(完整)高中数学必修四第一章测试题

合集下载

【优质文档】高一数学必修4第一章测试题及答案

【优质文档】高一数学必修4第一章测试题及答案
=
sin ( sin ) ( cot )
=-tan
------------10
由 sin
3
= 可知
5
是第三象限或者第四象限角。
所以 tan = 3 或 3 44
3
即所求式子的值为
4
-------------14
19.(本小题 15 分)
分 分
解:令 t=cosx, 则 t [ 1,1]
-------------2
3
21. 用图像解不等式。 (16 分 )
① sin x 1 2
② cos 2x 3 2
4
参考答案
一、选择题(每小题 5 分,共 60 分)
1----6 、 BBDCBA 7----12 、 CCDCAB
二、填空题(每小题 6 分,共 30 分)
13. |
2
16.
13
n ,n Z 2
17. 2
14. -660
,2k 5 , k Z ----------8

6
6
( 2)、图略
-------------11

由图可知:不等式的解集为 k
, k 11 , k Z ---------16

12
12
《试卷编写说明》 本试卷三角函数的大框架下,主要借助正弦函数和余弦函数这两种模型,从函数的定义域、值
6
域、单调性、奇偶性,特别是新学习内容 ----- 周期性出发,以这五个方面为主要内容而命制。
二、填空题(每小题 6 分,共 30 分)
13. 终边在坐标轴上的角的集合为 _________.
14. 时针走过 1 小时 50 分钟,则分钟转过的角度是 ______.

人教版数学必修四第一章自我检测(完整版)资料

人教版数学必修四第一章自我检测(完整版)资料

人教版数学必修四第一章自我检测(完整版)资料(可以直接使用,可编辑优秀版资料,欢迎下载)第一章 三角函数一、选择题 1.已知 为第三象限角,则2α所在的象限是( ).A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限D .第二、四象限3.sin 3π4cos 6π5tan ⎪⎭⎫⎝⎛3π4-=( ).A .-433B .433C .-43 D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于( ).A .2B .2C .-2D .±25.已知sin x +cos x =51(0≤x <π),则tan x 的值等于( ).A .-43B .-34C .43D .346.已知sin >sin ,那么下列命题成立的是( ). A .若,是第一象限角,则cos >cosB .若,是第二象限角,则tan>tanC .若,是第三象限角,则cos >cosD .若,是第四象限角,则tan>tan7.已知集合A ={|=2k π±3π2,k ∈Z },B ={|=4k π±3π2,k ∈Z },C ={γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ).A .A ⊆B ⊆C B .B ⊆A ⊆C C .C ⊆A ⊆BD .B ⊆C ⊆A8.已知cos(+)=1,sin=31,则sin的值是( ).A .31B .-31C .322D .-322 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ).A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫⎝⎛4π5 ,π B .⎪⎭⎫⎝⎛π ,4π C .⎪⎭⎫⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫ ⎝⎛23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ).A .y =sin ⎪⎭⎫⎝⎛3π - 2x ,x ∈RB .y =sin ⎪⎭⎫⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫⎝⎛3π + 2x ,x ∈RD .y =sin ⎪⎭⎫⎝⎛32π + 2x ,x ∈R二、填空题11.函数f (x )=sin 2 x +3tan x 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是 .12.已知sin =552,2π≤≤π,则tan= .13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫⎝⎛α - 2π= .14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫⎝⎛6π + x ω的图象重合,则ω的最小值为 .15.已知函数f (x )=21(sin x +cos x )-21|sin x -cos x |,则f (x )的值域是 .16.关于函数f (x )=4sin ⎪⎭⎫⎝⎛3π + 2x ,x ∈R ,有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos ⎪⎭⎫⎝⎛6π - 2x ;②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-6π,0)对称;④函数y =f (x )的图象关于直线x =-6π对称.其中正确的是______________.三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ;(2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xa x sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2 x +k (cos x -1)的最小值.参考答案一、选择题 1.D解析:2k π+π<<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z . 2.B解析:∵ sin θcos θ>0,∴ sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限.3.A解析:原式=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin =-433.4.D解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin cos=21.(sin θ+cos θ)2=1+2sin θcos θ=2.sin+cos =±2.5.B解析:由 得25cos 2 x -5cos x -12=0.解得cos x =54或-53.又 0≤x <π,∴ sin x >0.⎩⎨⎧1=cos +sin51=cos +sin 22x x x x若cos x =54,则sin x +cos x ≠51,∴ cos x =-53,sin x =54,∴ tan x =-34.6.D 解析:若,是第四象限角,且sin >sin ,如图,利用单位圆中的三角函数线确定,的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合.8.B解析:∵ cos(+)=1,∴ +=2k π,k ∈Z .∴=2k π-.∴ sin =sin(2k π-)=sin(-)=-sin =-31.9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.10.C(第6题`)解析:第一步得到函数y =sin ⎪⎭⎫⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象.二、填空题 11.415.解析:f (x )=sin 2 x +3tan x 在⎥⎦⎤⎢⎣⎡3π4π ,上是增函数,f (x )≤sin 23π+3tan3π=415.12.-2. 解析:由sin =552,2π≤≤πcos =-55,所以tan=-2.13.53.解析:sin ⎪⎭⎫ ⎝⎛α + 2π=53,即cos =53,∴ sin ⎪⎭⎫ ⎝⎛α - 2π=cos=53.14.21.解析:函数y =tan ⎪⎭⎫ ⎝⎛4π+x ω (ω>0)的图象向右平移6π个单位长度后得到函数y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ),ω=6k +21,又ω>0,所以当k =0时,ωmin =21.15.⎥⎦⎤⎢⎣⎡221 ,-. 解析:f (x )=21(sin x +cos x )-21|sin x -cos x |=⎩⎨⎧)<()(x x x x x x cos sin sin cos ≥sincos 即 f (x )等价于min{sin x ,cos x },如图可知,f (x )max =f ⎪⎭⎫ ⎝⎛4π=22,f (x )min =f (π) =-1.16.①③.解析:① f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx=4cos ⎪⎭⎫⎝⎛+-6π2x=4cos ⎪⎭⎫⎝⎛-6π2x .② T =22π=π,最小正周期为π.③ 令 2x +3π=k π,则当 k =0时,x =-6π,∴ 函数f (x )关于点⎪⎭⎫⎝⎛0 6π-,对称. ④ 令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾.∴ ①③正确. 三、解答题17.{x |2k π<x ≤2k π+4π,k ∈Z }.解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2① >0 sin x x(第15题)(第17题)先在[0,2π)内考虑x 的取值,在单位圆中,做出三角函数线.由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π].二者的公共部分为x ∈⎥⎦⎤⎝⎛4π0,.所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }.18.(1)-1;(2) ±αcos 2.解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1.(2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=α cos 2.②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sink k k k αααα=-αcos 2.19.对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ).解析:∵ y =sin x 的对称中心是(k π,0),k ∈Z , ∴ 令2x -6π=k π,得x =2πk +12π.∴ 所求的对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ,k ∈Z . 又 y =sin x 的图象的对称轴是x =k π+2π,∴ 令2x -6π=k π+2π,得x =2πk +3π.∴ 所求的对称轴方程为x =2πk +3π (k ∈Z ).20.(1)有最小值无最大值,且最小值为1+a ; (2)0. 解析:(1) f (x )=xa x sin sin +=1+xasin ,由0<x <π,得0<sin x≤1,又a>0,所以当sin x=1时,f(x)取最小值1+a;此函数没有最大值.(2)∵-1≤cos x≤1,k<0,∴k(cos x-1)≥0,又sin2x≥0,必修1第一章集合与函数基础知识点整理第1讲 §¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}na a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(notbelong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合: (1)由方程2(23)0x xx --=的所有实数根组成的集合;(2)大于2且小于7的整数. 解:(1)用描述法表示为:2{|(23)0}x R x x x ∈--=;用列举法表示为{0,1,3}-. (2)用描述法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17 A ; -5 A ; 17 B . 解:由3217k +=,解得5k Z =∈,所以17A ∈; 由325k +=-,解得73k Z =∉,所以5A -∉;由6117m -=,解得3m Z =∈,所以17B ∈.【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13A 组题4)(1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x=-的函数值组成的集合;(3)反比例函数2y x=的自变量的值组成的集合.解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩. (2)2{|4}{|4}y y xy y =-=≥-.(3)2{|}{|0}x y x x x==≠.点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .解:化方程212x ax +=-为:2(2)0x x a --+=.应分以下三种情况: ⑴方程有等根且不是由 △=0,得94a =-,此时的解为12x =,合.⑵方程有一解为,而另一解不是x =代入得a =时另一解1x =⑶方程有一解为x =代入得a时另一解为1x =,合.综上可知,9{,4A =-.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示. 注意分式方程易造成增根的现象.第2讲§¤知识要点:1. 一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B中的元素,则说两个集合有包含关系,其中集合A是集合B的子集(subset),记作A B⊆(或B A⊇),读作“A含于B”(或“B包含A”).2. 如果集合A是集合B的子集(A B⊆),且集合B是集合A的子集(B A⊇),即集合A与集合B的元素是一样的,因此集合A与集合B相等,记作A B=.3. 如果集合A B⊆,但存在元素x B∈,且x A∉,则称集合A是集合B 的真子集(proper subset),记作A≠⊂B(或B≠⊃A).4. 不含任何元素的集合叫作空集(empty set),记作∅,并规定空集是任何集合的子集.5. 性质:A A⊆;若A B⊆,B C⊆,则A C⊆;若A B A=,则A B⊆;若A B A=,则B A⊆.¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形};{等腰三角形} {等边三角形}.(2)∅2∈+=;0 {0};∅{0};Nx R x{|20}{0}.解:(1),;A BBA AB A BA .B .C .D . (2)=, ∈, ,.【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).解:简单列举两个集合的一些元素,3113{,1,,0,,1,,}2222A =⋅⋅⋅---⋅⋅⋅,3113{,,,,,}2222B =⋅⋅⋅--⋅⋅⋅,易知B ≠⊂A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A .【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M⊆,求实数a 的值.解:由26023xx x +-=⇒=-或,因此,{}2,3M =-.(i )若0a =时,得N =∅,此时,N M ⊆;(ii )若0a ≠时,得1{}N a=. 若N M ⊆,满足1123aa==-或,解得1123a a ==-或.故所求实数a 的值为0或12或13-.点评:在考察“A B ⊆”这一关系时,不要忘记“∅” ,因为A =∅时存在A B ⊆. 从而需要分情况讨论. 题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.解:若22a b axa b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1.当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去.若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0.因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12x =-.经检验,此时A =B 成立. 综上所述12x =-.点评:抓住集合相等的定义,分情况进行讨论. 融入方程组思想,结合元素的互异性确定集合.第3讲 §¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次. 下面以表格的形式归纳三种基本运算如下.B (读作“B B (读作“B UA (读作“{|AB x ={|AB x ={|UA x =图形表示¤例题精讲:【例1】设集合,{|15},{|39},,()UU R A x x B x x AB AB ==-≤≤=<<求.解:在数轴上表示出集合A 、B ,如右图所示: {|35}AB x x =<≤,(){|1,9}U C AB x x x =<-≥或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A BC ; (2)()AABC .解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------.(1)又{}3B C =,∴()A B C ={}3;(2)又{}1,2,3,4,5,6BC =,得{}()6,5,4,3,2,1,0AC B C =------.∴()A A C BC {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m的取值范围.解:由A B A =,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示:由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()UCAB ,UA-2 4 m xB AABB A()U C AB ,()()U UC A C B , ()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C AB =.由{5,8}A B =,则(){1,2,3,4,6,7,9}U C AB =由{1,3,6,7,9}UC A =,{2,4,6,7,9}U C B =, 则()(){6,7,9}U U CA CB =,()(){1,2,3,4,6,7,9}U U C A C B =.由计算结果可以知道,()()()UU U CA CBC AB =,()()()U U U C A C B C AB =.另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果.点评:可用Venn 图研究()()()UU U CA CBC AB =与()()()U U U C A C B C AB = ,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第4讲 §¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()UU U CAB C A C B =,()()()U U U C AB C A C B =. 2. 集合元素个数公式:()()()()n A B n A n B n AB =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等.也常由新的定义考查创新思维.¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9AB =,求实数a 的值.解:由于{}{}24,21,,9,5,1A a a B a a =--=--,且{}9AB =,则有:当219 a -=时,解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去;当29a =时,解得33a =或-.3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去; 3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意.所以,3a =-.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求AB , AB .(教材P 14 B 组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B =,A B =∅;当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =;当4a =时,{3,4}A =,则{1,3,4}AB =,{4}AB =; 当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}AB a =,AB =∅.点评:集合A 含有参数a ,需要对参数a 进行分情况讨论. 罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240xx +=}, B ={x |222(1)10xa x a +++-=,a R ∈},若A B =B ,求实数a 的值.解:先化简集合A ={4,0}-. 由A B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-;(ii )若0∈B ,代入得2a1-=0⇒a =1或a =1-,当a =1时,B =A ,符合题意; 当a =1-时,B ={0}⊆A ,也符合题意. (iii )若-4∈B ,代入得2870aa -+=⇒a =7或a =1,当a =1时,已经讨论,符合题意; 当a =7时,B ={-12,-4},不符合题意.综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用. 通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A =B 和B =∅的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -=. (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}UC A x x x A =∈∉且”而拓展)解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B = 由定义{|,}A B x x A x B -=∈∉且,则{1,3,4,7,8}A B -=.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A 中排除B 的元素. 如果再给定全集U ,则A B -也相当于()U AC B .第5讲 §¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间;{x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间. 符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y .解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞.(2)由3020x -≥⎧⎪≠,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y xx =-++.解:(1)要使函数有意义,则540x -≠,解得54x ≠.所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-.(2)22192()24y xx x =-++=--+.所以原函数的定义域是R ,值域是9(,]4-∞.【例3】已知函数1()1x f x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式解:(1)由121x x-=+,解得13x =-,所以1(2)3f =-.(2)设11x t x-=+,解得11t x t-=+,所以1()1t f t t-=+,即1()1x f x x-=+.点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x+的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.解:(1)由2222222221111()()1111111x x x x f x f x x x x xx++=+=+==+++++.(2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发现,能使我们实施巧算. 正确探索出前一问的结论,是解答后一问的关键.第6讲 §¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <.所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )=333322x x x x-⎧++⎪⎨+⎪⎩(,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵ 0(,1)∈-∞,∴ f (0)=32.又 ∵ 32>1,∴ f (32)=(32)3+(32)-3=2+12=52,即f [f (0)]=52.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|2,2x x y x x x -≥⎧=-=⎨-<⎩.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示. 点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右:点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.第7讲 §¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.解:任取12,x x ∈(0,1),且12xx <.则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201xx <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >. 所以,函数2()1xf x x =-在(0,1)上是减函数. 【例2】求二次函数2()(0)f x axbx c a =++<的单调区间及单调性.解:设任意12,x xR ∈,且12x x <. 则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.若0a <,当122bxx a <≤-时,有120x x -<,12b x x a+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,]2b a-∞-上单调递增. 同理可得()f x 在[,)2b a-+∞上单调递减.【例3】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y xx =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象研究单调性,关键在于正确作出函数图象.第8讲 §¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y axbx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a -=++后,当0a >时,函数取最小值为244ac b a-;当0a <时,函数取最大值244ac b a-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值.¤例题精讲: 【例1】求函数261y x x =++的最大值.解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x 元,则提高了(10)x -元,减少了10(10)x -件,所赚得的利润为(8)[10010(10)]y x x =---.即2210280160010(14)360y xx x =-+-=--+. 当14x =时,max360y=.所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元.【例3】求函数21y x x =+-的最小值.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数,所以当1x =时,min2112y =+-=,函数的最小值为2.点评:形如y ax b cx d=+±+的函数最大值或最小值,可以用单调性法研究,也可以用换元法研究.【另解】令1x t-=,则t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值: (1)25332,[,]22y x x x =--∈-;(2)|1||2|y x x =+--.解:(1)二次函数232y x x =--的对称轴为2b x a=-,即1x =-.画出函数的图象,由图可知,当1x =-时,max4y =; 当32x =时,min94y=-. 所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-.(2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析. 含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究. 分段函数的图象注意分段作出.第9讲 §¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ).如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性: (1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x xx =-.解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有3311()()()()f x x x f x x x-=--=--=--, 所以为奇函数.(2)原函数定义域为R ,对于定义域的每一个x ,都有()|1||1||1||1|()f x x x x x f x -=--+-+=-++=,所以为偶函数.(3)由于23()()f x xx f x -=+≠±,所以原函数为非奇非偶函数.【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .解:∵ ()f x 是奇函数,()g x 是偶函数,∴()()f x f x -=-,()()g x g x -=.则1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪---=⎪-+⎩,即1()()11()()1f x g x x f x g x x ⎧-=⎪⎪+⎨⎪--=⎪-+⎩. 两式相减,解得2()1x f x x =-;两式相加,解得21()1g x x =-.教学过程。

