材料科学与工程基础 (1)
材料科学与工程基本概念及其应掌握的内容 (1)

基本概念再结晶退火、再结晶、动态再结晶、二次再结晶、晶体、点阵、空间点阵、点阵畸变、晶胞、晶族、同质多晶、同质异构体、晶粒生长、一级相变、二级相变、珠光体相变、相图中的自由度、相平衡、连线规则、共晶转变、中间相、伪共析转变、共析转变、包晶转变、离异共晶、晶界偏聚、金属键、共价键、离子键、配位数、费米能级、能带、储存能、形变组织、临界变形量、形变织构、网络形成体、网路变性体、尖晶石结构、反尖晶石结构、线缺陷、组分缺陷、福伦克尔(Frenker)缺陷、肖特基缺陷、位错、位错滑移、交滑移、螺位错、全位错、弗兰克尔空位、非化学计量结构缺陷、孪生、空间群、点群、电子化合物、稳态扩散、上坡扩散、反应扩散、弛豫、时效、均相成核、异相成核、固溶体、索氏体、珠光体、配位多面体、高分子的数均相对分子质量(Mn)、高分子链的构型、间同立构、平衡分凝系数、热力学势函数、活性氧、调幅分解、金属玻璃、金属间化合物、润湿、.独立组分、烧结填空题1. 材料的组织结构包括:、、和。
2. 在描述原子中电子的空间位置和能量的4个量子数中,其中决定体系角动量和电子几率分布的空间对称性的是第量子数。
3. 派生键合包括和4. 组合成分子轨道的条件是、、和。
5. 晶体结构= +。
6. 晶胞的基本要素:和。
7. 固体的表面特性包括、和。
8. 最紧密堆积的晶体结构有两种:一种是,每个晶胞中有个原子;另外一种是,每个晶胞中有个原子。
9. 金刚石结构中,C是链连接,配位数为。
10. 固态相变的驱动力是,阻力是和。
11. 金属材料常用的强化手段有、、和。
12. 在离子晶体结构中,正离子构成,正负离子间的距离取决于,配位数取决于正负离子的。
13. 高分子链中由于而产生的分子在空间的不同形态称为构象,高分子能够改变构象的性质称为。
14. 形成置换固溶体的影响因素有、、和。
15. 马氏体相变的两个基本特点是和。
16. 多晶体材料塑性变形至少需要独立滑移系开动。
第四章第一讲材料科学与工程基础(顾宜

第四章第一讲材料科学与工程基础(顾宜材料的性能materials property性能决定用途。
本章对材料的力学性能、热性能、电学、磁学、光学性能以及耐腐蚀性,复合材料及纳米材料的性能进行阐述。
4-1 固体材料的力学性能Mechanical Properties of Solid Materials结构件:力学性能为主非结构件:力学性能为辅,但必不可少mechanical property of materials stress and strain Elastic deformation Modulus Viscoelasticity permanent deformation Strength Fracture4-1-1 材料的力学状态mechanical states of matrials 1.金属的力学状态A 晶态结构,B 较高的弹性模量和强度,C 受力开始为弹性形变,接着一段塑性形变,然后断裂,总变形能很大, D 具有较高的熔点。
某些金属合金 A 呈非晶态合金, B 具有很高的硬度和强度,C 延伸率很低而并不脆。
D 温度升高到玻璃化转变温度以上,粘度明显降低,发生晶化而失去非晶态结构。
2. 无机非金属的力学状态A 玻璃相熔点低,热稳定性差,强度低。
B 气相(气孔)的存在导致陶瓷的弹性模量和机械强度降低。
C 陶瓷材料也存在玻璃化转变温度Tg。
D 绝大多数无机材料在弹性变形后立即发生脆性断裂,总弹性应变能很小。
陶瓷材料的力学特征高模量高强度高硬度低延伸率3. 聚合物的力学状态(1) 非晶态聚合物的三种力学状态①玻璃态②高弹态③粘流态(2) 结晶聚合物的力学状态A 结晶聚合物常存在一定的非晶部分,也有玻璃化转变。
B 在T g 以上模量下降不大Tm、TfC 在T m 以上模量迅速下降D 聚合物分子量很大,T mT f ,则在T m 与T f 之间将出现高弹态。
