $a$ 的最小值。
5.已知函数 $f(x)=e^{-ln x+ax}$,$a\in R$。
1) 当 $a=-e+1$ 时,求函数 $f(x)$ 的单调区间;2) 当 $a\ge -1$ 时,求证:$f(x)>0$。
6.已知函数 $f(x)=e^x-x^2-ax-1$。
1) 若函数 $f(x)$ 在定义域内单调递增,求实数 $a$ 的范围;2) 设函数 $g(x)=xf(x)-e^x+x^3+x$,若 $g(x)$ 至多有一个极值点,求 $a$ 的取值集合。
7.已知函数 $f(x)=x-1-ln x-a(x-1)^2$,$a\in R$。
1) 讨论函数 $f(x)$ 的单调性;2) 若对 $\forall x\in (0,+\infty)$,$f(x)\ge 0$,求实数$a$ 的取值范围。
2020高考数学《导数压轴题》
导数压轴一.解答题(共20小题)1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数.(1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围;(2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1.2.设.(1)求证:当x≥1时,f(x)≥0恒成立;(2)讨论关于x的方程根的个数.3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).(1)当a=1时,判断g(x)=e x f(x)的单调性;(2)若函数f(x)无零点,求a的取值范围.4.已知函数.(1)求函数f(x)的单调区间;(2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间;(Ⅱ)当a≥﹣1时,求证:f(x)>0.6.已知函数f(x)=e x﹣x2﹣ax﹣1.(Ⅰ)若f(x)在定义域内单调递增,求实数a的范围;(Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).(1)讨论函数f(x)的单调性;(2)若对∀x∈(0,+∞),f(x)≥0,求实数a的取值范围.8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=.(Ⅰ)若0是函数f(x)的好点,求a;(Ⅱ)若函数f(x)不存在好点,求a的取值范围.9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).(1)讨论函数f(x)的单调性;(2)若a为整数,函数f(x)恰好有两个零点,求a的值.10.已知函数f(x)=xlnx﹣ax2,a∈R.(1)若函数f(x)存在单调增区间,求实数a的取值范围;(2)若x1,x2为函数f(x)的两个不同极值点,证明x12x2>e﹣1.11.已知函数f(x)=x3﹣a(x+1)2,(1)讨论函数f(x)的单调区间;(2)若函数f(x)只有一个零点,求实数a的取值范围.12.已知函数.(1)当0<m<2时,证明:f(x)只有1个零点;(2)证明:曲线f(x)没有经过原点的切线.13.已知函数f(x)=4lnx+x2﹣2mx(m∈R).(1)求函数f(x)的单调区间;(2)若直线l为曲线的切线,求证:直线l与曲线不可能有2个切点.14.已知函数f(x)=(x+1)e x++2ax,a∈R(1)讨论f(x)极值点的个数(2)若x0(x0≠﹣2)是f(x)的一个极值点,且f(﹣2)>e﹣2,证明:f(x0)≤1.15.己知函数f(x)=(x﹣a)2e x+b在x=0处的切线方程为x+y﹣1=0,函数g(x)=x ﹣k(lnx﹣1).(1)求函数f(x)的解析式;(2)求函数g(x)的极值;(3)设F(x)=min{f(x),g(x)}(min{p,q}表示p,q中的最小值),若F(x)在(0,+∞)上恰有三个零点,求实数k的取值范围.16.已知函数,且y=x﹣1是曲线y=f(x)的切线.(1)求实数a的值以及切点坐标;(2)求证:g(x)≥f(x).17.已知函数f(x)=x2﹣x﹣alnx,a∈R.(1)若不等式f(x)<0无解,求a的值;(2)若函数f(x)存在两个极值点x1、x2,且x1<x2,当恒成立时,求实数m的最小值.18.设a,b∈R,已知函数f(x)=alnx+x2+bx存在极大值.(Ⅰ)若a=1,求b的取值范围;(Ⅱ)求a的最大值,使得对于b的一切可能值,f(x)的极大值恒小于0.19.已知函数f(x)=x﹣1nx(1)求函数f(x)的极值;(2)设函数g(x)=xf(x).若存在区间[m,n]⊆[,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],求实数k的取值范围.20.已知a≠0,函数,且曲线y=f(x)在x=1处的切线与直线x+2y+1=0垂直.(Ⅰ)求函数在区间(0,+∞)上的极大值;(Ⅱ)求证:当x∈(0,+∞)时,导数压轴参考答案与试题解析一.解答题(共20小题)1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数.(1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围;(2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1.【解答】(1)解:依题意,g(x)=e﹣x f(x)+x2﹣x=1+alnx+x2﹣x,x>0.故,x>0.∵g(x)在[1,2]上单调递增,∴g'(x)≥0在[1,2]上恒成立,故,即a≥x(1﹣2x)在[1,2]上恒成立,根据二次函数的知识,可知:x(1﹣2x)在[1,2]上的最大值为﹣1.∴a的取值范围为[﹣1,+∞).(2)证明:由题意,f′(x)=e x(1+lnx+),x>0,a>2.设h(x)=f′(x)=e x(1+lnx+),x>0,a>2.则h′(x)=e x(1+alnx+﹣).再设H(x)=1+alnx+﹣,则H′(x)=﹣+=.∵当x>0时,y=x2﹣2x+2=(x﹣1)2+1>0恒成立,∴当x>0时,H′(x)>0恒成立.∴H(x)在(0,+∞)上单调递增.又∵当a>2时,H(1)=1+a>0,H()=1﹣aln2<0,∴根据H(x)的单调性及零点定理,可知:存在一点x2∈(,1),使得H(x2)=0.∴f′(x)在(0,x2)上单调递减,在(x2,+∞)上单调递增,在x=x2处取得极小值.∴x2=x1.即且H(x1)=0,即1+alnx1+﹣=0,即…①又∵f(x)的零点为x0,故f(x0)=0,即,即alnx0=﹣1…②由①②,得,则,又,故,即lnx0﹣lnx1>0,∴x0>x1.故得证.2.设.(1)求证:当x≥1时,f(x)≥0恒成立;(2)讨论关于x的方程根的个数.【解答】解:(1)证明:的定义域为(0,+∞).∵,∴f(x)在[1,+∞)上是单调递增函数,∴f(x)≥f(1)=0对于x∈[1,+∞)恒成立.故当x≥1时,f(x)≥0恒成立得证.(2)化简方程得2lnx=x3﹣2ex2+tx.注意到x>0,则方程可变为.令,则.当x∈(0,e)时,L′(x)>0,∴L(x)在(0,e)上为增函数;当x∈(e,+∞)时,L′(x)<0,∴L(x)在(e,+∞)上为减函数.当x=e时,.函数在同一坐标系内的大致图象如图所示:由图象可知,①当时,即时,方程无实根;②当时,即时,方程有一个实根;③当时,即时,方程有两个实根.3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).(1)当a=1时,判断g(x)=e x f(x)的单调性;(2)若函数f(x)无零点,求a的取值范围.【解答】解:(1)当a=1时,g(x)=e x f(x)=e x(﹣x2+x+1﹣e﹣x+1)=(﹣x2+x+1)e x﹣e,g′(x)=(﹣2x+1)e x+(﹣x2+x+1)e x=﹣e x(x﹣1)(x+2),∴当x∈(﹣∞,﹣2)∪(1,+∞)时,g′(x)<0,故g(x)在(﹣∞,﹣2),(1,+∞)单调递减;当x∈(﹣2,1)时,g′(x)>0,故g(x)在(﹣2,1)单调递增;(2)函数f(x)=﹣x2+ax+a﹣e﹣x+1,∴f′(x)=﹣2x+a+e﹣x+1,设h(x)=﹣2x+a+e﹣x+1,∴h′(x)=﹣2﹣e﹣x+1<0恒成立,∴h(x)在(﹣∞,+∞)上单调递减,∴存在x0∈R,使得h(x0)=0,∴当x∈(﹣∞,x0)时,h(x)=f′(x)>0,函数f(x)单调递增,∴当x∈(x0,+∞)时,h(x)=f′(x)<0,函数f(x)单调递减,∴f(x)max=f(x0)=﹣x02+ax0+a﹣,∵函数f(x)无零点,∴f(x)max=f(x0)=﹣x02+ax0+a﹣<0在R上恒成立,又∵h(x0)=﹣2x0+a+=0,即=2x0﹣a.∴f(x)max=f(x0)=﹣x02+(a﹣2)x0+2a<0在R上恒成立,∴△=(a﹣2)2﹣4•2a=a2﹣12a+4<0,解得6﹣4<a<6+4.∴a的取值范围为(6﹣4,6+4).4.已知函数.(1)求函数f(x)的单调区间;(2)若存在成立,求整数a的最小值.【解答】解:(1)由题意可知,x>0,,方程﹣x2+x﹣a=0对应的△=1﹣4a,当△=1﹣4a≤0,即时,当x∈(0,+∞)时,f'(x)≤0,∴f(x)在(0,+∞)上单调递减;…(2分)当时,方程﹣x2+x﹣a=0的两根为,且,此时,f(x)在上f'(x)>0,函数f(x)单调递增,在上f'(x)<0,函数f(x)单调递减;…(4分)当a≤0时,,,此时当,f(x)单调递增,当时,f'(x)<0,f(x)单调递减;…(6分)综上:当a≤0时,,f(x)单调递增,当时,f(x)单调递减;当时,f(x)在上单调递增,在上单调递减;当时,f(x)在(0,+∞)上单调递减;…(7分)(2)原式等价于(x﹣1)a>xlnx+2x﹣1,即存在x>1,使成立.设,x>1,则,…(9分)设h(x)=x﹣lnx﹣2,则,∴h(x)在(1,+∞)上单调递增.又h(3)=3﹣ln3﹣2=1﹣ln3<0,h(4)=4﹣ln4﹣2=2﹣2ln2>0,根据零点存在性定理,可知h(x)在(1,+∞)上有唯一零点,设该零点为x0,则x0∈(3,4),且h(x0)=x0﹣lnx0﹣2=0,即x0﹣2=lnx0,∴…(11分)由题意可知a>x0+1,又x0∈(3,4),a∈Z,∴a的最小值为5.…(12分)5.已知函数f(x)=e x﹣lnx+ax(a∈R).(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间;(Ⅱ)当a≥﹣1时,求证:f(x)>0.【解答】(Ⅰ)解:f(x)=e x﹣lnx+(﹣e+1)x;令,得x=1;当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增;(Ⅱ)证明:当a=﹣1时,f(x)=e x﹣lnx﹣x(x>0);令,则;∴h(x)在(0,+∞)上单调递增;又,h(1)=e﹣2>0;∴∃,使得,即;∴函数f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增;∴函数f(x)的最小值为;又函数是单调减函数;∴f(x0)>1+1﹣ln1﹣1=1>0,即e x﹣lnx﹣x>0恒成立;又e x>x>lnx;∴e x﹣lnx>0;又a≥﹣1,x>0;∴ax≥﹣x;∴f(x)=e x﹣lnx+ax≥e x﹣lnx﹣x>0,得证.6.已知函数f(x)=e x﹣x2﹣ax﹣1.(Ⅰ)若f(x)在定义域内单调递增,求实数a的范围;(Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.【解答】解:(1)由条件得,f'(x)=e x﹣2x﹣a≥0,得a≤e x﹣2x,令h(x)=e x﹣2x,h'(x)=e x﹣2=0.得x=ln2,当x<ln2时,h'(x)<0,当x>ln2时,h'(x)>0.故当x=ln2时,h(x)min=h(ln2)=2﹣2ln2.∴a≤2﹣2ln2.(2)g(x)=xe x﹣ax2﹣e x,g'(x)=x(e x﹣2a).当a≤0时,由x>0,g'(x)>0且x<0,g'(x)<0,故0是g(x)唯一的极小值点;令g'(x)=0得x1=0,x2=ln(2a).当a=时,x1=x2,g'(x)≥0恒成立,g(x)无极值点.故a∈.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).(1)讨论函数f(x)的单调性;(2)若对∀x∈(0,+∞),f(x)≥0,求实数a的取值范围.【解答】解:(1)由题意知,f(x)的定义域为(0,+∞),由函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R)得f'(x)=1﹣﹣2a(x﹣1)=;①当a≤0时,令f'(x)>0,可得x>1,令f'(x)<0,可得0<x<1;故函数f(x)的增区间为(1,+∞),减区间为(0,1).②当0<a<时,,令f'(x)>0,可得,令f'(x)<0,可得0<x <1或x>,故f(x)的增区间为(1,),减区间为(0,1),();③当a=时,f'(x)=≤0,故函数f(x)的减区间为(0,+∞);④当a>时,0<<1,令f'(x)>0,可得;令f'(x)<0,可得或x>1.故f(x)的增区间为(),减区间为(0,),(1,+∞).综上所述:当a≤0时,f(x)在(0,1)上为减函数,在(1,+∞)上为增函数;当0<a<时,f(x)在(0,1),()上为减函数,在(1,)上为增函数;当a=时,f(x)在(0,+∞)上为减函数;当a>时,f(x)在(0,),(1,+∞)上为减函数.在(,1)上为增函数.(2)由(1)可知:①当a≤0时,f(x)min=f(1)=0,此时,f(x)≥0;②当0<a<时,f(1)=0,当x∈(,+∞)时,lnx>0,ax>a+1,可得f(x)=x﹣1﹣lnx﹣a(x﹣1)2<x﹣1﹣a(x﹣1)2=(x﹣1)(a+1﹣ax)<0,不合题意;③当a=时,f(1)=0,由f(x)的单调性可知,当x∈(1,+∞)时,f(x)<0,不合题意;④当a>时,f(1)=0,由f(x)的单调性可知,当x∈(,1)时,f(x)<0,不合题意.综上可知:所求实数a的取值范围为:(﹣∞,0].8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=.(Ⅰ)若0是函数f(x)的好点,求a;(Ⅱ)若函数f(x)不存在好点,求a的取值范围.【解答】(Ⅰ)解:f′(x)=e2x﹣ae x﹣(a2﹣1)x;由f′(x)=x,得e2x﹣ae x﹣(a2﹣1)x=x,即e2x﹣ae x﹣a2x=0;∵0是函数f(x)得好点;∴1﹣a=0,∴a=1;(Ⅱ)解:令g(x)=e2x﹣ae x﹣a2x,问题转化为讨论函数g(x)的零点问题;∵当x→﹣∞时,g(x)→+∞,若函数f(x)不存在好点,等价于g(x)没有零点,即g(x)的最小值大于零;g′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a);①若a=0,则g(x)=e2x>0,g(x)无零点,f(x)无好点;②若a>0,则由g′(x)=0得x=lna;易知;当且仅当﹣a2lna>0,即0<a<1时,g(x)>0;∴g(x)无零点,f(x)无好点;③若a<0,则由g′(x)=0得;故;当且仅当,即时,g(x)>0;∴g(x)无零点,f(x)无好点;综上,a的取值范围是.9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).(1)讨论函数f(x)的单调性;(2)若a为整数,函数f(x)恰好有两个零点,求a的值.【解答】解(1)由题意x>0,f′(x)==①若a≥0,对x>0,f′(x)>0恒成立,f(x)在(0,+∞)单调递增;②若a<0,则﹣>0,当0<x<﹣时,f′(x)>0,x>时,f′(x)<0,所以f(x)在(0,﹣)单调递增,在(﹣,+∞)单调递减,(2)由(1)知,若函数f(x)恰好有两个零点,则a<0,且f(x)在x=处有极大值,也是最大值;f(x)max=f()>0,∵f()=ln(﹣)+a(﹣)2+(a+2)(﹣)+2=ln(﹣)+(﹣)+1,又∵a为整数且a<0,∴当a=﹣1时,且f(x)max=f()=0+2=2>0,当a=﹣2时,且f(x)max=f()=>0,当a=﹣3时,且f(x)max=f()=ln+1>0,当a=﹣4时,且f(x)max=f()=<0,故a的值为:﹣1,﹣2,﹣3.10.已知函数f(x)=xlnx﹣ax2,a∈R.(1)若函数f(x)存在单调增区间,求实数a的取值范围;(2)若x1,x2为函数f(x)的两个不同极值点,证明x12x2>e﹣1.【解答】解:(1)∵函数f(x)=xlnx﹣ax2,a∈R.∴f′(x)=lnx+1﹣2ax,∵函数f(x)存在单调增区间∴只需f'(x)=1+lnx﹣2ax>0有解;即有解.令g(x)=,g′(x)=,当x∈(0,1)时g′(x)>0当x∈(1,+∞)时g′(x)<0当x=1时g(x)有最大值,g(1)=1.故2a<g(1)=1∴a时,函数f(x)存在增区间.证明:(2)要证明>e﹣1,即证明2lnx1+lnx2>﹣1,∵f′(x)=1+lnx﹣2ax,∴x1,x2是方程lnx=2ax﹣1的两个根,即,lnx1=2ax1﹣1 ①,lnx2=2ax2﹣1 ②,即证明2a(2x1+x2)>2.∵①﹣②,得:2a=,即证(2x1+x2)>2,不妨设x1>x2,则t=>1,则证(2t+1)>2,∴lnt﹣>0,设g(t)=lnt﹣,则g′(t)═﹣=;∵t>1∴4(t+)2﹣6>4(1+)2﹣6=3>0,∴g'(x)>0;∴g(t)在(1,+∞)单调递增,g(t)>g(1)=0,故>e﹣1.11.已知函数f(x)=x3﹣a(x+1)2,(1)讨论函数f(x)的单调区间;(2)若函数f(x)只有一个零点,求实数a的取值范围.【解答】解(1)函数的定义域为R,f'(x)=x2﹣2a(x+1)=x2﹣2ax﹣2a,△=4a2+8a=4a(a+2),1)△≤0时,﹣2≤a≤0时,f'(x)≥0,∴f(x)在R上递增…(1分)2)当△>0时,即a<﹣2或a>0时,令f'(x)=0,∴x2﹣2ax﹣2a=0,解得,;∴f(x)在(﹣∞,a﹣)递增,递减,递增;(2)由(1)知①△≤0时,﹣2≤a≤0时,当f(x)在R上递增.f(﹣1)=<0,f(1)=﹣4a>0;∴存在唯一零点x0∈(﹣1,1);②当a<﹣2或a>0时,1)a<﹣2时,∵=a+<a+|a+1|;∵a<﹣2,∴a+|a+1|=﹣1,即,x2<﹣1,∴x1<x2<﹣1;∵f(﹣1)=<0,f(0)=﹣a>0,∴存在零点x0∈(﹣1,0).又∵f(x)在(﹣∞,x1)递增,(x1,x2)递减,(x2,+∞)递增;∴f(x)在x=x1处有极大值,∴f(x1)<0,,(*)又∵,将a(x1+1)=代入(*)得;,得,∴x1>﹣3,且x1≠0;∴﹣3<x1<﹣1,即﹣3<a﹣<﹣1;,解得;2)当a>0时,∵x1•x2=﹣2a<0,∴x1<0<x2;当x∈(﹣∞,0)时,又∵,﹣a(x+1)2<0,∴f(x)=,又∵f(x)在(﹣∞,x1)递增,(x1,x2)递减,(x2,+∞)递增;∵f(0)=﹣a<0,∴f(x2)<f(0)<0,又∵3a+2>2,而f(3a+2)==3a+>0,∴存在零点x0∈(x2,3a+2);综上,a∈().12.已知函数.(1)当0<m<2时,证明:f(x)只有1个零点;(2)证明:曲线f(x)没有经过原点的切线.【解答】(1)证明:f(x)的定义域为(0,+∞);;令g(x)=x2﹣mx+1,则△=m2﹣4;∵0<m<2;∴△<0;∴g(x)>0在x∈(0,+∞)上恒成立;∴f(x)在(0,+∞)上单调递增;∴f(x)至多有一个零点;∵;∴当0<x<2m且x<1时,f(x)<0;当x>2m且x>1时,f(x)>0;∴f(x)有一个零点;∴当0<m<2时,f(x)只有一个零点;(x>0)处的切线经过原点,则有;(2)证明:假设曲线y=f(x)在点(x,f(x))即,化简得;令,则;令h′(x)=0,解得x=1;当0<x<1时,h′(x)<0,h(x)单调递减;当x>1时,h′(x)>0,h(x)单调递增;∴;∴与矛盾;∴曲线y=f(x)没有经过原点的切线.13.已知函数f(x)=4lnx+x2﹣2mx(m∈R).(1)求函数f(x)的单调区间;(2)若直线l为曲线的切线,求证:直线l与曲线不可能有2个切点.【解答】解:(1)由题意,,令y=x2﹣mx+2,则△=m2﹣8,①若,则△≤0,则f'(x)≥0,故函数f(x)在(0,+∞)上单调递增;②若或,y=x2﹣mx+2有两个零点x1,x2,则x1x2=2>0,其中,;(i)若,则x1<0,x2<0,此时f'(x)>0,故函数f(x)在(0,+∞)上单调递增;(ii)若,则x1>0,x2>0,此时当x∈(0,x1)时,f'(x)>0,当x∈(x1,x2)时,f'(x)<0,当x∈(x2,+∞)时,f'(x)>0,故函数f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减;综上所述,可知:①当时,函数f(x)在(0,+∞)上单调递增;②当时,函数f(x)在(0,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.(2)证明:(反证法)假设存在一条直线与函数的图象有两个不同的切点T1(x1,y1),T2(x2,y2),不妨令0<x1<x2,则T1处切线l1的方程为:,T2处切线l2的方程为:.∵切线l1,l2为同一直线,所以有.即,整理得.消去x2得,.①令,由0<x1<x2与x1x2=2,得t∈(0,1),记,则,所以p(t)为(0,1)上的单调减函数,所以p(t)>p(1)=0.从而①式不可能成立,所以假设不成立,即若直线l为曲线的切线,则直线l与曲线不可能有2个切点.14.已知函数f(x)=(x+1)e x++2ax,a∈R(1)讨论f(x)极值点的个数(2)若x0(x0≠﹣2)是f(x)的一个极值点,且f(﹣2)>e﹣2,证明:f(x0)≤1.【解答】(1)解:f(x)的定义域为R,f′(x)=(x+2)(e x+a);若a≥0,则e x+a>0;∴当x∈(﹣∞,﹣2)时,f′(x)<0,f(x)单调递减;当x∈(﹣2,+∞)时,f′(x)>0,f(x)单调递增;∴x=﹣2是f(x)唯一的极小值点,无极大值点,故此时f(x)有1个极值点;若a<0,令f′(x)=(x+2)(e x+a)=0,则x1=﹣2,x2=ln(﹣a);当a<﹣e﹣2时,x1<x2,可知当x∈(﹣∞,x1)∪(x2.+∞)时,f′(x)>0;当x∈(x1,x2)时,f′(x)<0;∴x1,x2分别是f(x)的极大值点和极小值点,故此时f(x)有2个极值点;当a=﹣e﹣2时,x1=x2,f′(x)≥0,此时f(x)在R上单调递增,无极值点;当﹣e﹣2<a<0时,x1>x2,同理可知,f(x)有2个极值点;综上,当a=﹣e﹣2时,f(x)无极值点;当a≥0时,f(x)有1个极值点;当a<﹣e﹣2或﹣e﹣2<a<0时,f(x)有2个极值点.(2)证明:若x0(x0≠﹣2)是f(x)的一个极值点,由(1)知a∈(﹣∞,﹣e﹣2)∪(﹣e﹣2,0);又f(﹣2)=﹣e﹣2﹣2a>e﹣2;∴a∈(﹣∞,﹣e﹣2);则x0=ln(﹣a);∴;令t=ln(﹣a)∈(﹣2,+∞),则a=﹣e t;∴;∴;又∵t∈(﹣2,+∞);∴t+4>0;令g′(t)=0,得t=0;当t∈(﹣2,0)时,g′(t)>0,g(t)单调递增;当t∈(0,+∞)时,g′(t)<0,g(t)单调递减;∴t=0是g(t)唯一得极大值点,也是最大值点,即g(t)≤g(0)=1;∴f[ln(﹣a)]≤1,即f(x0)≤1.15.己知函数f(x)=(x﹣a)2e x+b在x=0处的切线方程为x+y﹣1=0,函数g(x)=x ﹣k(lnx﹣1).(1)求函数f(x)的解析式;(2)求函数g(x)的极值;(3)设F(x)=min{f(x),g(x)}(min{p,q}表示p,q中的最小值),若F(x)在(0,+∞)上恰有三个零点,求实数k的取值范围.【解答】解:(1)f'(x)=[x2+(2﹣2a)x+a2﹣2a]e x,因为f(x)在x=0处的切线方程为x+y﹣1=0,所以,解得,所以f(x)=(x﹣1)2e x.(2)g(x)的定义域为(0,+∞),,①若k≤0时,则g'(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)上单调递增,无极值.②若k>0时,则当0<x<k时,g'(x)<0,g(x)在(0,k)上单调递减;当x>k时,g'(x)>0,g(x)在(k,+∞)上单调递增;所以当x=k时,g(x)有极小值2k﹣klnk,无极大值.(3)因为f(x)=0仅有一个零点1,且f(x)≥0恒成立,所以g(x)在(0,+∞)上有仅两个不等于1的零点.①当k≤0时,由(2)知,g(x)在(0,+∞)上单调递增,g(x)在(0,+∞)上至多一个零点,不合题意,舍去,②当0<k<e2时,g(x)min=g(k)=k(2﹣lnk)>0,g(x)在(0,+∞)无零点,③当k=e2时,g(x)≥0,当且仅当x=e2等号成立,g(x)在(0,+∞)仅一个零点,④当k>e2时,g(k)=k(2﹣lnk)<0,g(e)=e>0,所以g(k)•g(e)<0,又g(x)图象不间断,g(x)在(0,k)上单调递减,故存在x1∈(e,k),使g(x1)=0,又g(k2)=k(k﹣2lnk+1),下面证明,当x>e2时,h(x)=x﹣2lnx+1>0>0,h(x)在(e2,+∞)上单调递增h(x)>h(e2)=e2﹣3>0,所以g(k2)=k•(k﹣2lnk+1)>0,g(k)•g(k2)<0,又g(x)图象在(0,+∞)上不间断,g(x)在(k,+∞)上单调递增,故存在,使g(x2)=0,综上可知,满足题意的k的范围是(e2,+∞).16.已知函数,且y=x﹣1是曲线y=f(x)的切线.(1)求实数a的值以及切点坐标;(2)求证:g(x)≥f(x).【解答】解:(1)设切点为(x0,),则切线为y﹣=(x﹣x0),即y=x+;所以,消去a得:x0﹣1+lnx0﹣2x0lnx0=0,记m(t)=t﹣1+lnt﹣2tlnt(t>0),则m′(t)=,显然m′(t)单调递减,且m′(1)=0,所以t∈(0,1)时,m′(t)>0,m(t)单调递增,t∈(1,+∞)时,m′(t)<0,m(t)单调递减,故m(t)当且仅当t=1时取到最大值,又m(1)=0,所以方程x0﹣1+lnx0﹣2x0lnx0=0有唯一解x0=1,此时a=1,所以a=1,切点为(1,0).(2)证明:由(1)得f(x)=,g(x)=e x﹣1﹣1,记F(x)=e x﹣1﹣x(x>0),则F′(x)=e x﹣1﹣1,当x∈(1,+∞)时,F′(x)>0,F(x)单调递增;当x∈(0,1)时,F′(x)<0,F(x)单调递减,所以F(x)≥F(1)=1﹣1=0,所以e x﹣1≥x,即g(x)≥x﹣1①,记G(x)=x2﹣x﹣lnx(x>0),则G′(x)=2x﹣1﹣==,所以x∈(0,1)时,G′(x)<0,G(x)单调递减,x∈(1,+∞)时,G′(x)>0,G(x)单调递增,所以G(x)≥G(1)=0,即x2﹣x≥lnx,所以x﹣1≥,即x﹣1≥f(x)②,由①②得g(x)≥f(x).17.已知函数f(x)=x2﹣x﹣alnx,a∈R.(1)若不等式f(x)<0无解,求a的值;(2)若函数f(x)存在两个极值点x1、x2,且x1<x2,当恒成立时,求实数m的最小值.【解答】解:(1)f(x)=x2﹣x﹣alnx(x>0),则f'(x)=,f(1)=0,∵不等式f(x)<0无解,∴f(x)极小值=f(1),∴f'(1)=2﹣1﹣a=0,∴a=1;(2)∵函数f(x)存在两个极值点x1、x2,且x1<x2,∴f'(x)在(0,+∞)上有两个不相等的实根,即x1、x2是方程2x2﹣x﹣a=0的两个不相等的正实根,∴,.令,则0<t<1,∴==﹣==,令g(t)=(0<t<1),则g'(t)=,∴g(t)在(0,1)上单调递增,∴g(t)<g(1)=0.∵当恒成立,∴m>g(t)在(0,1)上恒成立,∴m≥g(1)=0,∴实数m的最小值为0.18.设a,b∈R,已知函数f(x)=alnx+x2+bx存在极大值.(Ⅰ)若a=1,求b的取值范围;(Ⅱ)求a的最大值,使得对于b的一切可能值,f(x)的极大值恒小于0.【解答】解:(Ⅰ)当a=1时,f'(x)=(x>0),由f(x)存在极大值,可知方程2x2+bx+1=0有两个不等的正根,∴解得b<﹣2.故b的取值范围是(﹣∞,﹣2).(Ⅱ)f′(x)=(x>0).由f(x)存在极大值,可知方程:2x2+bx+a=0有两个不等的正根,设为x1<x2,由x1x2=>0,可得:0<x1<.可得表格:x(0,x1)x1(x1,x2)x2(x2,+∞)f′(x)+0﹣0+f(x)单调递增极大值单调递减极小值单调递增∴f(x)的极大值为f(x1)=alnx1++bx1.2+bx1+a=0,解得:bx1=﹣2﹣a,∴f(x1)=alnx1﹣﹣a.构造函数:g(x)=alnx﹣x2﹣a.当:0<x<.g′(x)=>0,∴g(x)在(0,]上单调递增.可得:g(x1)<g()=(ln﹣3).当0<a≤2e3时,f(x)极大=f(x1)=g(x1)<g()≤0.当a>2e3时,取b=﹣2(+﹣),即x1=,x2=.此时f(x)极大=f()=﹣e3>0,不符合题意.∴a的最大值为2e3.19.已知函数f(x)=x﹣1nx(1)求函数f(x)的极值;(2)设函数g(x)=xf(x).若存在区间[m,n]⊆[,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],求实数k的取值范围.【解答】解:(1)f(x)=x﹣1nx,(x∈(0,+∞)).f′(x)=1﹣=,可得:x=1时,函数f(x)取得极小值f(1)=1.(2)g(x)=xf(x)=x2﹣xlnx.(x∈[,+∞)).g′(x)=2x﹣lnx﹣1=h(x),h′(x)=2﹣=≥0,∴函数h(x)在x∈[,+∞)上单调递增,h()=1+ln2﹣1=ln2>0.∴g′(x)>0.∴函数g(x)在x∈[,+∞)上单调递增.∴函数g(x)的值域为:[g(m),g(n)].已知函数g(x)在[m,n]上的值域为[k(m+2)﹣2,k(n+2)﹣2],∴m2﹣mlnm=k(m+2)﹣2,n2﹣nlnn=k(n+2)﹣2,≤m<n.令u(x)=x2﹣xlnx﹣k(x+2)+2.x∈[,+∞).则u(x)在x∈[,+∞)存在两个不同的实数根.化为:k=,x∈[,+∞).令u(x)=,x∈[,+∞).u′(x)=.u′(1)=0.令v(x)=x2+3x﹣2lnx﹣4,x∈[,+∞).v′(x)=2x+3﹣=≥0,∴函数v(x)在x∈[,+∞)上单调递增.∴x∈[,1),u′(x)<0;x∈(1,+∞),u′(x)>0.∴x=1时,u(x)取得极小值即最小值,u(1)=1.又u()==.x→+∞时,u(x)→+∞.∴1<k≤时,函数y=k与u(x)的图象有两个交点.∴实数k的取值范围是(1,].20.已知a≠0,函数,且曲线y=f(x)在x=1处的切线与直线x+2y+1=0垂直.(Ⅰ)求函数在区间(0,+∞)上的极大值;(Ⅱ)求证:当x∈(0,+∞)时,【解答】解:(Ⅰ)由题意得直线x+2y+1=0的斜率为﹣,即曲线y=f(x)在x=1处的切线斜率为2,f'(x)=,∴f'(1)=1+a=2,得a=1.∴f(x)=,=,∴g'(x)=,当x=e时,g'(x)=0;当0<x<e时,g'(x)>0,当x>e时,g'(x)<0;∴函数在(0,e)单调递增,在(e,+∞)单调递减,∴g(x)在(0,+∞)上有唯一的极大值g(e)=;(Ⅱ)由题意得≤,即证明,设φ(x)=,φ'(x)=,当0<x<e时,φ'(x)>0,∴函数φ(x)在(0,e)单调递增.当x>e,φ'(x)<0.∴函数在(e,+∞)上单调递减,当x=e时,φ(x)取最大值φ(e)=,即φ(x)≤,再令h(x)=,则h(x)=()≥,∴φ(x)<h(x),即e x f(x)<.。
(集锦)2019-2020年高考数学导数及其应用压轴题
(集锦)2019-2020年高考数学导数及其应用压轴题(打印版,附详解答案)1.已知函数xa x x f +=ln )(.(1)若函数)(x f 有零点,求实数a 的取值范围;(2)证明:当ea 2≥时,x e x f ->)(.2.已知函数2()ln f x x a x =-(a R ∈),()F x bx =(b R ∈).(1)讨论()f x 的单调性;(2)设2a =,()()()g x f x F x =+,若12,x x (120x x <<)是()g x 的两个零点,且1202x x x +=,试问曲线()y g x =在点0x 处的切线能否与x 轴平行?请说明理由.3.已知函数32()f x x mx nx =++(,m n R ∈)(1)若()f x 在1x =处取得极大值,求实数m 的取值范围;(2)若'(1)0f =,且过点(0,1)P 有且只有两条直线与曲线()y f x =相切,求实数m 的值.4.已知函数2()x f x x e =,3()2g x x =.(1)求函数()f x 的单调区间;(2)求证:x R ∀∈,()()f x g x ≥5.已知函数f (x )=xx ln ﹣ax +b 在点(e ,f (e ))处的切线方程为y =﹣ax +2e .(Ⅰ)求实数b 的值;(Ⅱ)若存在x ∈[e ,e 2],满足f (x )≤41+e ,求实数a 的取值范围.6.已知函数21()ln 12f x x ax bx =-++的图像在1x =处的切线l 过点11(,)22.(1)若函数()()(1)(0)g x f x a x a =-->,求()g x 的最大值(用a 表示);(2)若4a =-,121212()()32f x f x x x x x ++++=,证明:1212x x +≥.7.已知函数()ln a f x x x x=+,32()3g x x x =--,a R ∈.(1)当1a =-时,求曲线()y f x =在1x =处的切线方程;(2)若对任意的121,[,2]2x x ∈,都有12()()f x g x ≥成立,求实数a 的取值范围.8.设函数2)(--=ax e x f x (1)求)(x f 的单调区间;(2)若k a ,1=为整数,且当0>x 时,1)(1<'+-x f x x k 恒成立,其中)(x f '为)(x f 的导函数,求k 的最大值.9.设函数2()ln(1)f x x b x =++.(1)若对定义域内的任意x ,都有()(1)f x f ≥成立,求实数b 的值;(2)若函数()f x 的定义域上是单调函数,求实数b 的取值范围;(3)若1b =-,证明对任意的正整数n ,33311111()123n k f k n=<++++∑ .10.已知函数1()(1)ln x f x a e x a a=-+-(0a >且1a ≠),e 为自然对数的底数.(Ⅰ)当a e =时,求函数()y f x =在区间[]0,2x ∈上的最大值;(Ⅱ)若函数()f x 只有一个零点,求a 的值.11.已知函数1()f x x x=-,()2ln g x a x =.(1)当1a ≥-时,求()()()F x f x g x =-的单调递增区间;(2)设()()()h x f x g x =+,且()h x 有两个极值12,x x ,其中11(0,]3x ∈,求12()()h x h x -的最小值.12.已知函数f (x )=ln x +x 2﹣2ax +1(a 为常数).(1)讨论函数f (x )的单调性;(2)若存在x 0∈(0,1],使得对任意的a ∈(﹣2,0],不等式2me a (a +1)+f (x 0)>a 2+2a +4(其中e 为自然对数的底数)都成立,求实数m 的取值范围.13.已知函数f (x )=a x +x 2﹣x ln a (a >0,a ≠1).(1)求函数f (x )在点(0,f (0))处的切线方程;(2)求函数f (x )单调增区间;(3)若存在x 1,x 2∈[﹣1,1],使得|f (x 1)﹣f (x 2)|≥e ﹣1(e 是自然对数的底数),求实数a 的取值范围.14.已知函数1()ln f x x x=-,()g x ax b =+.(1)若函数()()()h x f x g x =-在()0,+∞上单调递增,求实数a 的取值范围;(2)若直线()g x ax b =+是函数1()ln f x x x=-图像的切线,求a b +的最小值;(3)当0b =时,若()f x 与()g x 的图像有两个交点1122(,),(,)A x y B x y ,求证:2122x x e >15.某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m ,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD (AB >AD )为长方形的材料,沿AC 折叠后AB '交DC 于点P ,设△ADP 的面积为2S ,折叠后重合部分△ACP 的面积为1S .(Ⅰ)设AB x =m ,用x 表示图中DP 的长度,并写出x 的取值范围;(Ⅱ)求面积2S 最大时,应怎样设计材料的长和宽?(Ⅲ)求面积()122S S +最大时,应怎样设计材料的长和宽?16.已知()()2ln x f x e x a =++.(1)当1a =时,求()f x 在()0,1处的切线方程;(2)若存在[)00,x ∈+∞,使得()()20002ln f x x a x <++成立,求实数a 的取值范围.17.已知函数()()()2ln 1f x ax x xa R =--∈恰有两个极值点12,x x ,且12x x <.(1)求实数a 的取值范围;(2)若不等式12ln ln 1x x λλ+>+恒成立,求实数λ的取值范围.18.已知函数f (x )=(ln x ﹣k ﹣1)x (k ∈R )(1)当x >1时,求f (x )的单调区间和极值.(2)若对于任意x ∈[e ,e 2],都有f (x )<4ln x 成立,求k 的取值范围.(3)若x 1≠x 2,且f (x 1)=f (x 2),证明:x 1x 2<e 2k .19.已知函数()21e 2x f x a x x =--(a ∈R ).(Ⅰ)若曲线()y f x =在点()()0,0f 处的切线与y 轴垂直,求a 的值;(Ⅱ)若函数()f x 有两个极值点,求a 的取值范围;(Ⅲ)证明:当1x >时,1e ln x x x x>-.20.已知函数()()321233f x x x x b b R =-++Î.(1)当0b =时,求()f x 在[]1,4上的值域;(2)若函数()f x 有三个不同的零点,求b 的取值范围.21.已知函数2ln 21)(2--=x ax x f .(1)当1=a 时,求曲线)(x f 在点))1(,1(f 处的切线方程;(2)讨论函数)(x f 的单调性.22.已知函数1()ln sin f x x x θ=+在[1,]+∞上为增函数,且(0,)θπ∈.(Ⅰ)求函数()f x 在其定义域内的极值;(Ⅱ)若在[1,]e 上至少存在一个0x ,使得0002()e kx f x x ->成立,求实数k 的取值范围.参考答案1.(1)函数x a x x f +=ln )(的定义域为),0(+∞.由x a x x f +=ln )(,得221)(xa x x a x x f -=-='.①当0≤a 时,0)(>'x f 恒成立,函数)(x f 在),0(+∞上单调递增,又+∞→+∞→<=+=)(,,01ln )1(x f x a a f ,所以函数)(x f 在定义域),0(+∞上有1个零点.②当0>a 时,则),0(a x ∈时,),(;0)(+∞∈<'a x x f 时,0)(>'x f .所以函数)(x f 在),0(a 上单调递减,在),(+∞a 上单调递增.当1ln )]([min +==a x f a x .当01ln ≤+a ,即e a 10≤<时,又01ln )1(>=+=a a f ,所以函数)(x f 在定义域),0(+∞上有2个零点.综上所述实数a 的取值范围为]1,(e -∞.另解:函数x a x x f +=ln )(的定义域为),0(+∞.由xa x x f +=ln )(,得x x a ln -=.令x x x g ln )(-=,则)1(ln )(+-='x x g .当)1,0(e x ∈时,0)(>'x g ;当),1(+∞∈e x 时,0)(<'x g .所以函数)(x g 在1,0(e 上单调递增,在),1(+∞e 上单调递减.