高一数学必修4第一章综合检测题

高一数学必修4第一章综合检测题

第一章综合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若α是第二象限角,则180°-α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角[答案] A[解析] α为第二象限角,不妨取α=120°,则180°-α为第一象限角.2.sin(-600°)=( )A.12B.32 C .-12 D .-32 [答案] B3.已知角α的终边经过点P (3,-4),则角α的正弦值为( ) A.34 B .-4 C .-45 D.35 [答案] C[解析] x =3,y =-4,则r =x 2+y 2=5, 则sin α=y r =-45.4.函数y =tan ⎝ ⎛⎭⎪⎫x -π4的定义域是( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π4B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-π4C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x ≠k π+π4,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+3π4k ∈Z[答案] D[解析] 要使函数有意义,则有x -π4≠π2+k π,k ∈Z ,即x ≠3π4+k π,k ∈Z .5.已知sin(π+α)=13,则cos ⎝ ⎛⎭⎪⎫3π2-α等于( )A .-13 B.13 C .-33 D.33[答案] B[解析] sin(π+α)=-sin α=13,则sin α=-13,cos ⎝ ⎛⎭⎪⎫3π2-α=-sin α=13. 6.函数y =sin ⎝ ⎛⎭⎪⎫2x +π6的一个单调递减区间为( ) A.⎝ ⎛⎭⎪⎫π6,2π3 B.⎝ ⎛⎭⎪⎫-π3,π6 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫π2,2π3 [答案] A[解析] 令π2+2k π≤2x +π6≤3π2+2k π(k ∈[]),整理得π6+k π≤x ≤2π3+k π,所以仅有⎝ ⎛⎭⎪⎫π6,2π3是单调递减区间.7.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( ) A .-43 B.54 C .-54 D.45[答案] D[解析] sin 2θ+sin θcos θ-2cos 2θ =sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-21+tan 2θ=45. 8.将函数y =sin(x -π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移π3个单位,得到的图象对应的解析式是( )A .y =sin 12xB .y =sin(12x -π2)C .y =sin(12x -π6)D .y =sin(2x -π6)[答案] B[解析] y =sin(x -π3)――→横坐标伸长为原来的2倍y =sin(12x -π3)错误!y=sin[12(x -π3-π3]=sin(12x -π2).9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π2(x ∈R ),下面结论错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数[答案] D[解析] ∵f (x )=sin ⎝ ⎛⎭⎪⎫x -π2=-cos x (x ∈R ), ∴T =2π,在⎣⎢⎡⎦⎥⎤0,π2上是增函数. ∵f (-x )=-cos(-x )=-cos x =f (x ).∴函数f (x )是偶函数,图象关于y 轴即直线x =0对称. 10.已知某帆船中心比赛场馆区的海面上每天海浪高度y (米)可看作是时间t (0≤t ≤24,单位:小时)的函数,记作y =f (t ),经长期观测,y =f (t )的曲线可近似地看成是函数y =A cos ωt +b ,下表是某日各时的浪高数据:A .y =12cos π6t +1B .y =12cos π6t +32C .y =2cos π6t +32D .y =12cos6πt +32[答案] B[解析] ∵T =12-0=12,∴ω=2πT =2π12=π6.又最大值为2,最小值为1,则⎩⎪⎨⎪⎧A +b =2,-A +b =1,解得A =12,b =32,∴y =12cos π6t +32.11.已知函数f (x )=A cos(ωx +φ)的图象如图所示,f ⎝ ⎛⎭⎪⎫π2=-23,则f (0)等于( )A .-23B .-12 C.23 D.12[答案] C[解析] 首先由图象可知所求函数的周期为T =2⎝ ⎛⎭⎪⎫11π12-7π12=2π3,故ω=2π2π3=3.将⎝ ⎛⎭⎪⎫11π12,0代入解析式, 得A cos ⎝ ⎛⎭⎪⎫3×11π12+φ=0,即cos ⎝ ⎛⎭⎪⎫11π4+φ=0,∴11π4+φ=π2+2k π,k ∈Z , ∴φ=-9π4+2k π(k ∈Z ).令φ=-π4,代入解析式得f (x )=A cos ⎝ ⎛⎭⎪⎫3x -π4.又∵f ⎝ ⎛⎭⎪⎫π2=-23, ∴f ⎝ ⎛⎭⎪⎫π2=-A sin π4=-22A =-23∴A =232,∴f (0)=232cos ⎝ ⎛⎭⎪⎫-π4=232cos π4=23.12.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π]上是单调函数,则ω+φ=( )A.π2+23B.π2+2 C.π2+32 D.π2+103[答案] A[解析] 由于f (x )是R 上的偶函数,且0≤φ≤π,故φ=π2.图象关于点M (3π4,0)对称,则f (3π4)=0,即sin(3π4ω+π2)=0,所以cos 3ωπ4=0.又因为f (x )在区间[0,π]上是单调函数,且ω>0, 所以ω=23.故ω+φ=π2+23.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.某人的血压满足函数式f (t )=24sin160πt +110,其中f (t )为血压,t 为时间,则此人每分钟心跳的次数为________.[答案] 8014.化简1-2sin4cos4=________. [答案] cos4-sin4[解析] 原式=sin 24+cos 24-2sin4cos4=(sin4-cos4)2=|sin4-cos4|.则sin4<cos4,所以原式=cos4-sin4.15.定义在R 上的函数f (x )既是偶函数,又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x ,则f (5π3)的值为________.[答案] 32[解析] ∵T =π,∴f (5π3)=f (π+2π3)=f (23π)=f (π-π3)=f (-π3)=f (π3)=32.16.已知函数f (x )=sin ⎝ ⎛⎭⎫2x -π4,在下列四个命题中:①f (x )的最小正周期是4π;②f (x )的图象可由g (x )=sin2x 的图象向右平移π4个单位长度得到;③若x 1≠x 2,且f (x 1)=f (x 2)=-1,则x 1-x 2=k π(k ∈Z ,且k ≠0); ④直线x =-π8是函数f (x )图象的一条对称轴.其中正确命题的序号是________(把你认为正确命题的序号都填上).[答案] ③④[解析] f (x )的最小正周期是T =2π2=π,所以①不正确;f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π8, 则f (x )的图象可由g (x )=sin2x 的图象向右平移π8个单位长度得到,所以②不正确;当f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4=-1时,有2x -π4=-π2+2k π(k ∈Z ),则x =-π8+k π(k ∈Z ),又x 1≠x 2,则x 1=-π8+k 1π(k 1∈Z ),x 2=-π8+k 2π(k 2∈Z ),且k 1≠k 2,所以x 1-x 2=(k 1-k 2)π=k π(k ∈Z 且k ≠0),所以③正确;当x =-π8时,f (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫-π8-π4=-1,即函数f (x )取得最小值-1,所以④正确.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)设f (θ)= 2cos 3θ+sin 2(2π-θ)+sin (π2θ)-32+2sin 2(π2+θ)-sin (3π2-θ),求f (π3)的值.[解析] 解法一:f (π3)=2cos 3π3+sin 2(2π-π3)+sin (π2+π3)-32+2sin 2(π2+π3)-sin (32π-π3)=2cos 3π3+sin 25π3+sin 5π6-32+2sin 25π6-sin7π6=2×18+34+12-32+2×14+12=-12.解法二:∵f (θ)=2cos 3θ+sin 2θ+cos θ-32+2cos 2θ+cos θ =2cos 3θ+1-cos 2θ+cos θ-32+cos θ+2cos 2θ=2cos 3θ-2-(cos 2θ-cos θ)2+cos θ+2cos 2θ =2(cos 3θ-1)-cos θ(cos θ-1)2+2cos 2θ+cos θ=(cos θ-1)(2cos 2θ+cos θ+2)2cos 2θ+cos θ+2=cos θ-1,∴f (π3)=cos π3-1=-12.18.(本题满分12分)(2011~2012·山东济南一模)已知sin θ=45,π2<θ<π.(1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值. [解析] (1)∵sin 2θ+cos 2θ=1,∴cos 2θ=1-sin 2θ=925.又π2<θ<π, ∴cos θ=-35.∴tan θ=sin θcos θ=-43. (2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.19.(12分)已知x ∈[-π3,2π3],(1)求函数y =cos x 的值域;(2)求函数y =-3sin 2x -4cos x +4的值域.[解析] (1)∵y =cos x 在[-π3,0]上为增函数,在[0,2π3]上为减函数,∴当x =0时,y 取最大值1; x =2π3时,y 取最小值-12.∴y =cos x 的值域为[-12,1].(2)原函数化为:y =3cos 2x -4cos x +1, 即y =3(cos x -23)2-13,由(1)知,cos x ∈[-12,1],故y 的值域为[-13,154].20.(本题满分12分)已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1,x ∈R . 求:(1)函数f (x )的最小值及此时自变量x 的取值集合; (2)函数y =sin x 的图象经过怎样的变换得到函数f (x )=3sin ⎝ ⎛⎭⎪⎫12x +π4-1的图象? [解析] (1)函数f (x )的最小值是3×(-1)-1=-4,此时有12+π4=2k π-π2,解得x =4k π-3k π2(k ∈Z ), 即函数f (x )的最小值是-4,此时自变量x 的取值集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =4k π-3π2,k ∈Z . (2)步骤是:①将函数y =sin x 的图象向左平移π4个单位长度,得到函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象; ②将函数y =sin ⎝ ⎛⎭⎪⎫x +π4的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ③将函数y =sin ⎝ ⎛⎭⎪⎫12x +π4的图象上所有点的纵坐标伸长为原来的3倍(横坐标不变),得到函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象; ④将函数y =3sin ⎝ ⎛⎭⎪⎫12x +π4的图象向下平移1个单位长度,得函数y =3sin ⎝ ⎛⎭⎪⎫12+π4-1的图象. 21.(本题满分12分)已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M (2π3,-2). (1)求f (x )的解析式;(2)当x ∈[0,π12]时,求f (x )的最值.[解析] (1)由最低点为M (2π3,-2),得A =2. 由T =π,得ω=2πT =2ππ=2. 由点M (2π3,-2)的图象上,得2sin(4π3+φ)=-2, 即sin(4π3+φ)=-1. 所以4π3+φ=2k π-π2,(k ∈Z ). 故φ=2k π-11π6(k ∈Z ). 又φ∈(0,π2), 所以φ=π6.所以f (x )=2sin(2x +π6). (2)因为x ∈[0,π12],所以2x +π6∈[π6π3]. 所以当2x +π6=π6,即x =0时,f (x )取得最小值1; 当2x +π6=π3,即x =π12时,f (x )取得最大值 3. 22.(本题满分12分)已知f (x )=2sin(2x +π6)+a +1(a 为常数). (1)求f (x )的单调递增区间;(2)若当x ∈[0,π2]时,f (x )的最大值为4,求a 的值; (3)求出使f (x )取得最大值时x 的取值集合.[解析] (1)由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ).(2)当x ∈[0,π2]时,2x +π6∈[π6,76π], 故当2x +π6=π2,即x =π6时,f (x )有最大值a +3=4,所以a =1. (3)当sin(2x +π6)=1时f (x )取得最大值, 此时2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z ,此时x 的取值集合为{x |x =k π+π6,k ∈Z }.。