E 分子量较低,T m T f , 则熔融之后即转变成粘流态,玻璃化温度(Tg)是非晶态塑料使用的上限温度是橡胶使用的下限温度熔点(Tm)是结晶聚合物使用的上限温度4-1-2 应力和应变stress-strain If a load is static or changes relatively slowly with a time and is applied uniformly over a cross section or surface of a member, the mechanical behavior may be ascertained by a simple stress-strain test. These are mostly commonly conducted for materials at room temperature.4-1-2 应力和应变(stress and strain)应力:单位面积上的内力,其值与外加的力相等。
材料科学与工程(1)

第一章一、单项选择,请在题中空格处填写正确答案。
1.______是尺寸范围在~10到1000nm的材料结构,一般包含材料的平均晶粒尺寸、晶粒尺寸分布、晶粒取向和与缺陷有关的特征。
A 微观结构B 纳米结构C 宏观结构D原子结构2.______是尺寸范围在~1到100nm的材料结构。
A 微观结构B 纳米结构C 宏观结构D原子结构3.γ-Fe的晶格常数为a,其原子半径为 ______ a 。
A. 0.5B. 0.433C. 0.354D. 14.α-Fe的晶格常数为a,其原子半径为 ______ a 。
A. 0.5B. 0.433C. 0.354D. 15.Zn的晶格常数为a,其原子半径为 ______ a 。
A. 0.5B. 0.433C. 0.354D. 16.面心立方晶胞原子数为 ______个。
A. 2B. 4C. 8D. 67.密排六方晶胞原子数为 ______个。
A. 2B. 4C. 6D.88.体心立方晶胞原子数为 ______个。
A. 2B. 4C. 8D. 69.立方晶系的一个晶胞中(1 1 0)和(1 12)两晶面交线的晶向指数为______ 。
A. [110]B. [110]C. [111]D. [111]10.面心立方的晶格常数为a,(110)的晶面间距为 ______ a。
A. 0.707B. 0.577C. 0.354D. 0.43311.体心立方的晶格常数为a,(111)的晶面间距为 ______ a。
A. 0.289B. 0.577C. 0.354D. 0.43312.体心立方的晶格常数为a,(110)的晶面间距为 ______ a。
A. 0.707B. 0.577C. 0.354D. 0.43313.立方晶系{111}晶面族有______个位向不同但原子排列情况相同的晶面。
A. 2B. 4C. 8D. 314.立方晶系<111>晶向族有______个位向不同但原子排列情况相同的晶向。
材料科学与工程基础第二版考试必备宝典

材料科学与⼯程基础第⼆版考试必备宝典第1章绪论1.材料科学与⼯程的四个基本要素解:制备与加⼯、组成与结构、性能与应⽤、材料的设计与应⽤2.⾦属﹑⽆机⾮⾦属材料﹑⾼分⼦材料的基本特性解:①⾦属材料的基本特性:a、⾦属键;b、常温下固体,熔点较⾼;c、⾦属不透明,具有光泽;d、纯⾦属范性⼤、展性、延性⼤;e、强度较⾼;f、导热性、导电性好;g、多数⾦属在空⽓中易氧化。
②⽆机⾮⾦属材料的基本性能:a、离⼦键、共价键及其混合键;b、硬⽽脆;c、熔点⾼、耐⾼温,抗氧化;d、导热性与导电性差;e、耐化学腐蚀性好;f、耐磨损;g、成型⽅式:粉末制坯、烧结成型。
③⾼分⼦材料的基本特性:a、共价键,部分范德华键;b、分⼦量⼤,⽆明显熔点,有玻璃化转变温度(Tg)与粘流温度(Tf);c、⼒学状态有三态:玻璃态、⾼弹态与粘流态;d、质量轻,⽐重⼩;e、绝缘性好;f、优越的化学稳定性;g、成型⽅法较多。
第2章物质结构基础1. 在多电⼦的原⼦中,核外电⼦的排布应遵循哪些原则?解:泡利不相容原理、能量最低原理、洪特规则2.电离能及其影响电离能的因素解:电离能:从孤⽴原⼦中,去除束缚最弱的电⼦所需外加的能量。
影响因素:①同⼀周期,核电荷增⼤,原⼦半径减⼩,电离能增⼤;②同⼀族,原⼦半径增⼤,电离能减⼩;③电⼦构型的影响,惰性⽓体;⾮⾦属;过渡⾦属;碱⾦属;3.混合键合实例解:⽯墨:同⼀层碳原⼦之间以共价键结合,层与层之间以范德华⼒结合; ⾼分⼦:同⼀条链原⼦之间以共价键结合,链与链之间以范德华⼒结合。
4、将离⼦键,共价键,⾦属键按有⽆⽅向性进⾏分类,简单说明理由有⽅向性:共价键⽆⽅向性:离⼦键,⾦属键③⾦属键: 正离⼦排列成有序晶格,每个原⼦尽可能同更多的原⼦相结合, 形成低能量的密堆结构,正离⼦之间相对位置的改变不破坏电⼦与正离⼦间的结合⼒,⽆饱与性⼜⽆⽅向性。