故e x 1=时,函数)(x g 取得最大值ee e e g 11ln 1)1(=-=.因+∞→+∞→)(,xf x ,两图像有交点得e a 1≤,综上所述实数a 的取值范围为]1,(e -∞.(2)要证明当e a 2≥时,x e x f ->)(,即证明当e a x 2,0≥>时,x e xa x ->+ln ,即x xe a x x ->+ln .令a x x x h +=ln )(,则1ln )(+='x x h .当e x 10<<时,0)(<'x f ;当ex 1>时,0)(>'x f .所以函数)(x h 在)1,0(e 上单调递减,在),1(+∞e 上单调递增.当e x 1=时,a ex h +-=1)]([min .于是,当e a 2≥时,ea e x h 11)(≥+-≥.①令x xe x -=)(ϕ,则)1()(x e xe e x x x x -=-='---ϕ.当10<<x 时,0)(>'x f ;当1>x 时,0)(<'x f .所以函数)(x ϕ在)1,0(上单调递增,在),1(+∞上单调递减.当1=x 时,ex 1)]([min =ϕ.于是,当0>x 时,e x 1)(≤ϕ.②显然,不等式①、②中的等号不能同时成立.故当ea 2≥时,x e x f ->)(.2.(Ⅰ)0,22)(2>-=-='x xa x x a x x f (1)当0≤a 时,0)(>'x f ,)(x f 在()上+∞,0单调递增,(2)当0>a 时,20)(a x x f =='得有⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛>,22,0)(0a a x f a ,单调增区间是的单调减区间是时,所以(Ⅱ)bxx x x g +-=ln 2)(2假设)(x g y =在0x 处的切线能平行于x 轴.∵()0,22)(>+-='x b xx x g 由假设及题意得:0ln 2)(11211=+-=bx x x x g 0ln 2)(22222=+-=bx x x x g 1202x x x += 022)(000=+-='b x x x g ④由-得,()()()0ln ln 221212221=-+---x x b x x x x即0212`12ln2x x x x x b --=由④⑤得,()1121212122222ln 1x x x x x x x x x x --==++令12x t x =,12,01x x t <∴<< .则上式可化为122ln +-=t t t ,设函数()()10122ln <<+--=t t t t t h ,则()()()()011141222>+-=+-='t t t t t t h ,所以函数()122ln +--=t t t t h 在(0,1)上单调递增.于是,当01t <<时,有()()01=<h t h ,即22ln 01t t t --<+与⑥矛盾.所以()y f x =在0x 处的切线不能平行于x 轴.3.(Ⅰ)nmx x x f ++='23)(2()02301=++='n m f 得由.01242>-=∆n m ∴()3032-≠>+m m ,得到①∵()()()32313223)(2++-=+-+='m x x m mx x x f ∴⎪⎭⎫⎝⎛+-==='32110)(m x x x f 或,得由题3,1321-<>⎪⎭⎫⎝⎛+-m m 解得②由①②得3-<m (Ⅱ)()02301=++='n m f 得由所以()m mx x x f 2323)(2+-+='因为过点)1,0(且与曲线)(x f y =相切的直线有且仅有两条,令切点是()00,y x P ,则切线方程为()()000x x x f y y -'=-由切线过点)1,0(,所以有()()0001x x f y -'=-∴()()[]()0020020302323231x m mx x x m mx x -+-+=++--整理得0122030=++mx x .01220300有两个不同的实根的方程所以,关于=++mx x x ()()需有两个零点,则令x h mx x x h 1223++=()mxx x h 262+='所以()3000mx x x h m -==='≠或得,且()03,00=⎪⎭⎫⎝⎛-=m h h 或由题,()03,10=⎪⎭⎫⎝⎛-=m h h 所以又因为0133223=+⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-m m m 所以3-=m 解得,即为所求4.(Ⅰ)()xx e e x xe x f xx x 22)(22+=+='∴()()()上单调递减;在时,0,2,002-<'<<-x f x f x()()()().,02,,002上单调递增和在时,或+∞-∞->'>-<x f x f x x ()()()+∞-∞--,020,2)(,和,,单调递增区间是的单调递减区间是所以x f (Ⅱ)显然0≤x 时有)()(x g x f ≥,只需证0>x 时)()(x g x f ≥,由于02≥x xe x x 20≥>时,只需证()+∞∈-=,0,2)(x x e x h x 令2)(-='x e x h 2ln ,0)(=='x x h 得 ()()02ln ln 22ln 222ln 22ln )(2ln min >-=-=-==∴e e h x h ()恒成立0)(,,0>+∞∈∴x h x 所以当0>x 时,)()(x g x f >.综上R x ∈∀,()()f xg x ≥5.解:(Ⅰ)f (x )=﹣ax+b ,x ∈(0,1)∪(1,+∞),求导,f′(x )=﹣a ,则函数f (x )在点(e ,f (e ))处切线方程y ﹣(e ﹣ex+b )=﹣a (x ﹣e ),即y=﹣ax+e+b ,由函数f (x )在(e ,f (e ))处的切线方程为y=﹣ax+2e ,比较可得b=e ,实数b 的值e ;(Ⅱ)由f (x )≤+e ,即﹣ax+e≤+e ,则a≥﹣在[e ,e 2],上有解,设h (x )=﹣,x ∈[e ,e 2],求导h′(x )=﹣==,令p (x )=lnx ﹣2,()()()()0,,2ln ,0,2ln ,0>'+∞∈<'∈∴x h x x h x ()()()上单调递增上单调递减,在,在+∞∴,2ln 2ln 0x h∴x 在[e ,e 2]时,p′(x )=﹣=<0,则函数p (x )在[e ,e 2]上单调递减,∴p (x )<p (e )=lne ﹣2<0,则h′(x )<0,及h (x )在区间[e ,e 2]单调递减,h (x )≥h (e 2)=﹣=﹣,∴实数a 的取值范围[﹣,+∞].6.(1)由'1()f x ax b x=-+,得'(1)1f a b =-+,l 的方程为1(1)(1)(1)2y a b a b x --++=-+-,又l 过点11(,)22,∴111(1)(1)(1)222a b a b --++=-+-,解得0b =.∵21()()(1)ln (1)12g x f x a x x a x =--=-+-+,∴2'1()(1)1(1)1()1(0)a x x ax a x a g x ax a a x x x--+-+-+=-+-==>,当1(0,x a∈时,'()0g x >,()g x 单调递增;当1(,)x a∈+∞时,'()0g x <,()g x 单调递减.故2max 111111()()ln()(1)1ln 22g x g a a a a a a a a==-+-+=-.(2)证明:∵4a =-,∴2212121211221212()()3ln 21ln 213f x f x x x x x x x x x x x x x ++++=++++++++,212121212ln()2()22x x x x x x x x =++++-+=,∴2121212122()ln()x x x x x x x x +++=-令12(0)x x m m =>,()ln m m m ϕ=-,'1()m m mϕ-=,令'()0m ϕ<得01m <<;令'()0m ϕ>得1m >.∴()m ϕ在(0,1)上递减,在(1,)+∞上递增,∴()(1)1m ϕϕ≥=,∴212122()1x x x x +++≥,120x x +>,解得:1212x x +≥.7.(1)当1a =-时,1()ln f x x x x =-,(1)1f =-,'21()ln 1f x x x=++,'(1)2f =,从而曲线()y f x =在1x =处的切线为2(1)1y x =--,即23y x =-.(2)对任意的121,[,2]2x x ∈,都有12()()f x g x ≥成立,从而min max ()()f x g x ≥对32()3g x x x =--,'2()32(32)g x x x x x =-=-,从而()y g x =在12[,]23递减,2[,2]3递增,max 1()max{(),(2)}12g x g g ==.又(1)f a =,则1a ≥.下面证明当1a ≥时,ln 1a x x x +≥在1[,2]2x ∈恒成立.1()ln ln a f x x x x x x x =+≥+,即证1ln 1x x x +≥.令1()ln h x x x x =+,则'21()ln 1h x x x=+-,'(1)0h =.当1[,1]2x ∈时,'()0h x ≤,当[1,2]x ∈时,'()0h x ≥,从而()y h x =在1[,1]2x ∈递减,[1,2]x ∈递增,min ()(1)1h x h ==,从而1a ≥时,ln 1a x x x +≥在1[,2]2x ∈恒成立.8.(1)函数f (x )=e x -ax -2的定义域是R ,f ′(x )=e x -a ,若a ≤0,则f ′(x )=e x -a ≥0,所以函数f (x )=e x -ax -2在(-∞,+∞)上单调递增若a >0,则当x ∈(-∞,ln a )时,f ′(x )=e x -a <0;当x ∈(ln a ,+∞)时,f ′(x )=e x -a >0;所以,f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)上单调递增(2)由于a=1,1)1)((1)(1'+<--⇔<+-x e x k x f x x k x x e x k e x xx +-+<∴>-∴>11.01,0 令x e x x g x +-+=11)(,min )(x g k <∴,22')1()2(1)1(1)(---=+---=x x x xx e x e e e xe x g 令01)(,2)('>-=--=xxe x h x e x h ,)(x h ∴在),0(+∞单调递增,且)(,0)2(,0)1(x h h h ∴><在),0(+∞上存在唯一零点,设此零点为0x ,则)2,1(0∈x 当),0(00x x ∈时,0)('<x g ,当),(00+∞∈x x 时,0)('>x g 000min 11)()(0x e x x g x g x +-+==∴,由)3,2(1)(,20)(0000'0∈+=∴+=⇒=x x g x ex g x ,又)(0x g k < 所以k 的最大值为29.(1)由01>+x ,得1->x .∴()x f 的定义域为()+∞-,1.因为对x ∈()+∞-,1,都有()()1f x f ≥,∴()1f 是函数()x f 的最小值,故有()01='f .,022,12)(/=+∴++=bx b x x f 解得4-=b .经检验,4-=b 时,)(x f 在)1,1(-上单调减,在),1(+∞上单调增.)1(f 为最小值.(2)∵,12212)(2/+++=++=x bx x x b x x f 又函数()x f 在定义域上是单调函数,∴()0≥'x f 或()0≤'x f 在()+∞-,1上恒成立.若()0≥'x f ,则012≥++x bx 在()+∞-,1上恒成立,即x x b 222--≥=2121(22++-x 恒成立,由此得≥b 21;若()0≤'x f ,则012≤++x bx 在()+∞-,1上恒成立,即x x b 222--≤=2121(22++-x 恒成立.因21)21(22++-x 在()+∞-,1上没有最小值,∴不存在实数b 使()0≤'x f 恒成立.综上所述,实数b 的取值范围是⎪⎭⎫⎢⎣⎡+∞,21.(3)当1-=b 时,函数()()1ln 2+-=x x x f .令()()()1ln 233+-+-=-=x x x x x f x h ,则()()1131123232+-+-=+-+-='x x x x x x x h .当()+∞∈,0x 时,()0<'x h ,所以函数()x h 在()+∞,0上单调递减.又()00=h ,∴当[)+∞∈,0x 时,恒有()()00=<h x h ,即()321ln x x x <+-恒成立.故当()+∞∈,0x 时,有()3x x f <.而*∈N k ,()+∞∈∴,01k .取k x 1=,则有311kk f <⎪⎭⎫ ⎝⎛.33311312111n k f nk +⋅⋅⋅+++<⎪⎭⎫⎝⎛∑=.所以结论成立.10.解:(Ⅰ)当a e =时,1()(1)xf x e e x e=-+-,'()xf x e e =-,令'()0f x =,解得1x =,(0,1)x ∈时,'()0f x <;(1,2)x ∈时,'()0f x >,∴{}max ()max (0),(2)f x f f =,而1(0)1f e e =--,21(2)3f e e e=--,即2max 1()(2)3f x f e e e==--.(Ⅱ)1()(1)ln xf x a e x a a=-+-,'()ln ln ln ()x xf x a a e a a a e =-=-,令'()0f x =,得log a x e =,则①当1a >时,ln 0a >,所以当log a x e =时,()f x 有最小值min 1()(log )ln a f x f e e a a==--,因为函数()f x 只有一个零点,且当x →-∞和x →+∞时,都有()f x →+∞,则min 1()ln 0f x e a a =--=,即1ln 0e a a+=,因为当1a >时,ln 0a >,所以此方程无解.②当01a <<时,ln 0a <,x (,log )a e -∞log a e (log ,)a e +∞'()f x -+()f x ↘极小值↗所以当log a x e =时,()f x 有最小值min 1()(log )ln a f x f e e a a==--,因为函数()f x 只有一个零点,且当x →-∞和x →+∞时,都有()f x →+∞,所以min 1()ln 0f x e a a =--=,即1ln 0e a a+=(01a <<)(*)设1()ln (01)g a e a a a =+<<,则2211'()e ae g a a a a -=-=,令'()0g a =,得1a e=,当10a e <<时,'()0g a <;当1a e>时,'()0g a >;所以当1a e =时,min 11()(ln 0g a g e e e e ==+=,所以方程(*)有且只有一解1a e =.综上,1a e=时函数()f x 只有一个零点.11.(1)由题意得F (x)=x --2a ln x .x 0,=,令m (x )=x 2-2ax+1,①当时F(x)在(0,+单调递增;②当a 1时,令,得x 1=,x 2=x(0,)()()+-+∴F (x)的单增区间为(0,),()综上所述,当时F (x)的单增区间为(0,+)当a 1时,F (x)的单增区间为(0,),()(2)h (x )=x -2a ln x ,h /(x)=,(x >0),由题意知x 1,x 2是x 2+2ax+1=0的两根,∴x 1x 2=1,x 1+x 2=-2a,x 2=,2a=,-=-=2()令H (x )=2(),H /(x )=2()lnx=当时,H/(x)<0,H(x)在上单调递减,H(x)的最小值为H()=,即-的最小值为.12.解:(I)f(x)=lnx+x2﹣2ax+1,f'(x)=+2x﹣2a=,令g(x)=2x2﹣2ax+1,(i)当a≤0时,因为x>0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(ii)当0<a时,因为△≤0,所以g(x)>0,函数f(x)在(0,+∞)上单调递增;(iii)当a>时,x在(,)时,g(x)<0,函数f(x)单调递减;在区间(0,)和(,+∞)时,g(x)>0,函数f(x)单调递增;(II)由(I)知当a∈(﹣2,0],时,函数f(x)在区间(0,1]上单调递增,所以当x∈(0,1]时,函数f(x)的最大值是f(1)=2﹣2a,对任意的a∈(﹣2,0],都存在x0∈(0,1],使得不等式a∈(﹣2,0],2me a(a+1)+f(x0)>a2+2a+4成立,等价于对任意的a∈(﹣2,0],不等式2me a(a+1)﹣a2+﹣4a﹣2>0都成立,记h(a)=2me a(a+1)﹣a2+﹣4a﹣2,由h(0)>0得m>1,且h(﹣2)≥0得m≤e2,h'(a)=2(a+2)(me a﹣1)=0,∴a=﹣2或a=﹣lnm,∵a∈(﹣2,0],∴2(a+2)>0,①当1<m<e2时,﹣lnm∈(﹣2,0),且a∈(﹣2,﹣lnm)时,h'(a)<0,a∈(﹣lnm,0)时,h'(a)>0,所以h(a)最小值为h(﹣lnm)=lnm﹣(2﹣lnm)>0,所以a∈(﹣2,﹣lnm)时,h(a)>0恒成立;②当m=e2时,h'(a)=2(a+2)(e a+2﹣1),因为a∈(﹣2,0],所以h'(a)>0,此时单调递增,且h(﹣2)=0,所以a∈(﹣2,0],时,h(a)>0恒成立;综上,m的取值范围是(1,e2].13.解:(1)∵f(x)=a x+x2﹣xlna,∴f′(x)=a x lna+2x﹣lna,∴f′(0)=0,f(0)=1即函数f(x)图象在点(0,1)处的切线斜率为0,∴图象在点(0,f(0))处的切线方程为y=1;(3分)(2)由于f'(x)=a x lna+2x﹣lna=2x+(a x﹣1)lna>0①当a>1,y=2x单调递增,lna>0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(8分)(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min|=(f(x))max﹣(f(x))min≥e﹣1,(12分)由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)(14分)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).(16分)14.(1)解:h (x )=f (x )﹣g (x )=1ln x ax b x ---,则211()h x a x x'=+-,∵h (x )=f (x )﹣g (x )在(0,+∞)上单调递增,∴对∀x >0,都有211()0h x a x x '=+-≥,即对∀x >0,都有211a x x≤+,.…………2分∵2110x x+>,∴0a ≤,故实数a 的取值范围是(],0-∞;.…………3分(2)解:设切点为0001,ln x x x ⎛⎫-⎪⎝⎭,则切线方程为()002000111ln y x x x x x x ⎛⎫⎛⎫--=+- ⎪ ⎪⎝⎭⎝⎭,即00220000011111ln y x x x x x x x x ⎛⎫⎛⎫⎛⎫=+-++- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,亦即02000112ln 1y x x x x x ⎛⎫=++-- ⎪⎝⎭,令010t x =>,由题意得220011a t t x x =+=+,002ln 1ln 21b x t t x =--=---,令2()ln 1a b t t t t ϕ+==-+--,则()()2111()21t t t t ttϕ+-'=-+-=,.…………6分当()0,1t ∈时,()()0,t t ϕϕ'<在()0,1上单调递减;当()1,t ∈+∞时,()()0,t t ϕϕ'>在()1,+∞上单调递增,∴()()11a b t ϕϕ+=≥=-,故a b +的最小值为﹣1;.…………7分(3)证明:由题意知1111ln x ax x -=,2221ln x ax x -=,两式相加得()12121212ln x x x x a x x x x +-=+两式相减得()21221112lnx x x a x x x x x --=-即212112ln 1x x a x x x x +=-∴()21211212122112ln1ln x x x x x x x x x x x x x x ⎛⎫ ⎪+ ⎪-=++- ⎪⎪⎝⎭,即1212212122112()ln ln x x x x x x x x x x x x ⎛⎫++-= ⎪-⎝⎭,.9分不妨令120x x <<,记211x t x =>,令()21()ln (1)1t F t t t t -=->+,则()221()0(1)t F t t t -'=>+,∴()21()ln 1t F t t t -=-+在()1,+∞上单调递增,则()21()ln (1)01t F t t F t -=->=+,∴()21ln 1t t t ->+,则2211122()lnx x x x x x ->+,∴1212212122112()ln ln 2x x x x x x x x x x x x ⎛⎫++-=> ⎪-⎝⎭,又1212121212122()ln ln ln x x x x x x x x x x +-<==∴2>,即1>,.…………10分令2()ln G x x x =-,则0x >时,212()0G x x x'=+>,∴()G x 在()0,+∞上单调递增.又1ln ln 210.8512e =+-≈<,∴ln 1ln G =>>->,即2122x x e >..…………12分15.(Ⅰ)由题意,AB x =,2-BC x =,2,12x x x >-∴<<Q .…………1分设=DP y ,则PC x y =-,由△ADP ≌△CB'P ,故PA=PC=x ﹣y ,由PA 2=AD 2+DP 2,得()()2222x y x y -=-+即:121,12y x x ⎛⎫=-<< ⎪⎝⎭..…………3分(Ⅱ)记△ADP 的面积为2S ,则()212=1-233S x x x x ⎛⎫⎛⎫-=-+≤- ⎪ ⎪⎝⎭⎝⎭.…………5分当且仅当()1,2x =时,2S 取得最大值.,宽为(2m 时,2S 最大.….…………7分(Ⅲ)()()2121114+2=2123,1222S S x x x x x x x ⎛⎫⎛⎫-+--=-+<< ⎪ ⎪⎝⎭⎝⎭于是令()31222142+220,2x S S x x x x-+⎛⎫'=--==∴= ⎪⎝⎭分∴关于x 的函数12+2S S 在(1上递增,在)2上递减,∴当x =时,12+2S S 取得最大值.,宽为(m 时,12+2S S 最大..…………12分16.(1)1a =时,()()2ln 1xf x ex =++,()2121x f x e x '=++()01f =,()10231f '=+=,所以()f x 在()0,1处的切线方程为31y x =+(2)存在[)00,x ∈+∞,()()20002ln f x x a x <++,即:()02200ln 0x ex a x -+-<在[)00,x ∈+∞时有解;设()()22ln xu x ex a x =-+-,()2122x u x e x x a'=--+令()2122xm x ex x a =--+,()()21420x m x e x a '=+->+所以()u x '在[)0,+∞上单调递增,所以()()102u x u a''≥=-1°当12a ≥时,()1020u a'=-≥,∴()u x 在[)0,+∞单调增,所以()()max 01ln 0u x u a ==-<,所以a e >2°当12a <时,()1ln ln 2x a x ⎛⎫+<+ ⎪⎝⎭设()11ln 22h x x x ⎛⎫=+-+ ⎪⎝⎭,()11211122x h x x x -'=-=++令()102h x x '>⇒>,()1002h x x '<⇒<<所以()h x 在10,2⎛⎫ ⎪⎝⎭单调递减,在1,2⎛⎫+∞ ⎪⎝⎭单调递增所以()1102h x h ⎛⎫≥=> ⎪⎝⎭,所以11ln 22x x ⎛⎫+>+ ⎪⎝⎭所以()()222ln ln xx u x e x a x e =-+->-2221122x x x e x x ⎛⎫⎛⎫+->-+- ⎪ ⎪⎝⎭⎝⎭设()()22102xg x ex x x ⎛⎫=--+≥ ⎪⎝⎭,()2221x g x e x '=--,令()2221xx ex ϕ=--,()242420x x e ϕ'=-≥->所以()2221xx ex ϕ=--在[)0,+∞上单调递增,所以()()010g x g ''≥=>所以()g x 在()0,+∞单调递增,∴()()00g x g >>,所以()()00g x g >>,所以()()()22ln 0xu x e x a x g x =-+->>所以,当12a <时,()()22ln f x x a x >++恒成立,不合题意综上,实数a 的取值范围为12a ≥.17.(1)因为()ln 2f x a x x '=-,依题意得12,x x 为方程ln 20a x x -=的两不等正实数根,∴0a ≠,2ln x a x=,令()ln x g x x =,()21ln xg x x -'=,当()0,x e ∈时,()0g x '>;当(),x e ∈+∞时,()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,()10g =,当x e >时,()0g x >,所以()20g e a<<∴()210g e a e<<=解得2a e >,故实数a 的取值范围是()2,e +∞.(2)由(1)得,11ln 2a x x =,22ln 2a x x =,两式相加得()()1212ln ln 2a x x x x λ+=+,故()12122ln ln x x x x aλλ++=两式相减可得()()1212ln ln 2a x x x x -=-,故12122ln ln x x a x x -=⋅-所以12ln ln 1x x λλ+>+等价于()1221x x aλλ+>+,所以()()1221x x a λλ+>+所以()()121212221ln ln x x x x x x λλ-+>+-,即()()121212ln ln 1x x x x x x λλ+->+-,所以112212ln 11x x x x x x λλ⎛⎫+ ⎪⎝⎭>+-,因为120x x <<,令()120,1x t x =∈,所以()ln 11t t t λλ+>+-即()()()ln 110t t t λλ+-+-<,令()()()()ln 11h t t t t λλ=+-+-,则()0h t <在()0,1上恒成立,()ln h t t tλλ'=+-,令()ln I t t t λλ=+-,()()()2210,1t I t t t t tλλ-'=-=∈①当1λ≥时,()0I t '<所以()h t '在()0,1上单调递减,()()10h t h ''>=所以()h t 在()0,1上单调递增,所以()()10h t h <=符合题意②当0λ≤时,()0I t '>所以()h t '在()0,1上单调递增()()10h t h ''<=故()h t 在()0,1上单调递减,所以()()10h t h >=不符合题意;③当01λ<<时,()01I t t λ'>⇔<<所以()h t '在(),1λ上单调递增,所以()()10h t h ''<=所以()h t 在(),1λ上单调递减,故()()10h t h >=不符合题意综上所述,实数λ的取值范围是[)1,+∞.18.解:(1)∵f (x )=(lnx ﹣k ﹣1)x (k ∈R ),∴x >0,=lnx ﹣k ,①当k≤0时,∵x >1,∴f′(x )=lnx ﹣k >0,函数f (x )的单调增区间是(1,+∞),无单调减区间,无极值;②当k >0时,令lnx ﹣k=0,解得x=e k ,当1<x <e k 时,f′(x )<0;当x >e k ,f′(x )>0,∴函数f (x )的单调减区间是(1,e k ),单调减区间是(e k ,+∞),在区间(1,+∞)上的极小值为f (e k )=(k ﹣k ﹣1)e k =﹣e k ,无极大值.(2)∵对于任意x ∈[e ,e 2],都有f (x )<4lnx 成立,∴f (x )﹣4lnx <0,即问题转化为(x ﹣4)lnx ﹣(k+1)x <0对于x ∈[e ,e 2]恒成立,即k+1>对于x ∈[e ,e 2]恒成立,令g (x )=,则,令t (x )=4lnx+x ﹣4,x ∈[e ,e 2],则,∴t (x )在区间[e ,e 2]上单调递增,故t (x )min =t (e )=e ﹣4+4=e >0,故g′(x )>0,∴g (x )在区间[e ,e 2]上单调递增,函数g (x )max =g (e 2)=2﹣,要使k+1>对于x ∈[e ,e 2]恒成立,只要k+1>g (x )max ,∴k+1>2﹣,即实数k 的取值范围是(1﹣,+∞).证明:(3)∵f (x 1)=f (x 2),由(1)知,函数f (x )在区间(0,e k )上单调递减,在区间(e k ,+∞)上单调递增,且f (e k+1)=0,不妨设x 1<x 2,则0<x 1<e k <x 2<e k+1,要证x 1x 2<e 2k ,只要证x 2<,即证<,∵f (x )在区间(e k ,+∞)上单调递增,∴f (x 2)<f (),又f (x 1)=f (x 2),即证f (x 1)<,构造函数h (x )=f (x )﹣f ()=(lnx ﹣k ﹣1)x ﹣(ln﹣k ﹣1),即h (x )=xlnx ﹣(k+1)x+e 2k (),x ∈(0,e k )h′(x )=lnx+1﹣(k+1)+e 2k (+)=(lnx ﹣k ),∵x ∈(0,e k ),∴lnx ﹣k <0,x 2<e 2k ,即h′(x )>0,∴函数h (x )在区间(0,e k )上单调递增,故h′(x )<h (e k ),∵,故h (x )<0,∴f (x 1)<f (),即f (x 2)=f (x 1)<f (),∴x 1x 2<e 2k 成立.19.(Ⅰ)由()21e 2xf x a x x =--得()e 1x f x a x '=--.因为曲线()y f x =在点()()0,0f 处的切线与y 轴垂直,所以()010f a '=-=,解得1a =.(Ⅱ)由(Ⅰ)知()e 1xf x a x '=--,若函数()f x 有两个极值点,则()e 10x f x a x '=--=,即1e x x a +=有两个不同的根,且1e xx a +-的值在根的左、右两侧符号相反.令()1e x x h x +=,则()()()2e 1e e e x x x x x x h x -+'==-,所以当0x >时,()0h x '<,()h x 单调递减;当0x <时,()0h x '>,()h x 单调递增.又当x →-∞时,()h x →-∞;0x =时,()01h =;0x >时,()0h x >;x →+∞时,()0h x →,所以01a <<.即所求实数a 的取值范围是01a <<.(Ⅲ)证明:令()1e ln xg x x x x=-+(1x >),则()10g =,()2e 1e ln 1x xg x x x x'=+--.令()()h x g x '=,则()e e ln x xh x x x '=+23e e 2x x x x x-++,因为1x >,所以e ln 0xx >,e 0xx>,()2e 10x x x ->,320x >,所以()0h x '>,即()()h x g x '=在1x >时单调递增,又()1e 20g '=->,所以1x >时,()0g x '>,即函数()g x 在1x >时单调递增.所以1x >时,()0g x >,即1x >时,1e ln xx x x>-.20.(1)当0b =时,()321233f x x x x =-+,()()()2'4313f x x x x x =-+=--.当()1,3x Î时,()'0f x <,故函数()f x 在()1,3上单调递减;当()3,4x Î时,()'0f x >,故函数()f x 在()3,4上单调递增.由()30f =,()()4143f f ==.∴()f x 在[]1,4上的值域为40,3轾犏犏臌;(2)由(1)可知,()()()2'4313f x x x x x =-+=--,由()'0f x <得13x <<,由()'0f x >得1x <或3x >.所以()f x 在()1,3上单调递减,在(),1-¥,()3,+¥上单调递增;所以()()max 413f x f b ==+,()()min 3f x f b ==,所以当403b +>且0b <,即403b -<<时,()10,1x $Î,()21,3x Î,()33,4x Î,使得()()()1230f x f x f x ===,由()f x 的单调性知,当且仅当4,03b 骣琪Î-琪桫时,()f x 有三个不同零点.21.(1)当1=a 时,函数2ln 21)(2--=x x x f ,xx x f 1)('-=,∴0)1('=f ,23)1(-=f ,∴曲线)(x f 在点))1(,1(f 处的切线方程为23-=y .(2))0(1)('2>-=x xax x f .当0≤a 时,0)('<x f ,)(x f 的单调递减区间为),0(+∞;当0>a 时,)(x f 在,0(a a 递减,在),(+∞aa 递增.22.(Ⅰ)211()0sin f x x x θ'=-+≥∙在[1,)-+∞上恒成立,即2sin 10sin x x θθ∙-≥∙.∵(0,)θπ∈,∴sin 0θ>.故sin 10x θ∙-≥在[1,)-+∞上恒成立只须sin 110θ∙-≥,即sin 1θ≥,又0sin 1θ<≤只有sin 1θ=,得2πθ=.由22111()0x f x x x x-'=-+==,解得1x =.∴当01x <<时,()0f x '<;当1x >时,()0f x '>.故()f x 在1x =处取得极小值1,无极大值.(Ⅱ)构造1212()ln ln e e F x kx x kx x x x x+=---=--,则转化为;若在[1,]e 上存在0x ,使得0()0F x >,求实数k 的取值范围.当0k ≤时,[1,]x e ∈,()0F x <在[1,]e 恒成立,所以在[1,]e 上不存在0x ,使得0002()ekx f x x ->成立.②当0k >时,2121()e F x k x x+'=+-2222121()kx e x kx e e e x x x ++-+++-==.因为[1,]x e ∈,所以0e x ->,所以()0F x '>在[1,]x e ∈恒成立.故()F x 在[1,]e 上单调递增,max 1()()3F x F e ke e ==--,只要130ke e-->,解得231e k e +>.∴综上,k 的取值范围是231(,)e e++∞.。
(完整版)2019-2020年高考数学压轴题集锦——导数及其应用(五)
2019-2020年高考数学压轴题集锦——导数及其应用(五)46.已知函数4)(2--=ax x x f (a ∈R)的两个零点为12,,x x 设12x x < .(Ⅰ)当0a >时,证明:120x -<<.(Ⅱ)若函数|)(|)(2x f x x g -=在区间)2,(--∞和),2(+∞上均单调递增,求a 的取值范围.47.设函数2()ln f x x ax x =-++(R ∈a ). (Ⅰ)若1a =时,求函数()f x 的单调区间;(Ⅱ)设函数()f x 在],1[e e 有两个零点,求实数a 的取值范围.48.已知函数()ln()f x ax b x =+-,2()ln g x x ax x =-- .(Ⅰ)若1b =, ()()()F x f x g x =+,问:是否存在这样的负实数,使得()F x 在1x =处存在切线且该切线与直线1123y x =-+平行,若存在,求a 的值;若不存在,请说明理由 .(Ⅱ)已知0a ≠,若在定义域内恒有()ln()0f x ax b x =+-≤,求()a a b +的最大值 .49.设函数2)21(ln )(-+=x b x x x f )(R b ∈,曲线()y f x =在()1,0处的切线与直线3y x =平行.证明:(Ⅰ)函数)(x f 在),1[+∞上单调递增; (Ⅱ)当01x <<时,()1f x <.50.已知f (x )=a (x -ln x )+212xx -,a ∈R . (I )讨论f (x )的单调性;(II )当a =1时,证明f (x )>f ’(x )+23对于任意的x ∈[1,2]恒成立。
51.已知函数f (x )=x 2+ax ﹣ln x ,a ∈R .(1)若函数f (x )在[1,2]上是减函数,求实数a 的取值范围;(2)令g (x )=f (x )﹣x 2,是否存在实数a ,当x ∈(0,e ](e 是自然常数)时,函数g (x )的最小值是3,若存在,求出a 的值;若不存在,说明理由; (3)当x ∈(0,e ]时,证明:e 2x 2-25x >(x +1)ln x .52.已知函数f (x )=31x 3-ax +1.(1)若x =1时,f (x )取得极值,求a 的值; (2)求f (x )在[0,1]上的最小值;(3)若对任意m ∈R ,直线y =﹣x +m 都不是曲线y =f (x )的切线,求a 的取值范围.53.已知函数()xf x axe =(0a ≠) (1)讨论()f x 的单调性;(2)若关于x 的不等式()ln 4f x x x <+-的解集中有且只有两个整数,求实数a 的取值范围.54.已知函数()()11,1n x n m x f x g x m mx x +-==--(其中,,m e n me ≥为正整数,e 为自然对数的底)(1)证明:当1x >时,()0m g x >恒成立;(2)当3n m >≥时,试比较()n f m 与()m f n 的大小,并证明.55.已知函数f (x )=e x 和函数g (x )=kx +m (k 、m 为实数,e 为自然对数的底数,e ≈2.71828).(1)求函数h (x )=f (x )﹣g (x )的单调区间;(2)当k =2,m =1时,判断方程f (x )=g (x )的实数根的个数并证明;(3)已知m ≠1,不等式(m ﹣1)[f (x )﹣g (x )]≤0对任意实数x 恒成立,求km 的最大值.56.已知函数(1)()ln ()a x f x x a R x-=-∈. (Ⅰ)若1a =,求()y f x =在点()1,(1)f 处的切线方程; (Ⅱ)求()f x 的单调区间; (Ⅲ)求证:不等式111ln 12x x -<-对一切的(1,2)x ∈恒成立.57.已知函数2()(1)ln f x x a x =-+(a R ∈).(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 存在两个极值点()1212x x x x <、,求21()f x x 的取值范围.58.设函数R m xmx x f ∈+=,ln )(. (Ⅰ)当e m =(e 为自然对数的底数)时,求)(x f 的极小值; (Ⅱ)若对任意正实数a 、b (a b ≠),不等式()()2f a f b a b-≤-恒成立,求m 的取值范围.59.已知函数()b x a ax x x f +-+-=2233231, ),(R b a ∈ (1)当3=a 时, 若()x f 有3个零点, 求b 的取值范围;(2)对任意]1,54[∈a , 当[]m a a x ++∈,1时恒有()a x f a ≤'≤-, 求m 的最大值, 并求此时()x f 的最大值。
2019-2020年高考数学压轴题集锦——导数及其应用