数学必修四第一章试卷(含答案).

数学必修四第一章试卷(含答案).

必修四第一章姓名:___________班级:___________考号:___________ 一、单选题1.若sin cos 0αα⋅<,则α的终边在( ) A .第一或第二象限 B .第一或第三象限C .第一或第四象限D .第二或第四象限 2.sin (﹣285°)=( ) A .624- B .624--C .624+ D .624+-3.已知sinx +cosx =15(0≤x <π),则tanx 的值等于( ). A .-34 B .-43C .34D .434.若tan 3α=,则2sin cos 3cos()-5cos 2ααπαα+-- 的值为( )A .12B .1-2C .514D .74-5.化简12sin 50cos50-︒︒的结果为( )A .sin50cos50︒-︒B .cos50sin50︒-︒C .sin50cos50︒+︒D .sin50cos50-︒-︒ 6.sin110cos40cos70sin320︒︒+︒︒=( ) A .12B .32C .12-D .32-7.设函数()()002f x Asin x A πωϕωϕ⎛⎫=+ ⎪⎝⎭>,>,<的部分图象如图所示,则f (0)=( ) A .3 B .32C .2D .1 8.函数f (x )=lg (1+2cosx )的定义域为( ) A .-2233k k ππππ⎛⎫++ ⎪⎝⎭,()k Z ∈ B .22-2233k k ππππ⎛⎫++ ⎪⎝⎭, ()k Z ∈C .-2266k k ππππ⎛⎫++ ⎪⎝⎭, ()k Z ∈D .22263k k ππππ⎛⎫++⎪⎝⎭, ()k Z ∈9.下列函数中,最小正周期为π,且图象关于直线x =3π对称的是( )A .sin(2)6y x π=+B .sin(2)3y x π=+ C .sin(2)3y x π=- D .sin(2)6y x π=-10.把函数sin 2)6y x π=+(的图象沿x 轴向右平移4π个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的12,可得函数()y g x = 的图象,则()g x 的解析式为( ) A .()sin(4)12g x x π=-B .()sin(4)6g x x π=-C .()sin(4)3g x x π=-D .2()sin(4)3g x x π=-11.已知函数f (x )=cos 23x πω⎛⎫+⎪⎝⎭(x ∈R ,ω>0)的最小正周期为2π,为了得到函数g (x )=sin ωx 的图象,只要将y =f (x )的图象( )A .向左平移76π个单位长度 B .向右平移76π个单位长度 C .向左平移724π个单位长 D .向右平移724π个单位长度12.要得到函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2cos2y x =的图象 A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度 二、填空题 13.若扇形的面积为38π、半径为1,则扇形的圆心角为____________. 14.已知α 为第三象限角,则2α所在的象限是_________________. 15.设0a <,角θ的终边与单位圆的交点为(3,4)P a a -,那么sin 2cos θθ+值等于_________________. 16.已知1sin cos 5θθ-=,则sin cos θθ的值是__________. 三、解答题17.已知sin()3cos(2)0απαπ---=. (1)求tan α的值;(2)求333sin ()5cos (3)33sin ()2πααππα-+--的值.18.已知函数()sin cos cos sin 22x x x x f x ππ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭,x ∈R . (1)求12f π⎛⎫⎪⎝⎭的值; (2)求函数()f x 的单调递增区间.19.函数23()sin cos 3sin 2f x x x x ωωω=⋅-+(0>ω)的部分图象如图所示. (1)求ω的值; (2)求()f x 在区间,33ππ⎡⎤-⎢⎥⎣⎦的最大值与最小值.20.已知函数()sin(2)f x x φ=+是奇函数,且02φπ<<. (1)求φ;(2)求函数f (x )的单调增区间.21.(1)利用“五点法”画出函数1()sin()26f x y x π==+在长度为一个周期的闭区间的简图. 列表:126x π+x y(1)作图:(2)并说明该函数图象可由sin (R)y x x =∈的图象经过怎么变换得到的.(3)求函数()f x 图象的对称轴方程.22.已知函数2()23cos sin(π2)f x x x =+-. (Ⅰ)求函数()f x 的最小正周期. (Ⅱ)求函数()f x 在ππ,66⎡⎤-⎢⎥⎣⎦上的最值. (Ⅲ)求函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上的单调区间.参考答案1.D 【解析】 【分析】分sin 0α>,cos 0α<和sin 0α<,cos 0α>两种情况讨论得解. 【详解】若sin 0α>,cos 0α<,则α的终边在第二象限; 若sin 0α<,cos 0α>,则α的终边在第四象限, 故选D. 【点睛】本题主要考查三角函数在各象限的符号,意在考查学生对该知识的理解掌握水平和分析推理能力. 2.C 【解析】 【分析】利用诱导公式化简sin (﹣285°)可得:sin (﹣285°)=sin (45°+30°),利用两角和的正弦公式计算得解。

高中数学必修四第一章测试题

高中数学必修四第一章测试题

高中数学必修四第一章测试题题目一:选择题1. 设函数f(x) = 2x^2 + 3x - 4,求f(2)的值。

A. 8B. 10C. 12D. 142. 已知a = 3,b = -2,若2a - b = k,则k的值为:A. 4B. 6C. 8D. 103. 设函数g(x) = x^3 - 2x^2 + x,求g(-1)的值。

A. 3B. -1C. -3D. -54. 设函数h(x) = 2x + 1,求h^(-1)(x)的表达式。

A. 2x - 1B. 1 - 2xC. (x - 1)/2D. (1 - x)/25. 已知点A(2,3),点B(x,5)与点C(4,7)共线,求x的值。

A. 1B. 2C. 3D. 4题目二:计算题1. 计算下列各式的值:(注:将结果化简到最简形式)(1)3(2 + 4) - 5(1 - 6)(2)2^3 × 4^2 ÷ (8 × 4^(-1))(3)(4^2)^(-1) × (2^(-2))^3(4)(1 + 2 + ⋯ + 100) ÷ (1 + 2/3 + ⋯ + 100/101)2. 求解以下线性方程组:(1)2x + 3y = 74x - y = 1(2)3x - 2y = 8x + 4y = -33. 已知三角形ABC,AB = 5,AC = 6,BC = 7,求三角形的面积。