②共价键:共⽤电⼦云最⼤重叠,有⽅向性③离⼦键:正负离⼦相间排列,构成三维晶体结构,⽆⽅向性与饱与性5、简述离⼦键,共价键,⾦属键的区别6、为什么共价键材料密度通常要⼩于离⼦键或⾦属键材料⾦属密度⾼的两个原因:第⼀,⾦属有较⾼的相对原⼦质量。
本科课程《材料科学与工程基础》教学大纲 (1)

四川大学本科课程《材料科学与工程基础》教学大纲一、课程基本信息课程名称(中、英文):《材料科学与工程基础》(FUNDAMENTALS OF MATERIALS SCIENCE AND ENGINEERING)课程号(代码):30014530课程类别:专业基础课学时/学分:48 /3先修课程:大学化学、大学物理、物理化学适用专业:高分子材料与工程等二级学科材料类专业开课时间:大学二年级下期二、课程的目的及任务材料科学与工程是二十世纪六十年代初期创立的研究材料共性规律的一门学科,其研究内容涉及金属、无机非金属和有机高分子等材料的成分、结构、加工同材料性能及材料应用之间的相互关系。
材料科学、材料工业和高新技术的发展要求高分子材料与工程等二级学科材料类专业的学生必须同时具备“大材料”基础和“中材料”专业的宽厚知识结构。
本课程是材料类专业的学科基础课程,是联系基础课与专业课的桥梁。
本课程从材料科学与工程的“四要素”出发,采用“集成化”的模式,详细讲授金属材料、无机非金属材料、高分子材料、复合材料等各种材料的共性规律及个性特征。
使学生建立材料制备/加工——组成/结构——性能---应用关系的“大材料”整体概念,从原理上认识高分子材料等各种材料的基本属性,及其在材料领域中的地位和作用。
为以后二级学科“中材料”专业课程的学习、材料设计、以及材料的应用等奠定良好基础。
本课程采用中文教材与英文原版教材相结合,实施“双语”教学。
使学生通过本课程的学习,熟悉材料科学与工程领域的主要英文专业词汇,提高对英文教材的阅读理解能力。
三、课程的教学内容、要点及学时分配(以红字方式注明重点难点)第一章绪论(1学时)本章概要:简要介绍材料的定义及分类,材料科学与工程的基本内容。
使学生了解本课程的学习内容和学习方法。
讲授要点:材料的定义、分类材料科学与工程的定义、性质、重要性(举例)课程学习的目的、方法、要求第二章材料结构基础(15学时)本章概要:按照从微观到宏观、从内部到表面、从静态到动态、从单组分到多组分的顺序,阐述原子电子结构、原子间相互作用和结合方式,固体内部和表面原子的空间排列状态、聚集态结构的有序性、无序性和转变规律及相互关系。
材料科学与工程基础300道选择题(答案)

第一组材料的刚性越大,材料就越脆。
F按受力方式,材料的弹性模量分为三种类型,以下哪一种是错误的:DA. 正弹性模量(E)B. 切弹性模量(G)C. 体积弹性模量(G)D. 弯曲弹性模量(W)滞弹性是无机固体和金属的与时间有关的弹性,它与下列哪个因素无关BA 温度;B 形状和大小;C 载荷频率高弹性有机聚合物的弹性模量随温度的升高而AA. 上升;B. 降低;C. 不变。
金属材料的弹性模量随温度的升高而BA. 上升;B. 降低;C. 不变。
弹性模量和泊松比之间有一定的换算关系,以下换算关系中正确的是DA. K=E /[3(1+2)];B. E=2G (1-);C. K=E /[3(1-)];D. E=3K (1-2);E. E=2G (1-2)。
7.Viscoelasticity”的意义是BA 弹性;B粘弹性; C 粘性8.均弹性摸量的表达式是AA、E=σ/εB、G=τ/rC、K=σ。
/(△V/V)9.金属、无机非金属和高分子材料的弹性摸量一般在以下数量级范围内C GPaA.10-102、<10,10-102B.<10、10-102、10-102C.10-102、10-102、<1010.体心立方晶胞的金属材料比面心立方晶胞的同类金属材料具有更高的摸量。
T11.虎克弹性体的力学特点是BA、小形变、不可回复B、小形变、可回复C、大形变、不可回复D、大形变、可回复13、金属晶体、离子晶体、共价晶体等材料的变形通常表现为,高分子材料则通常表现为和。