23.已知函数()3223log 32a f x x x x =-+(0a >且1a ≠). (Ⅰ)若()f x 为定义域上的增函数,求实数a 的取值范围; (Ⅱ)令a e =,设函数()()324ln 63g x f x x x x =--+,且()()120g x g x +=,求证:122x x +≥24.已知函数()2x f x e x ax =--. (1)R x ∈时,证明:1->x e x;(2)当2a =时,直线1y kx =+和曲线()y f x =切于点()(),1A m n m <,求实数k 的值; (3)当10<<x 时,不等式()0>x f 恒成立,求实数a 的取值范围.25.已知函数()ln af x a x x x=-+-(a 为常数)有两个不同的极值点. (1)求实数a 的取值范围;(2)记()f x 的两个不同的极值点分别为12,x x ,若不等式()()()21212f x f x x x l +>+恒成立,求实数l 的取值范围.26.已知函数()1ln f x ax x =--(a ∈R ).(1)讨论函数()f x 极值点的个数,并说明理由;(2)若1x ∀>,()2xf x ax ax a <-+恒成立,求a 的最大整数值.27.已知函数()()()()221,2ln 1f x x x g x a x a R =-+=-∈. (1)求函数()()()h x f x g x =-的极值;(2)当0a >时,若存在实数,k m 使得不等式()()g x kx m f x ≤+≤恒成立,求实数a 的取值范围.28.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+. (1)求()y f x =的表达式;(2)若直线()01x t t =-<<,把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.29.已知函数()1ln 2f x x x =+(a ∈R ).(1)若曲线()y f x =在点()()1,1f 处的切线经过点()2,3,求a 的值; (2)若()f x 在区间1,14⎛⎫⎪⎝⎭上存在极值点,判断该极值点是极大值点还是极小值点,并求a 的取值范围;(3)若当0x >时,()0f x >恒成立,求a 的取值范围.30.已知函数()ln f x x a =+,()(),bg x x a b R x=-?. (1)若曲线()y f x =与曲线()y g x =在点()()1,1f 处的切线方程相同,求实数,a b 的值; (2)若()()x g x f ≥恒成立,求证:当2≠a 时,1≠b .31.()2xf x e ax =--,其中e 是自然对数的底数,a R ∈.(1)求函数()f x 的单调递增区间; (2)若k 为整数,1a =,且当0x >时,()11k xf x x -'<+恒成立,其中()f x '为()f x 的导函数,求k 的最大值.32.已知f (x )=2x ln x ,g (x )=﹣x 2+ax ﹣3. (1)求函数f (x )的单调区间;(2)若存在x ∈(0,+∞),使f (x )≤g (x )成立,求实数a 的取值范围.33.已知数列{x n }按如下方式构成:x n ∈(0,1)(n ∈N *),函数f (x )=ln (x x-+11)在点(x n ,f (x n ))处的切线与x 轴交点的横坐标为x n +1 (Ⅰ)证明:当x ∈(0,1)时,f (x )>2x (Ⅱ)证明:x n +1<x n 3(Ⅲ)若x 1∈(0,a ),a ∈(0,1),求证:对任意的正整数m ,都有log n x a +log 1+n x a +…+log m n x +a <21•(31)n ﹣2(n ∈N *)34.已知函数f (x )= ⎪⎩⎪⎨⎧∈--∈-]3,1[),1(55]1,0[,2x x f x x x(Ⅰ)求f (25)及x ∈[2,3]时函数f (x )的解析式 (Ⅱ)若f (x )≤xk对任意x ∈(0,3]恒成立,求实数k 的最小值.35.已知函数1()(2)a f x a x x a -⎛⎫=-- ⎪⎝⎭,其中0a ≠. (Ⅰ)若1a =,求()f x 在区间[0,3]上的最大值和最小值.(Ⅱ)解关于x 的不等式()0f x >.36.若实数x ,y ,m 满足x m y m-<-,则称x 比y 靠近m .(Ⅰ)若1x +比x -靠近1-,求实数x 有取值范围.(Ⅱ)(i )对0x >,比较ln(1)x +和x 哪一个更靠近0,并说明理由. (ii )已知函数{}n a 的通项公式为112n n a -=+,证明:1232e n a a a a <L .37.已知函数2()e (e 1)1x f x ax a x =-+-+-(e 是自然对数的底数,a 为常数). (1)若函数1()()()2g x f x x f x '=-⋅,在区间[1,+∞)上单调递减,求a 的取值范围.(2)当(e 2,1)a ∈-时,判断函数()f x 在(0,1)上是否有零点,并说明理由.38.已知函数()ln f x x x =. (1)求函数()f x 的极值点.(2)设函数()()(1)g x f x a x =--,其中a ∈R ,求函数()g x 在[1,e]上的最小值.39.已知函数1()ln 2f x x x=-,(0,)x ∈+∞. (1)求函数()f x 的图象在点(2,(2))f 处的切线方程. (2)求函数()f x 的单调递增区间.40.设m ∈R ,函数f (x )=e x ﹣m (x +1)+41m 2(其中e 为自然对数的底数)(Ⅰ)若m =2,求函数f (x )的单调递增区间;(Ⅱ)已知实数x 1,x 2满足x 1+x 2=1,对任意的m <0,不等式f (x 1)+f (0)>f (x 2)+f (1)恒成立,求x 1的取值范围;(Ⅲ)若函数f (x )有一个极小值点为x 0,求证f (x 0)>﹣3,(参考数据ln6≈)41.已知函数f (x )=x 2﹣x 3,g (x )=e x﹣1(e 为自然对数的底数). (1)求证:当x ≥0时,g (x )≥x +21x 2; (2)记使得kf (x )≤g (x )在区间[0,1]恒成立的最大实数k 为n 0,求证:n 0∈[4,6].42.设函数3211()(3)332f x x ax a x =++++,其中a R ∈,函数()f x 有两个极值点12,x x ,且101x ≤<.(1)求实数a 的取值范围;(2)设函数'1()()()x f x a x x ϕ=--,当12x x x <<时,求证:|()|9x ϕ<.43.已知14)(2+-=x tx x f 的两个极值点为α,β,记A (α,f (α)),B (β,f (β))(Ⅰ)若函数f (x )的零点为γ,证明:α+β=2γ. (Ⅱ) 设点 C (m t -4,0),D (m t+4,0),是否存在实数t ,对任意m >0,四边形ACBD 均为平行四边形.若存在,求出实数t ;若不存在,请说明理由.44.已知函数ln (),xf x x=() (0)=>g x kx k ,函数{}()max (),(),F x f x g x =其中{}max ,a b ,,,.a ab b a b ≥⎧=⎨<⎩ (Ⅰ)求()f x 的极值;(Ⅱ)求()F x 在[]1, e 上的最大值(e 为自然对数底数).45.已知函数2()2ln ,f x x a x a R =+∈.(Ⅰ)若()f x 在1x =处取得极值,求实数a 的值;(Ⅱ)若不等式()0f x >对任意[1,)x ∈+∞恒成立,求实数a 的取值范围.参考答案23.(Ⅰ)()2123ln f x x x x a'=-+, 由()f x 为增函数可得,()0f x '≥恒成立,则由21230ln x x x a -+≥32123ln x x a⇒-≥-⇒,设()3223m x x x =-,则 ()266m x x x '=-,若由()()610m x x x '=->和()()610m x x x '=-<可知 ()m x 在()0,1上单调递减,在()1,+∞上单调递增,所以()()min 11m x m ==-,所以11ln a-≥-, 当1a >时,易知a e ≤,当01a <<时,则10ln a <,这与11ln a≤矛盾, 从而不能使()0f x '≥恒成立,所以1a e <≤. (Ⅱ)()322332g x x x =-+32ln 4ln 63x x x x --+233ln 62x x x =--+,因为()()120g x g x +=,所以211133ln 62x x x --++22223(3ln 6)02x x x --+=,所以 221212123()3ln()6()02x x x x x x -+-++=, 212121[()2]2x x x x -+--1212ln()2+=0x x x x +(), 212121()+2x x x x -+1212ln()2()0x x x x -++=, 所以212121()+2()2x x x x -++1212ln()x x x x =-, 令12x x t =,()ln g t t t =-,()111tg t tt-'=-=,()g t 在()0,1上增,在()1,+∞上减, ()()11g t g ≤=-,所以212121()2()12x x x x -+++≤-,整理得21212()4()20x x x x +-+-≥,解得122x x +≥122x x +≤(舍),所以122x x +≥24.(1)记()1x F x e x =--, ∵()'1x F x e =-, 令()'0F x =得0x =, 当(),0x ??,()'0F x <,()F x 递减;当()0,x ??,()'0F x >,()F x 递增,∴()()min 00F x F ==, ()10x F x e x =--?,得1x e x ?.(2)切点为(),A m n ,()1m <,则21222m m n km n e m m k e m ì=+ïï=--íïï=--î,∴()2110m m e m --+=, ∵1m <,∴10m e m --=由(1)得0m =. 所以1k =-.(3)由题意可得20x e x ax --?恒成立,所以2x e x a x-£,下求()2x e x G x x -=的最小值,()()()()()22221111111'xxx x e x x e x x e x G x x xx 轾----------臌===,由(1)1x e x ?知10x e x --?且1x £. 所以()'0G x <,()G x 递减, ∵1x £,∴()()11G x G e ?-.所以1a e ?.25.(1)()()22'0x ax af x x x -+=>.由函数()ln af x a x x x=-+-(a 为常数)有两个不同的极值点. 即方程20x ax a -+=有两个不相等的正实根.∴121220040x x a x x a a a ì+=>ïï=>íïïD=->î,∴4a >.(2)由(1)知12x x a +=,12x x a =,4a >, ∴()()()2121212121212ln x x f x f x a x x x x a x x x x l ++=-++->+, 所以ln aal <-恒成立. 令()ln aF a a=-,4a >. ∵()2ln 1'0a F a a-=>,()F a 递增, ∴()()ln 242F a F >=-, ln 22l ?.26.(1)()f x 的定义域为()0,+∞,且()11ax f x a x x-'=-=. 当0a ≤时,()0f x '≤在()0,+∞上恒成立,函数()f x 在()0,+∞上单调递减. ∴()f x 在()0,+∞上没有极值点; 当0a >时,令()0f x '=得()10,x a=∈+∞; 列表所以当1x a=时,()f x 取得极小值. 综上,当0a ≤时,()f x 在()0,+∞上没有极值点; 当0a >时,()f x 在()0,+∞上有一个极值点.(2)对1x ∀>,()2xf x ax ax a <-+恒成立等价于ln 1x x xa x +<-对1x ∀>恒成立,设函数()ln 1x x x g x x +=-(1x >),则()()2ln 21x x g x x --'=-(1x >),令函数()ln 2x x x =--ϕ,则()11x x'=-ϕ(1x >), 当1x >时,()110x x'=->ϕ,所以()x ϕ在()1,+∞上是增函数, 又()31ln30=-<ϕ,()42ln 40=->ϕ,所以存在()03,4x ∈,使得()00x =ϕ,即()00g x '=,且当()01,x x ∈时,()0x <ϕ,即()0g x <,故()g x 在()01,x 在上单调递减; 当()0,x x ∈+∞时,()0x >ϕ,即()0g x >,故()g x 在()0,x +∞上单调递增; 所以当()1,x ∈+∞时,()g x 有最小值()00000ln 1x x x g x x +=-,由()00x =ϕ得00ln 20x x --=,即00ln 2x x =-, 所以()()00000021x x x g x x x -+==-,所以0a x <,又()03,4x ∈,所以实数a 的最大整数值为3.27.(I )由题意得2()(1)2ln(1)h x x a x =---,1x >,∴22[(1)]'()1x a h x x --=-,①当0a ≤时,则'()0h x >,此时()h x 无极值;②当0a >时,令'()0h x <,则11x a <<+;令'()0h x >,则1x a >+; ∴()h x 在(1,1]a +上递减,在(1,)a ++∞上递增; ∴()h x 有极小值(1)(1ln )h a a a =-,无极大值;(II )当0a >时,由(1)知,()h x 在(1,1]a +上递减,在(1,)a ++∞上递增,且有极小值(1)(1ln )h a a a =-.①当a e >时,(1)(1ln )0h a a a =-<,∴(1)(1f a g a <+, 此时,不存在实数k ,m ,使得不等式()()g x kx m f x ≤+≤恒成立; ②当0a e <≤时,(1)(1ln )0h a a a =-≥,2()21f x x x =-+在1x a =+(2)y ax a a =-,令()()(2)]u x f x ax a a =--,1x >,则2()[(1)]0u x x a =-+≥,∴2(2)()ax a a f x -≤,令()2(2)()v x ax a a g x =-+-=2(2)2ln(1)ax a a a x -+--,1x >, 则2[(1)]'()a x a v x -+=,令'()0v x <,则11x a <<+;令'()0v x >,则1x a >+;∴()(1)v x v a ≥+=(1ln )0a a -≥,∴()2(2)g x ax a a ≤-+, ∴()2(2)()g x ax a a f x ≤-+≤,当2k a =,2m a a =--时,不等式()()g x kx m f x ≤+≤恒成立, ∴0a e <≤符合题意. 由①,②得实数a 的取值范围为(0,]e . 28.(I )设2()(0)f x ax bx c a =++≠,则()2f x ax b '=+. 由已知()22f x x '=+,得1a =,2b =.2()2f x x x c ∴=++.又方程220x x c ++=有两个相等的实数根,440c ∴∆=-=,即1c =.故2()21f x x x =++;(II )依题意,得221(21)(21)ttx x dx x x dx ---++=++⎰⎰,3232011133ttx x x x x x ---⎛⎫⎛⎫∴++=++ ⎪ ⎪⎝⎭⎝⎭,整理,得3226610t t t -+-=,即32(1)10t -+=,312t ∴=29.(1)对()f x 求导,得()1122f x xx'=+-. 因此()1122af '=+.又()11f a =+, 所以,曲线()y f x =在点()()1,1f 处的切线方程为()()11122a y a x ⎛⎫-+=+- ⎪⎝⎭. 将2x =,3y =代入,得()13122aa -+=+.解得1a =. (2)()f x 的定义域为()0,+∞.()112f x x'=+-212x x +=.设()f x 的一个极值点为m,则210m +=,即a =- 所以()f x '==.当()0,x m ∈时,()0f x '<;当(),x m ∈+∞时,()0f x '>. 因此()f x 在()0,m 上为减函数,在(),m +∞上为增函数. 所以m 是()f x 的唯一的极值点,且为极小值点. 由题设可知1,14m ⎛⎫∈ ⎪⎝⎭.因为函数a =-1,14⎛⎫⎪⎝⎭上为减函数,a -<<11a -<<. 所以a 的取值范围是()1,1-.(3)当0x >时,()0f x >恒成立,则1ln 02x x +>恒成立,即1ln x x a ->0x ∀>恒成立.设()1ln x x g x -=()11ln x xg x --'=.设()11ln 2h x x x =--(0x >),显然()h x 在()0,+∞上为减函数. 又()10h =,则当01x <<时,()()10h x h >=,从而()0g x '>; 当1x >时,()()10h x h <=,从而()0g x '<. 所以()g x 在()0,1上是增函数,在()1,+∞上是减函数.所以()()max 11g x g ==-,所以1a >-,即a 的取值范围为()1,-+∞. 30.(1)由()1'f x x =,()2'1bg x x=--. 得()()()()'1'111f g f g ì=ïíï=î,解得3a =-,2b =-.(2)证明:设()()()ln bh x f x g x x a x x=-=+-+, 则()()2221'10b x x bh x x x x x ++=++=>,①当0b ³时,()'0h x >,函数()h x 在()0,+?上单调递增,不满足()()f x g x ³恒成立.②当0b <时,令20x x b ++=,由140b D=->,得0x >,或0x <(舍去),设0x ()y h x =在()00,x 上单调递减,在()0,x +?上单调递增,故()()0min 0h x h x =?,即000ln 0b x a x x +-+?,得000ln b a x x x ?-.又由2000x x b ++=,得200b x x =--, 所以()2200000000ln 1ln ba b x x x x x x x x -?----=---+,令()21ln t x x x x =---+,()()()2211121'21x x x x t x x x x x+---=--==. 当()0,1x Î时,()'0t x <,函数()t x 单调慈善 当()1,x ??时,()'0t x >,函数()t x 单调递增;所以()()min 11t x t ==-,1a b -?即1b a -?, 故当2a ?时,得1b ?. 31.(1)()xf x e a '=-,x R ∈若0a ≤,则()0f x '>恒成立,所以()f x 在区间(),-∞+∞上单调递增 若0a >,当()ln ,x a ∈+∞时,()0f x '>,()f x 在()ln ,a +∞上单调递增 (2)由于1a =,所以()11k xf x x -'<⇔+()()11x k x e x --<+,当0x >时,10x e ->故()()11x k x e x --<+11x x k x e +⇔<+-,令()11x x g x x e +=+-(0x >) 则()()2111x xxe g x e-+'=+=-()()221x x xe e x e---函数()2x f x e x =--在()0,+∞上单调递增,而()10h <,()20h >, 所以()h x 在()0,+∞上存在唯一的零点. 故()g x '在()0,+∞上存在唯一的零点. 设此零点为0x ,则()01,2x ∈.当()00,x x ∈时,()0g x '<,当()0,x x ∈+∞时,()0g x '>; 所以()g x 在()0,+∞上的最小值为()0g x ,由于()00g x '=,可得002x e x =+所以()()0012,3g x x =+∈,所以整数k 的最大值为2. 32.【考点】利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)问题等价于a≥(2ln x+x+)min ,记h (x )=2ln x+x+,x∈(0,+∞),根据函数的单调性判断即可.【解答】解:(1)f (x )的定义域为(0,+∞),f′(x )=2(ln x+1), 令f′(x )=0,得x=,当x∈时,f′(x )<0,当x∈时,f′(x )>0, 所以f (x )在上单调递减;在上单调递增.(2)存在x∈(0,+∞),使f (x )≤g(x )成立, 即2xln x≤﹣x 2+ax ﹣3在x∈(0,+∞)能成立, 等价于a≥2ln x+x+在x∈(0,+∞)能成立, 等价于a≥(2ln x+x+)min .记h (x )=2ln x+x+,x∈(0,+∞), 则h′(x )=+1﹣==.当x∈(0,1)时,h′(x)<0,当x∈(1,+∞)时,h′(x)>0,所以当x=1时,h(x)取最小值为4,故a≥4.33.【考点】利用导数研究曲线上某点切线方程;数列与函数的综合.【分析】(Ⅰ)求出函数的导数,根据函数的单调性求出f(x)>2x即可;(Ⅱ)求出函数f(x)的导数,求出曲线方程,得到x n+1=ln(﹣1)+x n,从而证出结论即可;(Ⅲ)得到b k=<a=b k﹣1<b k﹣2<…<b0,问题转化为b0<,根据(Ⅱ)证出即可.【解答】证明:(Ⅰ)设g(x)=ln(1+x)﹣ln(1﹣x)﹣2x,则g′(x)=,故x∈(0,1)时,g′(x)>0,函数g(x)在(0,1)递增,∴g(x)>g(0)=0,即f(x)>2x;(Ⅱ)由f′(x)=+=,故曲线在点(x n,f(x n))处的切线方程是:y=(x﹣x n)+f(x n),令y=0,则x n+1=x n+f(x n)(﹣1),则x n+1=ln(﹣1)+x n,由(Ⅰ)及﹣1<0得:x n+1<(2x n)•(﹣1)+x n=x n3;(Ⅲ)令=b k,(k=0,1,2,…,m),∵x n+k<,且a∈(0,1),x n∈(0,1),∴log a x n+k>log a,从而b k=<a=b k﹣1<b k﹣2<…<b0,∴log a+log a+…+log a=b0+b1+…+b m<b0(1+++)=b0(1﹣)<b0,要证log a+log a+…+log a<•()n﹣2(n∈N*),只需b0<,即证b0<⇔a<⇔x n<,由(Ⅱ)以及x1∈(0,a)得:x n<<<…<<,故原结论成立.34.【考点】函数恒成立问题;分段函数的应用.【分析】(Ⅰ)由函数f(x)=可求f()的值,由x∈[2,3]⇒x﹣2∈[0,1],可求得此时函数f(x)的解析式;(Ⅱ)依题意,分x∈(0,1]、x∈(1,2]、x∈(2,3]三类讨论,利用导数由f(x)≤对任意x∈(0,3]恒成立,即可求得实数k的最小值.【解答】解:(Ⅰ)f()=﹣f()=f()=×=.当x∈[2,3]时,x﹣2∈[0,1],所以f(x)= [(x﹣2)﹣(x﹣2)2]=(x﹣2)(3﹣x).(Ⅱ)①当x∈(0,1]时,f(x)=x﹣x2,则对任意x∈(0,1],x﹣x2≤恒成立⇒k≥(x2﹣x3)max,令h(x)=x2﹣x3,则h′(x)=2x﹣3x2,令h′(x)=0,可得x=,当x∈(0,)时,h′(x)>0,函数h(x)单调递增;当x∈(,1)时,h′(x)<0,函数h(x)单调递减,∴h(x)max=h()=;②当x∈(1,2]时,x ﹣1∈(0,1],所以f (x )=﹣ [(x ﹣1)﹣(x ﹣1)2]≤恒成立 ⇔k≥(x 3﹣3x 2+2x ),x∈(1,2].令t (x )=x 3﹣3x 2+2x ,x∈(1,2].则t′(x )=3x 2﹣6x+2=3(x ﹣1)2﹣1, 当x∈(1,1+)时,t (x )单调递减,当x∈(1+,2]时,t (x )单调递增,t (x )max =t (2)=0,∴k≥0(当且仅当x=2时取“=”);③当x∈(2,3]时,x ﹣2∈[0,1],令x ﹣2=t∈(0,1], 则k≥(t+2)(t ﹣t 2)=g (t ),在t∈(0,1]恒成立.g′(t )=﹣(3t 2+2t ﹣2)=0可得,存在t 0∈[,1],函数在t=t 0时取得最大值. 而t 0∈[,1]时,h (t )﹣g (t )=(t 2﹣t 3)+(t+2)(t 2﹣t )=t (1﹣t )(2t ﹣1)>0,所以,h (t )max >g (t )max , 当k≥时,k≥h(t )max >g (t )max 成立,综上所述,k≥0,即k min =0. 35.见解析(Ⅰ)1a =,2()(2)(1)1f x x x x =-=--,()22f x x '=-, ∴x(0,1) 1 (1,3) ()f x ' -+()f x↓ 极小 ↑∴min (1)1f f ==-, max max[(3),(0)]f f f =,而(3)3(0)f f =>, ∴max 3f =. (Ⅱ)0a >时, 1(2)0a x x a -⎛⎫--> ⎪⎝⎭,∵1120a a a a-+-=>, ∴12a a-<, 此时()0f x >解集为:[|2x x >或1a x a -⎤<⎥⎦, 0a <时,1(2)0a x x a -⎛⎫--< ⎪⎝⎭.①10a -<<,则12a a-<, ()0f x >解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦.②1a =-,无解.③1a <-,解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦. 综上:0a >,[|2x x >或1a x a -⎤<⎥⎦. 10a -<<,1|2a x x a -⎡⎤<<⎢⎥⎣⎦1a =-,∅.1a <-,12a x a -⎡⎤<<⎢⎥⎣⎦. 36.(1)|1(1)||(1)|x x --<---+ 22|2||1|(2)(1)x x x x <-⇔<-++, ∴12x <-.(2)①∵0x >,∴ln(1)0x >+, ∴|ln(1)0||0|ln(1)x x x x ---=-++, 记()ln(1)f x x x =-+, (0)0f =. 1()1011x f x x x-'=-=<++, ∴()f x 在(0,)∞+单减.∴()2(0)0f x f =,即ln(1)x x <+, ∴ln(1)x +比x 靠近0.②120n ->, 由①得:2323ln()ln ln ln n n a a a a a a =+++L L12111ln(12)ln(12)ln(12)22n n -----=+++<L L +++++111112(12)211212n ------=<=--,∴23e n a a a <L . 又∵12a =, ∴1232e n a a a a <L . 37.见解析.解:(1)由2()e (e 1)1x f x ax a x =-+-+-得()e 2(e 1)x f x ax a '=-+-+, ∴211()()()e (e 1)1[e 2e 1]22x x g x f x x f x ax a x x ax a '=-⋅=-+-+---+-+,即11()1e (e 1)122x g x x a x ⎛⎫=-+-+- ⎪⎝⎭,∴11()(1)e (e 1)22xg x x a '=-+-+,∴1()e 2xg x x ''=-,[1,)x ∈+∞;∴()0g x ''<,∴()g x '在[1,)+∞上单调递减, 又()g x 在[1,)+∞上单调递减; ∴1()(1)(e 1)02g x g a ''=-+≤≤,∴e 1a -≤,即实数a 的取值范围是(,e 1]-∞-.(2)假设函数()f x 在区间(0,1)上有零点,即存在(0,1)x ∈,使得2e (e 1)10x ax a x -+-+-=,即2e (1e)1x x a x x +--=-,记2e (1e)1()x x h x x x+--=-.①若()1h x <,则2e (1e)110x x x x +---<-,即22e (2e)10x x x x x -+--<-, 由于(0,1)x ∈,有20x x -<,即证2e (2e)10x x x -+-->在(0,1)x ∈上恒成立, 令2()e (2e)1x H x x x =-+--,(0,1)x ∈, 则()e 22e x H x x '=-+-,()e 2x H x ''=-, 当(0,ln2)x ∈时,()0H x ''<, 当(ln2,1)x ∈时,()0H x ''>, ∴当(0,ln2)x ∈时,()H x '单调递减, 当(ln2,1)x ∈时,()H x '单调递增.而(0)102e 0H '=-+->,(1)e 22e 0H '=-+-=,ln 2(ln 2)e 2ln 22e 4e 2ln 20H '=-+-=--<,∴在(0,ln2)上存在唯一的实数0x ,使得0()0H x '=, ∴在0(0,)x 上()H x 单调递增,在0(,1)x 上()H x 单调递减, 而(0)0H =,(1)0H =,∴()0H x >在(0,1)上恒成立,即2e (1e)1()1x x h x x x+--=<-恒成立, ②若()e 2h x >-,则2e (1e)1(e 2)0x x x x +---->-,即22e (e 2)10x x x x x ---->-, 由于(0,1)x ∈,有20x x -<,即证2e (e 2)10x x x ----<在(0,1)x ∈恒成立, 令2()e (e 2)1x H x x x =----,则()e 2(e 2)1x H x x '=---,()e 2(e 2)x H x ''=--, 当(0,ln2(e 2))x ∈-,()0H x ''<,()H x '单调递减; 当(ln2(e 2),1)x ∈-,()0H x ''>,()H x '单调递增, 而(0)0H '=,(1)3e 0H '=->,∴在(ln2(e 2),1)-上存在唯一的实数x ,使得0()0H x '=, ∴在0(0,)x 上()H x 单调递减,在0(,1)x 上()H x 单调递增, 又(0)0H =,(1)0H =,故()0H x <在(0,1)上成立,即2e (1e)1()e 2x x h x x x+--=>--成立, 综上所述,当(e 2,1)a ∈-时,函数2()e (e 1)1x f x ax a x =-+-+-在区间(0,1)上有零点. 38.见解析.解:(1)函数()f x 的定义域为(0,)+∞,()ln 1f x x '=+,∴令()ln 10f x x '=+>,得1e x >,令()0f x '<,得10ex <<, ∴函数()f x 在10,e ⎛⎫ ⎪⎝⎭单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,∴1ex =是函数()f x 的极小值点,极大值点不存在. (2)由题意得()()(1)ln (1)g x f x a x x x a x =--=--, ∴()ln 1g x x a '=+-, 令()0g x '=得1e a x -=.①当1e 1a -<时,即1a <时,()g x 在[1,e]上单调递增, ∴()g x 在[1,e]上的最小值为(1)0g =;②当11e e a -≤≤,即12a ≤≤时,()g x 在1[1,e ]a -上单调递减,在1[e ,e]a -上单调递增, ∴()g x 在[1,e]上的最小值为11111(e )e lne e e a a a a a g a a a -----=-+=-; ③当1e e a ->,即2a >时,()g x 在区间[1,e]上单调递减, ∴()g x 在[1,e]上的最小值为(e)e (e 1)e e g a a a =--=-+, 综上所述,当1a <时,()g x 的最小值为0; 当12a ≤≤时,()g x 的最小值为1e a a --; 当2a >时,()g x 的最小值为e e a a -+. 39.见解析.解:(1)1()ln 2f x x x =-,得11()2f x x '=-,∴(2)ln21f =-,(2)0f '=,∴函数()f x 在(2,(2))f 处的切线方程为ln21y =-. (2)∵112()22xf x x x-'=-=,令()0f x '>,得2x <,令()0f x '<,得2x >, 又()f x 的定义域是(0,)+∞, ∴函数()f x 的单调增区间为(0,2). 40.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可; (Ⅱ)问题转化为2(x 1﹣1)m ﹣(﹣)+e ﹣1<0对任意m <0恒成立,令g(m)=2(x1﹣1)m﹣(﹣)+e﹣1,得到关于x1的不等式组,解出即可;(Ⅲ)求出f(x0)的解析式,记h(m)=m2﹣mlnm,m>0,根据函数的单调性求出h (m)的取值范围,从而求出f(x0)的范围,证明结论即可.【解答】解:(Ⅰ)m=2时,f(x)=e x﹣2x﹣1,f′(x)=e x﹣2,令f′(x)>0,解得:x>ln2,故函数f(x)在[ln2,+∞)递增;(Ⅱ)∵不等式f(x1)+f(0)>f(x2)+f(1)恒成立,x1+x2=1,∴2(x1﹣1)m﹣(﹣)+e﹣1<0对任意m<0恒成立,令g(m)=2(x1﹣1)m﹣(﹣)+e﹣1,当2(x1﹣1)=0时,g(m)=0<0不成立,则,解得:x1>1;(Ⅲ)由题意得f′(x)=e x﹣m,f′(x0)=0,故=m,f(x0)=﹣m(x0+1)+m2=m2﹣mlnm,m>0,记h(m)=m2﹣mlnm,m>0,h′(m)=m﹣lnm﹣1,h′′(m)=﹣,当0<m<2时,h′′(m)<0,当m>2时,h′′(m)>0,故函数h′(x)在(0,2)递减,在(2,+∞)递增,如图所示:[h′(m)]min=h′(2)=﹣ln2<0,又当m→0时,h′(m)>0,m→+∞,h′(m)>0,故函数h′(m)=0有2个根,记为m1,m2(m1<2<m2<6),(h′(6)>0),故h(m)在(0,m1)递增,在(m1,m2)递减,在(m2,+∞)递增,又当m→0时,h(m)>0,h(m)在m2处取极小值,由h′(m2)=0, m2﹣lnm2﹣1=0,lnm2=m2﹣1,故h(m2)=﹣m2lnm2=﹣m2(m2﹣1)=﹣+m2=﹣+1∈(﹣3,1),故f(x0)>﹣3.41.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)构造函数h(x)=g(x)﹣x﹣,求出函数导函数,对导函数求导后可得导函数的单调性,进一步确定导函数的符号,得到函数h(x)的单调性,可得h(x)≥h(0)=0得答案;(2)由(1)知,当kf(x)时,必有kf(x)≤g(x)成立,然后利用分析法证明当x∈[0,1]时,4f(x),当k≥6时,取特值x=说明不等式kf(x)≤g(x)在区间[0,1]上不恒成立,从而说明n0∈[4,6].【解答】证明:(1)设h(x)=g(x)﹣x﹣,即h(x)=,则h′(x)=e x﹣1﹣x,h″(x)=e x﹣1,当x≥0时,h″(x)≥0,h′(x)为增函数,又h′(0)=0,∴h′(x)≥0.∴h(x)在[0,+∞)上为增函数,则h(x)≥h(0)=0,∴g(x)≥x+;(2)由(1)知,当kf(x)时,必有kf(x)≤g(x)成立.下面先证:当x∈[0,1]时,4f(x),当x=0或1时,上式显然成立;当x∈(0,1)时,要证4f(x),即证4(x﹣x2),也就是证8x2﹣7x+2≥0.∵>0.∴当k≤4时,必有kf(x)≤g(x)成立.∴n0≥4;另一方面,当k≥6时,取x=,kf(x)﹣g(x)=>0,∴当k≥6时,kf(x)≤g(x)不恒成立.∴n0≤6.综上,n0∈[4,6].【点评】本题考查利用等式研究函数的单调性,训练了分析法证明函数不等式,体现了特值思想方法的应用,是中档题.42.(1);(2)见解析.试题解析:(1),由题可知:为的两个根,且,得或.而由(1)(2)得:,设,有而在上为减函数,则,即,即,综上,.(2)证明:由,,知,,由(1)可知,所以,所以.点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.43.(Ⅰ)求出函数的导数,根据二次函数的性质证明即可;(Ⅱ)求出f(α)+f(β)的解析式,根据二次函数的性质以及ACBD均为平行四边形,求出t的值即可.解:(Ⅰ)证明:,即﹣4x2+2tx+4=0,△=4t2+64>0,∴,,即4x﹣t=0,则零点,∴得证.(Ⅱ)要使构成平行四边形,由得,只需f(α)+f(β)=0,∴===,所以t=0.44.(Ⅰ) 解: 因为21ln ()xf x x -'=由 ()0f x '=,解得:e x =……………………………………………………3分 因为x (0, e) e (e, +)∞()f x '+-()f xZ1e]所以 ()f x 的极大值为1e,无极小值.………………………………………7分 (Ⅱ) 因为()f x 在[1, e]上是增函数, 所以 max 1()(e)ef x f ==……………………………………………………10分 ()g x 在[1, e]上是增函数所以 max ()(e)e g x g k ==……………………………………………………13分所以 2max211, 0<,e e ()1e, .e k F x k k ⎧<⎪⎪=⎨⎪≥⎪⎩……………………………………………15分 45.(Ⅰ)2'22()()2a x a f x x x x+=+=由'(1)220f a =+=,得1a =-. 经检验,当1a =-时取到极小值,故1a =-.(Ⅱ)由()0f x >,即22ln 0,x a x +>对任意[1,)x ∈+∞恒成立.(1)当1x =时,有a R ∈;(2)当1x >时,22ln 0,x a x +>得22ln x a x>-令2()(1)2ln x g x x x =->,得'2(2ln 1)()2ln x x g x x-=-;若1x <<,则'()0g x >;若x >'()0g x <.得()g x在上递增,在)+∞上递减。
2020年高考数学(理)之高频考点解密05 导数及其应用(解析版)