4. 已知函数f(x) = x^2 + 3x - 2与y轴交于点A,与x轴交于点B和点C.(1)求函数f(x)的图像在x轴上的截距。

(2)求线段AC的长度。

5. 某企业为员工制定奖金方案:员工的基本工资为3000元,销售额达到或超过10万元则额外奖励3%的销售额,销售额未达到10万元则不额外奖励。

(1)某员工的销售额为12万元,他的实际工资是多少?(2)如果某员工的销售额为8万元,他的实际工资是多少?题目三:证明题1. 证明:对于任意实数a和b,有(a + b)^2 = a^2 + 2ab + b^2。

必修四第一章测试卷(含答案)

必修四第一章测试卷(含答案)

必修四第一章单元练习一、选择题1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A.B.C 的关系是( )A .B=A ∩CB .B ∪C=C C .A CD .A=B=C2.下列各组角中,终边相同的角是( )A .π2k 与)(2Z k k ∈+ππB .)(3k 3Z k k ∈±πππ与C .ππ)14()12(±+k k 与 )(Z k ∈D .)(66Z k k k ∈±+ππππ与3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A .2B .1sin 2C .1sin 2D .2sin 4. 已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为( )A .ππ434或B .ππ4745或 C .ππ454或 D .ππ474或5. 已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623 D .-1623 6、已知34tan =x ,且x 在第三象限,则=x cos ( )A.54 B. 54- C. 53 D.53-7. 1sin 、1cos 、1tan 的大小关系为( )A .1tan 1cos 1sin >> B .1cos 1tan 1sin >>C .1cos 1sin 1tan >>D .1sin 1cos 1tan >>8. 设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( )A .33B .-33 C .3 D .-39. 函数)4sin(π+=x y 在下列哪个区间为增函数.( )A .]4,43[ππ-B .]0,[π-C .]43,4[ππ-D .]2,2[ππ-10. 函数)42sin(log 21π+=x y的单调减区间为( )A .)(],4(Z k k k ∈-πππ B .)(]8,8(Z k k k ∈+-ππππC .)(]8,83(Z k k k ∈+-ππππD .)(]83,8(Z k k k ∈++ππππ11. 函数)252sin(π+=x y的图象的一条对称轴方程是( )A .2π-=xB .4π-=x C .8π=xD .π45=x12.已知)2cos()(),2sin()(ππ-=+=x x g x x f ,则下列结论中正确的是 ( ) A.函数)(x g x f y⋅=)(的周期为π2 B.函数)()(x g x f y ⋅=的最大值为1C.将)(x f 的图像向左平移2π单位后得)(x g 的图像D.将)(x f 的图像向右平移2π单位后得)(x g 的图像二、填空题13、函数()sin(2)3f x x π=-的图象向左平移3π个单位,再将图像上的横坐标缩短为原来的12,那么所得图像的函数表达式为__________________. 14、已知21tan -=x ,则1cos sin 3sin 2-+x x x =______. 15、设)cos()sin()(21απαπ+++=x n x m x f ,其中m 、n 、1α、2α都是非零实数,若,1)2004(=f 则=)2005(f .16.函数])32,6[)(8cos(πππ∈-=x x y的最小值是必修四第一章单元练习答题卷一、选择题二、填空题13.____________________ 14.____________ 15.______________ 16._________________三、解答题 17、若xx x x x tan 2cos 1cos 1cos 1cos 1-=+---+, 求角x 的取值范围.18、已知),0(πθ∈,且137cos sin -=+θθ,求θtan 。

精品北师大版高中数学必修四:第一章综合测试题(含答案)

精品北师大版高中数学必修四:第一章综合测试题(含答案)

北师大版数学精品教学资料阶段性测试题一(第一章综合测试题)本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,其中有且仅有一个是正确的.)1.(2014·山东济南一中高一月考)下列角与-750°角终边不同的是( ) A .330° B .-30° C .680° D .-1 110°[答案] C[解析] -750°=-2×360°+(-30°), 330°=360°+(-30°), 680°=2×360°+(-40°), -1 110°=-3×360°+(-30)°, 故680°角与-750°角终边不同.2.(2014·山东德州高一期末测试)sin(-116π)=( )A .-12B .12C .-32D .32 [答案] B[解析] sin(-11π6)=-sin 11π6=-sin(2π-π6)=sin π6=12.3.(2014·浙江嘉兴一中高一月考)下列不等式中,正确的是( ) A .tan 13π4<tan 13π5B .sin π5>cos(-π7)C .sin(π-1)<sin1°D .cos 7π5<cos(-2π5)[答案] D[解析] tan 13π4=tan(3π+π4)=tan π4=1,tan 13π5=tan(2π+3π5)=tan 3π5<0,∴tan 13π4>tan 13π5,排除A ;cos(-π7)=cos π7,∵π5+π7<π2,∴π5<π2-π7, ∴sin π5<sin(π2-π7)=cos π7,排除B ;sin(π-1)=sin1>sin1°,排除C ;cos 7π5=cos(π+2π5)=-cos 2π5<0,cos(-2π5)=cos 2π5>0,故选D.4.若α是钝角,则θ=k π+α,k ∈Z 是( ) A .第二象限角B .第三象限角C .第二象限角或第三象限角D .第二象限角或第四象限角[答案] D[解析] ∵α是钝角,∴π2<α<π,∵θ=k π+α(k ∈Z ),∴令k =0,则θ=α是第二象限角,令k =1,则θ=π+α是第四象限角,故选D. 5.下列命题中不正确的个数是( ) ①终边不同的角的同名三角函数值不等; ②若sin α>0,则α是第一、二象限角;③若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=-x x 2+y 2.A .0B .1C .2D .3[答案] D[解析] π4和3π4终边不同,但正弦值相等,所以①错.sin π2=1,但π2不是一、二象限角,是轴线角所以②错,对于③由定义cos α=x x 2+y2,所以③错,故选D.6.若角α的终边落在直线x +y =0上,则|tan α|tan α+sin α1-cos 2α的值等于( )A .2或-2B .-2或0C .2或-2D .0或2[答案] B[解析] 由题意知α终边可在第二或第四象限. 当α终边在第二象限时,tan α<0,sin α>0, ∴原式=-1+1=0.当α终边在第四象限时,tan α<0,sin α<0, ∴原式=-1+(-1)=-2.7.(2014·河南洛阳市八中高一月考)为得到函数y =cos(x +π3)的图象,只需将函数y =sin x的图象( )A .向左平移5π6个长度单位B .向右平移π6个长度单位C .向左平移π6个长度单位D .向右平移5π6个长度单位[答案] A[解析] y =sin(x +5π6)=sin[π2+(x +π3)]=cos(x +π3),故选A.8.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为( ) A .π6B .π4C .π3D .π2[答案] A[解析] 由y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,知f ⎝⎛⎭⎫4π3=0,即3cos ⎝⎛⎭⎫8π3+φ=0,∴8π3+φ=k π+π2.(k ∈Z ),∴φ=k π+π2-8π3(k ∈Z ).|φ|的最小值为π6.9.(2014·浙江临海市杜桥中学高一月考)函数y =cos(x -π2)在下面某个区间上是减函数,这个区间为( )A .[0,π]B .[-π2,π2]C .[π2,π]D .[0,π4][答案] C[解析] y =cos(x -π2)=cos(π2-x )=sin x ,故选C.10.函数y =|sin(13x -π4)|的最小正周期为( )A .3πB .4πC .5πD .6π [答案] A[解析] ∵y =sin(13x -π4)的周期T =6π,∴y =|sin(13x -π4)|的周期为T =3π.11.已知函数f (x )=sin(πx -π2)-1,下列命题正确的是( )A .f (x )是周期为1的奇函数B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数 [答案] B[解析] ∵f (x )=sin(πx -π2)-1=-cosπx -1,∴周期T =2ππ=2,又f (-x )=-cos(-πx )-1=-cos x -1=f (x ), ∴f (x )为偶函数.12.如果函数f (x )=sin(x +π3)+32+a 在区间[-π3,5π6]的最小值为3,则a 的值为( )A .3+12B .32C .2+32D .3-12[答案] A[解析] ∵-π3≤x ≤5π6,∴0≤x +π3≤7π6,∴-12≤sin(x +π3)≤1,∴f (x )的最小值为-12+32+a ,∴-12+32+a =3,∴a =3+12.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上) 13.(2014·江西九江外国语高一月考)点P (-1,2)在角α的终边上,则tan αcos 2α=________. [答案] -10[解析] 由三角函数的定义知,sin α=25=255,cos α=-15=-55,∴tan α=-2.∴tan αcos 2α=-215=-10. 14.cos π3-tan 5π4+34tan 2⎝⎛⎭⎫-π6+sin 11π6+cos 27π6+sin 7π2=________. [答案] -1[解析] 原式=cos π3-tan ⎝⎛⎭⎫π+π4+34tan 2π6+sin ⎝⎛⎭⎫2π-π6+cos 2⎝⎛⎭⎫π+π6+sin ⎝⎛⎭⎫3π+π2 =cos π3-tan π4+34tan 2π6-sin π6+cos 2π6-sin π2=12-1+34×13-12+34-1=-1. 15.函数y =cos x 的单调递减区间是________. [答案] ⎣⎡⎦⎤2k π,2k π+π2(k ∈Z ) [解析] 由cos x ≥0得,-π2+2k π≤x ≤π2+2k π(k ∈Z ),∴函数的定义域为[-π2+2k π,π2+2k π](k ∈Z ),要求y =cos x 的单调递减区间,即求y =cos x 在定义域范围内的单调递减区间. 故所求函数的单调递减区间为[2k π,2k π+π2](k ∈Z ).16.若函数y =f (x )同时具有性质: ①是周期函数且最小正周期为π; ②在⎣⎡⎦⎤-π6,π3上是增函数; ③对任意x ∈R ,都有f ⎝⎛⎭⎫π3-x =f ⎝⎛⎭⎫π3+x .则函数y =f (x )的解析式可以是________.(只需写出满足条件的函数y =f (x )的一个解析式即可)[答案] f (x )=sin ⎝⎛⎭⎫2x -π6 [解析] 由①知ω=2.由③知x =π3为对称轴,∴f (x )=sin ⎝⎛⎭⎫2x -π6(答案不惟一). 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)若集合M =⎩⎨⎧⎭⎬⎫θ⎪⎪ sin θ≥12,0≤θ≤π,N =⎩⎨⎧⎭⎬⎫θ⎪⎪cos θ≤12,0≤θ≤π,求M ∩N .[解析] 解法一:可根据正弦函数图象和余弦函数图象,作出集合N 和集合M ,然后求M ∩N .首先作出正弦函数与余弦函数的图象以及直线y =12.如图.结合图象得集合M 、N 分别为M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6≤θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 解法二:如图所示,由单位圆中的三角函数线知M =⎩⎨⎧⎭⎬⎫θ⎪⎪ π6≤θ≤5π6,N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤π. 由此可得M ∩N =⎩⎨⎧⎭⎬⎫θ⎪⎪π3≤θ≤5π6. 18.(本小题满分12分)是否存在实数m ,使sin x =11-m ,cos x =mm -1成立,且x 是第二象限角?若存在,请求出实数m ;若不存在,试说明理由.[解析] 假设存在m ∈R ,使sin x =11-m ,cos x =mm -1,∵x 是第二象限角,∴sin x >0,cos x <0,∴0<m <1.由sin 2x +cos 2x =1(1-m )2+m 2(m -1)2=1,解得m =0,这时sin x =1,cos x =0,x =2k π+π2(k ∈Z ),不是第二象限角,故m 不存在.19.(本小题满分12分)已知sin α、cos α是关于x 的方程 8x 2+6mx +2m +1=0的两根,求1sin α+1cos α的值. [解析] ∵sin α、cos α是方程 8x 2+6mx +2m +1=0的两根, ∴sin α+cos α=-3m4,sin αcos α=2m +18.∴(-3m 4)2-2×2m +18=1,整理得 9m 2-8m -20=0,即(9m +10)(m -2)=0. ∴m =-109或m =2.又sin α、cos α为实根,∴Δ=36m 2-32(2m +1)≥0.即9m 2-16m -8≥0,∴m =2不合题意,舍去. 故m =-109.∴1sin α+1cos α=sin α+cos αsin αcos α=-3m42m +18=-6m 2m +1=-6×(-109)2×(-109)+1=-6011.20.(本小题满分12分)如图为函数f (x )=A sin(ωx +φ)的一段图象,已知A >0,ω>0,φ∈⎝⎛⎭⎫-π2,π2,求函数f (x )的解析式.[解析] 由图知A =2,T =8,ω=2πT =π4.当x =7时,有0=2sin ⎝⎛⎭⎫π4·7+φ, ∴φ∈⎩⎨⎧⎭⎬⎫θ⎪⎪θ=k π-7π4,k ∈Z . 又∵φ∈⎝⎛⎭⎫-π2,π2, 所以φ=π4,∴f (x )=2sin ⎝⎛⎭⎫π4x +π4. 21.(本小题满分12分)已知函数f (x )=2cos(2x -π4),x ∈R .(1)求函数f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间[-π8,π2]上的最小值和最大值,并求出取得最值时x 的值.[解析] (1)∵f (x )=2cos(2x -π4),∴函数f (x )的最小正周期T =2π2=π.由-π+2k π≤2x -π4≤2k π,得k π-3π8≤x ≤k π+π8,故函数f (x )的单调递增区间为[-3π8+k π,π8+k π](k ∈Z ).(2)∵f (x )=2cos(2x -π4)在区间[-π8,π8]上为单调递增函数,在区间[π8,π2]上为单调递减函数,且f (-π8)=0,f (π8)=2,f (π2)=-1,故函数f (x )在区间[-π8,π2]上的最大值为2,此时,x =π8;最小值为-1,此时x =π2.22.(本小题满分14分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)若方程f (x )=m 在(0,π)内有两个不同的实数根,求实数m 的取值范围. [解析] (1)观察图象,得A =2,T =(11π12-π6)×43=π,∴ω=2πT=2,∴f (x )=2sin(2x +φ).∵函数图象经过点(π6,2),∴2sin(2×π6+φ)=2,即sin(π3+φ)=1.又∵|φ|<π2,∴φ=π6,∴函数的解析式为f (x )=2sin(2x +π6).(2)∵0<x <π,∴f (x )=m 的根的情况,相当于f (x )=2sin(2x +π6)与g (x )=m 在(0,π)内的交点个数情况,∴在同一坐标系中画出y =2sin(2x +π6)和y =m (m ∈R )的图象如图所示.由图可知,当-2<m <1或1<m <2时,直线y =m 与曲线y =2sin(2x +π6)有两个不同的交点,即原方程有两个不同的实数根,∴m 的取值范围为-2<m <1或1<m <2.。