AA 普弹行、高弹性、粘弹性B 纯弹行、高弹性、粘弹性C 普弹行、高弹性、滞弹性14、泊松比为拉伸应力作用下,材料横向收缩应变与纵向伸长应变的比值υ=ey/ex F第二组1.对各向同性材料,以下哪一种应变不属于应变的三种基本类型CA. 简单拉伸;B. 简单剪切;C. 扭转;D. 均匀压缩2.对各向同性材料,以下哪三种应变属于应变的基本类型ABDA. 简单拉伸;B. 简单剪切;C. 弯曲;D. 均匀压缩3.“Tension”的意义是AA 拉伸;B 剪切;C 压缩4.“Compress”的意义是CA 拉伸;B剪切; C 压缩5.陶瓷、多数玻璃和结晶态聚合物的应力-应变曲线一般表现为纯弹性行为T6.Stress”and “strain”的意义分别是AA 应力和应变;B应变和应力;C应力和变形7.对各向同性材料,以下哪三种应变属于应变的三种基本类型ACDA. tension;B. torsional deformation;C. shear;D. compression8.对各向同性材料,以下哪一种应变不属于应变的三种基本类型CA. tension;B. shear;C. Flexural deformation;D. compression9.对各向同性材料,应变的三种基本类型是AA tension, shear and compression;B tension, shear and torsional deformation;C. tension, shear and flexural deformation10.非金属态聚合物的三种力学状态是AA、玻璃态、高弹态、粘流态。
材料科学与工程基础思考题第1部分

材料科学与工程基础思考题姓名: 程扬 学号: 111100322 班级: 高分子1101班1、计算NaCl 的填充因子,离子半径:Na + = 0.102 nm, Cl - = 0.181 nm解:晶格常数:a =2r Na ++2r Cl −=2× 0.102+0.181 nm =0.566nm ;晶胞体积:V 1=a 3=0.5663nm 3=0.18132nm 3离子体积:V 2= V Na ++ V Cl −=4×43πr Na +3+4×43πr Cl −3= 4×4 3π×0.1023+4×43π×0.1813 nm 3=0.117134nm 3填充因子:x NaCl =V 2V 1=0.1171340.18132=0.6462、计算NaCl 的密度,离子半径Na + = 0.102 nm, Cl - = 0.181 nm ,Na 的摩尔质量为22.99g/mol ,Cl 的摩尔质量为35.45g/mol 。
解:晶格常数:a =2r Na ++2r Cl −=2× 0.102+0.181 nm =0.566nm ;晶胞体积:V =a 3=0.5663nm 3=0.18132nm 3=1.8132×10−22cm 3一个晶胞中离子的质量:m = m Na ++ m Cl −=46.02×1023× 22.9+35.45 g =3.877×10−22g密度 ρ=m V = 3.877×10−22g1.8132×10−22cm 3=2.1382 g/cm 33、计算CsCl 的填充因子,已知离子半径:Cs + = 0.170 nm, Cl - = 0.181 nm解:由题意可得: 3a =2r Cs ++2r Cl −=2× 0.170+0.181 nm =0.702nm则:晶格常数 a =0.4053nm晶胞体积:V 1=a 3=0.40533nm 3=0.06658 nm 3离子体积:V 2= V Cs ++ V Cl −=43πr Cs +3+43πr Cl −3= 4 3π×0.1703+43π×0.1813 nm 3=0.04542nm 3填充因子:x CsCl =V 2V 1=0.045420.06658=0.68234、在离子晶体中,密堆积的负离子恰好互相接触并与中心正离子也恰好相互接触时,正负离子的半径比为临界半径比,分别计算:(1)立方体配位;(2)八面体配位;(3)四面体配位和(4)三角形配位的临界半径比。
《材料科学与工程基础》习题和思考题及答案

《材料科学与工程基础》习题和思考题及答案第二章2-1.按照能级写出N、O、Si、Fe、Cu、Br原子的电子排布(用方框图表示)。
2-2.的镁原子有13个中子,11.17%的镁原子有14个中子,试计算镁原子的原子量。
2-3.试计算N壳层内的最大电子数。
若K、L、M、N壳层中所有能级都被电子填满时,该原子的原子序数是多少?2-4.计算O壳层内的最大电子数。
并定出K、L、M、N、O壳层中所有能级都被电子填满时该原子的原子序数。
2-5.将离子键、共价键和金属键按有方向性和无方向性分类,简单说明理由。