解密05 导数及其应用考点1 导数的概念及计算题组一 导数的计算调研 1 已知函数()f x 的导函数为()f x ',且满足()()2e ln f x xf x +'=(其中e 为自然对数的底数),则()e f '=A .e -B .1e --C .−1D .1【答案】B【解析】根据题意,f (x )=2xf '(e )+ln x ,其导数12e f x f x''=+()(), 令x =e ,可得1e 2e e f f ''=+()(),变形可得1e ef '=-(), 故选B .【名师点睛】本题考查导数的计算,注意f '(e )为常数,要正确求出函数f (x )的导数.根据题意,由函数的解析式对f (x )求导可得12e f x f x ''=+()(),将x =e 代入计算可得1e 2e ef f ''=+()(),变形可得答案.调研2 以下运算正确的个数是 ①211()'x x =; ②()cos sin x 'x =-; ③()22ln2xx'=;④()1lg ln10x 'x =-. A .1个 B .2个 C .3个D .4个【答案】B【解析】对于①,由于211()'x x =-,所以①不正确; 对于②,由于()'cos sin x x =-,所以②正确; 对于③,由于()'22ln2xx=,所以③正确;对于④,由于()'1lg ln10x x =,所以④不正确. 综上可得②③正确. 故选B .【名师点睛】本题考查导数的基本运算,解题的关键是熟记基本初等函数的求导公式,属于基础题.对四个结论分别进行分析、判断即可得到结论.☆技巧点拨☆1.导数计算的原则和方法(1)原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导. (2)方法:①连乘积形式:先展开化为多项式的形式,再求导;②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; ③对数形式:先化为和、差的形式,再求导; ④根式形式:先化为分数指数幂的形式,再求导;⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导.2.运用基本初等函数求导公式和运算法则求函数()y f x =在开区间(a ,b )内的导数的基本步骤: (1)分析函数()y f x =的结构和特征; (2)选择恰当的求导公式和运算法则求导; (3)整理得结果. 3.求较复杂函数的导数的方法对较复杂的函数求导数时,先化简再求导.如对数函数的真数是根式或分式时,可用对数的性质将真数转化为有理式或整式求解更为方便;对于三角函数,往往需要利用三角恒等变换公式,将函数式进行化简,使函数的种类减少,次数降低,结构尽量简单,从而便于求导. 4.求复合函数的导数的关键环节和方法步骤 (1)关键环节:①中间变量的选择应是基本函数结构; ②正确分析出复合过程;③一般是从最外层开始,由外及里,一层层地求导; ④善于把一部分表达式作为一个整体; ⑤最后结果要把中间变量换成自变量的函数. (2)方法步骤:①分解复合函数为基本初等函数,适当选择中间变量; ②求每一层基本初等函数的导数;③每层函数求导后,需把中间变量转化为自变量的函数.题组二 导数的几何意义调研3 已知函数()e 2xf x x =+,则曲线()y f x =在点()()0,0f 处的切线方程为______________.【答案】x −y +2=0【解析】对函数()e 2x f x x =+求导数得()()e e e 1x x xf x x x '=+=+,则()01f '=,又因为()0022f =+=,所以切点坐标为(0,2), 由直线方程的点斜式可得2y x =+ ,即x−y +2=0.【名师点睛】本题考查了导数的简单应用,根据导数求曲线上一点的切线方程,属于基础题.利用导数求得直线在切点处的斜率,结合点斜式可求得切线方程.调研4 曲线ln 2(0)y a x a =->在1x =处的切线与两坐标轴成的三角形的面积为4,则a 的值为 AB .2C .4D .8【答案】B【解析】由()ln 2y f x a x ==-,得()af x x'=,∴()1f a '=, 又()12f =-,∴曲线ln 2(0)y a x a =->在1x =处的切线方程为()21y a x +=-, 令0x =得2y a =--;令0y =得21x a=+. ∴切线与坐标轴围成的三角形面积为()()12122121422S a a a a ⎛⎫⎛⎫=--+=++= ⎪ ⎪⎝⎭⎝⎭,解得2a =. 故选B .【名师点睛】本题考查导数的几何意义及直线与坐标轴的交点坐标,考查计算能力,属于基础题.先求出曲线在1x =处的切线方程,然后得到切线与两坐标轴的交点坐标,最后可求得围成的三角形的面积. 调研5 已知点P 在曲线4e 1xy =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是______________. 【答案】3π[,π)4【解析】∵4e 1x y =+,∴224e 4e 41(e 1)e 2e 1e 2e x x x x x x x y ---'===+++++.∵e x >0,∴1e 2e xx +≥,当且仅当1e exx =,即x =0时等号成立. ∴y ′∈[−1,0),∴tan α∈[−1,0).又α∈[0,π),∴α∈3π[,π)4.调研6 已知a 为常数,若曲线y =ax 2+3x −ln x 存在与直线x +y −1=0垂直的切线,则实数a 的取值范围是A .⎣⎡⎭⎫-12,+∞B .⎝⎛⎦⎤-∞,-12 C .[−1,+∞)D .(−∞,−1]【答案】A【解析】由题意知曲线上存在某点的导数为1,所以y ′=2ax +3−1x =1有正根,即2ax 2+2x −1=0有正根. 当a ≥0时,显然满足题意;当a <0时,需满足Δ≥0,解得−12≤a <0. 综上,a ≥−12.故选A .调研7 已知直线21y x =+与曲线e xy a x =+相切,其中e 为自然对数的底数,则实数a 的值为A .1B .2C .eD .2e【答案】A【解析】由函数的解析式可得:'e 1xy a =+,设切点坐标为()00,x y ,由题意可得:000000e e 1221x x y a x a y x ⎧=+⎪+=⎨⎪=+⎩,解得:00011x y a =⎧⎪=⎨⎪=⎩,据此可得实数a 的值为1. 故选A .【名师点睛】由题意利用导数研究函数的切线性质即可.导数运算及切线的理解应注意的问题: 一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.☆技巧点拨☆导数的几何意义是每年高考的重点内容,考查题型多为选择题或填空题,有时也会作为解答题中的第一问,难度一般不大,属中低档题型,求解时应把握导数的几何意义是切点处切线的斜率,常见的类型及解法如下:(1)已知切点P (x 0,y 0),求y =f (x )过点P 的切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程; (2)已知切线的斜率为k ,求y =f (x )的切线方程:设切点P (x 0,y 0),通过方程k =f ′(x 0)解得x 0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y =f (x )的切线方程:设切点P (x 0,y 0),利用导数求得切线斜率f ′(x 0),再由斜率公式求得切线斜率,列方程(组)解得x 0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k =f ′(x 0)求出切点坐标(x 0,y 0),最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.考点2 导数的应用题组一 利用导数研究函数的单调性调研1 定义在上R 的连续可导函数()f x ,若当0x ≠时有()0xf x '<,则下列各项正确的是 A .()()()1220f f f -+> B .()()()1220f f f -+=C .()()()1220f f f -+<D .()()12f f -+与()20f 大小不定【答案】C【解析】由题意可知,函数()f x 是R 上的连续可导函数,且当0x ≠时有()0xf x '<, 当0x >时,()0f x '<,所以函数()f x 为单调递减函数; 当0x <时,()0f x '>,所以函数()f x 为单调递增函数, 所以()()()()10,20f f f f -<<,所以()()()1220f f f -+<. 故选C .【名师点睛】本题主要考查了利用导数研究函数的单调性及其应用,其中解答中根据导数得出函数的单调性,再利用函数的单调性作出比较是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.由题意可知,函数满足()0xf x '<,得到当0x >时,函数()f x 为单调递减函数,当0x <时,函数()f x 为单调递增函数,利用函数单调性,即可得到答案.调研 2 已知函数f (x )=12x 2+2ax −ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为______________.【答案】⎣⎡⎭⎫43,+∞【解析】由题意知f ′(x )=x +2a −1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥−x +1x在⎣⎡⎦⎤13,2上恒成立,∵max 1()x x -+=83,∴2a ≥83,即a ≥43.调研3 若函数()51ln 12f x x ax ax=+--在()1,2上为增函数,则a 的取值范围为 A .()1,0,24⎡⎤-∞⎢⎥⎣⎦UB .()1,0,12⎡⎤-∞⎢⎥⎣⎦U C .[)11,00,4⎛⎤- ⎥⎝⎦UD .[)11,0,12⎡⎤-⎢⎥⎣⎦U【答案】B【解析】依题意可得()25102f x a x ax =-'-≥对x ()1,2∈恒成立, 即25102ax x a-+≤对x ()1,2∈恒成立.设g (x )= a 2512x x a-+,x ()1,2∈. 当a >0时,()()5110212450g a ag a a ⎧=-+≤⎪⎪⎨⎪=-+≤⎪⎩,解得112a ≤≤.当a <0时,g (0)=10a <,−522a-=504a<,()()01,2g x x ∴<∈对恒成立. 综上,a 的取值范围为()1,0,12⎡⎤-∞⎢⎥⎣⎦U . 故选B .调研4 已知函数()()ln f x a x x a =-∈R .(1)若3是()f x 的一个极值点,求函数()f x 的表达式,并求出()f x 的单调区间; (2)若(]0,1x ∈,证明当2a ≤时,()10f x x+≥. 【答案】(1)()3ln f x x x =-,单调递增区间是()03,,递减区间是()3+∞,;(2)见解析. 【解析】(1)()f x 的定义域为()0+∞,,()1af x x'=-. 由题设知,()30f '=,所以3a =. 经检验3a =满足已知条件,从而()3ln f x x x =-,()331xf x x x-=-='.当03x <<时,()0f x '>;当3x >时,()0f x '<.所以()f x 的单调递增区间是()03,,递减区间是()3+∞,. (2)证法一:设()()11ln g x f x a x x x x =+=-+,(]0,1x ∈,则()222111a x ax g x x x x -+=--=-'.①当0a ≤时,(]0,1x ∈Q ,1ln 0,0x x x∴≤-≥,()0g x ∴≥,即()10f x x+≥. ②当02a <≤时, 2104a -≥Q ,()2221240a a x g x x⎛⎫-+- ⎪⎝⎭∴=-≤', ()g x ∴在区间(]0,1上单调递减, ()()10g x g ∴≥=,即()10f x x+≥, 综上得,当(]0,1x ∈且2a ≤时,()10f x x+≥成立. 证法二:①若1x =,则()1f x =-,()1110f x x∴+=-+=, ②若01x <<,则ln 0x <,当2a ≤时,()111ln 2ln f x a x x x x x x x +=-+≥-+, 设()12ln g x x x x=-+,()0,1x ∈,()()22212110x g x x x x-∴=--=-<', ()g x ∴在区间(]0,1上单调递减. ()()10g x g ∴>=,则()10f x x+>, 综上得,当(]0,1x ∈且2a ≤时,()10f x x+≥成立. 【名师点睛】(1)本题考查了极值的概念,导数与函数单调性的关系:当()0f x '<时,解出的x 范围是函数()f x 的减区间,当()0f x '>时,解出的x 范围是函数()f x 的增区间. (2)本题考查了分类讨论思想及导数应用,把问题转化成函数最值问题处理.☆技巧点拨☆函数的单调性及应用是高考中的一个重点内容,题型多以解答题的形式呈现.常见的题型及其解法如下:1.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()0f x '>(()0f x '<)在给定区间上恒成立.一般步骤为: (1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论,()0f x '>时为增函数,()0f x '<时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. 2.在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集R 可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.3.由函数()f x 的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.4.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.题组二 利用导数研究函数的极值与最值调研5 已知函数f (x )=−x 3+ax 2−4在x =2处取得极值,若m ,n ∈[−1,1],则f (m )+f ′(n )的最小值是______________. 【答案】−13【解析】f ′(x )=−3x 2+2ax ,根据已知得(2)1240f a '=-+=,即a =3,所以f (x )=−x 3+3x 2−4. 根据函数f (x )的单调性,可得函数f (m )在[−1,1]上的最小值为f (0)=−4, 又f ′(n )=−3n 2+6n 在[−1,1]上单调递增,所以f ′(n )的最小值为f ′(−1)=−9. 所以[f (m )+f ′(n )]min =f (m )min +f ′(n )min =−4−9=−13. 调研6 已知函数()()()32211132132f x x a x a a x =+-+-+,若在区间()0,3内存在极值点,则实数a 的取值范围是 A .()0,3B .1,22⎛⎫⎪⎝⎭ C .()()0,11,3UD .()1,11,22⎛⎫⎪⎝⎭U 【答案】C【解析】()()()()2213221,f x x a x a a x a x a ⎡⎤=+-+-=---⎣⎦'令()0f x '=,则x =a 或x =2a −1.若1a =,则()21,0a a f x '=-≥R 在上恒成立,函数()f x 在R 上单调递增,所以()f x 没有极值点; 若1a >,则21a a <-, 由于f (x )在区间()0,3内存在极值点,所以3,13a a <∴<<; 若1a <,则21a a >-,由于f (x )在区间()0,3内存在极值点,所以0,01a a >∴<<. 综上所述,0113a a <<<<或, 故选C .【名师点睛】本题考查导数在求函数极值中的应用,比较21a a -与的大小,11a a ><分和进行讨论.调研7 已知函数()3213f x x bx cx c =+++. (1)当1x =时,()f x 有极小值196-,求实数,b c ;(2)设()()g x f x cx =-,当()0,1x ∈时,在()g x 图象上任意一点P 处的切线的斜率为k ,若1k <,求实数b 的取值范围. 【答案】(1)12b =,2c =-;(2)(],0-∞. 【思路分析】(1)由题意可得()()101916f f '⎧=⎪⎨=-⎪⎩,求得122b c ⎧=⎪⎨⎪=-⎩,检验即可;(2)由()221k g x x bx '==+<对一切01x <<恒成立,可得122x b x <-对一切01x <<恒成立,从而研究122xy x =-的单调性及最值即可. 【解析】(1)()22f x x bx c '=++Q ,∴由()()101916f f '⎧=⎪⎨=-⎪⎩, 即2107202b c b c ++=⎧⎪⎨++=⎪⎩, 122b c ⎧=⎪∴⎨⎪=-⎩,此时()()()2221f x x x x x '=+-=+-, 当()2,1x ∈-时,()0f x '<,()f x 单调递减,当()1,x ∈+∞时,()0f x '>,()f x 单调递增,()f x ∴在1x =处取得极小值,符合题意,故12b =,2c =-. (2)Q ()3213g x x bx c =++,∴()22k g x x bx '==+,Q 221x bx +<对一切01x <<恒成立,∴122xb x <-对一切01x <<恒成立. 又122xy x =-在()0,1上为减函数, 1022xx ∴->,∴0b ≤. 故b 的取值范围为(],0-∞.【名师点睛】本题考查利用导数求解极值点、导数的几何意义;求解极值点的方法是利用导函数零点的个数结合原函数的单调性来确定,要注意导函数的零点并不一定是函数的极值点,要成为极值点其左右两边的单调性必须相异;研究函数的切线斜率实质上即为研究函数的导函数的取值. 调研8 设()()3211232f x x x ax a =-++∈R . (1)讨论()f x 的单调区间;(2)当02a <<时,()f x 在[]1,4上的最小值为163-,求()f x 在[]1,4上的最大值. 【答案】(1)见解析;(2)103.【思路分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;(2)根据函数的单调性得到f (x )在[1,4]上的最大值为f ),最小值是f (4),求出a 的值,从而求出函数的最大值即可.【解析】(1)由()22f x x x a '=-++,18a ∆=+,①18a ≤-时,0∆≤,此时()0f x '≤, ∴()f x 在R 上递减.②18a >-时,0∆>,令()0f x '=,解得12x =,令()0f x '<,解得12x -<或12x >,令()0f x '>x <<故()f x 在⎛-∞ ⎝⎭,⎫+∞⎪⎪⎝⎭上递减,在⎝⎭上递增.(2)由(1)知()f x 在1,2⎛⎫-∞ ⎪ ⎪⎝⎭,12⎛⎫++∞ ⎪ ⎪⎝⎭上单调递减,在11,22⎛⎫+ ⎪ ⎪⎝⎭上单调递增,当02a <<时,有111422-<<<,所以()f x 在[]1,4上的最大值为f ⎝⎭, 又()()2741602f f a -=-+<,即()()41f f <, 所以()f x 在[]1,4上的最小值为()40164833f a =-=-,得1a =,所以122=,从而()f x 在[]1,4上的最大值为()1023f =.【名师点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,属于中档题.☆技巧点拨☆1.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 2.求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,则f (a )与f (b )一个为最大值,一个为最小值.(2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点. 注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定.题组三 (导)函数图象与单调性、极值、最值的关系调研9 已知函数()f x 的定义域为[]1,5-,部分对应值如下表,()f x 的导函数()y f x '=的图象如图所示.下列关于函数()f x 的命题:①函数()f x 在[]0,1上是减函数;②如果当[]1,x t ∈-时,()f x 的最大值是2,那么t 的最大值为4; ③当12a <<时,函数()y f x a =-最多有4个零点. 其中真命题的个数是 A .3个 B .2个 C .1个D .0个【答案】B【解析】由导数的图象可知,当−1<x <0或1<x <4时,f '(x )>0,函数单调递增, 当0<x <1或4<x <5时,f '(x )<0,函数单调递减,所以①正确; x =0和x =4时,函数取得最大值f (0)=2,f (4)=2,当x ∈[−1,t ]时,f (x )最大值是2,那么t 的最大值为5,所以②不正确;由f (−1)=f (5)=1,结合函数的单调性,可得当12a <<时,函数()y f x a =-最多有4个零点,故③正确.综上,有2个正确. 所以选B .【名师点睛】本题考查了导数图象的综合应用,导数单调性与极值、最值的关系,属于基础题.由导数图象可知函数的单调性,可判断①;结合表格中几个特殊点的函数值,结合函数的单调性,分析t 取不同值时,函数的最大值变化情况,可判断②;结合表格中几个特殊点的函数值,结合函数的单调性,分析函数的极值,可判断③.☆技巧点拨☆1.导数与函数变化快慢的关系:如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.2.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x轴的交点的横坐标为函数的极值点.题组四生活中的优化问题和导数与方程、不等式等的综合问题调研10 已知f(x)=ln x−x+a+1.(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范围;(2)求证:在(1)的条件下,当x>1时,12x2+ax−a>x ln x+12成立.【答案】(1)[0,+∞);(2)见解析.【思路分析】(1)原题即为存在x>0,使得a≥−ln x+x−1成立,即该不等式有解,求函数g(x)=−ln x+x−1的单调性和最小值即可;(2)原不等式转化为G(x)=12x2+ax−x ln x−a−12>0,研究这个函数的单调性,求得这个函数的最值大于0即可.【解析】(1)原题即为存在x>0,使得ln x−x+a+1≥0成立,∴a≥−ln x+x−1,令g(x)=−ln x+x−1,则g′(x)=−1x+1=1xx.令g′(x)=0,解得x=1.∵当0<x<1时,g′(x)<0,g(x)为减函数,当x>1时,g′(x)>0,g(x)为增函数,∴g(x)min=g(1)=0,a≥g(1)=0.故a的取值范围是[0,+∞).(2)原不等式可化为12x2+ax−x ln x−a−12>0(x>1,a≥0).令G(x)=12x2+ax−x ln x−a−12,则G(1)=0.由(1)可知x−ln x−1>0,则G′(x)=x+a−ln x−1≥x−ln x−1>0,∴G(x)在(1,+∞)上单调递增,∴G(x)>G(1)=0成立,∴12x2+ax−x ln x−a−12>0成立,即12x2+ax−a>x ln x+12成立.调研11 某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产x 万件,需另投入流动成本C (x )万元,当年产量小于7万件时,C (x )=13x 2+2x (万元);当年产量不小于7万件时,C (x )=6x +1n x +3e x﹣17(万元).已知每件产品售价为6元,假设该同学生产的产量当年全部售完.(1)写出年利润P (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入﹣固定成本﹣流动成本)(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?(取e 3≈20)【答案】(1)()23142073e 15ln 7x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩,,;(2)当年产量约为20万件时,该同学的这一产品所获年利润最大,最大利润为11万元.【思路分析】(1)根据年利润=销售额-投入的总成本-固定成本,分0<x <7和当x ≥7两种情况得到P (x )与x 的分段函数关系式;(2)当0<x <7时根据二次函数求最大值的方法来求P (x )的最大值,当x ≥7时,利用导数求P (x )的最大值,最后综合即可.【解析】(1)产品售价为6元,则x 万件产品销售收入为6x 万元. 依题意得,当07x <<时,()22116(2)24233P x x x x x x =-+-=-+-, 当8x ≥时,()33e e 6(6ln 17)215ln P x x x x x x x=-++--=--.∴()23142073e 15ln 7x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩,,. (2)当07x <<时,()()216103P x x =--+, ∴当6x =时,()P x 的最大值为()610P =(万元).当7x ≥时,()3e 15ln P x x x =--,∴()33221e e xP x x x x-'=-+=,∴当37e x ≤<时,()0P x '>,()P x 单调递增;当3e x >时,()0P x '<,()P x 单调递减, ∴当3e x =时,()P x 取最大值()33e 15lne111P =--=(万元),∵1110>,∴当3e 20x =≈时,()P x 取得最大值11万元,即当年产量约为20万件时,该同学的这一产品所获年利润最大,最大利润为11万元.【名师点睛】本题考查函数式的求法,考查年利润的最大值的求法,考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题. 调研12 已知函数()()()22ln f x ax a x x a =+--∈R ,又函数()321132m g x x x x =+++的两个极值点为1212,()x x x x <,且满足12x x +≥,12,x x恰为()()ln h x x f x bx =-+的零点. (1)当()2,0a ∈-时,求()f x 的单调区间; (2)当1a =时,求证:()121242ln223x x x x h +⎛⎫-≥-⎪⎝'⎭. 【答案】(1)函数()f x 的单调递减区间是10,2⎛⎫⎪⎝⎭和1,a ⎛⎫-+∞ ⎪⎝⎭,单调递增区间是11,2a ⎛⎫- ⎪⎝⎭;(2)见解析. 【思路分析】(1)求出()()()211x ax f x x-+'=,解导不等式可得()f x 的单调区间;(2)先确定0<12x x ≤12,再利用y =()12122x x x x h +'⎛⎫- ⎪⎝⎭=()411t t -+﹣2ln t (0<t ≤12),只需求y =()12122x x x x h +'⎛⎫- ⎪⎝⎭的最小值即可得证. 【解析】(1)∵()()()22ln f x ax a x x a =+--∈R ,∴()()()()()2221211122ax a x x ax f x ax a x x x+---+'=+--==, 又()2,00a x ∈-,>, 令()0f x '>,解得112x a -<<,令()0f x '<,解得0<x <12或x >1a-,∴函数()f x 的单调递减区间是10,2⎛⎫ ⎪⎝⎭和1,a ⎛⎫-+∞ ⎪⎝⎭,单调递增区间是11,2a ⎛⎫- ⎪⎝⎭. (2)()321132m g x x x x =+++,()21g x x mx '=++,由题意12212122401x x m x x mx x ∆⎧+≥⎪⎪⎪=-⎨⎪+=-⎪=⎪⎩>,∴221212()x x m x x +=≥92,解得0<12x x ≤12, 当1a =时,()()()2ln 2ln 1h x x f x bx x x b x =-+=-+-,则()221h x x b x'=-+-, ()()()()22111122222ln 1,2ln 1=0=0h x x x b x h x x x b x =-+-=-+-,两式相减得:2ln12x x ﹣(x 1﹣x 2)(x 1+x 2)+()1b -(x 1﹣x 2)=0, 令t =12x x ,则0<t ≤12, ∴()()1212412ln 21t x x x x h t t -+⎛⎫-=-+⎝⎭'⎪(0<t ≤12), 记()()412ln 1t t t t ϕ-=-+,则()222(1)0(1)t t t t ϕ--'=+<, ∴()()412ln 1t t t t ϕ-=-+在(0,12]上单调递减,∴()t ϕ的最小值为142ln 223ϕ⎛⎫=-⎪⎝⎭, 即()121242ln223x x x x h +⎛⎫-≥-⎪⎝'⎭,得证. 【名师点睛】本题考查导数知识的综合运用,考查证明不等式,考查函数的单调性,考查学生分析、解决问题的能力,属于中档题.☆技巧点拨☆1.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解. 2.生活中的优化问题(1)实际生活中利润最大,容积、面积最大,流量、速度最大等问题都需要利用导数来求解相应函数的最大值.若在定义域内只有一个极值点,且在极值点附近左增右减,则此时唯一的极大值就是最大值. (2)实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.用料最省、费用最低问题出现的形式多与几何体有关,解题时根据题意明确哪一项指标最省(往往要从几何体的面积、体积入手),将这一指标表示为自变量x 的函数,利用导数或其他方法求出最值,但一定要注意自变量的取值范围.3.利用导数研究函数综合问题的一般步骤:(1)确定函数的定义域,审清题意,确定解题方向,明确出发点. (2)进行合理转化,构造函数关系,进行求导.(3)利用导数研究函数的单调性,确定极值或最值,有参数时进行分类讨论. (4)利用极值或最值,判断函数的零点,得出正确结论. (5)反思回顾,查看关键点、易错点及解题过程的规范性.1.(上海市进才中学2019-2020学年高三上学期期中)函数213()22f x x x =-+是区间I 上是增函数,且函数()f x y x=在区间I 上又是减函数,那么区间I 可以是A .[1,)+∞B .)+∞C .[1,3]D .【答案】D【思路分析】由题意求213()22f x x x =-+的增区间,再求y ()12f x x ==x ﹣132x +的减函数,从而求得结果.【解析】因为213()22f x x x =-+在区间[1,+∞)上是增函数,y ()12f x x ==x ﹣132x+,所以令y ′22213130222x x x-=-⋅=<,可解得x ∈[0)U (0;故y ()12f x x ==x ﹣132x+在[,0)及(0上是减函数,故区间I 可以是[1]. 故选D .2.(内蒙古自治区赤峰市赤峰二中、呼市二中2019-2020学年高三上学期10月月考)已知函数()f x 满足(0)1f =,且()cos ()sin f x x f x x '>,则不等式()cos 10f x x ->的解集为A .(,1)-∞-B .(1,)+∞C .(,0)-∞D .(0,)+∞【答案】D【思路分析】令()()cos g x f x x =,利用导数可研究函数为增函数,且原不等式可转化为()(0)g x g >,利用单调性即可求解.【解析】令()()cos g x f x x =,有()()cos ()sin 0g'x f x x f x x '=->,故函数()g x 单调递增, 又由(0)(0)cos01g f ==,不等式()cos 10f x x ->可化为()(0)g x g >, 则不等式()cos 10f x x ->的解集为(0,)+∞. 故选D .【名师点睛】本题主要考查了利用导数研究函数的增减性,根据函数单调性解不等式,属于中档题.3.(山东省烟台市2019-2020学年高三上学期期中)已知函数2()f x x =的图象在1x =处的切线与函数e ()xg x a=的图象相切,则实数a =AB .2CD .【答案】B【思路分析】先求函数2()f x x =的图象在1x =处的切线,再根据该切线也是函数e ()xg x a=图象的切线,设出切点即可求解.【解析】由2()f x x =,得()2f x x '=,则(1)2f '=,又(1)1f =,所以函数()f x 的图象在1x =处的切线为12(1)y x -=-,即21y x =-.设21y x =-与函数e ()xg x a=的图象相切于点00(,)x y ,由e ()xg x a '=,可得00000e ()2,e ()21,x x g x ag x x a ⎧==⎪⎪⎨⎪==-⎩'⎪解得32031,e 22x a ==故选B .【名师点睛】本题考查导数的几何意义与函数图象的切线问题.已知切点时,可以直接利用导数求解;切点未知时,一般设出切点,再利用导数和切点同时在切线和函数图象上列方程(组)求解.4.(新疆维吾尔自治区行知学校2019-2020学年高三上学期11月月考)已知()f x '是函数()f x 的导函数,且对任意的实数x 都有()e (23)()x f x x f x '=++,(0)1f =,则不等式()5e xf x <的解集为A .(4,1)-B .(1,4)-C .(,4)(1,)-∞-+∞UD .(,1)(4,)-∞-+∞U【答案】A【思路分析】首先构造函数()()ex f x G x =,利用导函数求出()G x 的解析式,即可求解不等式. 【解析】令()()e x f x G x =,则()()()23exf x f x G x x '-'==+,设2()3G x x x c =++, 因为(0)(0)1G f ==,解得1c =,所以2()()31ex f x G x x x ==++, 解不等式()5e xf x <,即()5ex f x <,所以2315x x ++<, 解得41x -<<,所以不等式的解集为(4,1)-.故选A .【名师点睛】本题考查利用导函数解不等式,解题的关键是根据问题构造一个新的函数,此题综合性比较强.5.(四川省成都市蓉城名校联盟2019-2020学年高三上学期第一次联考)若函数1()2ln f x ax x x=++在区间1[,4]2上有2个极值点,则a 的取值范围为 A .(1,0]- B .[]3,84-C .7(1,)16--D .(]1,8-【答案】C【思路分析】利用导数求得函数()f x 的单调区间,结合函数()f x 在区间1[,4]2上有2个极值点列不等式组,解不等式组求得a 的取值范围.【解析】212()f x a x x '=-+2221ax x x +-=.显然当0a =时,221()x f x x -'=只有1个极值点12,不符合题意,只有C 选项符合. 构造函数21()21(0,4)2g x ax x a x =+-≠≤≤. 依题意()g x 在区间1[,4]2上有两个不同的零点,故440124221()02(4)00a a a g a g a ∆=+>⎧⎪⎪<-<⎪⎪⎨⋅>⎪⎪⋅>⎪⎪≠⎩,即21124104(167)0a a a a a >-⎧⎪⎪-<<-⎪⎨⎪>⎪⎪+>⎩, 解得7116a -<<-. 故选C .【名师点睛】本小题主要考查利用导数研究函数的极值点,考查二次函数零点分布问题的求解,考查化归与转化的数学思想方法,属于中档题.6.(江西省南昌市东湖区第十中学2019-2020学年高三上学期期中)已知函数21()(e,e ef x x ax x =-≤≤为自然对数的底数)与()e xg x =的图象上存在关于直线y x =对称的点,则实数a 的取值范围是A .1[1,e ]e+B .1[1,e ]e-C .11[e ,e ]e e-+D .1[e ,e]e-【答案】A【思路分析】()f x 的图象上与()g x 的图象上存在关于y x =对称的点等价于与方程组2emm x axx ⎧=-⎨=⎩有解,消元后利用导数可以得到实数a 的取值范围.【解析】设()f x 的图象上与()g x 的图象上关于y x =对称的点为(,)x m ,故2emm x axx ⎧=-⎨=⎩,消去m 得到2e x ax x -=,两边取对数有2ln x x ax =-, 因为1e e x ≤≤,故2ln x x a x-=,令2ln ()x x h x x -=,1e e x ≤≤,则22ln 1()x x h x x+-'=,1e e x ≤≤. 令2()ln 1s x x x =+-,因为()s x 为1[,e]e上的增函数,且当1x =时,(1)0s =, 故当1[,1)ex ∈时,()0s x <,当(1,e]x ∈时,()0s x >; 所以当1[,1)ex ∈时,()0h x '<,()h x 为减函数; 当(1,e]x ∈时,()0h x '>,()h x 为增函数;因为(1)1h =,111(e)e ,()e e e e h h =-=+,所以()h x 的值域为1[1,e ]e +,故1[1,e ]ea ∈+.故选A .【名师点睛】函数图象的之间的关系应转化为对应方程的解来处理,而后者可参变分离后利用导数讨论不含参数的新函数的值域即可得参数的取值范围.7.(江苏省泰州市黄桥中学2019年高三上学期11月月考)函数()2cos f x x =在点(6P π处的切线的倾斜角是______________.。
(完整)2019-2020年高考数学压轴题集锦——导数及其应用(一)