(完整版)高中数学必修四第一章测试(可编辑修改word版)

(完整版)高中数学必修四第一章测试(可编辑修改word版)

3 2 22 2232 第一章 基本初等函数(Ⅱ)的测试时间:120 分钟 满分:150 分一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1.(2016·陕西延川县期中)半径为 π cm ,中心角为 120°的弧长为 ( ) π A.3π2cm B. 32π cm C. 3 12π2 cm D. 3cm 3π2.(2016·桂林全州学段考)如果 sin(π+A )=-2,那么 cos ( 2-A )等于( )1 A .-2 1 B.2C. D.- 3.若点 P (sin2,cos2)是角 α 终边上一点,则角 α 的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4右.图是函数 f (x )=A sin ωx (A >0ω,>0)一个周期的图象则,f (1)+f (2)+f (3) +f (4)+f (5)+f (6)的值等于()A. B.C .2+D .27πsin 10cosπ 5.给出下列各函数值:①sin100°;②cos(-100°);③tan(-100°);④ 17π .其中符号为负的是()A .①B .②C .③D .④ tan 9 π16.把函数 y =sin (x +6)图象上各点的横坐标缩短为原来的2倍(纵坐标不变),再将图象π向右平移3个单位,那么所得图象的一条对称轴方程为( )π A. x =-2 π B. x =-4 π C. x =8 1 πD. x =47.(2016·山西大同一中测试)若 0<α<2π,且 sin α< ,cos α> ,利用三角函数线得到角 α2 的取值范围是()π ππ5π π5πA.(-3,3)B.(0,3)2sin αcos α-cos αC.( 3 ,2π)D.(0,3)∪( 3 ,2π)8.化简 + 2 - - 2 等于( )1 sin α sin α cos α11 A .tan α B.C .-tan αD .-tan αtan α32 2π ππ 5π 2π 2π9. 设 a =sin 7 ,b =cos 7 ,c =tan 7 ,则()A .a <c <bB .a <b <cC .b <c <aD .b <a <cπ10.(2016·上海高考)设 a ∈R ,b ∈[0,2π].若对任意实数 x ,都有 sin (3x -3)=sin(ax +b ),则满足条件的有序实数对(a ,b )的对数为() A .1B .2C .3D .411.已知函数 f (x )=A sin(ωx +φ)+m (A >0,ω>0)的最大值是 4,最小值是 0,该函数的π π图象与直线 y =2 的两个相邻交点之间的距离为4,对任意的 x ∈R ,满足 f (x )≤|A sin (12ω+φ)|+m ,且 f (π)<f (4),则下列符合条件的函数的解析式是() π7πA .f (x )=2sin (4x +6)+2B .f (x )=2sin (2x + 6 )+2π7πC .f (x )=2sin (4x +3)+2D .f (x )=2sin (4x + 6)+212.(2016·山西榆社中学期中)函数 f (x )=A sin(ωx +φ)(A ,ω,φ 是常数,A >0,ω>0)的部分图象如图所示,下列结论:π①最小正周期为 π;②将 f (x )的图象向左平移6个单位,所得到的函数是偶函数;12π 14π 5π ③f (0)=1; ④f ( 11 )<f ( 13); ⑤f (x )=-f( 3-x ).其中正确的是( )A .①②③B .②③④C .①④⑤D .②③⑤二、填空题(本大题共 4 小题,每小题 5 分,共 20 分) 13.sin(-120°)cos1 290°+ cos(-1 020°)sin(-1 050°)=.14.(2016·河南灵宝高级中学期中)已知函数 f (x )=3sin (ωx -6)(ω>0)和 g (x )=2cos(2x +φ)+1 的图象的对称轴完全相同,若 x ∈[0,2],则 f (x )的取值范围是.221+2sin(3π-α)cos(α-3π)sin(α-2 )-1-sin2(2 +α)3π5π32ππ2π15.(2016·河南洛阳八中月考)函数y=f(cos x)的定义域为[2kπ-6,2kπ+3 ](k∈Z),则函数y=f(x)的定义域为.sin x+cos x+|sin x-cos x|16.已知函数f(x)=2,则下列结论正确的是.π①f(x)是奇函数;②f(x)的值域是[-,1];③f(x)是周期函数;④f(x)在[0,2]上递增.三、解答题(本大题共6 小题,共70 分)17.(10 分)化简,其中角α 的终边在第二象限.18.(12 分)已知函数y=A sin(ωx+φ)的部分图象如图所示(ω>0),试求它的表达式.1 19.(12 分)(2016·山西大同一中期中)已知α 是一个三角形的内角,且sinα+cosα=.5(1)求tanα 的值;1(2)用tanα 表示2 -并求其值.2sin αcos αx π20.(12 分)(2016·银川九中期中)已知函数f(x)=3sin(2+6)+3.(1)用五点法画出这个函数在一个周期内的图象;(必须列表)(2)求它的振幅、周期、初相、对称轴方程;(3)说明此函数图象可由y=sin x 在[0,2π]上的图象经怎样的变换得到.21.(12 分)设函数f(x)=sin(2ωx+3)++a(其中ω>0,a∈R),且f(x)的图象在y 轴右[ ]ππ3 66.A 依题意得,经过图象变换后得到的图象相应的解析式是 y =sin [2(x -π)+π]=sin 7π侧的第一个最低点的横坐标为 6.(1) 求 ω 的值;π 5π(2) 如果 f (x )在区间 - , 上的最小值为3,求 a 的值.22.(12 分)已知函数 f (x )=log a cos (2x -3)(其中 a >0,且 a ≠1).(1) 求它的定义域;(2) 求它的单调区间;(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的周期.2π 2π2详解答案1.D 120°= 3 ,∴弧长为 3,故选 D.1 1 3π12.A sin(π+A )=-2,∴sin A =2,cos ( 2 -A )=-sin A =-2,故选 A. 3.D ∵2 弧度是第二象限角∴sin2>0,cos2<0. ∴点 P 在第四象限,∴角 α 的终边在第四象限,故选 D.2π π πx4.A 易知 A =2,由ω =8,得 ω=4,∴f (x )=2sin 4,又由对称性知,原式=f (1)= π = 2,故选 A.2sin 45.B ①sin100°>0;②cos(-100°)=cos100°<0;③tan(-100°)=-tan100°>0;④∵sin7π7π 17π sin 10cosπ 10>0,cosπ=-1,tan 9<0,∴ 17π >0.其中符号为负的是②,故选 B. tan 93 6(2x -2)=π-cos2x ,注意到当 x =-2时,y =-cos(-π)=1,此时 y =-cos2x 取得最大值,因此π直线 x =-2是该图象的一条对称轴,故选 A .32 3 4π ( )( 33 3 π 2π7.D 如图示,满足 sin α< 的角 α 为(0,3)∪( 3 ,2π),满足1 π 5π cos α>2的角 α 为(0,3)∪( 3 ,2π),所以符π 5π合条件的角 α 为(0,3)∪( 3 ,2π),故选 D.8.B 原式= cos α(2sin α-1) 1-cos 2α+sin 2α-sin αcos α(2sin α-1) cos α(2sin α-1) = =2sin 2α-sin α 1= .故选 B. tan αsin α(2sin α-1) 5π 2π 2π9.D a =sin 7 =sin 7 <tan 7=c .2π π 2π 3π cos 7 =sin (2- 7 )=sin 14, 3π 2π 3π 2π∵14< 7 ,∴sin 14<sin 7.故 b <a <c . π π10.B sin (3x -3)=sin (3x -3+2π)=5π 5π ππ 4π sin (3x + 3 ),(a ,b )=(3, 3 ),又 sin (3x -3)=sin [π-(3x -3)]=sin (-3x + 3 ),(a ,b )= (-3, 3 ),因为 b ∈[0,2π],所以只有这两组.故选 B.π 2π π 11.D 由题意得Error!解得Error!由题可知周期 T =2,由T = ω =2得 ω=4,于是函π π π数 f (x )=2sin(4x +φ)+2.又由题可知 x = 是函数的对称轴,故 4× +φ=k π+ , 则 φ=k π+12 12 2π π 6(k ∈Z ),又因为 f (π)<f(4),验证选项 A 、D ,可得选项 D 正确.7π π 7π7π 3π12.C 由图象可知,A =2,T =(12-3)×4=π,∴ω=2,当 x =12时,2×12+φ= 2,∴φ= π π π,∴f (x )=2sin 2x + 故①正确;f (0)=2sin = 3,故③不正确,故选 C.13.1解析:原式=-sin120°cos210°+cos60°sin30°= 3 1 1 - 2× - )+ × =1.2 2 2331 23π π 3π 3 2π π解析:由题可知,f (x )与 g (x )的周期相同,∴T = 2 =π,∴ω=2,则 f (x )=3sin (2x -6), 当 0≤x ππ π 5π≤2x - 3 f (x )≤3. ≤2时,-6 6≤ 6 ,∴- ≤ 15.[-2,1]π 2π 1 1解析:∵2k π-6≤x ≤2k π+ 3 ,k ∈Z .∴-2≤cos x ≤1.∴f (x )的定义域为[-2,1].16.②③解析:f (x )=Error!∴f (x )的图象如图所示.依据图象可知②③正确.17. 解 : 原 式 = 1+2sin[2π+(π-α)]cos[(α-π)-2π] -sin( 2 -α)- 1-sin 2[2π+(2+α)]1+2sin (π-α)cos (α-π) (cos α-sin α)2 = = .cos α- 1-cos 2α∵α 是第二象限角,∴sin α>0,cos α-sin α<0. sin α-cos αcos α-|sin α| 于是,原式= - =-1.cos α sin αT 5π π π 2π18.解:∵2= 6 - = ,ω>0,∴T =π,ω= T =2.3 2 π π 2π ∵图象过点(3,0),∴f (3)=A sin ( 3 +φ)=0, 2π∴ 3+φ=2k π+π,k ∈Z , π令 k =0,得 φ=3.又图象过点(0, ),由 A sin (2 × 0+ )= 得,A = 3. 2 3 2π∴所求表达式为 y = sin (2x +3).19.解:(1)已知 α 是一个三角形的内角,∴0<α<π,sin α>0.3 24 2 - 2 22 2- 4 7 2 -2 π2 π1 1 24由sin α+cos α= ,得 1+2sin αcos α= ,∴2sin αcos α=- ,∴cos α<0,∴(sin α-cos α)2=1-5 25 2549 7 4 32sin αcos α= ,∴sin α-cos α= .∴sin α= ,cos α=- ,25 5 5 54∴tan α=- . 31 sin 2α+cos 2αtan 2α+1(-3)2+1 251 25 (2) = = = sin α cos α sin α cos α tan α 120.解:(1)列表(-3)2-1 = .∴ = .sin α cos α 7x π - 3 2π 3 5π 3 8π 3 11π 3 x π+ 2 6 0 π 2π 3π 2 2π y3633π x π π 2π (2) 周期 T =4π,振幅 A =3,初相 φ=6,由 + =k π+ ,得 x =2k π+ (k ∈Z )即为对称轴方程;2 6 23π π(3) ①由 y =sin x 的图象上各点向左平移 φ=6个长度单位,得 y =sin (x +6)的图象;②由 y =sin (x +6)的图象上各点的横坐标伸长为原来的 2 倍(纵坐标不变),得 y =sinx π(2+6)的图象;x π③由 y =sin (2+6)的图象上各点的纵坐标伸长为原来的 3 倍(横坐标不变),得 y =3sinx π(2+6)的图象;x πx π④由 y =3sin (2+6)的图象上各点向上平移 3 个长度单位,得 y =3sin (2+6)+3 的图象.7π π 3π 121.解:(1)依题意知,2× 6 ω+3= 2 ⇒ω= .(2)由(1)知 f (x )=sin (x +3)+ +a ,32 3+1 π π π 5π π 7π又当 x ∈[-3, 6 ]时,x +3∈[0, 6 ],1 π故-2≤sin (x +3)≤1,π 5π 1 从而 f (x )在[-3, 6 ]上取最小值-2++a . 1 3 因此- + +a = 3,解得 a = .222πππππ22.解:(1)由题意知 cos (2x -3)>0,∴2k π-2<2x -3<2k π+2(k ∈Z ).即 k π-12<x <k π+5ππ5π 12(k ∈Z ).故定义域为(k π-12,k π+12)(k ∈Z ).π π2π π(2)由 2k π≤2x -3≤(2k +1)π(k ∈Z ),得 k π+6≤x ≤k π+ 3 (k ∈Z ).即 cos (2x -3)的单调π 2π 减区间为[k π+6,k π+ 3]ππ π π(k ∈Z ).由 2k π-π≤2x -3≤2k π(k ∈Z ),得 k π-3≤x ≤k π+6(k ∈Z ).即 cos (2x -3)的单π π调增区间为[k π-3,k π+6](k ∈Z ).π πππ5π∴函数 u =cos (2x -3)在(k π-12,k π+6](k ∈Z )上是增函数,在[k π+6,k π+12)(k ∈Z )上 是减函数. ∴当 a >1 时,f (x )的单调增区间为 π π(k π-12,k π+6](k ∈Z ). π 5π单调减区间为[k π+6,k π+12)(k ∈Z ).当 0<a <1 时,f (x )的单调增区间为π 5π[k π+6,k π+12)(k ∈Z ),单调减区间为π π(k π-12,k π+6](k ∈Z ).(3)∵f (x )的定义域不关于原点对称, ∴函数 f (x )既不是奇函数,也不是偶函数.(4)∵f (x +π)=log a cos [2(x +π)-3]=log a cos (2x -3)=f (x ).∴函数 f (x )的周期为 T =π.。