2-6.按照杂化轨道理论,说明下列的键合形式:(1)CO2的分子键合(2)甲烷CH4的分子键合(3)乙烯C2H4的分子键合(4)水H2O的分子键合(5)苯环的分子键合(6)羰基中C、O间的原子键合2-7.影响离子化合物和共价化合物配位数的因素有那些?2-8.试解释表2-3-1中,原子键型与物性的关系?2-9.0℃时,水和冰的密度分别是1.0005 g/cm3和0.95g/cm3,如何解释这一现象?2-10.当CN=6时,K+离子的半径为0.133nm(a)当CN=4时,半径是多少?(b)CN=8时,半径是多少?2-11.(a)利用附录的资料算出一个金原子的质量?(b)每mm3的金有多少个原子?(c)根据金的密度,某颗含有1021个原子的金粒,体积是多少?(d)假设金原子是球形(r Au=0.1441nm),并忽略金原子之间的空隙,则1021个原子占多少体积?(e)这些金原子体积占总体积的多少百分比?2-12.一个CaO的立方体晶胞含有4个Ca2+离子和4个O2-离子,每边的边长是0.478nm,则CaO的密度是多少?2-13.硬球模式广泛的适用于金属原子和离子,但是为何不适用于分子?2-14.计算(a)面心立方金属的原子致密度;(b)面心立方化合物NaCl的离子致密度(离子半径r Na+=0.097,r Cl-=0.181);(C)由计算结果,可以引出什么结论?2-15.铁的单位晶胞为立方体,晶格常数a=0.287nm,请由铁的密度算出每个单位晶胞所含的原子个数。
材料科学与工程基础知识

材料科学与工程基础知识材料科学与工程是一门涵盖材料的结构、性能、制备、应用及其相关科学原理和工程技术的学科。
在现代科技领域,材料科学与工程发挥着重要的作用,其知识基础涵盖了许多领域,包括材料结构和性能、固态物理、化学、能源、机械、电子、环境等。
以下是关于材料科学与工程的基础知识:1.材料的分类材料可以根据其组成、性质和应用分为金属材料、陶瓷材料、高分子材料和复合材料等。
金属材料具有良好的导电性和导热性,适用于制造结构件、导热元件和电子器件等。
陶瓷材料具有优良的耐高温、耐磨损和绝缘特性,主要应用于制造电子陶瓷、建筑陶瓷和磁性材料等。
高分子材料具有较好的可塑性和绝缘性能,广泛应用于塑料、橡胶和纤维等领域。
复合材料是由两种或多种材料按一定比例混合而成,具有优异的性能,例如碳纤维增强复合材料具有高强度和轻质的特点。
2.材料的晶体结构材料的晶体结构是由原子或离子按照一定的空间排列规则而构成的。
晶体被分为晶格和晶胞,晶格是由原子或离子堆积而成的三维结构,而晶胞是晶格中最小的重复单元。
常见的晶体结构有立方晶系、六方晶系、正交晶系、四方晶系等。
材料的晶体结构直接影响着其力学性能、热学性能和电学性能等。
3.材料的性能材料的性能包括力学性能、热学性能、电学性能、化学性能等。
力学性能包括强度、韧性、硬度等,这些性能能够反映材料在外力作用下的抗变形和抗破坏能力。
热学性能包括热传导性、线膨胀系数等,这些性能决定了材料的热稳定性和导热性。
电学性能包括导电性、绝缘性等,这些性能决定了材料在电子器件中的应用。
化学性能决定了材料在不同环境下的耐腐蚀性能和反应活性。
4.材料的制备与加工材料的制备包括化学合成、物理制备和机械制备等多种方法。
化学合成是通过化学反应来制备材料,如溶胶-凝胶法、溶液法、气相沉积等。
物理制备是通过物理方法改变材料的结构和性质,如溅射法、激光熔凝法、热处理等。
机械制备是通过机械加工方法来制备材料,如铸造、锻造、挤压等。
完整课件-材料科学与工程基础

目录
第一章 绪论 (Introduction) 第二章 物质结构基础 (Structure of Matter) 第三章 材料组成和结构 (Compositions and
Structures of Materials )
第四章 材料的性能 (Material Properties) 第五章 材料的制备和成型加工
1.1Definition of Materials and Historical Perspective ----Definition
• The matter (substance),not spiritly • Webster “New International Dictionary
(1971)”:The substance or matter of which anything is made or may be made.