2019-2020年高考数学压轴题集锦——导数及其应用(一)1.已知函数2()ln (R)f x x ax x a =++∈. (1)讨论函数()f x 在[1,2]上的单调性; (2)令函数12()()x g x ex a f x -=++-,e =2.71828…是自然对数的底数,若函数()g x 有且只有一个零点m ,判断m 与e 的大小,并说明理由.2.已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值. (1)求a ,b 的值与函数f (x )的单调区间; (2)若对[,1]x c ∈,不等式()2cf x <恒成立,求c 的取值范围.3.已知函数()ln(1)ln(1)f x x x =+--. (1)证明'()2f x ≥;(2)如果()f x ax ≥对[0,1)x ∈恒成立,求a 的范围.4.已知函数1()xx f x e +=(e 为自然对数的底数). (1)求函数()f x 的单调区间; (2)设函数1()()'()x x xf x tf x eϕ=++,存在实数1x ,2x [01]∈,,使得122()()x x ϕϕ<成立,求实数t 的取值范围.5.已知函数()x f x kx a =-,其中k R ∈,0a >且1a ≠ .(1)当a e =(e =2.71…为自然对数的底)时,讨论f (x )的单调性; (2)当1k =时,若函数f (x )存在最大值g (a ),求g (a )的最小值.6.已知函数()()2ln f x x ax x a R =-+-∈(1)当3a =时,求函数f (x )在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)函数f (x )既有极大值又有极小值,求实数a 的取值范围.7.已知f (x )是定义在R 上的奇函数,当0x >时,()()313f x x ax a R =+∈,且曲线f (x )在12x =处的切线与直线314y x =--平行 (1)求a 的值及函数f (x )的解析式;(2)若函数()y f x m =-在区间⎡-⎣上有三个零点,求实数m 的取值范围.8.已知函数(),0ln xf x ax a x=-> (1)若函数()y f x =在()1,+∞上减函数,求实数a 的最小值;(2)若存在212,,x x e e ⎡⎤∈⎣⎦,使()()12f x f x a '≤+成立,求实数a 的取值范围.9.已知函数32()1f x x ax bx a b =+++∈,,R . (1)若20a b +=,①当0a >时,求函数f (x )的极值(用a 表示);②若f (x )有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由;(2)函数f (x )图象上点A 处的切线1l 与f (x )的图象相交于另一点B ,在点B 处的切线为2l ,直线12l l ,的斜率分别为12k k ,,且21=4k k ,求a ,b 满足的关系式.10.已知函数()x xf x e e-=+,其中e 是自然对数的底数.(1)若关于x 的不等式()1xmf x e m -≤+-在(0,+∞)上恒成立,求实数m 的取值范围;(2)已知正数a 满足:存在0[1,)x ∈+∞,使得3000()(3)f x a x x <-+成立.试比较1a e-与1e a -的大小,并证明你的结论.11.已知函数()()ln 2axf x e x =+(e 为自然对数的底数).(1)若a R ∈,()()'ax F x e f x -=,讨论()F x 的单调性; (2)若12a <,函数()()1g x f x x =--在(-1,+∞)内存在零点,求实数a 的范围.12.已知函数()(2)(1)2ln f x a x x =---(a R ∈).(1)若函数()()g x f x x =+上带你(1,(1))g 处的切线过点(0,2),求函数()g x 的单调减区间;(2)若函数()y f x =在1(0,)2上无零点,求a 的最小值.13.已知a R ∈,函数2()ln f x a x x=+. (1)若函数()f x 在区间(0,2)内单调递减,求实数a 的取值范围; (2)当0a >时,求函数()f x 的最小值()g a 的最大值;(3)设函数()()(2)h x f x a x =+-,[1,)x ∈+∞,求证:()2h x ≥.14.设函数22()ln ()f x a x x ax a R =-+-∈. (1)试讨论函数()f x 的单调性;(2)设2()2()ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x ,2x ,证明12'()02x x h +>.15.已知函数()(ln 1)(0)xf x e a x a =-+> .(1)f (x )在区间(0,2)上的极小值等于,求;(2)令()2112x g x mx x =-+-,设1212,()x x x x <是函数()()()()f x f x h x g x a'-=+的两个极值点,若m ≥,求12()()h x h x -的最小值.参考答案1.(1)由已知0x >,且2121()2x ax f x x a x x++'=++=①当280a ∆=-≤时,即当a -≤≤()0f x '≥则函数()f x 在[1,2]上单调递增…………………………………………………………1分②当280a ∆=->时,即a <-或a >2210x ax ++=有两个根,x =,因为0x >,所以x =1°当14a -≤时,令(1)30f a '=+≥,解得3a ≥-∴当3a -≤<-a >()f x 在[1,2]上单调递增…………………3分2°当12<<时,令(1)30f a '=+<,9(2)02f a '=+>, 解得932a -<<-∴当932a -<<-时,函数()f x 在[1,4a -+上单调递减,在2]上单调递增;…………………5分3°2≥时,令9(2)02f a '=+≤,解得92a ≤- ∴当92a ≤-时,函数()f x 在[1,2]上单调递减; ……………………………………6分(2)函数121()()ln x x g x e x a f x e x ax a --=++-=--+则11()()x g x e a h x x -'=--= 则121()0x h x ex-'=+>,所以()g x '在(0,)+∞上单调增 当0,(),,()x g x x g x →→-∞→+∞→+∞,所以()R g x '∈ 所以()g x '在(0,)+∞上有唯一零点1x当11(0,),()0,(,),()0x x g x x x g x ''∈<∈+∞>,所以1()g x 为()g x 的最小值由已知函数()g x 有且只有一个零点m ,则1m x =所以()0,()0,g m g m '==则111ln 0m m e a m e m am a --⎧--=⎪⎨⎪--+=⎩…………………………………9分 则11111ln ()()0m m m em e m e m m ------+-=,得11(2)ln 0m m m e m m----+= 令11()(2)ln (0)x x p x x e x x x--=--+>,所以()0,p m = 则121()(1)()x p x x ex-'=-+,所以(0,1),()0,(1,),()0x p x x p x ''∈>∈+∞< 所以()p x 在(1,)+∞单调递减, 因为1111(1)10,()(2)1(2)0e e e p p e e ee e e e---=>=--+=--< 所以()p x 在(1,)e 上有一个零点,在(,)e +∞无零点所以m e < …………………………………………………………………………………12分 2.解:(1)32'2(),()32f x x ax bx c f x x ax b =+++=++ 由'2124()0393f a b -=-+=,'(1)320f a b =++=得1,22a b =-=- '2()32(32)(1)f x x x x x =--=+-,随着x 变化时,()()f x f x ’,的变化情况如下表:所以函数()f x 的递增区间是(,)3-∞-与(1,)+∞,递减区间是(,1)3-; (2)321()22f x x x x c =--+, 当32-≤c 时,由(1)知)(x f 在[]1,c 上的最大值为222()327f c -=+所以只需要222()3272c f c -=+<,得4427c <- 当132<<-c 时,由(1)知)(x f 在[]1,c 上的最大值为323211()222f c c c c c c c c =--+=--所以只需要321()22c f c c c c =--<,解得3102c c <-<<或 所以01c <<综上所述,c 的取值范围为()1,02744,Y ⎪⎭⎫⎝⎛-∞- 3.解:(1)证明:()2112'111f x x x x =+=+-- 11<<-x Θ 故1102≤-<x()2'≥∴x f(2)由题意知()001f x ax x -≥≤<对恒成立, 设()(),01g x f x ax x =-≤<,则()22'()'1g x f x a a x=-=-- ()恒成立时,当0'2≥≤x g a ,[)()0,1g x 在上单调递增()()0g x g ≥=0,符合题意()得时,当0'2=>x g a a x=-212, 即212x a-=a x a x 21,212-=-=∴即(),0'210<-<<∴x g ax 时,)(x g 单调递减()()0g x g <=0,不合题意综上,a 的取值范围为(],2-∞4.解:(1)∵函数的定义域为R ,f ′(x )=-xe x ,∴当x <0时,f ′(x )>0,当x >0时,f ′(x )<0,∴f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减.(2)存在x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立, 则2[φ(x )]min <[φ(x )]max .∵φ(x )=xf (x )+tf ′(x )+e -x=xex t x 1)1(2+-+, ∴()()()xx e x t x e t x t x x 1)1('2---=-++-=ϕ. ①当t ≥1时,φ′(x )≤0,φ(x )在[0,1]上单调递减,∴2φ(1)<φ(0),即t >3-2e>1; ②当t ≤0时,φ′(x )>0,φ(x )在[0,1]上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0; ③当0<t <1时,若x ∈[0,t ),φ′(x )<0,φ(x )在[0,t )上单调递减, 若t ∈(t,1],φ′(x )>0,φ(x )在(t,1)上单调递增,∴2φ(t )<max{φ(0),φ(1)}, 即2·1t t e +<max{1,3te-}.(*) 由(1)知,g (t )=2·1t t e+在[0,1]上单调递减, 故4e ≤2·1t t e +≤2,而2e ≤3t e -≤3e,∴不等式(*)无解. 综上所述,存在t ∈(-∞,3-2e)∪(3-2e,+∞),使得命题成立. 5.解:(1)由题()x f x kx e =- ()x f x k e '=- ,①当0k ≤,当()0f x '<,()f x 在R 上是减函数;②当0k >,当ln x k >,()0f x '<,()f x 在(ln )k +∞,上是减函数;当ln x k <,()0f x '> ,()f x 在(ln )k -∞, 上是增函数.即当0k ≤时,()f x 在()-∞+∞,上个递减;当0k >时,()f x 在(ln )k +∞,上递减,在(ln )k -∞,上递增. (2)当1k =,()x f x x a =-,()1ln x f x a a '=-.①当01a <<时,0x a >,ln 0a <,则()0f x '> ,()f x 在R 上为增函数,()f x 无极大值,也无最大值;②当1a >,设方程()0f x '=的根为t ,得1ln a a'=. 即1ln1ln log ln ln a a t a a==,所以()f x 在()t -∞,上为增函数,在()t +∞,上为减函数, 则()f x 的极大值为1ln1ln ()ln ln t a f t t a a a =-=-,10ln a>.令1ln1ln ()ln ln a g a a a=-,令()ln h x x x x =-,0x >.()ln h x x '=.当1x >时()0h x '>;当(01)x ∈,时()0h x '<,所以1x =为()h x 极小值也是最小值点. 且(1)1h =-,即()g a 的最小值为1-,此时a e =. 6.解:(1)当3a =时,()()()2211123123x x x x f x x x x x---+'=-+-=-=-,函数()f x 在区间1,22⎛⎫ ⎪⎝⎭仅有极大值点1x =,故这个极大值点也是最大值点, 故函数在1,22⎡⎤⎢⎥⎣⎦的最大值是()12f =,又()()15322ln 2ln 22ln 20244f f ⎛⎫⎛⎫-=--+=-<⎪ ⎪⎝⎭⎝⎭,故()122f f ⎛⎫< ⎪⎝⎭, 故函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最小值为()22ln 2f =-.(2)若()f x 既有极大值又有极小值,则必须()0f x '=有两个不同正根12,x x ,即2210x ax -+=有两个不同正根,故a应满足:2080002a a aa ∆>⎧⎧->⎪⇒⇒>⎨⎨>>⎩⎪⎩∴函数()f x 既有极大值又有极小值,实数a的取值范围是a >7.解:(1)当0x >时,()2f x x a '=+,因为曲线()f x 在12x =处的切线与直线314y x =--平行,所以113244f a ⎛⎫'=+=-⎪⎝⎭,所以1a =-,则当0x >时,()313f x x x =-, 因为()f x 是定义在R 上的奇函数,可知()00f =, 设0x <,则0x ->,()313f x x x -=-+, 所以()()331133f x f x x x x x ⎛⎫=--=--+=- ⎪⎝⎭, 综上所述,函数()f x 的解析式为:()()313f x x x x R =-∈. (2)由()()313f x x x x R =-∈得:()21f x x '=-,令()0f x '=得:1x =± 当31x -<<-时,()0f x '>,()f x 单调递增,当11x -<<时,()0f x '<,()f x 单调递减,当1x <<()0f x '>,()f x 单调递增,又()36f -=-,()213f -=,()213f =-,0f=函数()y f x m =-在区间⎡-⎣上有三个零点,等价于()f x 在⎡-⎣上的图像与y m =有三个公共点,结合()f x 在区间⎡-⎣上大致图像可知,实数m 的取值范围是3,02⎛⎤- ⎥⎝⎦. 8.解:因为()f x 在()1,+∞上是减函数,故()()2ln 10ln x f x a x -'=-≤在()1,+∞上恒成立,又()()()222ln 111111ln ln 24ln ln x f x a a a x x x x -⎛⎫'=-=-+-=--+- ⎪⎝⎭,故当11ln 2x =,即2x e =时,()max 14f x a '=-,所以104a -≤,于是14a ≥,故a 的最小值为14. (2)命题“若212,,x x e e ⎡⎤∃∈⎣⎦,使()()12f x f x a '≤+成立” 等价于“当2,x e e ⎡⎤∈⎣⎦时,有()()min max f x f x a '≤+” 由(1),当2,x e e ⎡⎤∈⎣⎦时,()max 14f x a '=-,所以()max 14f x a '+=. 问题等价于:“当2,x e e ⎡⎤∈⎣⎦时,有()min 14f x ≤” ①当14a ≥时,由(1),()f x 在2,e e ⎡⎤⎣⎦上是减函数,则()()222min 1124f x f e e ae ==-≤,故21124a e≥-②当14a <时,由于()2111ln 24f x a x ⎛⎫'=--+- ⎪⎝⎭在2,e e ⎡⎤⎣⎦上为增函数, 于是()f x '的值域为()()2,f e f e ⎡⎤''⎣⎦,即1,4a a ⎡⎤--⎢⎥⎣⎦. 01.若0a -≥,即0a ≤,()0f x '≥,在2,e e ⎡⎤⎣⎦上恒成立,故()f x 在2,e e ⎡⎤⎣⎦上为增函数,于是()()min 14f x f e e ae e ==-≥>,不合题意; 02.若0a -<,即104a <<,由()f x '的单调性和值域知,存在唯一()20,x e e ∈,使()00f x '=,且满足当()0,x e x ∈时,()0f x '<,()f x 为减函数,当()20,x x e ∈时,()0f x '>,()f x 为增函数, 所以()()()20000min 01,,ln 4x f x f x ax x e e x ==-≤∈, 所以2001111111ln 4ln 4244a x x e e ≥->->-=,与104a <<矛盾,不合题意; 综上:a 的取值范围为211,24e ⎡⎫-+∞⎪⎢⎣⎭.9.解:(1)①由2()32f x x ax b '=++及02=+b a , 得22()32f x x ax a '=+-, 令()0f x '=,解得3ax =或a x -=. 由0>a 知,(,)()0x a f x '∈-∞->,,)(x f 单调递增,(,)()03a x a f x '∈-<,,)(x f 单调递减,(,)()03ax f x '∈+∞>,,)(x f 单调递增,因此,)(x f 的极大值为3()1f a a -=+,)(x f 的极小值为35()1327a a f =-.② 当0a =时,0b =,此时3()1f x x =+不存在三个相异零点;当0a <时,与①同理可得)(x f 的极小值为3()1f a a -=+,)(x f 的极大值为35()1327a a f =-. 要使)(x f 有三个不同零点,则必须有335(1)(1)027a a +-<, 即332715a a <->或. 不妨设)(x f 的三个零点为321,,x x x ,且321x x x <<, 则123()()()0f x f x f x ===,3221111()10f x x ax a x =+-+=, ① 3222222()10f x x ax a x =+-+=, ② 3223333()10f x x ax a x =+-+=, ③②-①得222212121212121()()()()()0x x x x x x a x x x x a x x -+++-+--=, 因为210x x ->,所以222212121()0x x x x a x x a ++++-=, ④ 同理222332232()0x x x x a x x a ++++-=, ⑤ ⑤-④得231313131()()()()0x x x x x x x a x x -+-++-=, 因为310x x ->,所以2310x x x a +++=, 又1322x x x +=,所以23ax =-. 所以()03af -=,即22239a a a +=-,即327111a =-<-,因此,存在这样实数a =满足条件.(2)设A (m ,f (m )),B (n ,f (n )),则b am m k ++=2321,b an n k ++=2322,又b n m a n mn m nm n m b n m a n m n m n f m f k +++++=--+-+-=--=)()()()()()(2222331,由此可得b n m a n mn m b am m +++++=++)(23222,化简得m a n 2--=, 因此,b a am m b m a a m a k +++=+--+--=2222812)2(2)2(3, 所以,2221284(32)m am b a m am b +++=++, 所以b a 32=. 10.解:(1)由条件知(1)1xxx m e ee --+-≤-在(0,)+∞上恒成立,令xt e =(0x >),则1t >,所以21111111t m t t t t -≤-=--+-++-对于任意1t >成立.因为111131t t -++≥=-,∴1113111t t -≥--++-, 当且仅当2t =,即ln 2x =时等号成立. 因此实数m 的取值范围是1(,]3-∞-. (2)令函数31()(3)xx g x e a x x e =+--+,则21'()3(1)x xg x e a x e=-+-, 当1x ≥时,10xxe e->,210x -≥,又0a >,故'()0g x >, 所以()g x 是[1,)+∞上的单调递增函数,因此()g x 在[1,)+∞上的最小值是1(1)2g e e a -=+-. 由于存在0[1,)x ∈+∞,使00300(3)0xx e ea x x -+--+<成立,当且仅当最小值(1)0g <,故120e e a -+-<,即12e e a -+>.1a e -与1e a -均为正数,同取自然底数的对数,即比较(1)ln a e -与(1)ln e a -的大小,试比较ln 1e e -与ln 1aa -的大小.构造函数ln ()1x h x x =-(1x >),则211ln '()(1)xx h x x --=-,再设1()1ln m x x x =--,21'()xm x x-=,从而()m x 在(1,)+∞上单调递减, 此时()(1)0m x m <=,故'()0h x <在(1,)+∞上恒成立,则ln ()1xh x x =-在(1,+)∞上单调递减.综上所述,当1(,)2e e a e -+∈时,11a e e a --<; 当a e =时,11a e ea --=;当(,)a e ∈+∞时,11a e e a -->.11.(Ⅰ)(1) 当 0a ≤时,()F x 在()2,-+∞ 上单调递减; (2) 当0a >时,()F x 在 12,2a ⎛⎫-- ⎪⎝⎭上单调递减,在12,a ⎛⎫-+∞ ⎪⎝⎭单调递增. (Ⅱ)a 的取值范围是 1(,0)0,2⎛⎫-∞ ⎪⎝⎭U . 解:(I )定义域为{}|2,x x >-()()()11'e ln 2e e ln 222ax ax ax f x a x a x x x ⎛⎫=⋅++⋅=++ ⎪++⎝⎭故()()()1e 'ln 22ax F x f x a x x -==+++ 则 ()()()22121'222a ax a F x x x x +-=-=+++ (1)若0a =,则()()'0,F x F x <在()2,-+∞ 上单调递减;…………………2分 (2)若0a ≠,令()1'02F x x a=⇒=-. ①当 0a <时,则122x a=-<-,因此在()2,-+∞ 上恒有 ()'0F x < ,即 ()F x 在()2,-+∞ 上单调递减;②当0a >时,122x a =->-,因而在12,2a ⎛⎫-- ⎪⎝⎭上有()'0F x <,在12,a ⎛⎫-+∞ ⎪⎝⎭上有()'0F x >;因此 ()F x 在 12,2a ⎛⎫-- ⎪⎝⎭上单调递减,在12,a ⎛⎫-+∞ ⎪⎝⎭单调递增.综上, (1) 当 0a ≤时,()F x 在()2,-+∞ 上单调递减; (2) 当0a >时, ()F x 在 12,2a ⎛⎫-- ⎪⎝⎭上单调递减,在12,a ⎛⎫-+∞ ⎪⎝⎭单调递增. …………………5分(Ⅱ)设 ()()()()1ln 21,1,axg x f x x e x x x =--=+--∈-+∞,()()()()1''1ln 2112ax axg x f x e a x e F x x ⎛⎫=-=++-=- ⎪+⎝⎭,设()()()'1ax h x g x e F x ==-,则 ()()()()()22241''ln 22axaxax a h x e aF x F x e a x x ⎛⎫+- ⎪⎡⎤=+=++⎣⎦ ⎪+⎝⎭. (1) 若=0a ,()()()()1ln 21,1,g x f x x x x x =--=+--∈-+∞()()'1110,1,22x g x x x x --=-=<∈-+∞++ ()g x 在()1,x ∈-+∞单调递减,()()10g x g <-=故此时函数()g x 无零点, =0a 不合题意. …………………7分 (2)若0a < ,①当0x ≥时,01ax e <≤,由(1)知()ln 21x x +<+对任意()1,x ∈-+∞恒成立()()()ln 211)1(1()10ax ax ax g x e x x e x x x e ∴=+--<+--=+-≤,故 ()0g x <,对任意[)0,x ∈+∞恒成立, ②当10x -<<时,()'1,10a g e -->-=()1'0ln202g a =-<, 因此当10x -<<时()'g x 必有零点,记第一个零点为0x , 当0(1,)x x ∈-时()'g x >,()g x 单调递增,()(1)0g x g >-=.由①②可知,当0a <时,()g x 必存在零点. …………………9分 (2)当102a <<,考察函数 ()'h x ,由于()()1222114'1e 210,'ln 20,22122a a h a h e a a a a -⎛⎫⎪⎛⎫⎛⎫ ⎪-=-<=++> ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎪⎝⎭⎝⎭ ()'h x ∴在 ()1,-+∞上必存在零点.设()'h x 在 ()1,-+∞的第一个零点为1x ,则当()11,x x ∈-时, ()'0h x <,故 ()h x 在 ()11,x -上为减函数,又 ()()e110ah x h -=-<-<,所以当()11,x x ∈-时, ()'0g x <,从而 ()g x 在()11,x x ∈-上单调递减,故当()11,x x ∈-时恒有 ()()10g x g <-=.即()10g x < ,令'()1,()(1)ax axx e ax x a e ϕϕ=--=-,则()x ϕ在(1,0)x ∈-单调递减,在(0,)x ∈+∞单调递增.()(0)0x ϕϕ≥=即1,axeax ≥+注意到1ax e ax ax a ≥+>+,因此()()()()()ln 21(1)ln 21(1)ln 21ax g x e x x a x x x x a x =+-->++--=++-,令10ax e =时,则有()11110(1)ln 21(1)ln 10aa a ag x e a e e a e ⎛⎫⎛⎫⎛⎫>++->+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由零点存在定理可知函数 ()y g x =在 11,a x e ⎛⎫⎪⎝⎭上有零点,符合题意.综上可知, a 的取值范围是 1(,0)0,2⎛⎫-∞ ⎪⎝⎭U . …………………12分 (Ⅱ)解法二:设()()()()1ln 21,1,axg x f x x e x x x =--=+--∈-+∞,()()()()1''1ln 2112ax axg x f x e a x e F x x ⎛⎫=-=++-=- ⎪+⎝⎭,(1) 若=0a ,()()()()1ln 21,1,g x f x x x x x =--=+--∈-+∞()()'1110,1,22x g x x x x --=-=<∈-+∞++ ()g x 在()1,x ∈-+∞单调递减,()()10g x g <-=故此时函数()g x 无零点, =0a 不合题意. …………………7分 (2)若0a < ,当10x -<<时,()'1,10a g e -->-=()1'0ln202g a =-<, 因此当10x -<<时()'g x 必有零点,记第一个零点为0x ,当0(1,)x x ∈-时()'0g x >,()g x 单调递增,()0(1)0g x g >-=又 ()()001ln210,g f =-=-<所以,当0a <时,()g x 在0(,0)x x ∈必存在零点. …………………9分 (3)当102a <<,由于 ()ln 2100g <-< , 令'()1,()(1)ax axx e ax x a e ϕϕ=--=-,则()x ϕ在(1,0)x ∈-单调递减,在(0,)x ∈+∞单调递增.()(0)0x ϕϕ≥=即1,axeax ≥+注意到 1ax e ax ax a ≥+>+,因此()()()()()ln 21(1)ln 21(1)ln 21ax g x e x x a x x x x a x =+-->++--=++-,令10ax e =时,则有()11110(1)ln 21(1)ln 10aa a ag x e a e e a e ⎛⎫⎛⎫⎛⎫>++->+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 由零点存在定理可知函数 ()y g x =在()00,x 上存在零点,符合题意. 综上可知,a 的取值范围是 1(,0)0,2⎛⎫-∞ ⎪⎝⎭U . …………………12分 12.(1)∵()(3)(2)2ln g x a x a x =----,∴2'()3g x a x=--, ∴'(1)1g a =-, 又(1)1g =,∴121110a --==--,解得2a =, 由22'()320x g x x x-=--=<,得02x <<, ∴()g x 的单调递减区间为(0,2). (2)若函数()f x 在1(0,)2上无零点,则()f x 在1(0,)2上()0f x <或()0f x >恒成立, 因为()0f x <在区间1(0,)2上恒成立不可能,故要使函数()f x 在1(0,)2上无零点,只要对任意的1(0,)2x ∈,()0f x >恒成立,即对1(0,)2x ∈,2ln 21xa x >--恒成立. 令2ln ()21x I x x =--,1(0,)2x ∈, 则2222(1)2ln 2ln 2'()(1)(1)x x x x x I x x x --+-=-=--, 再令2()2ln 2m x x x =+-,1(0,)2x ∈, 则22222(1)'()0x m x x x x -=-+=-<, 故()m x 在1(0,)2上为减函数,于是1()()22ln 202m x m >=->, 从而'()0I x >,于是()I x 在1(0,)2上为增函数, 所以1()()24ln 22I x I <=-, 故要使2ln 21x a x >--,1(0,)2x ∈恒成立,只要[24ln 2,)a ∈-+∞, 综上,若函数()f x 在1(0,)2上无零点,则a 的最小值为24ln 2-. 13.(1)函数()f x 在区间(0,2)内单调递减(0,2)x ⇔∀∈,恒有'()0f x ≤成立,而22'()0ax f x x -=≤, 故对(0,2)x ∀∈,恒有2a x≤成立, 而21x>,则1a ≤满足条件. 所以实数a 的取值范围为(,1]-∞. (2)当0a >时,222'()0ax f x x x a-==⇒=.随x 的变化,'()f x ,()f x 的变化情况如下表:所以()f x 的最小值()ln g a f a a a a ⎛⎫==+⎪⎝⎭. '()ln 2ln 02g a a a =-=⇒=.随x 的变化,'()g x ,()g x 的变化情况如下表:(3)因为[1,)x ∈+∞, 所以当2a ≥时,()()(2)h x f x a x =+-2ln (2)a x a x x=++-. 因为22'()20ax h x a x -=+-≥, 所以()h x 在区间[1,)+∞内是增函数, 故()(1)2h x h a ≥=≥.当2a <时,()()(2)h x f x a x =--2ln (2)a x a x x=+--, 由22'()2ax h x a x-=-+ [(2)2](1)0a x x x-+-==,解得202x a=-<-(舍去)或1x =. 又20a ->,故1x ≥时,'()0h x ≥, 所以()h x 在区间[1,)+∞内是增函数, 所以()(1)42h x h a ≥=->.综上所述,对[1,)x ∀∈+∞,()2h x ≥恒成立.14.(1)由22()ln f x a x x ax =-+-,可知2'()2a f x x a x =-+-222(2)()x ax a x a x a x x--+-==. 因为函数()f x 的定义域为(0,)+∞,所以,①若0a >时,当(0,)x a ∈时,'()0f x <,函数()f x 单调递减,当(,)x a ∈+∞时,'()0f x >,函数()f x 单调递增;②若0a =时,当'()20f x x =>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③若0a <时,当(0,)2ax ∈-时,'()0f x <,函数()f x 单调递减,当(,)2a x ∈-+∞时,'()0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+2(2)ln (0)x a x a x x =+-->, 所以'()2(2)a h x x a x=+--22(2)(2)(1)x a x a x a x x x +---+==. 所以当(0,)2ax ∈-时,'()0h x <;当(,)2a x ∈-+∞时,'()0h x >;当2a x =时,'()02a h =. 欲证12'()02x x h +>,只需证12'()'()22x x a h h +>,又2''()20a h x x=+>,即'()h x 单调递增,故只需证明1222x x a +>. 设1x ,2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则21112222(2)ln (2)ln x a x a x m x a x a x m⎧+--=⎪⎨+--=⎪⎩, 两式相减并整理得1212(ln ln )a x x x x -+-22121222x x x x =-+-, 从而221212121222ln ln x x x x a x x x x -+-=-+-, 故只需证明2212121212122222(ln ln )x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-. 因为1212ln ln 0x x x x -+-<,所以(*)式可化为12121222ln ln x x x x x x --<+, 即11212222ln 1x x x x x x -<+. 因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+,(0,1)t ∈. 设22()ln 1t R t t t -=-+,(0,1)t ∈,所以22214(1)'()0(1)(1)t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在(0,1)单调递增.又(1)0R =,因此()0R t <,(0,1)t ∈, 故22ln 1t t t -<+,(0,1)t ∈得证, 从而12'()02x x h +>得证.15.解:(1)因为0a >,所以()x a f x e x'=-在区间(0,2)上单调递增, 因为()0,0x f x '→<,由题意()f x 在区间(0,2)上有极小值,故()20f '>, 所以22022a e a e ->⇒<,设0x 为在区间(0,2)上的极小值点, 故000x a e x -=,所以000001()(ln 1)(ln 1)x f x e a x a x x =-+=--, 设()1(ln 1),(0,2)g x a x x x =--∈,则()2211(1)()a x g x a x x x +'=--=-, 所以()0g x '<,即()g x 在(0,2)上单调递减,易得出()10g =,故00()01f x x =⇒=,代入000x a e x -=,可得a e =,满足22a e <,故a e =. (2)()()()()2ln 2f x f x x h x g x mx x a '-=+=-+,因为()21x mx h x x-+'=, 令()0h x '=,即210x mx -+=,两根分别为12,x x ,则12121x x m x x +=⎧⎨=⎩, 又因为221211122211()()ln ln 22h x h x x mx x x mx x -=-+-+- 22222211121212122211()()ln ()()ln 22x x x x m x x x x x x x x =---+=---+ 2222111211212221222111ln ()ln ()n ()222x x x x x x x x x x x x x x x x-=+-=-=--, 令12x t x =,由于12x x <,所以01t <<,又因为3m ≥,2221216()3x x m -=>, 即212121221()2x x x x x x x x +=++,即11623t t ++≥, 所以231030t t -+≥,解得3t ≥或13t ≤,即103t <≤, 令111()ln ()(0)23h t t t t t =--<≤,2222211121(1)()02222t t t h t t t t t t ----'=--==< 所以1()(0,]3h t =上单调递减, min 11114()()ln (3)ln 332233h t h ==--=-+,所以12()()h x h x -的最小值4ln 33-+.。
2019-2020年高考数学压轴题集锦——导数及其应用(五)
2019-2020年高考数学压轴题集锦——导数及其应用(五)46.已知函数4)(2--=ax x x f (a ∈R)的两个零点为12,,x x 设12x x < .(Ⅰ)当0a >时,证明:120x -<<.(Ⅱ)若函数|)(|)(2x f x x g -=在区间)2,(--∞和),2(+∞上均单调递增,求a 的取值范围.47.设函数2()ln f x x ax x =-++(R ∈a ). (Ⅰ)若1a =时,求函数()f x 的单调区间;(Ⅱ)设函数()f x 在],1[e e 有两个零点,求实数a 的取值范围.48.已知函数()ln()f x ax b x =+-,2()ln g x x ax x =-- .(Ⅰ)若1b =, ()()()F x f x g x =+,问:是否存在这样的负实数,使得()F x 在1x =处存在切线且该切线与直线1123y x =-+平行,若存在,求a 的值;若不存在,请说明理由 .(Ⅱ)已知0a ≠,若在定义域内恒有()ln()0f x ax b x =+-≤,求()a a b +的最大值 .49.设函数2)21(ln )(-+=x b x x x f )(R b ∈,曲线()y f x =在()1,0处的切线与直线3y x =平行.证明:(Ⅰ)函数)(x f 在),1[+∞上单调递增; (Ⅱ)当01x <<时,()1f x <.50.已知f (x )=a (x -ln x )+212xx -,a ∈R . (I )讨论f (x )的单调性;(II )当a =1时,证明f (x )>f ’(x )+23对于任意的x ∈[1,2]恒成立。
51.已知函数f (x )=x 2+ax ﹣ln x ,a ∈R .(1)若函数f (x )在[1,2]上是减函数,求实数a 的取值范围;(2)令g (x )=f (x )﹣x 2,是否存在实数a ,当x ∈(0,e ](e 是自然常数)时,函数g (x )的最小值是3,若存在,求出a 的值;若不存在,说明理由;(3)当x ∈(0,e ]时,证明:e 2x 2-25x >(x +1)ln x .52.已知函数f (x )=31x 3-ax +1.(1)若x =1时,f (x )取得极值,求a 的值; (2)求f (x )在[0,1]上的最小值;(3)若对任意m ∈R ,直线y =﹣x +m 都不是曲线y =f (x )的切线,求a 的取值范围.53.已知函数()x f x axe =(0a ≠) (1)讨论()f x 的单调性;(2)若关于x 的不等式()ln 4f x x x <+-的解集中有且只有两个整数,求实数a 的取值范围.54.已知函数()()11,1n x n m x f x g x m mx x +-==--(其中,,m e n me ≥为正整数,e 为自然对数的底)(1)证明:当1x >时,()0m g x >恒成立;(2)当3n m >≥时,试比较()n f m 与()m f n 的大小,并证明.55.已知函数f (x )=e x 和函数g (x )=kx +m (k 、m 为实数,e 为自然对数的底数,e ≈2.71828).(1)求函数h (x )=f (x )﹣g (x )的单调区间;(2)当k =2,m =1时,判断方程f (x )=g (x )的实数根的个数并证明;(3)已知m ≠1,不等式(m ﹣1)[f (x )﹣g (x )]≤0对任意实数x 恒成立,求km 的最大值.56.已知函数(1)()ln ()a x f x x a R x-=-∈. (Ⅰ)若1a =,求()y f x =在点()1,(1)f 处的切线方程; (Ⅱ)求()f x 的单调区间; (Ⅲ)求证:不等式111ln 12x x -<-对一切的(1,2)x ∈恒成立.57.已知函数2()(1)ln f x x a x =-+(a R ∈).(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 存在两个极值点()1212x x x x <、,求21()f x x 的取值范围.58.设函数R m xmx x f ∈+=,ln )(. (Ⅰ)当e m =(e 为自然对数的底数)时,求)(x f 的极小值; (Ⅱ)若对任意正实数a 、b (a b ≠),不等式()()2f a f b a b-≤-恒成立,求m 的取值范围.59.已知函数()b x a ax x x f +-+-=2233231, ),(R b a ∈ (1)当3=a 时, 若()x f 有3个零点, 求b 的取值范围;(2)对任意]1,54[∈a , 当[]m a a x ++∈,1时恒有()a x f a ≤'≤-, 求m 的最大值, 并求此时()x f 的最大值。
(word完整版)精选最新2019高考数学《导数及其应用》专题完整题(含答案),推荐文档
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设0a >且1a ≠,则“函数()xf x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R 上是增函数”的(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件2.若()ln f x x x x 2=-2-4,则'()f x >0的解集为A. (,)0+∞B. -+10⋃2∞(,)(,)C. (,)2+∞D. (,)-10二、填空题3.若函数()2xf x e x k =--在R 上有两个零点,则实数k 的取值范围为_____________4.若32)1(+=+x x g ,则)(x g 等于5.已知函数f(x),g(x)满足,f(5)=5,f ﹐(5)=3,g(5)=4,g ﹐(5)=1,则函数y=f(x)+2g(x)的图象在x=5处的切线方程为▲ . 6.1-⎰(x 2+2 x +1)dx =_________________.137.对正整数n ,设曲线)1(x x y n -=在x =2处的切线与y 轴交点的纵坐标为n a ,则数列}1{+n a n的前n 项和的公式是 .8.曲线xe y =在x=1处的切线的斜率为 ;9.函数f (x )=x 3–3bx +3b 在(0,1)内有极小值,则b 的取值范围是___________________0<b <110. 若函数f(x)= x3+ax-2在区间(-∞,+∞)上是增函数,则实数a的取值范围为__________11.(文)已知函数13)(23++-=ax ax x x f 在区间),(+∞-∞内既有极大值,又有极小值,则实数a 的取值范围是12.如图,已知矩形ABCD 的一边在x 轴上,另两个顶点C ,D 落在二次函数2()4f x x x =- 上.求这个矩形面积的最大值。
2020年高考数学压轴题专题复习: 函数、导数与数列、不等式的综合应用【解析版】
设 f(x)= ln x (x 1) ,则 f '(x) 1 ln x .
x
x2
令 f '(x) 0 ,得 x=e.列表如下:
x
(1, e)
e
f '(x)
+
0
f(x)
极大值
(e,+∞) –
因为 ln 2 2
ln 8 6
ln 9 6
ln 3 ,所以 3
f
(k )max
f
(3)
ln 3 . 3
由此猜测:当 时,
.
下Hale Waihona Puke 先用数学归纳法证明:当 时,.
事实上,当 时,由前面的讨论知结论成立.
假设当
时,
成立,则由(2)知,
,从而
,
所以
.
故当 时,
成立.
于是由(2)知,当 时,
,而
,因此
.
综上所述,当 时,
,
,
.
(Ⅱ)存在 ,使数列 是等比数列.
事实上,由(2)知,若对任意的 ,都有
,则
.即数列 是首项为 ,公比为 3 的等比
1) (2)
2n
10
,
所以等差数列an的通项公式为 an 2n 10 ;
(2)由条件 S9 a5 ,得 9a5 a5 ,即 a5 0 ,
因为 a1 0 ,所以 d 0 ,并且有 a5 a1 4d 0 ,所以有 a1 4d ,
由
Sn
an
得 na1
n(n 1) 2
d
a1
(n 1)d
函数、导数与数列、不等式的综合应用
纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等, 是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,函数、导数与数列、不等式的综合应 用问题的主要命题角度有:函数与不等式的交汇、函数与数列的交汇、导数与数列不等式的交汇等.本专题 就函数、导数与数列、不等式的综合应用问题,进行专题探讨,通过例题说明此类问题解答规律与方法.