高中数学必修四第一章测试题

高中数学必修四第一章测试题

班级 姓名 学号 分数必修四第一章综合测试题(测试时间:120分钟 满分:150分)一、选择题:本大题共11个小题,每小题3分,共33分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角α是第四象限的角,则 ( )A. sin 0α> ;B. cos 0α> ;C. tan 0α> ;D. cot 0α> 2.函数sin y x =的最小正周期是( ) A. π ; B. 2π ; C.π2 ; D. π43.若cos 0,tan 0θθ<>,则θ是第( )象限角.A.第一象限角;B.第二象限角;C.第三象限角;D.第四象限角 4. 函数的一个单调递增区间是( )A.;B.;C.;D. 5.若角α的终边经过点)2,1(-P ,则αtan 的值为( ) A.55 B. 552-C. 2-D. 21-6.正弦函数x x f sin )(=图象的一条对称轴是( ) A. 0=xB. 4π=x C. 2x π=D. π=x7. 下列函数中,既是偶函数又存在零点的是( ) A. x x f sin )(=B. 1)(2+=x x fC. x x f ln )(=D.x x f cos )(=()cos f x x =(0)2π,(,)22ππ-(0)-π,(0,)π8.若将函数的图像向左平移个单位长度,则平移后图象的对称轴为( )A. B. C. D. 9.若角α与角β的终边关于y 轴对称,则( ) A. )(Z k k ∈+=+ππβαB. )(2Z k k ∈+=+ππβαC. )(2Z k k ∈+=+ππβαD. )(22Z k k ∈+=+ππβα10.先将函数的图像纵坐标不变,横坐标压缩为原来一半,再将得到的图像向左平移个单位,则所得图像的对称轴可以为( )A .B .C .D .11.已知函数的最小正周期是,将函数图象向左平移个单位长度后所得的函数图象过点,则函数( )A .在区间上单调递减B .在区间上单调递增C .在区间上单调递减D .在区间上单调递增 二、填空题(每题5分,满分20分,将答案填在答题纸上) 12.=-)600cos( .2sin 2y x =12π()26k x k Z ππ=-∈()26k x k Z ππ=+∈()212k x k Z ππ=-∈()212k x k Z ππ=+∈2sin y x =12π12x π=-1112x π=6x π=-6x π=()sin()(0,0)f x x ωϕωπϕ=+>-<<π()f x 3π(0,1)P ()sin()f x x ωϕ=+[,]63ππ-[,]63ππ-[,]36ππ-[,]36ππ-13. 已知角的终边经过点13(,)22P ,则tan α的值为____________.14.已知函数(其中)图象过点,且在区间上单调递增,则的值为_______.15.函数()sin()f x A x ωϕ=+,0,0,A ω>>02πϕ<<的图象如右图所示,则f (x ) = .三、解答题 (本大题共4小题,共47分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题10分)已知A 是角终边上一点,且A 点的坐标为,求.(12分)17.(本小题12分)已知函数()sin f x x ωϕ,π(0,)2ωϕ的部分图象如图所示.(13分)(Ⅰ)写出函数)(x f 的最小正周期和其单调递减区间; (Ⅱ)求)(x f 的解析式.18.(本小题12分)已知函数()13sin 24πf x x ⎛⎫=- ⎪⎝⎭,x R ∈.列表并画出函数在922ππ⎡⎤⎢⎥⎣⎦,上的简图;(10分)19.(本小题12分)已知11tan tan -=-αα,求下列各式的值。