钢塔
结束动画图片
结束动画图片
汽车与高速公路
结束动画图片
大江截流
结束动画图片
汽车工业
结束动画图片
结束动画图片
飞机 结束动画图片
火箭发射
结束动画图片
陶瓷艺术品
结束动画图片
Today
The history of materials is the history of
、工件、部件和成品的初始物料,如金属、石块、木料、皮革、塑料、纸、天然
纤维和化学纤维等等。
Materials and Raw Materials(原材料)
Raw Materials: any crude, unfinished, not to obtain products,but produce materials。(having chemical changes) Materials:to obtain products.
材料科学与工程的四要素及其关系

材料科学与工程的四要素及其关系
材料科学与工程的四要素及其关系
一、四要素
材料科学与工程是一个复杂的系统,主要包括以下四要素:
(1)基础科学:指材料科学的基础知识,如物理、化学、力学、数学等;
(2)材料科学:指研究材料特性的学科,如结构材料、新能源材料、纳米材料等;
(3)材料工程:指设计、制造、运用各种材料的技术;
(4)材料应用:指将材料用于各种实际应用的学科,如能源技术、动力学技术、电子技术、生物技术等。
二、四要素之间的关系
四要素之间的关系如下:
(1)基础科学作为材料科学的基石,是材料科学与工程的基础。
它对于材料科学和材料工程的发展起到不可替代的作用。
(2)材料科学则是以基础科学为基础的一门学科,它主要研究不同材料的性能及其影响因素,同时也对材料工程的研究与开发提供了理论支持。
(3)材料工程是以材料科学为基础的应用学科,它负责设计、制造、运用各种材料,使其能够满足工程需要。
(4)材料应用是将材料好好投入工程应用的学科,它是材料科学、材料工程及其他专业知识的具体应用,致力于推动技术的创新与
进步。
总之,四要素之间的关系,分别是:基础科学支撑材料科学,材料科学支撑材料工程,材料工程支撑材料应用,材料应用促进技术创新与进步。
材料科学与工程基础习题答案 (1)

第一章 原子排列与晶体结构1.[110], (111), ABCABC…, 0.74 , 12 , 4 , a r 42=; [111], (110) , 0.68 , 8 , 2 , a r 43= ;]0211[, (0001) , ABAB , 0.74 , 12 , 6 , 2a r =。
2. 0.01659nm 3 , 4 , 8 。
3. FCC , BCC ,减少 ,降低 ,膨胀 ,收缩 。
4. 解答:见图1-15.解答:设所决定的晶面为(hkl ),晶面指数与面上的直线[uvw]之间有hu+kv+lw=0,故有: h+k-l=0,2h-l=0。
可以求得(hkl )=(112)。
6 解答:Pb 为fcc 结构,原子半径R 与点阵常数a 的关系为ar 42=,故可求得a =0.4949×10-6mm 。
则(100)平面的面积S =a 2=0.244926011×0-12mm 2,每个(100)面上的原子个数为2。
所以1 mm 2上的原子个数s n 1==4.08×1012。
第二章合金相结构一、 填空1) 提高,降低,变差,变大。
2) (1)晶体结构;(2)元素之间电负性差;(3)电子浓度 ;(4)元素之间尺寸差别 3) 存在溶质原子偏聚 和短程有序 。
4) 置换固溶体 和间隙固溶体 。
5) 提高 ,降低 ,降低 。
6) 溶质原子溶入点阵原子溶入溶剂点阵间隙中形成的固溶体,非金属原子与金属原子半径的比值大于0.59时形成的复杂结构的化合物。
二、 问答1、 解答: α-Fe 为bcc 结构,致密度虽然较小,但是它的间隙数目多且分散,间隙半径很小,四面体间隙半径为0.291Ra ,即R =0.0361nm ,八面体间隙半径为0.154Ra ,即R =0.0191nm 。
氢,氮,碳,硼由于与α-Fe 的尺寸差别较大,在α-Fe 中形成间隙固溶体,固溶度很小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 课程建设
• 1996年将原教材改编为《高分子材料导论》上、下册 • 1998年,正式开设《材料科学与工程基础》课程 • 编写《材料科学与工程基础》教材—高分子为主线 1998年,四川大学“九五”重点资助教材。
1999年,教育部“面向21世纪课程教材”(我校