2020年高考数学 大题专项练习 导数与函数 五(15题含答案解析)
2020年高考数学 大题专项练习导数与函数 五1.已知函数f(x)=lnx -x ,g(x)=ax 2+2x(a<0).(1)求函数f(x)在区间⎣⎢⎡⎦⎥⎤1e ,e 上的最值; (2)求函数h(x)=f(x)+g(x)的极值点. 2.已知函数f(x)=x 3-3x 2+2x ,g(x)=tx ,.(1)求函数的单调增区间;(2)令h(x)=f(x)-g(x),且函数h(x)有三个彼此不相等的零点0,m,n ,其中m<n . ①若n=2m ,求函数h(x)在x=m 处的切线方程; ②若对,恒成立,求实数t 的取值范围.3.已知函数f(x)=xlnx.(1)若函数,求g(x)的极值;(2)证明:f(x)+1<e x-x 2. (参考数据:,,,)4.已知函数f(x)=(x -1)e x+1,x ∈[0,1].(1)证明:f(x)≥0;(2)若a<e x-1x<b 对任意的x ∈(0,1)恒成立,求b -a 的最小值.5.已知函数f(x)=e x (x -ae x).(1)当a=0时,求f(x)的极值;(2)若f(x)有两个不同的极值点,求a 的取值范围. 6.已知函数,.(1)当m<1时,讨论函数f(x)的单调性; (2)若函数f(x)有两个极值点x 1,x 2,且x 1<x 2.求证.7.已知(1)求函数的单调区间; (2)求函数在上的最小值;(3)对一切的,恒成立,求实数的取值范围.8.已知函数f(x)=ln x,g(x)=21ax+b. (1)若曲线f(x)与g(x)在x=1处相切,求g(x)的表达式; (2)若φ(x)=1)1(+-x x m -f(x)在[1,+∞)上是减函数,求实数m 的取值范围.9.设函数f(x)=(1-x 2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a 的取值范围.10.已知函数,(为自然对数的底数).(1)求函数的最小值;(2)若对任意的恒成立,求实数的值;(3)在(2)的条件下,证明:.11.已知函数f(x)=xlnx+ax+1-a.(1)求证:对任意实数a,都有[f(x)]min≤1;(2)若a=2,是否存在整数k,使得在x∈(2,+∞)上,恒有f(x)>(k+1)x-2k-1成立?若存在,请求出k的最大值;若不存在,请说明理由.(e=2.71828)12.已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;(2)当a=3,b=﹣9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.13.已知函数f(x)=x +ax+b(x≠0),其中a ,b ∈R.(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x +1,求函数f(x)的解析式; (2)讨论函数f(x)的单调性;(3)若对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f(x)≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立,求b 的取值范围. 14.已知函数(1)求函数的极值;(2)设函数,其中k ∈R ,求函数在区间[1,e]上的最大值.15.已知函数f (x )=a x +x 2﹣xlna (a >0,a ≠1).(Ⅰ)当a >1时,求证:函数f (x )在(0,+∞)上单调递增; (Ⅱ)若函数y=|f (x )﹣t|﹣1有三个零点,求t 的值.答案解析1.解:(1)依题意,f′(x)=1x -1,令1x-1=0,解得x=1.因为f(1)=-1,f ⎝ ⎛⎭⎪⎫1e =-1-1e ,f(e)=1-e ,且1-e<-1-1e <-1, 故函数f(x)在区间⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为-1,最小值为1-e. (2)依题意,h(x)=f(x)+g(x)=lnx +ax 2+x(x>0),h′(x)=1x +2ax +1=2ax 2+x +1x,当a<0时,令h′(x)=0,则2ax 2+x +1=0. 因为Δ=1-8a>0,所以h′(x)=2ax 2+x +1x =2a (x -x 1)(x -x 2)x ,其中x 1=-1-1-8a 4a ,x 2=-1+1-8a4a.因为a<0,所以x 1<0,x 2>0,所以当0<x<x 2时,h′(x)>0; 当x>x 2时,h′(x)<0,所以函数h(x)在区间(0,x 2)内是增函数,在区间(x 2,+∞)内是减函数,故x 2=-1+1-8a4a为函数h(x)的极大值点,无极小值点.2.解:(1),所以,令 得到,所以的单调增区间是.(2)由方程得是方程的两实根,故,且由判别式得, ①若,得,故,得,因此,故函数在处的切线方程为. ②若对任意的,都有成立,所以,因为,所以, 当时,对有,所以,解得,又因为,得,则有;当时,,则存在的极大值点,且,由题意得,将代入得,进而得到,得,又因为,得,综上可知t的取值范围是或.3.解:(1),,当,,当,,在上递增,在上递减,在取得极大值,极大值为,无极大值.(2)要证f(x)+1<e x﹣x2.即证e x﹣x2﹣xlnx﹣1>0,先证明lnx≤x﹣1,取h(x)=lnx﹣x+1,则h′(x)=,易知h(x)在(0,1)递增,在(1,+∞)递减,故h(x)≤h(1)=0,即lnx≤x﹣1,当且仅当x=1时取“=”,故xlnx≤x(x﹣1),e x﹣x2﹣xlnx≥e x﹣2x2+x﹣1,故只需证明当x>0时,e x﹣2x2+x﹣1>0恒成立,令k(x)=e x﹣2x2+x﹣1,(x≥0),则k′(x)=e x﹣4x+1,令F(x)=k′(x),则F′(x)=e x﹣4,令F′(x)=0,解得:x=2ln2,∵F′(x)递增,故x∈(0,2ln2]时,F′(x)≤0,F(x)递减,即k′(x)递减,x∈(2ln2,+∞)时,F′(x)>0,F(x)递增,即k′(x)递增,且k′(2ln2)=5﹣8ln2<0,k′(0)=2>0,k′(2)=e2﹣8+1>0,由零点存在定理,可知∃x1∈(0,2ln2),∃x2∈(2ln2,2),使得k′(x1)=k′(x2)=0,故0<x <x 1或x >x 2时,k ′(x )>0,k (x )递增,当x 1<x <x 2时,k ′(x )<0,k (x )递减,故k (x )的最小值是k (0)=0或k (x 2),由k ′(x 2)=0,得=4x 2﹣1, k (x 2)=﹣2+x 2﹣1=﹣(x 2﹣2)(2x 2﹣1),∵x 2∈(2ln2,2),∴k (x 2)>0,故x >0时,k (x )>0,原不等式成立. 4.解:(1)证明:因为f ′(x)=xe x≥0,即f(x)在[0,1]上单调递增, 所以f(x)≥f(0)=0,即结论成立.(2)令g(x)=e x -1x ,则g ′(x)=x -1e x +1x2>0,x ∈(0,1), 所以当x ∈(0,1)时,g(x)<g(1)=e -1,要使e x-1x <b ,只需b≥e-1.要使e x-1x >a 成立,只需e x-ax -1>0在x ∈(0,1)恒成立,令h(x)=e x -ax -1,x ∈(0,1),则h ′(x)=e x-a.由x ∈(0,1),得e x∈(1,e). ①当a≤1时,h ′(x)>0,此时x ∈(0,1),有h(x)>h(0)=0成立,所以a≤1满足条件; ②当a≥e 时,h′(x)<0,此时x ∈(0,1),有h(x)<h(0)=0,不符合题意,舍去; ③当1<a<e 时,令h′(x)=0,得x=ln a . 当x ∈(0,ln a)时,h′(x)<0,即x ∈(0,ln a)时,h(x)<h(0)=0,不符合题意,舍去. 综上,a≤1.又b≥e-1,所以b -a 的最小值为e -2. 5.解:(1)当a=0时,f(x)=xe x ,f′(x)=(x +1)e x,令f′(x)>0,可得x>-1,故f(x)在(-1,+∞)上单调递增, 同理可得f(x)在(-∞,-1)上单调递减,故f(x)在x=-1处有极小值f(-1)=-1e .(2)依题意,可得f′(x)=(x +1-2ae x )e x=0有两个不同的实根.设g(x)=x +1-2ae x ,则g(x)=0有两个不同的实根x 1,x 2,g′(x)=1-2ae x,若a≤0,则g′(x)≥1,此时g(x)为增函数,故g(x)=0至多有1个实根,不符合要求;若a>0,则当x<ln 12a 时,g′(x)>0,当x>ln 12a时,g′(x)<0,故此时g(x)在-∞,ln 12a 上单调递增,在ln 12a ,+∞上单调递减,g(x)的最大值为gln 12a =ln 12a -1+1=ln 12a,又当x→-∞时,g(x)→-∞,当x→+∞时,g(x)→-∞,故要使g(x)=0有两个不同实根,则gln 12a =ln 12a>0,得0<a<12或作图象知要使g(x)=0有两个不同实根,则gln 12a =ln 12a>0.设g(x)=0的两个不同实根为x 1,x 2(x 1<x 2), 当x<x 1时,g(x)<0,此时f′(x)<0; 当x 1<x<x 2时,g(x)>0,此时f′(x)>0; 当x>x 2时,g(x)<0,此时f′(x)<0.故x 1为f(x)的极小值点,x 2为f(x)的极大值点,0<a<12符合要求.综上所述,a 的取值范围为(0,0.5). 6.解:, ,令,,, 令则, 当,即时, 令则;令则.此时函数在上单调递减;在上单调递增.当,即时, 令,则; 令则, 此时函数在上单调递减; 在和上单调递增. 由知,若有两个极值点, 则且,又,是的两个根,则, ,令,则, 令,则,令,则,所以在上单调递减;在上单调递增.,,,得证.7.8.解析:9.解:(1)f′(x)=(1-2x-x2)e x,令f′(x)=0,得x=-1±2,当x∈(-∞,-1-2)时,f′(x)<0;当x∈(-1-2,-1+2)时,f′(x)>0;当x∈(-1+2,+∞)时,f′(x)<0.所以f(x)在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)令g(x)=f(x)-ax-1=(1-x2)e x-(ax+1),令x=0,可得g(0)=0.g′(x)=(1-x2-2x)e x-a,令h(x)=(1-x2-2x)e x-a,则h′(x)=-(x2+4x+1)e x,当x≥0时,h′(x)<0,h(x)在[0,+∞)上单调递减,故h(x)≤h(0)=1-a,即g′(x)≤1-a,要使f(x)-ax-1≤0在x≥0时恒成立,需要1-a≤0,即a≥1,此时g(x)≤g(0)=0,故a≥1.综上所述,实数a的取值范围是[1,+∞).10.(1);(2);(3)证明见解析.11.解:(1)证明:由已知易得,所以令得:显然,时,<0,函数f(x)单调递减;时,>0,函数f(x)单调递增,所以,令,则由得,时,>0,函数t()单调递增;时,<0,函数t()单调递减,所以,即结论成立.(2)由题设化简可得,令,所以 由=0得①若,即时,在上,有,故函数单调递增所以 ②若,即时, 在上,有,故函数在上单调递减, 在上,有.故函数在上单调递增, 所以,在上,故欲使,只需即可令, 由得所以,时,,即单调递减又,故12.解:(1)f(x)=ax 2+1(a >0),则f ′(x)=2ax ,k 1=2a ,g(x)=x 3+bx ,则g ′(x)=3x 2+b ,k 2=3+b , 由(1,c)为公共切点,可得:2a=3+b ①又f(1)=a+1,g(1)=1+b ,∴a+1=1+b ,即a=b ,代入①式,可得:a=3,b=3. (2)当a=3,b=﹣9时,设h(x)=f(x)+g(x)=x 3+3x 2﹣9x+1则h ′(x)=3x 2+6x ﹣9, 令h'(x)=0,解得:x 1=﹣3,x 2=1;∴k ≤﹣3时,函数h(x)在(﹣∞,﹣3)上单调增,在(﹣3,1]上单调减,(1,2)上单调增,所以在区间[k ,2]上的最大值为h(﹣3)=28﹣3<k <2时,函数h(x)在区间[k ,2]上的最大值小于28 所以k 的取值范围是(﹣∞,﹣3] 13.解:(1)f′(x)=1-ax2(x≠0),由已知及导数的几何意义得f′(2)=3,则a=-8.由切点P(2,f(2))在直线y=3x +1上可得-2+b=7,解得b=9,所以函数f(x)的解析式为f(x)=x -8x+9.(2)由(1)知f′(x)=1-ax2(x≠0).当a≤0时,显然f′(x)>0,这时f(x)在(-∞,0),(0,+∞)上是增函数. 当a>0时,令f′(x)=0,解得x=±a ,当x 变化时,f′(x),f(x)的变化情况如下表:所以当a>0时,f(x)在(-∞,-a),(a ,+∞)上是增函数, 在(-a ,0),(0,a)上是减函数.(3)由(2)知,对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f(x)≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立等价于 ⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫14≤10,f 1≤10,即⎩⎪⎨⎪⎧b ≤394-4a ,b≤9-a对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2成立,从而得b≤74,所以满足条件的b 的取值范围是⎝⎛⎦⎥⎤-∞,74.14.15.。
全国五年高考真题导数及其应用 解析版
专题03 导数及其应用【2020年】1.(2020·新课标Ⅰ)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A. 21y x =-- B. 21y x =-+ C. 23y x =- D. 21y x =+【答案】B 【解析】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 2.(2020·新课标Ⅲ)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12 C. y =12x +1 D. y =12x +12【答案】D【解析】设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=, 由于直线l 与圆2215x y +==, 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 【2019年】1.(2019·全国Ⅲ卷】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .2.(2019·天津卷)已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭, 当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.3.(2019浙江卷)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b x 3(a +1)x 2+ax ﹣ax ﹣b x 3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴0且,解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0. 故选C .4.(2019·全国Ⅰ卷)曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 5.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ .【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得02x =02x =-∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.6.(2019·江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-, 即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =,故点A 的坐标为()e,1.7.(2019·北京卷)设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0x xa -++=对任意的x 恒成立, 则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞. 【2018年】1.(2018·全国Ⅰ卷)设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D 【解析】因为函数是奇函数,所以,解得,所以,,所以, 所以曲线在点处的切线方程为,化简可得.故选D.2.(2018·全国Ⅱ卷)函数()2 e e xxf xx--=的图像大致为【答案】B【解析】()()()2e e0,,x xx f x f x f xx--≠-==-∴为奇函数,舍去A;()11e e0f-=->,∴舍去D;()()()()()243e e e e22e2e,x x x x x xx x x xf xx x---+---++=='2x∴>时,()0f x'>,()f x单调递增,舍去C.因此选B.3.(2018·全国Ⅲ卷)函数422y x x=-++的图像大致为【答案】D【解析】函数图象过定点(0,2),排除A ,B ;令42()2y f x x x ==-++,则32()422(21)f x x x x x '=-+=--,由()0f x '>得22(21)0x x -<,得22x <-或202x <<,此时函数单调递增, 由()0f x '<得22(21)0x x ->,得22x >或202x -<<,此时函数单调递减,排除C.故选D.4.(2018·全国Ⅱ卷)曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 【答案】【解析】则所求的切线方程为.5.(2018·全国Ⅲ卷)曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________. 【答案】-3【解析】()e 1e xxy a ax =++',则0|12x y a ='=+=-,所以.6.(2018·全国Ⅰ卷)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【答案】【解析】,所以当时函数单调递减,当时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z , 函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z ,所以当π2π,3x k k =-∈Z 时,函数取得最小值,此时,所以,故答案是.7.(2018·江苏卷)若函数在内有且只有一个零点,则在上的最大值与最小值的和为________. 【答案】–3【解析】由()2620f x x ax =-='得0x =或3a x =, 因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以0,033a a f ⎛⎫>= ⎪⎝⎭, 因此32210,33a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭解得3a =.从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0,f x f =()()(){}()min min 1,11f x f f f =-=-,则()()max min f x f x +=()()0+114 3.f f -=-=- 故答案为-3. 【2017年】1.(2017·全国Ⅲ卷)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11eex x g x --+=+,则()()21111111e1eeee e x x x x x x g x ---+----'=-=-=,当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 2.(2017·全国Ⅱ卷)若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e -- C .35e - D .1【答案】A【解析】由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-, 因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)e x f x x x -'=+-, 令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减, 所以()f x 的极小值为11()(111)e 11f -=--=-.故选A .3.(2017·浙江卷)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .11.(2017·江苏卷)已知函数31()2e e x xf x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 . 【答案】1[1,]2- 【解析】因为31()2e ()ex x f x x f x x -=-++-=-,所以函数()f x 是奇函数, 因为22()32e e 322e e 0x x x x f 'x x x --=-++≥-+⋅,所以函数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤, 解得112a -≤≤, 故实数a 的取值范围为1[1,]2-.12.(2017·山东卷)若函数e ()x f x (e 2.71828=是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -= ②()3x f x -= ③3()f x x = ④2()2f x x =+ 【答案】①④ 【解析】①ee ()e 2()2x x x x f x -=⋅=在R 上单调递增,故()2x f x -=具有M 性质; ②ee ()e 3()3x x x x f x -=⋅=在R 上单调递减,故()3x f x -=不具有M 性质; ③3e ()e x x f x x =⋅,令3()e x g x x =⋅,则322()e 3e e (3)x x xg x x x x x '=⋅+⋅=+,∴当3x >-时,()0g x '>,当3x <-时,()0g x '<,∴3e ()e x x f x x =⋅在(,3)-∞-上单调递减,在(3,)-+∞上单调递增,故3()f x x =不具有M 性质;④2e ()e (2)x x f x x =+,令2()e (2)x g x x =+,则22()e (2)2e e [(1)1]0x x x g x x x x '=++=++>,则2e ()e (2)x x f x x =+在R 上单调递增,故2()2f x x =+具有M 性质.【2016年】1. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x =(B )ln y x = (C )e x y = (D )3y x =【答案】A【解析】当sin y x =时,cos y x '=,cos 0cos 1⋅π=-,所以在函数sin y x =图象存在两点,使条件成立,故A 正确;函数3ln ,e ,x y x y y x ===的导数值均非负,不符合题意,故选A 。
(完整)2019-2020年高考数学压轴题集锦——导数及其应用(四)
2019-2020年高考数学压轴题集锦——导数及其应用(四)23.已知函数()3223log 32a f x x x x =-+(0a >且1a ≠). (Ⅰ)若()f x 为定义域上的增函数,求实数a 的取值范围; (Ⅱ)令a e =,设函数()()324ln 63g x f x x x x =--+,且()()120g x g x +=,求证:122x x +≥24.已知函数()2x f x e x ax =--. (1)R x ∈时,证明:1->x e x;(2)当2a =时,直线1y kx =+和曲线()y f x =切于点()(),1A m n m <,求实数k 的值; (3)当10<<x 时,不等式()0>x f 恒成立,求实数a 的取值范围.25.已知函数()ln af x a x x x=-+-(a 为常数)有两个不同的极值点. (1)求实数a 的取值范围;(2)记()f x 的两个不同的极值点分别为12,x x ,若不等式()()()21212f x f x x x l +>+恒成立,求实数l 的取值范围.26.已知函数()1ln f x ax x =--(a ∈R ). (1)讨论函数()f x 极值点的个数,并说明理由;(2)若1x ∀>,()2xf x ax ax a <-+恒成立,求a 的最大整数值.27.已知函数()()()()221,2ln 1f x x x g x a x a R =-+=-∈.(1)求函数()()()h x f x g x =-的极值;(2)当0a >时,若存在实数,k m 使得不等式()()g x kx m f x ≤+≤恒成立,求实数a 的取值范围.28.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+. (1)求()y f x =的表达式;(2)若直线()01x t t =-<<,把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.29.已知函数()1ln 2f x x x =+(a ∈R ). (1)若曲线()y f x =在点()()1,1f 处的切线经过点()2,3,求a 的值; (2)若()f x 在区间1,14⎛⎫⎪⎝⎭上存在极值点,判断该极值点是极大值点还是极小值点,并求a 的取值范围;(3)若当0x >时,()0f x >恒成立,求a 的取值范围.30.已知函数()ln f x x a =+,()(),bg x x a b R x=-?. (1)若曲线()y f x =与曲线()y g x =在点()()1,1f 处的切线方程相同,求实数,a b 的值; (2)若()()x g x f ≥恒成立,求证:当2≠a 时,1≠b .31.()2xf x e ax =--,其中e 是自然对数的底数,a R ∈.(1)求函数()f x 的单调递增区间; (2)若k 为整数,1a =,且当0x >时,()11k xf x x -'<+恒成立,其中()f x '为()f x 的导函数,求k 的最大值.32.已知f (x )=2x ln x ,g (x )=﹣x 2+ax ﹣3. (1)求函数f (x )的单调区间;(2)若存在x ∈(0,+∞),使f (x )≤g (x )成立,求实数a 的取值范围.33.已知数列{x n }按如下方式构成:x n ∈(0,1)(n ∈N *),函数f (x )=ln (x x-+11)在点(x n ,f (x n ))处的切线与x 轴交点的横坐标为x n +1 (Ⅰ)证明:当x ∈(0,1)时,f (x )>2x (Ⅱ)证明:x n +1<x n 3(Ⅲ)若x 1∈(0,a ),a ∈(0,1),求证:对任意的正整数m ,都有log n x a +log 1+n x a +…+log m n x +a <21•(31)n ﹣2(n ∈N *)34.已知函数f (x )= ⎪⎩⎪⎨⎧∈--∈-]3,1[),1(55]1,0[,2x x f x x x(Ⅰ)求f (25)及x ∈[2,3]时函数f (x )的解析式 (Ⅱ)若f (x )≤xk对任意x ∈(0,3]恒成立,求实数k 的最小值.35.已知函数1()(2)a f x a x x a -⎛⎫=-- ⎪⎝⎭,其中0a ≠. (Ⅰ)若1a =,求()f x 在区间[0,3]上的最大值和最小值. (Ⅱ)解关于x 的不等式()0f x >.36.若实数x ,y ,m 满足x m y m-<-,则称x 比y 靠近m .(Ⅰ)若1x +比x -靠近1-,求实数x 有取值范围.(Ⅱ)(i )对0x >,比较ln(1)x +和x 哪一个更靠近0,并说明理由. (ii )已知函数{}n a 的通项公式为112n n a -=+,证明:1232e n a a a a <L .37.已知函数2()e (e 1)1x f x ax a x =-+-+-(e 是自然对数的底数,a 为常数). (1)若函数1()()()2g x f x x f x '=-⋅,在区间[1,+∞)上单调递减,求a 的取值范围.(2)当(e 2,1)a ∈-时,判断函数()f x 在(0,1)上是否有零点,并说明理由.38.已知函数()ln f x x x =. (1)求函数()f x 的极值点.(2)设函数()()(1)g x f x a x =--,其中a ∈R ,求函数()g x 在[1,e]上的最小值.39.已知函数1()ln 2f x x x=-,(0,)x ∈+∞. (1)求函数()f x 的图象在点(2,(2))f 处的切线方程. (2)求函数()f x 的单调递增区间.40.设m ∈R ,函数f (x )=e x ﹣m (x +1)+41m 2(其中e 为自然对数的底数)(Ⅰ)若m =2,求函数f (x )的单调递增区间;(Ⅱ)已知实数x 1,x 2满足x 1+x 2=1,对任意的m <0,不等式f (x 1)+f (0)>f (x 2)+f (1)恒成立,求x 1的取值范围;(Ⅲ)若函数f (x )有一个极小值点为x 0,求证f (x 0)>﹣3,(参考数据ln6≈1.79)41.已知函数f (x )=x 2﹣x 3,g (x )=e x ﹣1(e 为自然对数的底数). (1)求证:当x ≥0时,g (x )≥x +21x 2; (2)记使得kf (x )≤g (x )在区间[0,1]恒成立的最大实数k 为n 0,求证:n 0∈[4,6].42.设函数3211()(3)332f x x ax a x =++++,其中a R ∈,函数()f x 有两个极值点12,x x ,且101x ≤<.(1)求实数a 的取值范围;(2)设函数'1()()()x f x a x x ϕ=--,当12x x x <<时,求证:|()|9x ϕ<.43.已知14)(2+-=x tx x f 的两个极值点为α,β,记A (α,f (α)),B (β,f (β))(Ⅰ)若函数f (x )的零点为γ,证明:α+β=2γ. (Ⅱ) 设点 C (m t -4,0),D (m t+4,0),是否存在实数t ,对任意m >0,四边形ACBD 均为平行四边形.若存在,求出实数t ;若不存在,请说明理由.44.已知函数ln (),xf x x=() (0)=>g x kx k ,函数{}()max (),(),F x f x g x =其中{}max ,a b ,,,.a a b b a b ≥⎧=⎨<⎩(Ⅰ)求()f x 的极值;(Ⅱ)求()F x 在[]1, e 上的最大值(e 为自然对数底数).45.已知函数2()2ln ,f x x a x a R =+∈.(Ⅰ)若()f x 在1x =处取得极值,求实数a 的值;(Ⅱ)若不等式()0f x >对任意[1,)x ∈+∞恒成立,求实数a 的取值范围.参考答案23.(Ⅰ)()2123ln f x x x x a'=-+, 由()f x 为增函数可得,()0f x '≥恒成立,则由21230ln x x x a -+≥32123ln x x a⇒-≥-⇒,设()3223m x x x =-,则 ()266m x x x '=-,若由()()610m x x x '=->和()()610m x x x '=-<可知 ()m x 在()0,1上单调递减,在()1,+∞上单调递增,所以()()min 11m x m ==-,所以11ln a-≥-, 当1a >时,易知a e ≤,当01a <<时,则10ln a <,这与11ln a≤矛盾, 从而不能使()0f x '≥恒成立,所以1a e <≤. (Ⅱ)()322332g x x x =-+32ln 4ln 63x x x x --+233ln 62x x x =--+,因为()()120g x g x +=,所以211133ln 62x x x --++22223(3ln 6)02x x x --+=,所以 221212123()3ln()6()02x x x x x x -+-++=, 212121[()2]2x x x x -+--1212ln()2+=0x x x x +(), 212121()+2x x x x -+1212ln()2()0x x x x -++=, 所以212121()+2()2x x x x -++1212ln()x x x x =-, 令12x x t =,()ln g t t t =-,()111tg t t t-'=-=,()g t 在()0,1上增,在()1,+∞上减, ()()11g t g ≤=-,所以212121()2()12x x x x -+++≤-,整理得21212()4()20x x x x +-+-≥,解得122x x +≥122x x +≤(舍),所以122x x +≥24.(1)记()1x F x e x =--, ∵()'1x F x e =-, 令()'0F x =得0x =, 当(),0x ??,()'0F x <,()F x 递减;当()0,x ??,()'0F x >,()F x 递增,∴()()min 00F x F ==, ()10x F x e x =--?,得1x e x ?.(2)切点为(),A m n ,()1m <,则21222m m n km n e m m k e m ì=+ïï=--íïï=--î,∴()2110m m e m --+=, ∵1m <,∴10m e m --=由(1)得0m =. 所以1k =-.(3)由题意可得20x e x ax --?恒成立,所以2x e x a x-£,下求()2x e x G x x -=的最小值,()()()()()22221111111'xxx x e x x e x x e x G x xxx轾----------臌===,由(1)1x e x ?知10x e x --?且1x £. 所以()'0G x <,()G x 递减, ∵1x £,∴()()11G x G e ?-.所以1a e ?.25.(1)()()22'0x ax af x x x -+=>.由函数()ln af x a x x x=-+-(a 为常数)有两个不同的极值点. 即方程20x ax a -+=有两个不相等的正实根.∴121220040x x a x x a a a ì+=>ïï=>íïïD=->î,∴4a >.(2)由(1)知12x x a +=,12x x a =,4a >, ∴()()()2121212121212ln x x f x f x a x x x x a x x x x l ++=-++->+, 所以ln aal <-恒成立. 令()ln aF a a=-,4a >. ∵()2ln 1'0a F a a-=>,()F a 递增, ∴()()ln 242F a F >=-, ln 22l ?.26.(1)()f x 的定义域为()0,+∞,且()11ax f x a x x-'=-=. 当0a ≤时,()0f x '≤在()0,+∞上恒成立,函数()f x 在()0,+∞上单调递减. ∴()f x 在()0,+∞上没有极值点; 当0a >时,令()0f x '=得()10,x a=∈+∞; 列表所以当1x a=时,()f x 取得极小值. 综上,当0a ≤时,()f x 在()0,+∞上没有极值点; 当0a >时,()f x 在()0,+∞上有一个极值点.(2)对1x ∀>,()2xf x ax ax a <-+恒成立等价于ln 1x x xa x +<-对1x ∀>恒成立,设函数()ln 1x x x g x x +=-(1x >),则()()2ln 21x x g x x --'=-(1x >),令函数()ln 2x x x =--ϕ,则()11x x'=-ϕ(1x >), 当1x >时,()110x x'=->ϕ,所以()x ϕ在()1,+∞上是增函数, 又()31ln30=-<ϕ,()42ln 40=->ϕ,所以存在()03,4x ∈,使得()00x =ϕ,即()00g x '=,且当()01,x x ∈时,()0x <ϕ,即()0g x <,故()g x 在()01,x 在上单调递减; 当()0,x x ∈+∞时,()0x >ϕ,即()0g x >,故()g x 在()0,x +∞上单调递增; 所以当()1,x ∈+∞时,()g x 有最小值()00000ln 1x x x g x x +=-,由()00x =ϕ得00ln 20x x --=,即00ln 2x x =-, 所以()()00000021x x x g x x x -+==-,所以0a x <,又()03,4x ∈,所以实数a 的最大整数值为3.27.(I )由题意得2()(1)2ln(1)h x x a x =---,1x >,∴22[(1)]'()1x a h x x --=-,①当0a ≤时,则'()0h x >,此时()h x 无极值;②当0a >时,令'()0h x <,则11x a <<+;令'()0h x >,则1x a >+; ∴()h x 在(1,1]a +上递减,在(1,)a ++∞上递增; ∴()h x 有极小值(1)(1ln )h a a a =-,无极大值;(II )当0a >时,由(1)知,()h x 在(1,1]a 上递减,在(1,)a ++∞上递增,且有极小值(1)(1ln )h a a a =-.①当a e >时,(1)(1ln )0h a a a =-<,∴(1)(1f a g a <+, 此时,不存在实数k ,m ,使得不等式()()g x kx m f x ≤+≤恒成立; ②当0a e <≤时,(1)(1ln )0h a a a =-≥,2()21f x x x =-+在1x a =+(2)y ax a a =-,令()()(2)]u x f x ax a a =--,1x >,则2()[(1)]0u x x a =-+≥,∴2(2)()ax a a f x -≤,令()2(2)()v x ax a a g x =-+-=2(2)2ln(1)ax a a a x -+--,1x >, 则2[(1)]'()a x a v x -+=,令'()0v x <,则11x a <<+;令'()0v x >,则1x a >+;∴()(1)v x v a ≥+=(1ln )0a a -≥,∴()2(2)g x ax a a ≤-+, ∴()2(2)()g x ax a a f x ≤-+≤,当2k a =,2m a a =--时,不等式()()g x kx m f x ≤+≤恒成立, ∴0a e <≤符合题意. 由①,②得实数a 的取值范围为(0,]e . 28.(I )设2()(0)f x ax bx c a =++≠,则()2f x ax b '=+. 由已知()22f x x '=+,得1a =,2b =.2()2f x x x c ∴=++.又方程220x x c ++=有两个相等的实数根,440c ∴∆=-=,即1c =.故2()21f x x x =++;(II )依题意,得221(21)(21)ttx x dx x x dx ---++=++⎰⎰,3232011133ttx x x x x x ---⎛⎫⎛⎫∴++=++ ⎪ ⎪⎝⎭⎝⎭,整理,得3226610t t t -+-=,即32(1)10t -+=,312t ∴=29.(1)对()f x 求导,得()1122f x xx'=+-. 因此()1122af '=+.又()11f a =+, 所以,曲线()y f x =在点()()1,1f 处的切线方程为()()11122a y a x ⎛⎫-+=+- ⎪⎝⎭. 将2x =,3y =代入,得()13122aa -+=+.解得1a =. (2)()f x 的定义域为()0,+∞.()112f x x'=+-212x x +=.设()f x 的一个极值点为m,则210m +=,即a =-所以()f x '==.当()0,x m ∈时,()0f x '<;当(),x m ∈+∞时,()0f x '>. 因此()f x 在()0,m 上为减函数,在(),m +∞上为增函数. 所以m 是()f x 的唯一的极值点,且为极小值点. 由题设可知1,14m ⎛⎫∈ ⎪⎝⎭.因为函数a =-1,14⎛⎫⎪⎝⎭上为减函数,a -<<11a -<<. 所以a 的取值范围是()1,1-.(3)当0x >时,()0f x >恒成立,则1ln 02x x +>恒成立,即1ln x xa ->0x ∀>恒成立.设()1ln x x g x -=()11ln x xg x --'=.设()11ln 2h x x x =--(0x >),显然()h x 在()0,+∞上为减函数. 又()10h =,则当01x <<时,()()10h x h >=,从而()0g x '>; 当1x >时,()()10h x h <=,从而()0g x '<. 所以()g x 在()0,1上是增函数,在()1,+∞上是减函数.所以()()max 11g x g ==-,所以1a >-,即a 的取值范围为()1,-+∞. 30.(1)由()1'f x x =,()2'1bg x x=--. 得()()()()'1'111f g f g ì=ïíï=î,解得3a =-,2b =-.(2)证明:设()()()ln bh x f x g x x a x x=-=+-+, 则()()2221'10b x x b h x x x x x ++=++=>,①当0b ³时,()'0h x >,函数()h x 在()0,+?上单调递增,不满足()()f x g x ³恒成立.②当0b <时,令20x x b ++=,由140b D=->,得0x >,或0x <(舍去),设0x ()y h x =在()00,x 上单调递减,在()0,x +?上单调递增,故()()0min 0h x h x =?,即000ln 0b x a x x +-+?,得000ln b a x x x ?-.又由2000x x b ++=,得200b x x =--, 所以()2200000000ln 1ln ba b x x x x x x x x -?----=---+,令()21ln t x x x x =---+,()()()2211121'21x x x x t x x x x x+---=--==. 当()0,1x Î时,()'0t x <,函数()t x 单调慈善 当()1,x ??时,()'0t x >,函数()t x 单调递增;所以()()min 11t x t ==-,1a b -?即1b a -?, 故当2a ?时,得1b ?. 31.(1)()xf x e a '=-,x R ∈若0a ≤,则()0f x '>恒成立,所以()f x 在区间(),-∞+∞上单调递增 若0a >,当()ln ,x a ∈+∞时,()0f x '>,()f x 在()ln ,a +∞上单调递增 (2)由于1a =,所以()11k xf x x -'<⇔+()()11x k x e x --<+,当0x >时,10x e ->故()()11x k x e x --<+11x x k x e +⇔<+-,令()11x x g x x e +=+-(0x >) 则()()2111x xxe g x e-+'=+=-()()221x x xe e x e---函数()2x f x e x =--在()0,+∞上单调递增,而()10h <,()20h >, 所以()h x 在()0,+∞上存在唯一的零点. 故()g x '在()0,+∞上存在唯一的零点. 设此零点为0x ,则()01,2x ∈.当()00,x x ∈时,()0g x '<,当()0,x x ∈+∞时,()0g x '>; 所以()g x 在()0,+∞上的最小值为()0g x ,由于()00g x '=,可得002x e x =+所以()()0012,3g x x =+∈,所以整数k 的最大值为2. 32.【考点】利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; (2)问题等价于a≥(2ln x+x+)min ,记h (x )=2ln x+x+,x ∈(0,+∞),根据函数的单调性判断即可.【解答】解:(1)f (x )的定义域为(0,+∞),f′(x )=2(ln x+1), 令f′(x )=0,得x=,当x ∈时,f′(x )<0,当x ∈时,f′(x )>0, 所以f (x )在上单调递减;在上单调递增.(2)存在x ∈(0,+∞),使f (x )≤g (x )成立, 即2xln x≤﹣x 2+ax ﹣3在x ∈(0,+∞)能成立, 等价于a≥2ln x+x+在x ∈(0,+∞)能成立, 等价于a≥(2ln x+x+)min .记h (x )=2ln x+x+,x ∈(0,+∞), 则h′(x )=+1﹣==.当x∈(0,1)时,h′(x)<0,当x∈(1,+∞)时,h′(x)>0,所以当x=1时,h(x)取最小值为4,故a≥4.33.【考点】利用导数研究曲线上某点切线方程;数列与函数的综合.【分析】(Ⅰ)求出函数的导数,根据函数的单调性求出f(x)>2x即可;(Ⅱ)求出函数f(x)的导数,求出曲线方程,得到x n+1=ln(﹣1)+x n,从而证出结论即可;(Ⅲ)得到b k=<a=b k﹣1<b k﹣2<…<b0,问题转化为b0<,根据(Ⅱ)证出即可.【解答】证明:(Ⅰ)设g(x)=ln(1+x)﹣ln(1﹣x)﹣2x,则g′(x)=,故x∈(0,1)时,g′(x)>0,函数g(x)在(0,1)递增,∴g(x)>g(0)=0,即f(x)>2x;(Ⅱ)由f′(x)=+=,故曲线在点(x n,f(x n))处的切线方程是:y=(x﹣x n)+f(x n),令y=0,则x n+1=x n+f(x n)(﹣1),则x n+1=ln(﹣1)+x n,由(Ⅰ)及﹣1<0得:x n+1<(2x n)•(﹣1)+x n=x n3;(Ⅲ)令=b k,(k=0,1,2,…,m),∵x n+k<,且a∈(0,1),x n∈(0,1),∴log a x n+k>log a,从而b k=<a=b k﹣1<b k﹣2<…<b0,∴log a+log a+…+log a=b0+b1+…+b m<b0(1+++)=b0(1﹣)<b0,要证log a+log a+…+log a<•()n﹣2(n∈N*),只需b0<,即证b0<⇔a<⇔x n<,由(Ⅱ)以及x1∈(0,a)得:x n<<<…<<,故原结论成立.34.【考点】函数恒成立问题;分段函数的应用.【分析】(Ⅰ)由函数f(x)=可求f()的值,由x∈[2,3]⇒x﹣2∈[0,1],可求得此时函数f(x)的解析式;(Ⅱ)依题意,分x∈(0,1]、x∈(1,2]、x∈(2,3]三类讨论,利用导数由f(x)≤对任意x∈(0,3]恒成立,即可求得实数k的最小值.【解答】解:(Ⅰ)f()=﹣f()=f()=×=.当x∈[2,3]时,x﹣2∈[0,1],所以f(x)= [(x﹣2)﹣(x﹣2)2]=(x﹣2)(3﹣x).