高一数学必修4第一章测试题

高一数学必修4第一章测试题

第一章 三角函数一、选择题1.已知 α 为第三象限角,则 2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限C .第一、四象限 D .第二、四象限3.sin3π4cos 6π5tan ⎪⎭⎫ ⎝⎛3π4-=( ). A .-433B .433 C .-43 D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于( ). A .2B .2C .-2D .±25.已知sin x +cos x =51(0≤x <π),则tan x 的值等于( ). A .-43B .-34 C .43 D .34 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β 7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3π2,k ∈Z },C = {γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ). A .A ⊆B ⊆CB .B ⊆A ⊆CC .C ⊆A ⊆BD .B ⊆C ⊆A8.已知cos (α+β)=1,sin α=31,则sin β 的值是( ).A .31B .-31C .322 D .-322 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ). A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫⎝⎛4π5 ,πB .⎪⎭⎫⎝⎛π ,4πC .⎪⎭⎫ ⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫ ⎝⎛23π ,4π510.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ⎪⎭⎫ ⎝⎛3π - 2x ,x ∈RB .y =sin ⎪⎭⎫⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈RD .y =sin ⎪⎭⎫ ⎝⎛32π + 2x ,x ∈R二、填空题11.函数f (x )=sin 2 x +3tan x 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是 .12.已知sin α=552,2π≤α≤π,则tan α= . 13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫⎝⎛α - 2π= .14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫ ⎝⎛6π + x ω的图象重合,则ω的最小值为 .15.已知函数f (x )=21(sin x +cos x )-21|sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈R ,有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos ⎪⎭⎫ ⎝⎛6π - 2x ;②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-6π,0)对称; ④函数y =f (x )的图象关于直线x =-6π对称. 其中正确的是______________.三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ;(2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xax sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2 x +k (cos x -1)的最小值.参考答案一、选择题 1.D解析:2k π+π<α<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z .2.B解析:∵ sin θcos θ>0,∴ sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限. 3.A解析:原式=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin =-433. 4.D 解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin θ cos θ=21.(sin θ+cos θ)2=1+2sin θcos θ=2.sin θ+cos θ=±2. 5.B解析:由 得25cos 2 x -5cos x -12=0.解得cos x =54或-53. 又 0≤x <π,∴ sin x >0.⎩⎨⎧1=cos +sin 51=cos +sin 22x x x x若cos x =54,则sin x +cos x ≠51,∴ cos x =-53,sin x =54,∴ tan x =-34.6.D解析:若 α,β 是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β 的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合. 8.B解析:∵ cos (α+β)=1, ∴ α+β=2k π,k ∈Z . ∴ β=2k π-α.∴ sin β=sin (2k π-α)=sin (-α)=-sin α=-31.9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.10.C解析:第一步得到函数y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象. 二、填空题 11.415. 解析:f (x )=sin 2 x +3tan x 在⎥⎦⎤⎢⎣⎡3π4π ,上是增函数,f (x )≤sin 23π+3tan 3π=415. 12.-2. 解析:由sin α=552,2π≤α≤π⇒cos α=-55,所以tan α=-2. 13.53. (第6题`)解析:sin ⎪⎭⎫ ⎝⎛α + 2π=53,即cos α=53,∴ sin ⎪⎭⎫⎝⎛α - 2π=cos α=53.14.21.解析:函数y =tan ⎪⎭⎫ ⎝⎛4π+x ω (ω>0)的图象向右平移6π个单位长度后得到函数y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ),ω=6k +21,又ω>0,所以当k =0时,ωmin =21. 15.⎥⎦⎤⎢⎣⎡221,-. 解析:f (x )=21(sin x +cos x )-21|sin x -cos x |=⎩⎨⎧)<()(x x x x x x cos sinsin cos ≥sincos 即 f (x )等价于min {sin x ,cos x },如图可知, f (x )max =f ⎪⎭⎫⎝⎛4π=22,f (x )min =f (π) =-1.16.①③.解析:① f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx=4cos ⎪⎭⎫ ⎝⎛+-6π2x=4cos ⎪⎭⎫ ⎝⎛-6π2x .② T =22π=π,最小正周期为π.③ 令 2x +3π=k π,则当 k =0时,x =-6π, ∴ 函数f (x )关于点⎪⎭⎫ ⎝⎛0 6π-,对称. ④ 令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾. (第15题)∴ ①③正确. 三、解答题17.{x |2k π<x ≤2k π+4π,k ∈Z }. 解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2①>0 sin x x先在[0,2π)内考虑x 的取值,在单位圆中,做出三角函数线. 由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π].二者的公共部分为x ∈⎥⎦⎤⎝⎛4π0,.所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }. 18.(1)-1;(2) ±αcos 2. 解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1.(2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=α cos 2.②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sin k k k k αααα=-αcos 2.19.对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ). 解析:∵ y =sin x 的对称中心是(k π,0),k ∈Z ,∴ 令2x -6π=k π,得x =2πk +12π. ∴ 所求的对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ,k ∈Z . 又 y =sin x 的图象的对称轴是x =k π+2π, ∴ 令2x -6π=k π+2π,得x =2πk +3π. ∴ 所求的对称轴方程为x =2πk +3π(k ∈Z ). 20.(1)有最小值无最大值,且最小值为1+a ; (2)0. 解析:(1) f (x )=x a x sin sin +=1+xa sin ,由0<x <π,得0<sin x ≤1,又a >0,所以当sin x =1时,f (x )取最小值1+a ;此函数没有最大值.(2)∵-1≤cos x ≤1,k <0,(第17题)∴ k (cos x -1)≥0, 又 sin 2 x ≥0,∴ 当 cos x =1,即x =2k π(k ∈Z )时,f (x )=sin 2 x +k (cos x -1)有最小值f (x )min =0.期末测试题一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的. 1.sin 150°的值等于( ).A .21 B .-21C .23D .-23 3.在0到2π范围内,与角-34π终边相同的角是( ).A .6π B .3π C .32π D .34π 4.若cos α>0,sin α<0,则角 α 的终边在( ). A .第一象限B .第二象限C .第三象限D .第四象限5.sin 20°cos 40°+cos 20°sin 40°的值等于( ). A .41B .23 C .21 D .43 7.下列函数中,最小正周期为 π 的是( ). A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos4x 10.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-1 12.下列函数中,在区间[0,2π]上为减函数的是( ). A .y =cos xB .y =sin xC .y =tan xD .y =sin (x -3π) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 α 的终边经过点P (3,4),则cos α 的值为 . 16.已知tan α=-1,且 α∈[0,π),那么 α 的值等于 . 18.某地一天中6时至14时的温度变化曲线近似 满足函数T =A sin (ωt +ϕ)+b (其中2π<ϕ<π),6 时至14时期间的温度变化曲线如图所示,它是上 述函数的半个周期的图象,那么这一天6时至14 时温差的最大值是 °C ;图中曲线对应的函数解析式是________________.三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.19.(本小题满分8分) 已知0<α<2π,sin α=54.(1)求tan α 的值;(2)求cos 2α+sin ⎪⎭⎫ ⎝⎛2π + α的值.21.(本小题满分10分) 已知函数f (x )=sin ωx (ω>0).(1)当 ω=1时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式; (2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求 ω 的值.期末测试题参考答案一、选择题:1.A 解析:sin 150°=sin 30°=21.2.B =0+9=3. 3.C 解析:在直角坐标系中作出-34π由其终边即知. 4.D 解析:由cos α>0知,α 为第一、四象限或 x 轴正方向上的角;由sin α<0知,α 为第三、四象限或y 轴负方向上的角,所以 α 的终边在第四象限.5.B 解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 7.B 解析:由T =ωπ2=π,得 ω=2.10.B 解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.12.A 解析:画出函数的图象即知A 正确. 二、填空题: 15.53.解析:因为r =5,所以cos α=53. 16.43π.解析:在[0,π)上,满足tan α=-1的角 α 只有43π,故 α=43π. 18.20;y =10sin (8πx +43π)+20,x ∈[6,14].解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin (ωx +ϕ)+b 的半个周期的图象,所以A =21(30-10)=10,b =21(30+10)=20. 因为21·ωπ2=14-6,所以 ω=8π,y =10sin ⎪⎭⎫⎝⎛ϕ + 8πx +20.将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<ϕ<π,可得 ϕ=43π.综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题:19.解:(1)因为0<α<2π,sin α=54, 故cos α=53,所以tan α=34.(2)cos 2α+sin ⎪⎭⎫⎝⎛α + 2π=1-2sin 2α +cos α=1-2532+53=258.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫⎝⎛0 , 32π点,得sin 32πω=0,所以32πω=k π,k ∈Z .即 ω=23k ,k ∈Z .又ω>0,所以k ∈N*. 当k =1时,ω=23,f (x )=sin 23x ,其周期为34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数; 当k ≥2时,ω≥3,f (x )=sin ωx 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,ω=23.。

高中数学必修四第一章测试题

高中数学必修四第一章测试题

高中数学必修四第一章测试题Revised at 2 pm on December 25, 2020.必修四第一章复习题一、选择题(本大题共12小题,每题5分,共60分)1.下列说法中,正确的是( )A .第二象限的角是钝角B .第三象限的角必大于第二象限的角C .-831°是第二象限角D .-95°20′,984°40′,264°40′是终边相同的角2.若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( )A .0 C .13.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在( )A .第一、三象限B .第二、四象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上4.如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期是T ,且当x =2时取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π25.若sin ⎝ ⎛⎭⎪⎫π2-x =-32,且π<x <2π,则x 等于( ) π π π π6.已知a 是实数,而函数f (x )=1+a sin ax 的图象不可能是( )7.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到y=sin ⎝ ⎛⎭⎪⎫x -π6的图象,则φ=( )8.若tan θ=2,则2sin θ-cos θsin θ+2cos θ的值为( ) A .0 B .1 C.349.函数f (x )=tan x 1+cos x的奇偶性是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数10.函数f (x )=x -cos x 在(0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点11.已知A 为锐角,lg(1+cos A )=m ,lg 11-cos A=n ,则lgsin A 的值是( )A .m +1nB .m -n⎝⎛⎭⎪⎫m +1n (m -n ) 12.函数f (x )=3sin ⎝⎛⎭⎪⎫2x -π3的图象为C , ①图象C 关于直线x =1112π对称;②函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数; ③由y =3sin2x 的图象向右平移π3个单位长度可以得到图象C ,其中正确命题的个数是( )A .0B .1C .2D .3二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上)13.已知sin ⎝ ⎛⎭⎪⎫α+π2=13,α∈⎝ ⎛⎭⎪⎫-π2,0,则tan α=________. 14.函数y =3cos x (0≤x ≤π)的图象与直线y =-3及y 轴围成的图形的面积为________.15.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.16.给出下列命题:①函数y =cos ⎝ ⎛⎭⎪⎫23x +π2是奇函数; ②存在实数x ,使sin x +cos x =2;③若α,β是第一象限角且α<β,则tan α<tan β;④x =π8是函数y =sin ⎝ ⎛⎭⎪⎫2x +5π4的一条对称轴;⑤函数y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称. 其中正确命题的序号为__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知方程sin(α-3π)=2cos(α-4π),求sinπ-α+5cos2π-α2sin ⎝ ⎛⎭⎪⎫3π2-α-sin -α的值.18.(12分)在△ABC 中,sin A +cos A =22,求tan A 的值.19.(12分)已知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+32,x ∈R . (1)求函数f (x )的最小正周期;(2)求函数f (x )的单调减区间;(3)函数f (x )的图象可以由函数y =sin2x (x ∈R )的图象经过怎样变换得到?20.(12分)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ⎝ ⎛⎭⎪⎫π12,0,图象与P 点最近的一个最高点坐标为⎝ ⎛⎭⎪⎫π3,5. (1)求函数解析式;(2)求函数的最大值,并写出相应的x 的值;(3)求使y ≤0时,x 的取值范围.21.(12分)已知cos ⎝ ⎛⎭⎪⎫π2-α=2cos ⎝ ⎛⎭⎪⎫32π+β,3sin ⎝ ⎛⎭⎪⎫3π2-α =-2sin ⎝ ⎛⎭⎪⎫π2+β,且0<α<π,0<β<π,求α,β的值. 22.(12分)已知函数f (x )=x 2+2x tan θ-1,x ∈[-1,3],其中 θ∈⎝ ⎛⎭⎪⎫-π2,π2. (1)当θ=-π6时,求函数的最大值和最小值;(2)求θ的取值范围,使y =f (x )在区间[-1,3]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数).。