牵 头、三校合编,顾宜任主编)---2002年4月出版
材料科学与工程学科教学指导委员会
四个专业教学指导分委员会 材料化学与物理 金属材料及冶金工程
无机非金属材料工程
高分子材料与工程
பைடு நூலகம்
国家级精品课程(九门)
• 2003年,材料科学基础, • 2004年,材料科学基础, 上海交通大学, 西北工业大学, 蔡珣 陈铮 顾宜
• 2004年,材料科学与工程基础,四川大学,
四大要素
Performance
Properties
Synthesis and Processing Compositions and Structures
研究内容:
• 科学性
a. 从化学角度出发,研究材料的化学组 成、键性、 结构与性能的关系 b. 从物理角度,阐述材料的组成原子、 分子及其运 动状态与各物性之间的关系 • 技术性 c. 材料的制备工艺 d. 材料的性能表征 e. 材料的应用 • 工程性
(3) 材料工程 Materials Engineering
对于工程技术人员:如何选择特定 应用环境下需要的材料,来满足使用要 求,如何按实际要求设计新材料,须弄 清以下三个关系 (材质)——材料内部结构与性能 (内部形态)——加工工艺与性能 (使用环境,耐久性)——材料的性 能与使用过程
材料高等教育
材料在人类社会发展中的地位和作用
• 材料是人类社会发展的巨大推动力,生产工具制 造的物质基础是材料。 • 石器时代——陶器时代—— 青铜时代 ——铁器 时代——新材料时代 (复合材料、纳米材料、生物材料、微电图 子材料、光电功能材料) • 材料的使用和发展,与生产力和科学技术的水平 密切相关 • 现代科学技术发展的三大支柱: 80年代 能源、新材料、信息 90年代 信息技术、新材料、生物技术
本文档相关内容参见 视频 1-4
《材料科学与工程基础》
培训课
主讲教师:顾宜 赵长生
2011年8月10-11日
讲课内容
• ―材料科学与工程基础”课程建设概况 较深入、全面介绍"材料科学与工程基础”国家 级精品课程的建设思路、理念及心得体会 • 课程教学示范 以章为单元, 通过选择典型的主题,采取示范课形 式,及难重点讲解等形式,帮助学员理解本课程的教 学设计思想、教学方法和技巧, • 专题讲座 教学与科研, 专业规范 • 覆盖内容 教学理念、教学态度、教学技术和方法、知识难 重点的梳理、对于不同层次学生的教学手段、常见教 学问题及建议解决方案、教学与科研的关系、专业发 展前沿热点、人才选拔和培养、专业规范和标准等
上海交通大学出版 社
冶金工业出版社
材料科学与工程基础(第2版) 宗亚平 材料科学与工程基础(第2 版)
顾宜
四川大学
化学工业出版社
专业规范
专业教学知识体系(高分子材料与工程专业): 工程基础:机械制造基础、电工电子基础、化 工原理 ①专业科学基础: 材料科学与工程基础,高分子物理, 高分子化学,聚合物表征与测试 ② 专业工程知识: 聚合反应工程,聚合物加工工程 ③ 专业知识: 高分子材料,聚合物复合材料工程
《材料科学与工程基础》
培训课第一单元
主讲教师:顾宜
2011年8月10日
材料科学与工程基础
FUNDAMENTALS OF MATERIALS
SCIENCE AND ENGINEERING
―材料科学与工程基础”课程建设概况
提 纲
• "材料科学与工程基础”课程建设背景
• 四川大学"材料科学与工程基础”精品课程建 设情况 • "材料科学与工程基础”课程教学改革的基本 思路及理念
材料科学与工程学科 (1) 学科建立
金属材料——金相学——金属学 无机非金属材料——无机化学——陶瓷学 高分子材料——高分子化学——高分子物理 1960’s 材料科学与 工程
(2) 学科的内容和任务
材料科学:从理论上研究金属、无机非金属和有机高分子等材 料的成分、结构、 加工工艺同材料性能及材料应用之间的 相互关系。 材料科学与工程:关于材料组成、结构、制备工艺与其性能及 使用过程间相互关系的知识开发及应用的科学 学科性质:是介于基础科学与应用科学之间的应用基础科学, (边缘学科)。
• 通过《材料科学与工程基础》课程的学习,使 材料类专业中金属材料工程、无机非金属材料 工程和高分子材料与工程各二级学科“中材料” 专业的学生掌握和了解材料科学与工程的基础 理论知识,建立大材料的整体概念,打破材料 类各专业原有专业学科在材料领域专业性过强, 知识面窄的现状,有利于拓宽专业学科和知识 面,为以后“中材料”专业课程的学习、材料 设计、以及材料的应用等奠定良好基础。