(Ⅱ)①当x∈(0,1]时,f(x)=x﹣x2,则对任意x∈(0,1],x﹣x2≤恒成立⇒k≥(x2﹣x3)max,令h(x)=x2﹣x3,则h′(x)=2x﹣3x2,令h′(x)=0,可得x=,当x∈(0,)时,h′(x)>0,函数h(x)单调递增;当x∈(,1)时,h′(x)<0,函数h(x)单调递减,∴h(x)max=h()=;②当x ∈(1,2]时,x ﹣1∈(0,1],所以f (x )=﹣ [(x ﹣1)﹣(x ﹣1)2]≤恒成立⇔k≥(x 3﹣3x 2+2x ),x ∈(1,2].令t (x )=x 3﹣3x 2+2x ,x ∈(1,2].则t′(x )=3x 2﹣6x+2=3(x ﹣1)2﹣1, 当x ∈(1,1+)时,t (x )单调递减,当x ∈(1+,2]时,t (x )单调递增,t (x )max =t (2)=0,∴k≥0(当且仅当x=2时取“=”);③当x ∈(2,3]时,x ﹣2∈[0,1],令x ﹣2=t ∈(0,1], 则k≥(t+2)(t ﹣t 2)=g (t ),在t ∈(0,1]恒成立.g′(t )=﹣(3t 2+2t ﹣2)=0可得,存在t 0∈[,1],函数在t=t 0时取得最大值. 而t 0∈[,1]时,h (t )﹣g (t )=(t 2﹣t 3)+(t+2)(t 2﹣t )=t (1﹣t )(2t ﹣1)>0,所以,h (t )max >g (t )max , 当k≥时,k≥h (t )max >g (t )max 成立,综上所述,k≥0,即k min =0. 35.见解析(Ⅰ)1a =,2()(2)(1)1f x x x x =-=--,()22f x x '=-, ∴x(0,1) 1 (1,3) ()f x ' -+()f x↓ 极小 ↑∴min (1)1f f ==-, max max[(3),(0)]f f f =,而(3)3(0)f f =>, ∴max 3f =. (Ⅱ)0a >时, 1(2)0a x x a -⎛⎫--> ⎪⎝⎭,∵1120a a a a-+-=>,∴12a a-<, 此时()0f x >解集为:[|2x x >或1a x a -⎤<⎥⎦, 0a <时,1(2)0a x x a -⎛⎫--< ⎪⎝⎭.①10a -<<,则12a a-<, ()0f x >解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦.②1a =-,无解.③1a <-,解集为1|2a x x a -⎡⎤<<⎢⎥⎣⎦. 综上:0a >,[|2x x >或1a x a -⎤<⎥⎦. 10a -<<,1|2a x x a -⎡⎤<<⎢⎥⎣⎦1a =-,∅.1a <-,12a x a -⎡⎤<<⎢⎥⎣⎦. 36.(1)|1(1)||(1)|x x --<---+ 22|2||1|(2)(1)x x x x <-⇔<-++, ∴12x <-.(2)①∵0x >,∴ln(1)0x >+, ∴|ln(1)0||0|ln(1)x x x x ---=-++, 记()ln(1)f x x x =-+, (0)0f =. 1()1011x f x x x-'=-=<++, ∴()f x 在(0,)∞+单减.∴()2(0)0f x f =,即ln(1)x x <+, ∴ln(1)x +比x 靠近0. ②120n ->, 由①得:2323ln()ln ln ln n n a a a a a a =+++L L12111ln(12)ln(12)ln(12)22n n -----=+++<L L +++++111112(12)211212n ------=<=--,∴23e n a a a <L . 又∵12a =, ∴1232e n a a a a <L . 37.见解析.解:(1)由2()e (e 1)1x f x ax a x =-+-+-得()e 2(e 1)x f x ax a '=-+-+, ∴211()()()e (e 1)1[e 2e 1]22x x g x f x x f x ax a x x ax a '=-⋅=-+-+---+-+,即11()1e (e 1)122x g x x a x ⎛⎫=-+-+- ⎪⎝⎭,∴11()(1)e (e 1)22x g x x a '=-+-+,∴1()e 2x g x x ''=-,[1,)x ∈+∞;∴()0g x ''<,∴()g x '在[1,)+∞上单调递减, 又()g x 在[1,)+∞上单调递减; ∴1()(1)(e 1)02g x g a ''=-+≤≤,∴e 1a -≤,即实数a 的取值范围是(,e 1]-∞-.(2)假设函数()f x 在区间(0,1)上有零点,即存在(0,1)x ∈,使得2e (e 1)10x ax a x -+-+-=,即2e (1e)1x x a x x +--=-,记2e (1e)1()x x h x x x+--=-.①若()1h x <,则2e (1e)110x x x x +---<-,即22e (2e)10x x x x x-+--<-,由于(0,1)x ∈,有20x x -<,即证2e (2e)10x x x -+-->在(0,1)x ∈上恒成立,令2()e (2e)1x H x x x =-+--,(0,1)x ∈, 则()e 22e x H x x '=-+-,()e 2x H x ''=-, 当(0,ln2)x ∈时,()0H x ''<, 当(ln2,1)x ∈时,()0H x ''>, ∴当(0,ln2)x ∈时,()H x '单调递减, 当(ln2,1)x ∈时,()H x '单调递增.而(0)102e 0H '=-+->,(1)e 22e 0H '=-+-=,ln 2(ln 2)e 2ln 22e 4e 2ln 20H '=-+-=--<,∴在(0,ln2)上存在唯一的实数0x ,使得0()0H x '=, ∴在0(0,)x 上()H x 单调递增,在0(,1)x 上()H x 单调递减, 而(0)0H =,(1)0H =,∴()0H x >在(0,1)上恒成立,即2e (1e)1()1x x h x x x+--=<-恒成立,②若()e 2h x >-,则2e (1e)1(e 2)0x x x x +---->-,即22e (e 2)10x x x x x ---->-,由于(0,1)x ∈,有20x x -<,即证2e (e 2)10x x x ----<在(0,1)x ∈恒成立, 令2()e (e 2)1x H x x x =----,则()e 2(e 2)1x H x x '=---,()e 2(e 2)x H x ''=--, 当(0,ln2(e 2))x ∈-,()0H x ''<,()H x '单调递减; 当(ln2(e 2),1)x ∈-,()0H x ''>,()H x '单调递增, 而(0)0H '=,(1)3e 0H '=->,∴在(ln2(e 2),1)-上存在唯一的实数x ,使得0()0H x '=, ∴在0(0,)x 上()H x 单调递减,在0(,1)x 上()H x 单调递增, 又(0)0H =,(1)0H =,故()0H x <在(0,1)上成立,即2e (1e)1()e 2x x h x x x+--=>--成立, 综上所述,当(e 2,1)a ∈-时,函数2()e (e 1)1x f x ax a x =-+-+-在区间(0,1)上有零点. 38.见解析.解:(1)函数()f x 的定义域为(0,)+∞,()ln 1f x x '=+, ∴令()ln 10f x x '=+>,得1e x >,令()0f x '<,得10ex <<,∴函数()f x 在10,e ⎛⎫ ⎪⎝⎭单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增,∴1ex =是函数()f x 的极小值点,极大值点不存在. (2)由题意得()()(1)ln (1)g x f x a x x x a x =--=--, ∴()ln 1g x x a '=+-, 令()0g x '=得1e a x -=.①当1e 1a -<时,即1a <时,()g x 在[1,e]上单调递增, ∴()g x 在[1,e]上的最小值为(1)0g =;②当11e e a -≤≤,即12a ≤≤时,()g x 在1[1,e ]a -上单调递减,在1[e ,e]a -上单调递增, ∴()g x 在[1,e]上的最小值为11111(e )e lne e e a a a a a g a a a -----=-+=-; ③当1e e a ->,即2a >时,()g x 在区间[1,e]上单调递减, ∴()g x 在[1,e]上的最小值为(e)e (e 1)e e g a a a =--=-+, 综上所述,当1a <时,()g x 的最小值为0; 当12a ≤≤时,()g x 的最小值为1e a a --; 当2a >时,()g x 的最小值为e e a a -+. 39.见解析.解:(1)1()ln 2f x x x =-,得11()2f x x '=-,∴(2)ln21f =-,(2)0f '=,∴函数()f x 在(2,(2))f 处的切线方程为ln21y =-. (2)∵112()22xf x x x-'=-=,令()0f x '>,得2x <,令()0f x '<,得2x >, 又()f x 的定义域是(0,)+∞, ∴函数()f x 的单调增区间为(0,2). 40.【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可; (Ⅱ)问题转化为2(x 1﹣1)m ﹣(﹣)+e ﹣1<0对任意m <0恒成立,令g(m )=2(x 1﹣1)m ﹣(﹣)+e ﹣1,得到关于x 1的不等式组,解出即可;(Ⅲ)求出f(x0)的解析式,记h(m)=m2﹣mlnm,m>0,根据函数的单调性求出h (m)的取值范围,从而求出f(x0)的范围,证明结论即可.【解答】解:(Ⅰ)m=2时,f(x)=e x﹣2x﹣1,f′(x)=e x﹣2,令f′(x)>0,解得:x>ln2,故函数f(x)在[ln2,+∞)递增;(Ⅱ)∵不等式f(x1)+f(0)>f(x2)+f(1)恒成立,x1+x2=1,∴2(x1﹣1)m﹣(﹣)+e﹣1<0对任意m<0恒成立,令g(m)=2(x1﹣1)m﹣(﹣)+e﹣1,当2(x1﹣1)=0时,g(m)=0<0不成立,则,解得:x1>1;(Ⅲ)由题意得f′(x)=e x﹣m,f′(x0)=0,故=m,f(x0)=﹣m(x0+1)+m2=m2﹣mlnm,m>0,记h(m)=m2﹣mlnm,m>0,h′(m)=m﹣lnm﹣1,h′′(m)=﹣,当0<m<2时,h′′(m)<0,当m>2时,h′′(m)>0,故函数h′(x)在(0,2)递减,在(2,+∞)递增,如图所示:[h′(m)]min=h′(2)=﹣ln2<0,又当m→0时,h′(m)>0,m→+∞,h′(m)>0,故函数h′(m)=0有2个根,记为m1,m2(m1<2<m2<6),(h′(6)>0),故h(m)在(0,m1)递增,在(m1,m2)递减,在(m2,+∞)递增,又当m→0时,h(m)>0,h(m)在m2处取极小值,由h′(m2)=0, m2﹣lnm2﹣1=0,lnm2=m2﹣1,故h(m2)=﹣m2lnm2=﹣m2(m2﹣1)=﹣+m2=﹣+1∈(﹣3,1),故f(x0)>﹣3.41.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)构造函数h(x)=g(x)﹣x﹣,求出函数导函数,对导函数求导后可得导函数的单调性,进一步确定导函数的符号,得到函数h(x)的单调性,可得h(x)≥h (0)=0得答案;(2)由(1)知,当kf(x)时,必有kf(x)≤g(x)成立,然后利用分析法证明当x∈[0,1]时,4f(x),当k≥6时,取特值x=说明不等式kf(x)≤g (x)在区间[0,1]上不恒成立,从而说明n0∈[4,6].【解答】证明:(1)设h(x)=g(x)﹣x﹣,即h(x)=,则h′(x)=e x﹣1﹣x,h″(x)=e x﹣1,当x≥0时,h″(x)≥0,h′(x)为增函数,又h′(0)=0,∴h′(x)≥0.∴h(x)在[0,+∞)上为增函数,则h(x)≥h(0)=0,∴g(x)≥x+;(2)由(1)知,当kf(x)时,必有kf(x)≤g(x)成立.下面先证:当x∈[0,1]时,4f(x),当x=0或1时,上式显然成立;当x∈(0,1)时,要证4f(x),即证4(x﹣x2),也就是证8x2﹣7x+2≥0.∵>0.∴当k≤4时,必有kf(x)≤g(x)成立.∴n0≥4;另一方面,当k≥6时,取x=,kf(x)﹣g(x)=>0,∴当k≥6时,kf(x)≤g(x)不恒成立.∴n0≤6.综上,n0∈[4,6].【点评】本题考查利用等式研究函数的单调性,训练了分析法证明函数不等式,体现了特值思想方法的应用,是中档题.42.(1);(2)见解析.试题解析:(1),由题可知:为的两个根,且,得或. 而由(1)(2)得:,设,有而在上为减函数,则,即,即,综上,.(2)证明:由,,知,,由(1)可知,所以,所以.点睛:利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数. 43.(Ⅰ)求出函数的导数,根据二次函数的性质证明即可;(Ⅱ)求出f (α)+f (β)的解析式,根据二次函数的性质以及ACBD 均为平行四边形,求出t 的值即可. 解:(Ⅰ)证明:,即﹣4x 2+2tx+4=0,△=4t 2+64>0, ∴,,即4x ﹣t=0,则零点, ∴得证.(Ⅱ) 要使构成平行四边形,由得,只需f (α)+f (β)=0,∴===,所以t=0. 44.(Ⅰ) 解: 因为21ln ()xf x x-'=由 ()0f x '=,解得:e x =……………………………………………………3分因为x (0, e) e (e, +)∞()f x '+- ()f xZ1e]所以 ()f x 的极大值为1e,无极小值.………………………………………7分 (Ⅱ) 因为()f x 在[1, e]上是增函数, 所以 max 1()(e)ef x f ==……………………………………………………10分 ()g x 在[1, e]上是增函数所以 max ()(e)e g x g k ==……………………………………………………13分所以 2max211, 0<,e e ()1e, .e k F x k k ⎧<⎪⎪=⎨⎪≥⎪⎩……………………………………………15分45.(Ⅰ)2'22()()2a x a f x x x x+=+=由'(1)220f a =+=,得1a =-. 经检验,当1a =-时取到极小值,故1a =-.(Ⅱ)由()0f x >,即22ln 0,x a x +>对任意[1,)x ∈+∞恒成立.(1)当1x =时,有a R ∈;(2)当1x >时,22ln 0,x a x +>得22ln x a x>-令2()(1)2ln x g x x x =->,得'2(2ln 1)()2ln x x g x x-=-;若1x <<,则'()0g x >;若x >'()0g x <.得()g x在上递增,在)+∞上递减。
2020年高考数学(理)函数与导数 专题05 二次函数及应用(解析版)
函数与导数05函数 二次函数及应用一、具体目标:1.掌握二次函数的图象与性质,2.会求二次函数的最值(值域)、单调区间.从近几年的高考试题来看,二次函数图像的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 二、知识概述:1.与二次函数有关的绝对值问题:解决这类问题主要考虑二次函数的有关性质、绝对值不等式及式子变形的技巧,还要注意用某几个特定的函数值表示二次函数的系数. 2.二次函数与二次方程及二次不等式:解决这类问题应注意二次函数、二次方程及二次不等式之间的关系及相互转化. 3.二次函数求最值问题,一般先用配方法化为()k h x a y +-=2的形式,得顶点()k h ,和对称轴方程h x =,结合二次函数的图象求解,常见有三种类型:(1)顶点固定,区间也固定;(2)顶点含参数(即顶点为动点),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外; (3)顶点固定,区间变动,这时要讨论区间中的参数.讨论的目的是确定对称轴和区间的关系,明确函数的单调情况,从而确定函数的最值.4.二次方程根的分布问题,通常转化为相应二次函数与x 轴交点的个数问题,结合二次函数的图象通过对称轴,判别式Δ,相应区间端点函数值来考虑. 【优秀题型展示】1.已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实数根为1x 和2x .【考点讲解】(1) 如果4221<<<x x ,设函数的对称轴为0x x =,求证:10->x ; (2) 如果21<x ,212=-x x ,求b 的取值范围.【解析】(1)设2()()(1)1g x f x x ax b x =-=+-+,0a >Q ,∴由条件4221<<<x x ,得(2)0,(4)0.g g <>即4210,3142.1643042a b a b a a b +-<⎧⇒-<<-⎨+->⎩显然由314242a a -<-得1.8a >即有3121824b a a a->->-, 故01111 1.12448b x a a =->->-=-⨯(2)由2()(1)10g x ax b x =+-+=,知1210x x a=>,故1x 与2x 同号. ①若102,x <<则212x x -=(负根舍去),212 2.x x ∴=+>(2)0g ∴<,即4210.(*)a b +-<22212(1)4()4b x x a a-∴-=-=,221(1)1a b ∴+=-+ (0,a >负根舍去), 代入(*)式,得22(1)132b b ∴-+<-,解出1.4b <②若120x -<<,则2122x x =-+<-(正根舍去),(2)0g ∴-<,即4230(**).a b -+<将221(1)1a b +=-+代入(**)式得22(1)121b b -+<-, 解得7.4b >综上,b 的取值范围为14b <或7.4b >2.已知二次函数.)(2c bx ax x f ++=(1)对于R x x ∈21,,且)()(,2121x f x f x x ≠<,求证:方程)]()([21)(21x f x f x f +=有不等的两实根,且必有一个实根属于),(21x x ; (2)若方程)]()([21)(21x f x f x f +=在),(21x x 内的根为m ,且21,21,x m x -成等差数列,设0x x =是)(x f 的对称轴方程,求证:.20m x <证明:(1)由)]()([21)(21x f x f x f +=得: 222121222()()0.ax bx a x x b x x +-+-+=222121222120,(2)42[()()]2(2)2(2)0.a b a a x x b x x ax b ax b ≠∴∆=-⋅⋅-+-+=+++≥Q又1212,22.0.x x ax b ax b <∴+≠+∴∆>∴方程)]()([21)(21x f x f x f +=有不等的两实根.令121()()[()()]2g x f x f x f x =-+,则()g x 是二次函数. 由12121212()()()()()()[()][()]22++⋅=--f x f x f x f x g x g x f x f x212121[()()]0,()()4=--≤≠f x f x f x f x得12()()0,()0g x g x g x ⋅<∴=的根必有一个属于12(,).x x 综上,方程)]()([21)(21x f x f x f +=有不等的两实根,且必有一个实根属于),(21x x . (2)由题设得122()()()f m f x f x =+,即有2221212(2)(2)0.a m x x b m x x --+--=121,,2x m x -Q 成等差数列,122 1.m x x ∴--=22212(2).b a m x x ∴=---故222120,22x x b x m a +=-=-22212120,0..x x x x x m <∴+>∴<Q1.【2017北京,文11】已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是__________. 【解析】本题考点是二次函数的值域问题,但需要将二元转化为一元.()[]1,0,122122222∈+-=-+=+x x x x x y x ,对称轴为直线21=x ,所以函数在10或=x 时,取得最大值1,当21=x 时,取得最小值是21.所以22y x +的取值范围是1,12⎡⎤⎢⎥⎣⎦.【答案】1,12⎡⎤⎢⎥⎣⎦2.【2018年天津卷文】已知R a ∈,函数()⎩⎨⎧>-+-≤-++=0,220,2222x a x x x a x x x f ,若对任意[)+∞-∈,3x ,()x x f ≤恒成立,则a 的取值范围是__________.【解析】本题考点二次函数的性质及不等式恒成立的具体应用. 分类讨论:①当0>x时,()x x f ≤也就是x a x x ≤-+-222,整理可得:x x a 21212+-≥,由恒成立的条件可知:max 22121⎪⎭⎫ ⎝⎛+-≥x x a ()0>x,结合二次函数的性质可知:当21=x 时,8141812121max 2=+-=⎪⎭⎫⎝⎛+-≥x x a ,则81≥a ; ②当03≤≤-x 时,()x x f ≤也就是x a x x -≤-++222,整理可得:232+-≤x x a ,【模拟考场】由恒成立的条件可知:()min 223+-≤x x a()03≤≤-x ,结合二次函数的性质可知:当03=-=x x或时,()223min 2=+-x x ,则2≤a ;综合①②可得a 的取值范围是⎥⎦⎤⎢⎣⎡281,. 【答案】⎥⎦⎤⎢⎣⎡281,3.【2019优选题】已知函数f (x )=x 2-2x +4m (m >0)在区间[m ,2m ]上的最大值为4,则m 的值为________. 【解析】函数f (x )=x 2-2x +4m (m >0)的对称轴为直线x =1,图像开口向上,所以自变量离对称轴越远,函数值越大.当|2m -1|≥|m -1|,即m ≥23时,函数f (x )在[m ,2m ]上的最大值为f (2m )=4m 2-4m +4m =4,解得m =1;当|2m -1|<|m -1|,即0<m <23时,函数f (x )在[m ,2m ]上的最大值为f (m )=m 2-2m +4m =m 2+2m =4,解得m =-1±5,不满足条件.综上,m 的值为1. 【答案】14.a 为实数,函数f (x )=|x 2-ax |在区间[0,1]上的最大值记为g (a ).当a =________时,g (a )的值最小. 【解析】当a =0时, f (x )=x 2,则g (a )=f (1)=1;当a <0时, f (x )=⎩⎪⎨⎪⎧x 2-ax (x ≤a 或x ≥0),-x 2+ax (a <x <0),则g (a )=f (1)=1-a ;当a >0时, f (x )=⎩⎪⎨⎪⎧x 2-ax (x <0或x >a ),-x 2+ax (0≤x ≤a ),此时f2⎛⎫ ⎪⎝⎭a =-a ⎛⎫ ⎪⎝⎭22+a 22=a 24, 由x 2-ax =a 24(x >0)得x =2+12a .当2+12a ≤1,即0<a ≤2(2-1)时,g (a )=f (1)=1-a ; 当a 2<1<2+12a ,即2(2-1)<a <2时,g (a )=f ⎝⎛⎭⎫a 2=a 24;当a 2≥1,即a ≥2时,g (a )=f (1)=-1+a .综上所述,g (a )=⎩⎪⎨⎪⎧1-a ,a ≤2(2-1),a24,2(2-1)<a <2a -1,a ≥2,,易得当a =2(2-1)时,g (a )取最小值.故答案为22-2.【答案】22-25.【2016年山东】已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩,, 其中0m >,存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是_________.【解析】本题考点二次函数的图象与性质、函数与方程、分段函数的概念.由题意画出函数图象如下图所示,要满足存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则24m m m -<,解得3m >,故m 的取值范围是(3,)+∞.【答案】(3,)+∞ 6.【2017优选题】已知()()4222+-+=x a x x f ,如果对错误!未找到引用源。
最新2019高考数学《导数及其应用》专题完整考试题(含答案)(K12教育文档)
最新2019高考数学《导数及其应用》专题完整考试题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(最新2019高考数学《导数及其应用》专题完整考试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为最新2019高考数学《导数及其应用》专题完整考试题(含答案)(word版可编辑修改)的全部内容。
2019年高中数学单元测试卷导数及其应用学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.32()32f x x x =-+在区间[]1,1-上的最大值是( )(A)-2 (B)0 (C )2 (D)4(2006浙江文)二、填空题2. 已知a > 0,方程x 2-2ax —2a ln x =0有唯一解,则a = . 123. 曲线21()cos 3f x x x =-在0x =处的切线的斜率为 ▲ 。
4.若函数f (x )=ax 4+bx 2+c 满足(1) 2f '=,则(1)f '-= .5.已知函数x x mx x f 2ln )(2-+=在定义域内是增函数,则实数m 的取值范围是 ▲ . 6.若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =____________。
(2013年高考广东卷(文))7.函数32()15336f x x x x =--+的单调减区间为 . 解析 考查利用导数判断函数的单调性。
2()330333(11)(1)f x x x x x '=--=-+,由(11)(1)0x x -+<得单调减区间为(1,11)-。
历年(2019-2023)全国高考数学真题分项(导数及其应用)汇编(附答案)
历年(2019-2023)全国高考数学真题分项(导数及其应用)汇编考点一 导数的运算1.【多选】(2022•新高考Ⅰ)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x ='.若3(2)2f x -,(2)g x +均为偶函数,则( ) A .(0)0f =B .1()02g -=C .(1)f f -=(4)D .(1)g g -=(2)考点二 利用导数研究曲线上某点切线方程2.(2021•新高考Ⅰ)若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A .b e a <B .a e b <C .0b a e <<D .0a b e <<3.(2022•新高考Ⅰ)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是 . 4.(2022•新高考Ⅱ)曲线||y ln x =过坐标原点的两条切线的方程为 , .5.(2021•新高考Ⅱ)已知函数()|1|x f x e =-,10x <,20x >,函数()f x 的图象在点1(A x ,1())f x 和点2(B x ,2())f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 的取值范围是 . 考点三 利用导数研究函数的单调性6.(2023•新高考Ⅱ)已知函数()x f x ae lnx =-在区间(1,2)上单调递增,则a 的最小值为( ) A .2eB .eC .1e -D .2e -7.(2023•新高考Ⅰ)已知函数()()x f x a e a x =+-. (1)讨论()f x 的单调性;(2)证明:当0a >时,3()22f x lna >+. 8.(2022•浙江)设函数()(0)2ef x lnx x x=+>. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知a ,b R ∈,曲线()y f x =上不同的三点1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x 处的切线都经过点(,)a b .证明:(ⅰ)若a e >,则0b f <-(a )1(1)2ae<-;(ⅱ)若0a e <<,123x x x <<,则2213211266e a e ae e x x a e --+<+<-. (注: 2.71828e =⋯是自然对数的底数) 9.(2022•新高考Ⅱ)已知函数()ax x f x xe e =-. (1)当1a =时,讨论()f x 的单调性; (2)当0x >时,()1f x <-,求a 的取值范围; (3)设*n N ∈(1)ln n +>+.10.(2021•新高考Ⅱ)已知函数2()(1)x f x x e ax b =--+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)从下面两个条件中选一个,证明:()f x 恰有一个零点.①2122e a <…,2b a >; ②102a <<,2b a …. 11.(2021•浙江)设a ,b 为实数,且1a >,函数2()()x f x a bx e x R =-+∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(Ⅲ)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点1x ,2x ,满足22122blnb e x x e b>+.(注: 2.71828e = 是自然对数的底数) 12.(2021•新高考Ⅰ)已知函数()(1)f x x lnx =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且blna alnb a b -=-,证明:112e a b<+<. 13.(2020•海南)已知函数1()x f x ae lnx lna -=-+.(1)当a e =时,求曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.14.(2019•浙江)已知实数0a ≠,设函数()f x alnx =+0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[x e∈,)+∞均有()2f x a …,求a 的取值范围. 注: 2.71828e =⋯为自然对数的底数.考点四 利用导数研究函数的极值15.【多选】(2023•新高考Ⅱ)若函数2()(0)b cf x alnx a x x =++≠既有极大值也有极小值,则( ) A .0bc >B .0ab >C .280b ac +>D .0ac <16.【多选】(2022•新高考Ⅰ)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点 B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线17.(2023•新高考Ⅱ)(1)证明:当01x <<时,2sin x x x x -<<;(2)已知函数2()cos (1)f x ax ln x =--,若0x =为()f x 的极大值点,求a 的取值范围.考点五 利用导数研究函数的最值18.(2022•新高考Ⅰ)已知函数()x f x e ax =-和()g x ax lnx =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.参考答案考点一 导数的运算1.【多选】(2022•新高考Ⅰ)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x ='.若3(2)2f x -,(2)g x +均为偶函数,则( ) A .(0)0f =B .1()02g -=C .(1)f f -=(4)D .(1)g g -=(2)【过程解析】3(2)2f x - 为偶函数,∴可得33(2)(2)22f x f x -=+,()f x ∴关于32x =对称,令54x =,可得3535(2(2)2424f f -⨯=+⨯,即(1)f f -=(4),故C 正确; (2)g x + 为偶函数,(2)(2)g x g x ∴+=-,()g x 关于2x =对称,故D 不正确; ()f x 关于32x =对称,32x ∴=是函数()f x 的一个极值点, ∴函数()f x 在3(2,)t 处的导数为0,即33()()022g f ='=,又()g x ∴的图象关于2x =对称,53((022g g ∴==,∴函数()f x 在5(2,)t 的导数为0,52x ∴=是函数()f x 的极值点,又()f x 的图象关于32x =对称,5(2∴,)t 关于32x =的对称点为1(2,)t ,由52x =是函数()f x 的极值点可得12x =是函数()f x 的一个极值点,11(()022g f ∴='=, 进而可得17()()022g g ==,故72x =是函数()f x 的极值点,又()f x 的图象关于32x =对称,7(2∴,)t 关于32x =的对称点为1(2-,)t ,11()()022g f ∴-='-=,故B 正确; ()f x 图象位置不确定,可上下移动,即每一个自变量对应的函数值不是确定值,故A 错误. 解法二:构造函数法,令()1sin f x x π=-,则3(2)1cos 22f x x π-=+,则()()cosg x f x x ππ='=-,(2)cos(2)cos g x x x πππππ+=-+=-, 满足题设条件,可得只有选项BC 正确, 故选:BC .考点二 利用导数研究曲线上某点切线方程2.(2021•新高考Ⅰ)若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A .b e a <B .a e b <C .0b a e <<D .0a b e <<【过程解析】法一:函数x y e =是增函数,0x y e '=>恒成立, 函数的图象如图,0y >,即切点坐标在x 轴上方, 如果(,)a b 在x 轴下方,连线的斜率小于0,不成立. 点(,)a b 在x 轴或下方时,只有一条切线. 如果(,)a b 在曲线上,只有一条切线; (,)a b 在曲线上侧,没有切线;由图象可知(,)a b 在图象的下方,并且在x 轴上方时,有两条切线,可知0a b e <<. 故选:D .法二:设过点(,)a b 的切线横坐标为t ,则切线方程为()t t y e x t e =-+,可得(1)t b e a t =+-,设()(1)f t a t =+-,可得()()t f t e a t '=-,(,)t a ∈-∞,()0f t '>,()f t 是增函数, (,)t a ∈+∞,()0f t '<,()f t 是减函数,因此当且仅当0a b e <<时,上述关于t 的方程有两个实数解,对应两条切线. 故选:D .3.(2022•新高考Ⅰ)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是 . 【过程解析】()x x y e x a e '=++,设切点坐标为0(x ,00())x x a e +, ∴切线的斜率000()x x k e x a e =++,∴切线方程为000000()(())()x x x y x a e e x a e x x -+=++-,又 切线过原点,000000()(())()x x x x a e e x a e x ∴-+=++-, 整理得:2000x ax a +-=,切线存在两条,∴方程有两个不等实根,∴△240a a =+>,解得4a <-或0a >,即a 的取值范围是(-∞,4)(0-⋃,)+∞, 故答案为:(-∞,4)(0-⋃,)+∞.4.(2022•新高考Ⅱ)曲线||y ln x =过坐标原点的两条切线的方程为 , . 【过程解析】当0x >时,y lnx =,设切点坐标为0(x ,0)lnx , 1y x '=,∴切线的斜率01k x =, ∴切线方程为0001()y lnx x x x -=-, 又 切线过原点,01lnx ∴-=-, 0x e ∴=,∴切线方程为11()y x e e-=-,即0x ey -=,当0x <时,()y ln x =-,与y lnx =的图像关于y 轴对称, ∴切线方程也关于y 轴对称, ∴切线方程为0x ey +=,综上所述,曲线||y ln x =经过坐标原点的两条切线方程分别为0x ey -=,0x ey +=,故答案为:0x ey -=,0x ey +=.5.(2021•新高考Ⅱ)已知函数()|1|x f x e =-,10x <,20x >,函数()f x 的图象在点1(A x ,1())f x 和点2(B x ,2())f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 的取值范围是 . 【过程解析】当0x <时,()1x f x e =-,导数为()x f x e '=-, 可得在点1(A x ,_11)x e -处的斜率为_11x k e =-, 切线AM 的方程为_1_11(1)()x x y e e x x --=--,令0x =,可得_1_111x x y e x e =-+,即_1_11(0,1)x x M e x e -+, 当0x >时,()1x f x e =-,导数为()x f x e '=, 可得在点2(B x ,_21)x e -处的斜率为_22x k e =,令0x =,可得_2_221x x y e x e =--,即_2_22(0,1)x x N e x e --,由()f x 的图象在A ,B 处的切线相互垂直,可得_1_2121x x k k e e =-⋅=-, 即为120x x +=,10x <,20x >,所以2||1(0,1)||x AM BN e ===∈.故答案为:(0,1).考点三 利用导数研究函数的单调性6.(2023•新高考Ⅱ)已知函数()x f x ae lnx =-在区间(1,2)上单调递增,则a 的最小值为( ) A .2eB .eC .1e -D .2e -【过程解析】对函数()f x 求导可得,1()x f x ae x'=-, 依题意,10x ae x -…在(1,2)上恒成立,即1x a xe…在(1,2)上恒成立,设1(),(1,2)x g x x xe =∈,则22()(1)()()()x x x x x e xe e x g x xe xe -++'==-, 易知当(1,2)x ∈时,()0g x '<, 则函数()g x 在(1,2)上单调递减, 则11()(1)max a g x g e e-===….故选:C . 7.(2023•新高考Ⅰ)已知函数()()x f x a e a x =+-. (1)讨论()f x 的单调性;(2)证明:当0a >时,3()22f x lna >+. 【过程解析】(1)()()x f x a e a x =+-, 则()1x f x ae '=-,①当0a …时,()0f x '<恒成立,()f x 在R 上单调递减,②当0a >时,令()0f x '=得,1x lna=, 当1(,)x ln a ∈-∞时,()0f x '<,()f x 单调递减;当1(x ln a ∈,)+∞时,()0f x '>,()f x 单调递增,综上所述,当0a …时,()f x 在R 上单调递减;当0a >时,()f x 在1(,)ln a -∞上单调递减,在1(ln a,)+∞上单调递增.证明:(2)由(1)可知,当0a >时,2111()(()1min f x f ln a a ln a lna a a a==+-=++,要证3()22f x lna >+,只需证23122a lna lna ++>+,只需证2102a lna -->, 设g (a )212a lna =--,0a >, 则g '(a )21212a a a a -=-=, 令g '(a )0=得,2a =,当(0,)2a ∈时,g '(a )0<,g (a)单调递减,当(2a ∈,)+∞时,g '(a )0>,g (a )单调递增,所以g (a)11(022222g ln ln =--=->…, 即g (a )0>, 所以2102a lna -->得证, 即3()22f x lna >+得证. 8.(2022•浙江)设函数()(0)2ef x lnx x x=+>. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知a ,b R ∈,曲线()y f x =上不同的三点1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x 处的切线都经过点(,)a b .证明:(ⅰ)若a e >,则0b f <-(a )1(1)2ae<-;(ⅱ)若0a e <<,123x x x <<,则2213211266e a e ae e x x a e --+<+<-. (注: 2.71828e =⋯是自然对数的底数) 【过程解析】(Ⅰ) 函数()(0)2ef x lnx x x=+>, ∴2212()22e x ef x x x x -'=-+=,(0)x >, 由22()02x e f x x -'=>,得2ex >,()f x ∴在(2e ,)+∞上单调递增; 由22()02x ef x x -'=<,得02e x <<,()f x ∴在(0,)2e 上单调递减. (Ⅱ)()i 证明: 过(,)a b 有三条不同的切线,设切点分别为1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x ,()()()i i i f x b f x x a ∴-='-,(1i =,2,3),∴方程()()()f x b f x x a -='-有3个不同的根,该方程整理为21()()022e ex a lnx b x x x ----+=,设21()()()22e eg x x a lnx b x x x=----+,则223231111()()()()22e e e g x x a x e x a x x x x x x x'=-+-+--+=---, 当0x e <<或x a >时,()0g x '<;当e x a <<时,()0g x '>, ()g x ∴在(0,)e ,(,)a +∞上为减函数,在(,)e a 上为增函数, ()g x 有3个不同的零点,g ∴(e )0<且g (a )0>,21()()022e e e a lne b e e e ∴----+<,且21()()022e ea a lnab a a a----+>, 整理得到12a b e <+且()2eb lna f a a>+=, 此时,12a b e <+,且()2e b lna f a a >+=,此时,1()(1)1()02222a a e e b f a lna lna b e e a a ---<+-+--+>, 整理得12a b e <+,且()2e b lna f a a>+=, 此时,b f -(a )113(1)1()2222222a a e a elna lna e e a e a--<+-+-+=--,设μ(a )为(,)e +∞上的减函数,μ∴(a )3022elne e<--=, ∴10()(1)2ab f a e<-<-. ()ii 当0a e <<时,同()i 讨论,得:()g x 在(0,)a ,(,)e +∞上为减函数,在(,)a e 上为增函数, 不妨设123x x x <<,则1230x a x e x <<<<<,()g x 有3个不同的零点,g ∴(a )0<,且g (e )0>,21()()022e e e a lne b e e e ∴----+>,且21()022e e a a lna b a a a----+<, 整理得122a ab lna e e+<<+, 123x x x << ,1230x a x e x ∴<<<<<,2()12a e eag x lnx b x x+=-+-+ , 设,(0,1)e a t m x e ==∈,则方程2102a e ealnx b x x+-+-+=即为:202a e a t t lnt b e e +-+++=,即为2(1)02mm t t lnt b -++++=, 记123123,,e e et t t x x x ===, 则1t ,2t ,3t 为2(1)02m m t t lnt b -++++=有三个不同的根, 设31311x t e k t x a ==>>,1am e =<, 要证:2213211266e a e ae e x x a e --+<+<-, 即证132266e a e e at t e a e--+<+<-, 即证:213132(13)(12)236()m m m t t m m t t --++--<+,而2111(1)02m m t t lnt b -++++=,且2333(1)02m m t t lnt b -++++=, ∴22131313()(1)()02m lnt lnt t t m t t -+--+-=, ∴131313222lnt lnt t t m m t t -+--=-⨯-, ∴即证21313132(13)(12)36()lnt lnt m m m m t t m t t ---+-⨯<-+,即证1132313()(13)(12)072t t t lnt m m m t t +--++>-,即证2(1)(13)(12)0172k lnk m m m k +--++>-, 记(1)(),11k lnkk k k ϕ+=>-,则211()(2)0(1)k k lnk k kϕ=-->-, ()k ϕ∴在(1,)+∞为增函数,()()k m ϕϕ∴>,∴22(1)(13)(12)(1)(13)(12)172172k lnk m m m m lnm m m m k m +--++--++>+--, 设2(1)(13)(12)()72(1)m m m m m lnm m ω---+=++,01m <<, 则2322322(1)(3204972)(1)(33)()072(1)72(1)m m m m m m x m m m m ω---+-+'=>>++,()m ω∴在(0,1)上是增函数,()m ωω∴<(1)0=, 2(1)(13)(12)072(1)m m m m lnm m ---+∴+<+,即2(1)(13)(12)0172m lnm m m m m +--++>-, ∴若0a e <<,123x x x <<,则2213211266e a e ae e x x a e --+<+<-. 9.(2022•新高考Ⅱ)已知函数()ax x f x xe e =-. (1)当1a =时,讨论()f x 的单调性; (2)当0x >时,()1f x <-,求a 的取值范围; (3)设*n N ∈(1)ln n +>+.【过程解析】(1)当1a =时,()(1)x x x f x xe e e x =-=-,()(1)x x x f x e x e xe '=-+=,0x e > ,∴当(0,)x ∈+∞时,()0f x '>,()f x 单调递增;当(,0)x ∈-∞时,()0f x '<,()f x 单调递减.(2)令()()11(0)ax x g x f x xe e x =+=-+>, ()1f x <- ,()10f x +<, ()(0)0g x g ∴<=在0x >上恒成立, 又()ax ax x g x e axe e '=+-,令()()h x g x =',则()()(2)ax ax ax x ax ax x h x ae a e axe e a e axe e '=++-=+-, (0)21h a ∴'=-,①当210a ->,即12a >,存在0δ>,使得当(0,)x δ∈时,()0h x '>,即()g x '在(0,)δ上单调递增. 因为()(0)0g x g '>'=,所以()g x 在(0,)δ内递增,所以()1f x >-,这与()1f x <-矛盾,故舍去;②当210a -…,即12a …, ()(1)ax ax x ax x g x e axe e ax e e '=+-=+-,若10ax +…,则()0g x '<,所以()g x 在[0,)+∞上单调递减,()(0)0g x g =…,符合题意. 若10ax +>,则1111(1)(1)2222()0x ln x x x axaxxax ln ax xxx g x e axe e ee eeee +++++'=+-=---=剟,所以()g x 在(0,)+∞上单调递减,()(0)0g x g =…,符合题意. 综上所述,实数a 的取值范围是12a …. 另解:()f x 的导数为()(1)(0)ax x f x ax e e x '=+->,①当1a …时,()(1)0ax x ax x x f x ax e e e ex e e '=+->--=…,所以()f x 在(0,)+∞递增,所以()1f x >-,与题意矛盾;②当0a …时,()10ax x x f x e e e '--<剟, 所以()f x 在(0,)+∞递减,所以()1f x <-,满足题意;.③当102a <…时,11122211()(1)[(1)]22x x x x f x x e e e x e '+-=+-….设121()(1)(0)2x G x x e x =+->,1211()022x G x e '=-<,则()G x 在(0,)+∞递减,所以()0G x <,12()()0x f x e G x '=<,所以()f x 在(0,)+∞递减,所以()1f x <-,满足题意;④当112a <<时,(1)()[(1)]ax a x f x e ax e -'=+-,令(1)()(1)a x H x ax e -=+-,则()()ax f x e H x '=,(1)()(1)a x H x a a e -'=+-,可得()H x '递减,(0)21H a '=-,所以存在00x >,使得0()0H x '=.当0(0,)x x ∈时,()0H x '>, ()H x 在0(0,)x 递增,此时()0H x >,所以当0(0,)x x ∈时,()()0ax f x e H x '=>,()f x 在0(0,)x 递增,所以()1f x >-,与题意矛盾. 综上可得,a 的取值范围是(-∞,1]2.(3)由(2)可知,当12a =时,12()1(0)x x f x xe e x =-<->,令*1(1)()x ln n N n=+∈得,111(1)(1)21(1)1ln n n ln e e n +++⋅-<-,整理得,11(10ln n n+<,∴11(1ln n >+,∴1()n ln n +>,∴11231((...(1)12n nk k k n ln ln ln n k n ==++>=⨯⨯⨯=+∑,...(1)ln n +>+.另解:运用数学归纳法证明. 当1n =时,左边22ln ==>成立.假设当(1,*)n k k k N =∈…...(1)ln k ++>+.当1n k =+...(2)ln k +>+,只要证(1)(2)ln k ln k ++>+,21(2)(1)(1)11k ln k ln k lnln k k +>+-+==+++. 可令11t k =+,则(0t ∈,1]2(1)ln t >+,再令2x x =∈,则需证明12(2x lnx x x ->∈.构造函数1()2()((1g x lnx x x x =--∈,22211()1(1)0g x x x x'=--=--<,可得()g x 在(1上递减, 则()g x g <(1)0=,所以原不等式成立, 即1n k =+...(2)ln k ++>+成立....(1)ln n +>+成立.10.(2021•新高考Ⅱ)已知函数2()(1)x f x x e ax b =--+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)从下面两个条件中选一个,证明:()f x 恰有一个零点.①2122e a <…,2b a >; ②102a <<,2b a …. 【过程解析】(Ⅰ)2()(1)x f x x e ax b =--+ ,()(2)x f x x e a '=-,①当0a …时,当0x >时,()0f x '>,当0x <时,()0f x '<,()f x ∴在(,0)-∞上单调递减,在(0,)+∞上单调递增,②当0a >时,令()0f x '=,可得0x =或(2)x ln a =,()i 当102a <<时,当0x >或(2)x ln a <时,()0f x '>,当(2)0ln a x <<时,()0f x '<,()f x ∴在(-∞,(2))ln a ,(0,)+∞上单调递增,在((2)ln a ,0)上单调递减, 1()2ii a =时, ()(1)0x f x x e '=-… 且等号不恒成立,()f x ∴在R 上单调递增,()iii 当12a >时, 当0x <或(2)x ln a >时,()0f x '>,当0(2)x ln a <<时,()0f x '<,()f x 在(,0)-∞,((2)ln a ,)+∞上单调递增,在(0,(2))ln a 上单调递减. 综上所述:当0a … 时,()f x 在(,0)-∞上单调递减;在(0,)+∞上 单调递增;当102a << 时,()f x 在(-∞,(2))ln a 和(0,)+∞上单调递增;在((2)ln a ,0)上单调递减; 当12a = 时,()f x 在R 上单调递增; 当12a >时,()f x 在(,0)-∞和((2)ln a ,)+∞ 上单调递增;在(0,(2))ln a 上单调递减. (Ⅱ)证明:若选①,由 (Ⅰ)知,()f x 在(,0)-∞上单调递增,(0,(2))ln a 单调递减,((2)ln a ,)+∞ 上()f x 单调递增.注意到((1)0,(0)1210f ef b a =-<=->->.()f x ∴ 在( 上有一个零点; 22((2))((2)1)222(2)222(2)(2(2))f ln a ln a a a ln a b aln a a aln a a aln a ln a =-⋅-⋅+>--+=-,由2122e a <… 得0(2)2ln a <…,(2)(2(2))0aln a ln a ∴-…, ((2))0f ln a ∴>,当0x … 时,()((2))0f x f ln a >…,此时()f x 无零点.综上:()f x 在R 上仅有一个零点.另解:当1(2a ∈,22e 时,有(2)(0ln a ∈,2],而(0)1210f b a =->-=,于是2((2))((2)1)2(2)f ln a ln a a aln a b =-⋅-+(2)(2(2))(2)0ln a a ln a b a =-+->,所以()f x 在(0,)+∞没有零点,当0x <时,(0,1)x e ∈,于是2()()0b f x ax b f a <-+⇒-<,所以()f x 在(,0)上存在一个零点,命题得证.若选②,则由(Ⅰ)知:()f x 在(-∞,(2))ln a 上单调递增, 在((2)ln a ,0)上单调递减,在(0,)+∞ 上单调递增.22((2))((2)1)222(2)222(2)(2(2))f ln a ln a a aln a b aln a a aln a a aln a ln a =--+--+=-…,102a <<,(2)0ln a ∴<,(2)(2(2))0aln a ln a ∴-<,((2))0f ln a ∴<, ∴当0x … 时,()((2))0f x f ln a <…,此时()f x 无零点.当0x > 时,()f x 单调递增,注意到(0)1210f b a =--<…,取c =21b a << ,∴1c >>,又易证1c e c >+,∴22221()(1)(1)(1)(1)11111102c f c c e ac b c c ac b a c b c b b b =--+>-+-+=-+->+-=-++-=>,()f x ∴在(0,)c 上有唯一零点,即()f x 在(0,)+∞上有唯一零点.综上:()f x 在R 上有唯一零点. 11.(2021•浙江)设a ,b 为实数,且1a >,函数2()()x f x a bx e x R =-+∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(Ⅲ)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点1x ,2x ,满足22122blnb e x x e b>+.(注: 2.71828e = 是自然对数的底数) 【过程解析】(Ⅰ)()x f x a lna b '=-,①当0b …时,由于1a >,则0x a lna >,故()0f x '>,此时()f x 在R 上单调递增;②当0b >时,令()0f x '>,解得b lnlna x lna >,令()0f x '<,解得blnlna x lna <,∴此时()f x 在(,b lnlna lna -∞单调递减,在(,)b lnlna lna+∞单调递增;综上,当0b …时,()f x 的单调递增区间为(,)-∞+∞;当0b >时,()f x 的单调递减区间为(,)blnlna lna-∞,单调递增区间为(,)blnlna lna+∞;(Ⅱ)注意到x →-∞时,()f x →+∞,当x →+∞时,()f x →+∞,由(Ⅰ)知,要使函数()f x 有两个不同的零点,只需()(0min blnlna f x f lna=<即可,∴20b blnlnlna lna a b e lna lna-⋅+<对任意22b e >均成立,令b ln lna t lna =,则20t a bt e -+<,即20tlna e bt e -+<,即20bln lna b ln lna e b e lna-⋅+<,即20bln blna b e lna lna -⋅+<,∴20bb b lne lna lna-⋅+<对任意22b e >均成立, 记22(),2bg b b b lne lna b e lna =-⋅+>,则1()1()()b lna g b ln b ln lna lnb lna b lna'=-+⋅⋅=-, 令g '(b )0=,得b lna =,①当22lnae >,即22e a e >时,易知g (b )在2(2e ,)lna 单调递增,在(,)lna +∞单调递减,此时g (b )22()1(1)0g lna lna lna ln e lna lna e =-⋅+=⋅+>…,不合题意;②当22lna e …,即221e a e <…时,易知g (b )在2(2e ,)+∞单调递减,此时2222222222()(2)2222[(2)()]e g b g e e e ln e lna e e ln e ln lna e lna lna <=-⋅+=--+, 故只需22[22()]0ln ln lna lna -+-+…,即2()222lna ln lna ln ++…,则2lna …,即2a e …; 综上,实数a 的取值范围为(1,2]e ;(Ⅲ)证明:当a e =时,2()x f x e bx e =-+,()x f x e b '=-,令()0f x '=,解得4x lnb =>, 易知22222422()()433(13)0lnb min f x f lnb e b lnb e b blnb e b b e e b e e e e ==-⋅+=-+<-+=-<-=-<,()f x ∴有两个零点,不妨设为1x ,2x ,且12x lnb x <<, 由2222()0x f x e bx e =-+=,可得222x e e x b b=+,∴要证22122blnb e x x e b >+,只需证2122x e blnb x b e >,只需证22122x b lnb e x e >, 而222222222222()20e eb b e e f e e e e e e e b=-+=-<-<,则212e x b <, ∴要证22122x b lnbe x e>,只需证2x e blnb >,只需证2()x ln blnb >, 而()222221(())()()(4)404ln blnb f ln blnb e bln blnb e blnb bln blnb e blnb bln b e b ln e e bln =-+=-+<-+=⋅+=-<,2()x ln blnb ∴>,即得证.12.(2021•新高考Ⅰ)已知函数()(1)f x x lnx =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且blna alnb a b -=-,证明:112e a b<+<. 【过程解析】(1)解:由函数的过程解析式可得()11f x lnx lnx '=--=-,(0,1)x ∴∈,()0f x '>,()f x 单调递增,(1,)x ∈+∞,()0f x '<,()f x 单调递减, 则()f x 在(0,1)单调递增,在(1,)+∞单调递减.(2)证明:由blna alnb a b -=-,得111111ln ln a a b b b a -+=-,即1111(1)(1)ln ln a a b b-=-, 由(1)()f x 在(0,1)单调递增,在(1,)+∞单调递减, 所以()max f x f =(1)1=,且f (e )0=, 令11x a =,21x b=,则1x ,2x 为()f x k = 的两根,其中(0,1)k ∈. 不妨令1(0,1)x ∈,2(1,)x e ∈,则121x ->,先证122x x <+,即证212x x >-,即证211()()(2)f x f x f x =<-, 令()()(2)h x f x f x =--,则()()(2)(2)[(2)]h x f x f x lnx ln x ln x x '='+'-=---=--在(0,1)单调递减, 所以()h x h '>'(1)0=, 故函数()h x 在(0,1)单调递增,1()h x h ∴<(1)0=.11()(2)f x f x ∴<-,122x x ∴<+,得证.同理,要证12x x e +<, (法一)即证211x e x <<-, 根据(1)中()f x 单调性, 即证211()()()f x f x f e x =>-, 令()()()x f x f e x ϕ=--,(0,1)x ∈, 则()[()]x ln x e x ϕ'=--,令0()0x ϕ'=, 0(0,)x x ∈,()0x ϕ'>,()x ϕ单调递增,0(x x ∈,1),()0x ϕ'<,()x ϕ单调递减,又0x e <<时,()0f x >,且f (e )0=,故0lim ()0x x ϕ+→=, ϕ(1)f =(1)(1)0f e -->,()0x ϕ∴>恒成立, 12x x e +<得证,(法二)12()()f x f x =,1122(1)(1)x lnx x lnx -=-, 又1(0,1)x ∈,故111lnx ->,111(1)x lnx x ->,故12112222(1)(1)x x x lnx x x lnx x +<-+=-+,2(1,)x e ∈, 令()(1)g x x lnx x =-+,()1g x lnx '=-,(1,)x e ∈, 在(1,)e 上,()0g x '>,()g x 单调递增, 所以()g x g <(e )e =,即222(1)x lnx x e -+<,所以12x x e +<,得证, 则112e a b<+<. 13.(2020•海南)已知函数1()x f x ae lnx lna -=-+. (1)当a e =时,求曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.【过程解析】(1)当a e =时,()1x f x e lnx =-+, 1()x f x e x∴'=-, f ∴'(1)1e =-, f (1)1e =+,∴曲线()y f x =在点(1,f (1))处的切线方程为(1)(1)(1)y e e x -+=--,当0x =时,2y =,当0y =时,21x e -=-, ∴曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积1222211S e e =⨯⨯=--. (2)方法一:由()1f x …,可得11x ae lnx lna --+…,即11x lna e lnx lna -+-+…, 即11x lna lnx e lna x lnx x e lnx -+++-+=+…, 令()t g t e t =+, 则()10t g t e '=+>,()g t ∴在R 上单调递增, (1)()g lna x g lnx +- …1lna x lnx ∴+-…, 即1lna lnx x -+…, 令()1h x lnx x =-+, 11()1xh x x x-∴'=-=, 当01x <<时,()0h x '>,函数()h x 单调递增, 当1x >时,()0h x '<,函数()h x 单调递减,()h x h ∴…(1)0=,0lna ∴…, 1a ∴…,故a 的范围为[1,)+∞.方法二:由()1f x …可得11x ae lnx lna --+…,0x >,0a >, 即11x ae lnx lna ---…,设()1x g x e x =--,()10x g x e ∴'=->恒成立,()g x ∴在(0,)+∞单调递增, ()(0)1010g x g ∴>=--=, 10x e x ∴-->, 即1x e x >+,再设()1h x x lnx =--, 11()1x h x x x-∴'=-=, 当01x <<时,()0h x '<,函数()h x 单调递减, 当1x >时,()0h x '>,函数()h x 单调递增,()h x h ∴…(1)0=,10x lnx ∴--…, 即1x lnx -…1x e x -∴…,则1x ae ax -…,此时只需要证ax x lna -…, 即证(1)x a lna --…,当1a …时, (1)0x a lna ∴->>-恒成立,当01a <<时,(1)0x a lna -<<-,此时(1)x a lna --…不成立, 综上所述a 的取值范围为[1,)+∞.方法三:由题意可得(0,)x ∈+∞,(0,)a ∈+∞, 11()x f x ae x-∴'=-, 易知()f x '在(0,)+∞上为增函数,①当01a <<时,f '(1)10a =-<,11111((1)0aa f ae a a e a--'=-=->,∴存在01(1,x a∈使得0()0f x '=,当0(1,)x x ∈时,()0f x '<,函数()f x 单调递减,()f x f ∴<(1)1a lna a =+<<,不满足题意,②当1a …时,10x e ->,0lna >,1()x f x e lnx -∴-…,令1()x g x e lnx -=-,11()x g x e x-∴'=-, 易知()g x '在(0,)+∞上为增函数, g ' (1)0=,∴当(0,1)x ∈时,()0g x '<,函数()g x 单调递减,当(1,)x ∈+∞时,()0g x '>,函数()g x 单调递增,()g x g ∴…(1)1=, 即()1f x …,综上所述a 的取值范围为[1,)+∞.方法四:1()x f x ae lnx lna -=-+ ,0x >,0a >, 11()x f x ae x-∴'=-,易知()f x '在(0,)+∞上为增函数, 1x y ae -= 在(0,)+∞上为增函数,1y x=在0,)+∞上为减函数, 1x y ae -∴=与1y x=在0,)+∞上有交点, ∴存在0(0,)x ∈+∞,使得01001()0x f x ae x -'=-=, 则0101x ae x -=,则001lna x lnx +-=-,即001lna x lnx =--, 当0(0,)x x ∈时,()0f x '<,函数()f x 单调递减, 当0(x x ∈,)+∞时,()0f x '>,函数()f x 单调递增,0100()()x f x f x ae lnx lna -∴=-+ (000000011)1211lnx x lnx lnx x x x =-+--=-+-… ∴000120lnx x x --… 设1()2g x lnx x x=--,易知函数()g x 在(0,)+∞上单调递减,且g (1)1010=--=,∴当(0x ∈,1]时,()0g x …,0(0x ∴∈,1]时,000120lnx x x --…, 设()1h x x lnx =--,(0x ∈,1],1()10h x x ∴'=--<恒成立, ()h x ∴在(0,1]上单调递减,()h x h ∴…(1)1110ln =--=,当0x →时,()h x →+∞,01lna ln ∴=…,1a ∴….方法五:()1f x …等价于11x ae lnx lna --+…,该不等式恒成立.当1x =时,有1a lna +…,其中0a >. 设g (a )1a lna =+-,则g '(a )110a=+>, 则g (a )单调递增,且g (1)0=. 所以若1a lna +…成立,则必有1a …. ∴下面证明当1a …时,()1f x …成立.设()1x h x e x =--,()1x h x e ∴'=-,()h x ∴在(,0)-∞单调递减,在(0,)+∞单调递增,()(0)1010h x h ∴=--=…,10x e x ∴--…,即1x e x +…,把x 换成1x -得到1x e x -…,1x lnx - …,1x lnx ∴-….11()1x x f x ae lnx lna e lnx x lnx --∴=-+--厖?,当1x =时等号成立.综上,1a …. 14.(2019•浙江)已知实数0a ≠,设函数()f x alnx =+0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[x e∈,)+∞均有()f x …a 的取值范围.注: 2.71828e =⋯为自然对数的底数.【过程解析】(1)当34a =-时,3()4f x lnx =-+,0x >,3()4f x x '=-+= ∴函数()f x 的单调递减区间为(0,3),单调递增区间为(3,)+∞.(2)由f (1)12a …,得04a <…,当0a <…时,()f x …20lnx --…,令1t a=,则t …,设()22g t t lnx =,t …,则2()2g t t lnx=,()i 当1[7x ∈,)+∞,则()2g x g lnx =--…,记()p x lnx =--,17x …,则1()p x x '--==, 列表讨论:()2()2()0g t g p x p x ∴==厖.()ii 当211[,7x e ∈时,()g t g =…,令()(1)q x x =++,21[x e ∈,17,则()10q x'=+>,故()q x 在21[e ,1]7上单调递增,1()(7q x q ∴…,由()i 得11()()7777q p p =-<-(1)0=,()0q x ∴<,()0g t g ∴=>…,由()()i ii 知对任意21[x e ∈,)+∞,t ∈,)+∞,()0g t …,即对任意21[x e∈,)+∞,均有()f x …综上所述,所求的a 的取值范围是(0.考点四 利用导数研究函数的极值15.【多选】(2023•新高考Ⅱ)若函数2()(0)b c f x alnx a x x =++≠既有极大值也有极小值,则( ) A .0bc > B .0ab > C .280b ac +> D .0ac <【过程解析】函数定义域为(0,)+∞, 且223322()a b c ax bx c f x x x x x --'=--=, 由题意,方程()0f x '=即220ax bx c --=有两个正根,设为1x ,2x , 则有120b x x a+=>,1220c x x a -=>,△280b ac =+>, 0ab ∴>,0ac <,20ab ac a bc ∴⋅=<,即0bc <.故选:BCD .16.【多选】(2022•新高考Ⅰ)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线【过程解析】2()31f x x '=-,令()0f x '>,解得3x <或3x >,令()0f x '<,解得33x <<,()f x ∴在(,)-∞+∞上单调递增,在(上单调递减,且99(0,(03939f f +--=>=>, ()f x ∴有两个极值点,有且仅有一个零点,故选项A 正确,选项B 错误;又33()()112f x f x x x x x +-=-+-++=,则()f x 关于点(0,1)对称,故选项C 正确;假设2y x =是曲线()y f x =的切线,设切点为(,)a b ,则23122a a b⎧-=⎨=⎩,解得12a b =⎧⎨=⎩或12a b =-⎧⎨=-⎩, 显然(1,2)和(1,2)--均不在曲线()y f x =上,故选项D 错误.故选:AC .17.(2023•新高考Ⅱ)(1)证明:当01x <<时,2sin x x x x -<<; (2)已知函数2()cos (1)f x ax ln x =--,若0x =为()f x 的极大值点,求a 的取值范围.【过程解析】(1)证明:设2()sin g x x x x =--,(0,1)x ∈,则()12cos g x x x '=--,()2sin 0g x x ∴''=-+<,()g x ∴'在(0,1)上单调递减,()(0)0g x g ∴'<'=,()g x ∴在(0,1)上单调递减,()(0)0g x g ∴<=,即2sin 0x x x --<,(0,1)x ∈,2sin x x x ∴-<,(0,1)x ∈,设()sin h x x x =-,(0,1)x ∈,则()1cos 0h x x '=->,()h x ∴在(0,1)上单调递增,()(0)0h x h ∴>=,(0,1)x ∈,即sin 0x x ->,(0,1)x ∈,sin x x ∴<,(0,1)x ∈,综合可得:当01x <<时,2sin x x x x -<<;(2)解:22()sin 1x f x a ax x '=-+- ,222222()cos (1)x f x a ax x +∴''=-+-, 且(0)0f '=,2(0)2f a ''=-+,①若2()20f x a ''=->,即a <<时,易知存在10t >,使得1(0,)x t ∈时,()0f x ''>,()f x ∴'在1(0,)t 上单调递增,()(0)0f x f ∴'>'=,()f x ∴在1(0,)t 上单调递增,这显然与0x =为函数的极大值点相矛盾,故舍去;②若2()20f x a ''=-<,即a <a >存在20t >,使得2(x t ∈-,2)t 时,()0f x ''<,()f x ∴'在2(t -,2)t 上单调递减,又(0)0f '=,∴当20t x -<<时,()0f x '>,()f x 单调递增;当20x t <<时,()0f x '<,()f x 单调递减,满足0x =为()f x 的极大值点,符合题意;③若2()20f x a ''=-=,即a =()f x 为偶函数,∴只考虑a =的情况,此时22())1x f x x '=+-,(0,1)x ∈时, 2221()22(1)011x f x x x x x '>-+=->--, ()f x ∴在(0,1)上单调递增,与显然与0x =为函数的极大值点相矛盾,故舍去.综合可得:a 的取值范围为(-∞,⋃,)+∞.考点五 利用导数研究函数的最值18.(2022•新高考Ⅰ)已知函数()x f x e ax =-和()g x ax lnx =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【过程解析】(1)()f x 定义域为R ,()x f x e ax =- ,()x f x e a '∴=-,若0a …,则()0f x '>,()f x 无最小值,故0a >,当()0f x '=时,x lna =,当x lna <时,()0f x '<,函数()f x 在(,)lna -∞上单调递减,当x lna >时,()0f x '>,函数()f x 在(,)lna +∞上单调递增,故()()min f x f lna a alna ==-,()g x 的定义域为(0,)+∞,()g x ax lnx =- ,1()g x a x'∴=-, 令()0g x '=,解得1x a =, 当10x a <<时,()0g x '<,函数()g x 在1(0,)a 上单调递减, 当1x a >时,()0g x '>,函数()g x 在1(a,)+∞上单调递增, 故()1min g x lna =+,函数()x f x e ax =-和()g x ax lnx =-有相同的最小值1a alna lna ∴-=+,0a > ,1a alna lna ∴-=+化为101a lna a --=+, 令1()1x h x lnx x -=-+,0x >, 则222211(1)121()(1)(1)(1)x x x h x x x x x x x +--+'=-=-=+++, 0x > ,221()0(1)x h x x x +'∴=>+恒成立, ()h x ∴在(0,)+∞上单调递增,又h (1)0=,h ∴(a )h =(1),仅有此一解, 1a ∴=.(2)证明:由(1)知1a =,函数()x f x e x =-在(,0)-∞上单调递减,在(0,)+∞上单调递增, 函数()g x x lnx =-在(0,1)上单调递减,在(1,)+∞上单调递增,设()()()2(0)x u x f x g x e x lnx x =-=-+>, 则1()22x x u x e e x'=-+>-,当1x …时,()20u x e '->…, 所以函数()u x 在(1,)+∞上单调递增,因为u (1)20e =->,所以当1x …时,()u x u …(1)0>恒成立,即()()0f x g x ->在1x …时恒成立, 所以1x …时,()()f x g x >,。
2019-2020年高考数学压轴题集锦——导数及其应用(五)
2019-2020年高考数学压轴题集锦导数及其应用(五)246•已知函数f(x) x ax 4 ( a R)的两个零点为x1, X2,设x1x2.(i)当a 0时,证明:2 x10.(n)若函数g(x) x2 | f (x) |在区间(,2)和(2,)上均单调递增,求a的取值范围247.设函数f(x) x ax ln x ( a R).(i)若a 1时,求函数f(x)的单调区间;(n)设函数f(x)在[!,e]有两个零点,求实数a的取值范围.e48.已知函数f (x) In (ax b) x , g(x)(i)若b 1, F(x) x2ax Inx .f (x) g(x),问:是否存在这样的负实数a,使得F(x)在x 1处存在切线且该切线与直线y1平行,若存在,求a的值;若不存在,请说明理2 3(n)已知a 0,若在定义域内恒有 f (x) ln(ax b) x 0,求a(a b)的最大值1 249.设函数f(x) xlnx b(x ) (b R),曲线y f x在1,0处的切线与直线2y 3x平行•证明:(I)函数f(X)在[1,)上单调递增;(n)当0x1 时,f x 1.2x 150. 已知f (x) =a (x-lnx) + 2 ,a€ R.x(I)讨论f (x)的单调性;3(II )当a=1时,证明f (x)> f' (x) +三对于任意的x€ [1,2]恒成立。
251. 已知函数f (x) =x2+ ax- lnx, a€ R.(1)若函数f (x)在[1 , 2]上是减函数,求实数a的取值范围;(2)令g (x) =f (x)- x2,是否存在实数a,当x€( 0, e](e是自然常数)时,函数g (x)的最小值是3,若存在,求出a的值;若不存在,说明理由;5(3)当x€ (0, e]时,证明:e2x2—x> (x+1)lnx21352. 已知函数 f (x ) = 3 x 3— ax+1 .(1 )若x=1时,f (x )取得极值,求a 的值; (2) 求f (x )在[0 , 1]上的最小值;(3) 若对任意 m € R ,直线y= - x+m 都不是曲线y=f ( x )的切线,求a 的取值范围._ x53.已知函数f x axe ( a 0) (1) 讨论f x 的单调性;范围.数的底) (2)若关于x 的不等式f xln x x 4的解集中有且只有两个整数,求实数 a 的取值54.已知函数f n,g mmx (其中m e,n,me 为正整数,e 为自然对(1 )证明:当x 1 时,g m x 0恒成立;(2)当 n3时,试比较f n m 与f m n的大小,并证明55•已知函数f (x ) =e x 和函数g (x ) =kx+m (k 、m 为实数,e 为自然对数的底数, e ~ 2.71828 .(1) 求函数h ( x ) =f (x )- g (x )的单调区间;(2) 当k=2,m=1时,判断方程f (x ) =g (x )的实数根的个数并证明;(3) 已知m 工1不等式(m - 1) [f (x )- g (x ) ] W0寸任意实数x 恒成立,求km 的最大 值.a(x 1)56.已知函数 f(x) ln x(a R).x(i)若a 1,求 y f(x)在点1,f(1)处的切线方程; (n)求f (x)的单调区间;1丄对一切的x (1,2)恒成立.2257.已知函数 f (x) (x 1) alnx ( a R ).(i)求函数f(x)的单调区间;(n)若函数f (x)存在两个极值点x 1> x 2为 x 2,求f "2)的取值范围.%(川)求证:不等式1 1 ln x x 158.设函数f(x) In x , m R .x(i)当m e(e为自然对数的底数)时,求f(x)的极小值;(n)若对任意正实数a、b ( a b),不等式丄回空a b围.2恒成立,求m的取值范59.已知函数f x 1 3 2 2x 2ax 3a x b , (a,b3R)(1 )当a 3时,若f x有3个零点,求b的取值范围;4(2)对任意a [一,1],当x a 1,a m时恒有a5时f x的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020 年高考数学压轴题集锦——导数及其应用(五)46.已知函数f ( x)x2ax 4 ( aR)的两个零点为x1, x2 , 设 x1 x2.(Ⅰ)当 a0 时,证明:2x1 0.(Ⅱ)若函数g (x)x2| f ( x) |在区间 (, 2)和(2,) 上均单调递增,求 a 的取值范围.47.设函数 f ( x)2R ).x ax ln x (a(Ⅰ)若 a 1时,求函数 f (x)的单调区间;(Ⅱ)设函数 f ( x) 在[1, ] 有两个零点,求实数 a 的取值范围.e48.已知函数 f ( x) ln( ax b) x ,g (x)x2ax ln x .(Ⅰ)若 b 1,F ( x) f ( x) g (x) ,问:是否存在这样的负实数 a ,使得 F ( x) 在x1处存在切线且该切线与直线y1 x 1平行,若存在,求a的值;若不存在,请说明理23由.(Ⅱ)已知 a 0 ,若在定义域内恒有 f (x) ln( ax b) x 0 ,求 a(a b) 的最大值.49.设函数 f ( x) x ln x b(x1 )2(b R),曲线y f x在1,0处的切线与直线2y3x 平行.证明:(Ⅰ)函数 f ( x) 在 [1,) 上单调递增;(Ⅱ)当 0 x 1 时, f x1.50.已知 f( x) =a( x-ln x)+2 x 1, a∈ R.x 2(I )讨论 f( x)的单调性;(II )当 a=1 时,证明f( x)> f’( x) + 3对于任意的x∈ [1,2] 恒成立。
2251.已知函数f(x) =x +ax﹣ lnx, a∈ R.(1)若函数f(x)在 [1, 2]上是减函数,求实数 a 的取值范围;(2)令 g( x) =f( x)﹣ x2,是否存在实数a,当 x∈( 0, e] ( e 是自然常数)时,函数g (x)的最小值是 3,若存在,求出 a 的值;若不存在,说明理由;(3)当 x∈( 0, e]时,证明: e2x2-5x> (x+1)ln x.2152.已知函数f(x) = 3 x3- ax+1.(1)若 x=1 时, f( x)取得极值,求 a 的值;(2)求 f( x)在 [0, 1]上的最小值;(3)若对任意 m∈ R,直线 y=﹣ x+m 都不是曲线 y=f( x)的切线,求 a 的取值范围.53.已知函数 f x axe x( a 0)(1)讨论 f x 的单调性;(2)若关于x 的不等式 f x ln x x 4 的解集中有且只有两个整数,求实数 a 的取值范围 .54.已知函数f n x x n 11, g m x m x mx (其中me, n,me为正整数,e为自然对x1数的底)(1)证明:当x 1 时, g m x0 恒成立;( 2)当n m3时,试比较f n m 与 f m n 的大小,并证明.x55.已知函数f(x) =e 和函数 g( x)=kx+m( k、 m 为实数, e 为自然对数的底数,e≈ 2.71828).(1)求函数 h( x) =f( x)﹣ g( x)的单调区间;(2)当 k=2,m=1 时,判断方程 f( x) =g(x)的实数根的个数并证明;(3)已知 m≠1,不等式( m﹣1) [f( x)﹣ g( x) ] ≤0对任意实数 x 恒成立,求 km 的最大值.56.已知函数f ( x)ln x a( x 1) (a R) .x(Ⅰ)若 a 1 ,求y f ( x) 在点1, f(1) 处的切线方程;(Ⅱ)求 f ( x) 的单调区间;(Ⅲ)求证:不等式111对一切的 x(1,2) 恒成立.ln x x 1257.已知函数 f ( x) ( x 1)2 a ln x (a R ).(Ⅰ)求函数 f ( x) 的单调区间;(Ⅱ)若函数 f ( x) 存在两个极值点x1、x2x1x2,求f (x2)的取值范围.x158.设函数f ( x) ln x m, m R .x(Ⅰ)当 m e ( e 为自然对数的底数)时,求f (x)的极小值;(Ⅱ)若对任意正实数 a 、b(a b ),不等式f (a) f (b)恒成立,求m 的取值范a2b围.59.已知函数f x1x32ax23a2 x b , ( a, b R)3(1)当a 3 时,若 f x 有 3 个零点,求 b 的取值范围;(2)对任意a [4,1] ,当x a 1, a m 时恒有 a f x a ,求m的最大值,并求此5时 f x 的最大值。
60.已知函数 f x x2ax a e x.(1)讨论f x 的单调性;(2)若a0,2,对于任意 x1, x24,0 ,都有 f x1 f x24e 2me a恒成立,求 m 的取值范围.61.已知函数 f(x)= x - b, g( x)= 2a ln x .x(1)若 b 0 ,函数 f (x) 的图像与函数 g (x) 的图像相切,求 a 的值;(2)若 a 0 , b 1,函数 F ( x) xf ( x) g(x) 满足对任意 x 1 , x 2(0,1] ( x 1 x 2),都有 F (x 1 )F ( x 2 )311 恒成立,求 a 的取值范围;x 1 x 2(3)若 b1 ,函数 G (x) =f(x)+ g(x),且 G( x )有两个极值点 x 1,x 2,其中 x 11,求0,3G ( x 1 ) G (x 2 ) 的最小值.62.已知函数 f ( x) ln( x 2 a)( a 0) .( 1)若 a 3 ,求 f ( x) 在点 (1, f (1)) 处的切线方程;(2)令 g( x) f (x)2 x3 ,判断 g(x) 在 (0,) 上极值点的个数,并加以证明;3f ( x) (3) 令 h( x),定义数列 { x n }: x 1 0, x n 1h( x n ) . 当 a3且2xx (0, 1]( k 2,3,4, ) 时,求证 :对于任意的 mN * ,恒有 | xx |1 .k2m kk8 9k 163.已知二次函数 f ( x)x2ax m 1 ,关于 x的不等式 f ( x)(2 m 1)x 1 m2的解集为g ( x) f (x)( m, m 1) , ( m x 10) ,设.( 1 )求 a 的值.( 2) k( k R )如何取值时,函数(x)g( x)k ln( x1) 存在极值点,并求出极值点.( 3)若 m1,且 x0 ,求证:[ g( x1)]n g (x n1)≥ 2n2( x N*) .64.已知函数f x ln x , g x a e x2b (其中e为自然对数的底数, f x ).(1)若函数f x 的图象与函数g x的图象相切于 x 1处,求 a, b 的值;e(2)当2b e a 时,若不等式f x g x恒成立,求 a 的最小值.65.已知函数 f ( x) x2ax 1,g( x) ln x a( a R ).⑴当 a 1 时,求函数h( x) f ( x)g (x) 的极值;⑵若存在与函数 f ( x) , g( x) 的图象都相切的直线,求实数 a 的取值范围.66.设函数 f ( x) (1 mx)ln(1x) .(1) 若当0x 1 ,函数 f (x) 的图象恒在直线y x的上方 , 求实数m的取值范围;时(2)求证:e (1001 )1000.4.1000f ( x) a ln x (a R)67.已知函数x.(1)若a 4 ,求曲线 f ( x) 在点 (1,4)处的切线方程;(2)若函数 f ( x)的图象与函数g( x) 1 的图象在区间(0,e2 ] 上有公共点,求实数a的取值范围 .68.已知函数f x 1nx a1 a R . x2ax(Ⅰ)若 a0 ,证明:函数 f x 在e,上单调递减;(Ⅱ)是否存在实数 a ,使得函数f x 在0,8内存在两个极值点?若存在,求实数 a 的3取值范围;若不存在,请说明理由. (参考数据:1n2 0.693 , e2 4.5 )参考答案46.解: (Ⅰ)证法 1:由求根公式得: x 1aa 2 162因为 a0 ,所以,一方面:aa 2 16 aa 2x 122 0 ,⋯⋯⋯⋯⋯⋯⋯4 分x 1 2(a 4)a 2 16a 2 16 8aa 216另一方面,由220 ,得 x 1 2. 于是, 2 x 1 0.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分证法 2:因为 f (x) 在区间 (, a ) 上单调递减,在 ( a,) 上单调递增,22所以,当 a 0 时, f (x) 在区间( -2,0)上单调递减 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分又因为: f (2) f (0) 2a ( 4)0 ,所以:2 x 1 0 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分ax 4, x x 1;(Ⅱ ) g (x)2x 2 ax 4, x 1xx 2 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9分ax 4, xx 2 .若 a0, 则 g(x)在( - ,x 1 ) 上单调递减,从而 g(x) 在区间 (, 2) 上不可能单调递增,于是只有 a 0 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分 11当 a0 时,由( 1)知:2 x 1 0 ,于是,由 g(x) 在 (, x 1 ) 上单调递增可知,g( x) 在 ( , 2) 也是单调递增的.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13分又因为 g (x) 在 ( a, x 2 ) 和 ( x 2 ,) 均单调递增,结合函数图象可知,g (x)在 ( a, ) 上单44调递增,于是,欲使 g(x) 在( 2,+)上单调递增,只需2a,亦即 a 8 .4综上所述, a 的范围是 a(0,8] .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯分 1547.(Ⅰ)定义域x (0, )f (x)2x112x 2x 1 xx即 2x 2x 10 即 0x 1f ( x) 的增区间为 (0,1) ,减区间为 (1, )(Ⅱ) f (x)x 2ax ln x 0 即 ax ln xx 令 g( x)xln x,其中 x [ 1 , e] x e1x ln x x2ln x 1g ( x)1 x 即 x 1x2x2g( x) 的减区间为1[ ,1) ,增区间为 (1, e]eg( x) min g (1) 1又 g( 1 )e1, g (e) e 1eee1函数 f (x) 在 [ , e] 有两个零点,则 a 的取值范围是1(1,e ]e148.( I )由题意,F ( x) 定义域 (0, ) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .分2 a不妨假设存在,则F (x)ln( ax1)x x 2 axln x, x(0, 1)a当 x (0,1 ) 时, x2 ax x 2 axaF (x) ln( ax1) x x 2 ax ln xln( ax 1) ln x axx x 2, ⋯ .3分F ' ( x)a 1 1 a 1 2xax x令 F ' (1) a 1 2 1 a 1 则 1 或 a (舍)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分a 1 2 2当 a 1 1 (0, 2), x 1 (0, 2)时, (0, )2 a存在, a1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .分62(II )(方法一) f ( x) ln( ax b) x 0① 当 a0 时,定义域 (, b) ,则当 x时, f ( x),不符; ⋯ .7 分aaa( x ab )② 当 a0 时, f ' (x)1a( axb0 )axbax b当b xa b时, f '( x)0 ;当 xa b时, f ' ( x) 0aaa∴ f ( x) 在区间 (b ab) 上为增函数,在区间 a b) 上为减函数,a(a ,a∴f ( x) 在其定义域 ( b,) 上有最大值,最大值为f (ab )aa由 f (x)0,得 f (a b) ln aa b 0aa∴ b a a ln a∴ a(a b) 2a 2 a 2 ln a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .. ⋯⋯⋯⋯ 分.12设 h( a)2a 2 a 2 ln a ,则 h ( a)4a (2a ln aa)a(32ln a) 。