• 2000年,四川大学校级重点课程建设项目
• 队伍建设—组建课程组 • 教材编写—加入金属和无机非教师,调整比例,新内容
• 课程讲授提纲(教案)编写-中文讲授、投影胶片
• 第三阶段(2002——2004年) • 背景
教育部2001年4号文件关于提高本科教学质量的精神, 2003年, “四川省精品课程”建设项目
1998年教育部本科专业目录调整
材料类专业划分与设置
冶金工程 金属材料工程 专 门 化 方 向
材料工程
(工科)
无机非金属材料工程 高分子材料与工程
一级学科材料 专业(大材料)
二级学科材料类 专业(中材料)
三级学科专业 (小材料)
引导性专业:材料科学与工程
2001年教育部组建新一届教学指导委员会,
田民波
―十一五”国家级规划教材(九本)
材料科学与工程导论 材料科学基础学习辅导 材料科学与工程基础 材料科学与工程基础 材料科学与工程概论 材料科学基础 材料科学与工程基础 王高潮 范群成 杨庆祥 陈铮、王永欣 顾家琳 田民波等 蔡珣 南昌航空工业学 院 西安交通大学 燕山大学 西北工业大学 清华大学 清华大学 上海交通大学 东北大学 机械工业出版社 机械工业出版社 机械工业出版 科学出版社 清华大学出版社 清华大学出版社
• "材料科学与工程基础”课程的教学设计思想
• "材料科学与工程基础”课程的教学手段和方
法
一、"材料科学与工程基础”课程建设背 景
• • • • 材料的定义 材料在人类社会发展中的地位和作用 材料科学与工程学科 “材料科学与工程基础”类课程的基本情况 为什麽要开设这门课程?
• 材料的定义 Materials • Material:材料科学 (工科) 图 • 物质科学 (理科) • Webster 编 者 “ New International Dictionary ( 1971 年)”中关于材料( Materials)的定义为:材料是指 用来制造某些有形物体(如:机械、工具、建材、织 物等的整体或部分)的基本物质(如金属、木料、塑 料、纤维等) • 迈尔《新百科全书》中材料的含义:材料是从原材料 中取得的,为生产半成品、工件、部件和成品的初始 物料,如金属、石块、木料、皮革、塑料、纸、天然 纤维和化学纤维等等。 • 材料是指具有满足指定工作条件下使用要求的形态和 物理性状的物质。
• 教育部“面向21世纪”工科《材料类专业人才培养方 案及教学内容体系改革的研究与实践》项目(19962000),各校共同认识到:现代材料工业和科学技术 的发展正推动着各类材料从多样化和单一性走向一体 化和复合化;培养既掌握材料科学与工程基本原理, 又通晓某一类材料制备与加工,组成与结构、性能与 应用系统知识的宽专业人才,是21世纪材料类专业人 才培养思路的重要内容 • 《材料科学与工程基础》列为工科材料类专业的一级 学科平台课程
材料的类别
• 化学组成分类 金属材料 无机非金属材料
•
components
有机高分子材料
复合材料
•
状态分类
液态
固态
单晶
多晶 非晶 复晶
•
• • •
state
作用分类
功能
结构(工程) 建筑、仪表、电子、医用
•
•
function
应用领域分类
•
application
包装、耐火....能源等等。
材料在人类社会发展中的地位和作用
―材料科学基础”或“材料科学与工程基
础”已成为材料类专业的重要专业基础课
? 讲给谁听----授课专业对象
讲什麽内容 理科与工科 怎麽讲 基本原理,知识点, 研究型大学与一般院校 课堂教学内容组织 二级学科专业与一级学科专业 基本概念 广度、深度 教学手段和方法
程
二、四川大学"材料科学与工程基础” 精品课程建设情况
文原版教材 建立先进的课堂教学内容新体系 以培养学生的学习能力和创新能力为中心,实施教学手 段和教学方法的改革
• 以建设高水平的教师队伍为重点 • 全方位投入,长期积累,反复实践
课程建设进程
• 第一阶段(1988——1995年)
• 背景
• • • 20世纪60年代初,材料科学与工程学科建立 1986年四川大学(成都科技大学)正式招收 高分子材料专业本科生 我国经济体制从计划经济向市场经济的转轨 1988年率先在国内本科高分子专业中开设“高 分子材 料导论”课程,并讲授材料科学与工程的基本原理,
• 课程建设
• 引进英文原版教材和“双语”教学
• 更新课堂教学内容---融入部分英文教材内容,定量描述 • 编辑电子课件(PPT)和多媒体教学 –现代化手段
• 探索新的教学方法
• 编写系统的教学资料 • 建立教学组织和管理体制方面 • 课程网站建设