必修四第一章测试题

必修四第一章测试题

12、 2高一数学必修4第一章《三角函数》单元测试卷 班级 学号 姓名 成绩.一.选择题(本大题共10小题,每小题5分,共50分)2 3m ) A.迺 2 2、已知角ct 的终边经过点P (-4加,1、sin 210 = B. C. 一 2 (加工0),则2sina+cosa 的值是D - -2A 1 或一 1 B.彳或—|3、若扇形的周长是16cm,圆心角是2弧度, 则扇形的而积是(单位°?广)A. 16B. 32C. 8D. 644、已知A={第一象限角}, B={锐角}, C={小于90°的角},那么A. B. C 关系是 () A. B 二ACC B ・ BUC=C D. A 二B二C C. A^C 5、 已知角a 的余弦线是单位长度的有向线段;那么角a 的终边 ( ) A.在x 轴上 B.在直线y = x C ・在y 轴上 D.在直线y = x 或卩=一兀上6、 为了得到函数y = 2sin (- + -Xxe/?的图像,只需把函数y = 2sinx,xe/?的图像上所有的点(3 6A. 向左平移兰个单位长度, 6B. 向右平移工个单位长度, 6再把所得各点的横坐标缩短到原来的丄倍(纵坐标不变) 3 再把所得齐点的横坐标缩短到原来的1倍(纵坐标不变) 3C. 向左平咲个单位长度, 再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D. 向右平移2个单位长度,6 再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)7、如图,曲线对应的函数是 ( A. y 二 sin-Y C ・ y= —sin x D ・ y 二一sin.Y 8、 已知 f (cos x) = cos 3x » 则 f (sin x)等于A. sin3x B ・ cos3x C・二、填空题(本大题共4小题,每小题5分,-cos3x 共20分) -/V ;二C - "2ic 'x \y 7几;1B ・ y二sin x D ・一sin3x9、 若cosa = - , a 是第四象限角,则 sin(a-27r) + sin(-a-37r)cos(a-3/r) = 3 10、 不等式l + V3tanx>0的解集是11、 已知sin_2cos° “5,那么(a 叱的值为. 3sina + 5cosa设/(X )是定义域为R ,周期为辛的函数,若/(x ) = -^<x<0sinx (0<x<^) cosx 15兀T三.解答题(本大题共3小题,共30分)13、已知A(-2,“)是角a终边上的一点,且sina =-—,求cos a , tana的值.:J14、求函数y=2sin (--2x), xe(O^)的单调增区间和对称中心点.3/(x) = Asin(tyx + 0)[ A >0,ty >0,|^|< —的图象过点(0,1),在相邻两最值点(兀'2)15、已知函数I 2丿上/(")分别取得最大值和最小值.(1)求/(")的解析式:(2)若函数$(兀)==妙(兀)+ "的最大和最小值分别为6和2,求""的值.(3)如果在任意两个偶数内/(兀)至少能同时取得最大值A和最小值-A,那么正整数3的最小值是多少。

(典型题)高中数学必修四第一章《三角函数》测试(含答案解析)

(典型题)高中数学必修四第一章《三角函数》测试(含答案解析)

一、选择题1.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 2.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-3.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 4.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .85.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]32ππ上具有单调性,且()(),23f f ππ=-2()()23f f ππ=,则ω=( ) A .6 B .3 C .2D .16.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 7.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减8.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A .1ω=,6π=ϕ B .1ω=,6πϕ=-C .2ω=,6π=ϕ D .2ω=,6πϕ=-9.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C10.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( )A .1B C .1916D .3411.已知函数2()[sin()])cos()f x x x x ωωω=+(0)>ω在[0,]π上有且只有四个零点,则实数ω的取值范围是( ) A .5[,2]3B .5(,2)3C .5[,2)3D .5(,2]312.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .1二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.已知()tan 1f x a x =+(a ,b 为实数),且3(lg log 10)5f =,则(lglg3)f =____________.15.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________.16.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 17.若函数π()sin()cos()3f x x x ωω=++的一个周期是π,则常数ω的一个取值可以为__________.18.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 19.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.20.已知函数()()()sin 0,0,f x A x A ωϕωπϕπ=+>>-<<的部分图象如下图所示,则ϕ=________.三、解答题21.已知函数27()sin cos 2sin 632x f x x x ππ⎛⎫⎛⎫=-+--⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间; (2)求使()0f x <成立的实数x 的取值集合.22.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.23.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.24.已知函数()()2sin f x x ωϕ=+(0>ω,0ϕπ<<)的最大值和最小正周期相同,()f x 的图象过点(3,且在区间10,12⎡⎤⎢⎥⎣⎦上为增函数.(1)求函数()f x 的解析式;(2)若函数()()1g x f x =+在区间()0,b 上只有4个零点,求b 的最大值. 25.已知函数()231cos 2f x x x =-+. (1)当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()f x 的取值范围;(2)将()f x 的图象向左平移π6个单位得到函数()g x 的图象,求()g x 的单调递增区间. 26.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪ ⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.【详解】函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z 因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题. 3.C解析:C 【分析】由图可知,17248g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.4.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.5.B解析:B 【分析】 由2()()23f f ππ=求出函数的一条对称轴,结合()f x 在区间[,]32ππ上具有单调性,且()()23f f ππ=-,可得函数的四分之一周期,即可求出ω的值.【详解】解:由2()()23f f ππ=,可知函数()f x 的一条对称轴为2723212x πππ+==, 则2x π=离最近对称轴距离为712212πππ-=. 又()()23f f ππ=-,则()f x 有对称中心5,012π⎛⎫⎪⎝⎭, 由于()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上具有单调性, 则1232T ππ-,所以3T π≥,从而7512124T ππ-=,所以23T π=,因为2T πω=,所以3ω=.故选:B【点睛】本题考查()sin()f x A x ωϕ=+型函数图象的应用,考查了学生灵活处理问题和解决问题的能力.6.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.7.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=-⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=- ⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD.本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.8.D解析:D 【分析】根据函数的图象求出函数的周期,然后可以求出ω,通过函数经过的最大值点求出ϕ值,即可得到结果. 【详解】由函数的图象可知:74123T πππ⎛⎫=-⨯= ⎪⎝⎭,22T πω∴==. 当3x π=,函数取得最大值1,所以sin 213πϕ⎛⎫⨯+= ⎪⎝⎭,2232k k Z ππϕπ+=+∈,, ||,02k πϕ<∴=,6πϕ∴=-,故选:D. 【点睛】本题主要考查了由三角函数的图象求解析式,通过周期求ω的值,通过最值点求ϕ的值是解题的关键,属于基础题.9.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,2cos 23:C y x π⎛⎫=- ⎪⎝⎭,∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.10.C【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.11.C解析:C 【分析】先化简函数的解析式,然后利用x 的范围求出26x πω⎛⎫-⎪⎝⎭的范围,根据题意列不等式求解ω.【详解】221cos 21()[sin()])cos()2sin(2)2262ωπωωωωω-=+=+=-+x f x x x x x x ,因为[0,]x π∈,得2,2666πππωωπ⎛⎫⎡⎤-∈-- ⎪⎢⎥⎝⎭⎣⎦x ,因为函数在[0,]π有且只有四个零点,则19232666πππωπ≤-<,解得523ω≤<. 故选:C. 【点睛】关于三角函数中求解ω的取值范围问题,一般要先求解出整体的范围,即x ωϕ+的范围,然后根据题意,分析x ωϕ+范围所在的区间,列不等式求解,即可求出ω.12.A【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+, 故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 二、填空题13.③④【分析】①化简可得即可求出;②由可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得利用奇函数的性质可得【详解】对①则最小正周期为故①错误;对②若则可能相等故②错误;对③若则即即即即故③解析:③④ 【分析】①,化简可得tan 24y x π⎛⎫=+⎪⎝⎭,即可求出;②由,a b 可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得24sin 141x xy x +=++,利用奇函数的性质可得.【详解】对①,tantan 21tan 24tan 21tan 241tan tan 24xx y x x x πππ++⎛⎫===+ ⎪-⎝⎭-⋅,则最小正周期为2π,故①错误;对②,若()()f a f b =,则,a b 可能相等,故②错误;对③,若22tan 3tan 2αβ=+,则2222sin 3sin 2cos cos αβαβ=+,即222222sin cos 3cos sin 2cos cos αβαβαβ=+,即22222222sin cos cos cos 3cos sin 3cos cos αβαβαβαβ+=+,即22cos 3cos βα=,即223sin sin 2αβ-=,故③正确;对④,()22221sin 4sin 14141x xx x y x x +++==+++,令()24sin 41x x g x x =++,则()()g x g x -=,故()g x 是奇函数,()()max min 0g x g x ∴+=,()()max min 112M N g x g x ∴+=+++=,故④正确.故答案为:③④. 【点睛】本题考查正切型函数的周期,考查同角三角函数的关系,考查奇函数的应用,解题的关键是正确利用三角函数的关键进行化简.14.【分析】令可知为奇函数根据与为相反数即可求解【详解】令定义域关于原点对称且所以为奇函数则所以由奇函数性质可得所以故答案为:【点睛】关键点点睛:首先要观察出中的部分为奇函数其次要能利用换底公式对数的运 解析:3-【分析】令tan ()a x g x =+,可知()g x 为奇函数,根据3lg log 10与lg lg3为相反数即可求解. 【详解】令tan ()a x g x =+,,2x k k Z ππ≠+∈,定义域关于原点对称,且()tan ()g x a x g x -=--=-, 所以()g x 为奇函数,则31(lg log 10)(lg)(lg lg 3)(lg lg 3)15lg 3f f fg ==-=-+=, 所以(lg lg3)514g -=-=, 由奇函数性质可得(lg lg3)4g =-, 所以(lglg3)(lglg3)1413f g =+=-+=-, 故答案为:3- 【点睛】关键点点睛:首先要观察出()f x中的部分tan ()a x g x =+为奇函数,其次要能利用换底公式,对数的运算性质找到3lg log 10与lg lg3为相反数,借助奇函数的性质求解.15.【分析】先求出由可求出利用单调性可得结合即可求解【详解】将函数的图象向右平移个单位长度得到函数因为所以因为函数在区间上是单调递增函数所以解得:因为所以故答案为:【点睛】关键点点睛:本题解题的关键点是解析:60,5⎛⎤⎥⎝⎦【分析】先求出()sin 12g x x πω⎛⎫=-⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可求出5121212x πππωωω⎛⎫-≤-≤ ⎪⎝⎭,利用单调性可得1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,结合0>ω即可求解.【详解】将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()sin 12g x x πω⎛⎫=- ⎪⎝⎭,因为02x π≤≤,所以5121212x πππωωω⎛⎫-≤-≤⎪⎝⎭, 因为函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数, 所以1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得:665ωω≤⎧⎪⎨≤⎪⎩,因为0>ω,所以605ω<≤, 故答案为:60,5⎛⎤ ⎥⎝⎦【点睛】关键点点睛:本题解题的关键点是由x 的范围求出12x πω⎛⎫-⎪⎝⎭的范围,将12x πω⎛⎫-⎪⎝⎭看成一个整体让其满足正弦函数的单调递增区间,即可得其满足的条件.16.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.17.2(答案不唯一)【分析】把函数化为一个角的一个三角函数形式然后利用正弦函数的周期求解注意题中已知条件是函数的一个周期是并没有说是最小正周期因此只要函数的最小正周期是除以一个正整数都可满足题意【详解】解析:2(答案不唯一) 【分析】把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期求解,注意题中已知条件是函数的一个周期是π,并没有说π是最小正周期.因此只要函数的最小正周期是π除以一个正整数,都可满足题意. 【详解】1()sin cos cossin sin(1cos 332f x x x x x x ππωωωωω=+-=-+,令cosϕ=sin ϕ=,且ϕ为锐角,则()sin()f x x ωϕ=+,由2T ππω==,得2ω=,实际上,由2T ππω==得2ω=±,或者2kππω=(k Z ∈且0k ≠),2k ω=(k Z ∈且0k ≠),ω可为任意一个非零点的偶数. 故答案为:2.(填任一非0的偶数都可以). 【点睛】关键点点睛:本题考查三角函数的周期,求解三角函数周期,一般是把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期性求解.而我们一般说周期通常是求最值正周期,若题中强调某个数是函数的一个周期,则这个周期不一定是最小正周期.18.②④【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案【详解】①要得到的图象应将的图象向左平移个单位长度所以①错误;②令解得所以直线是的一条对称轴故②正确;③令解得因为所以在定义域内的单解析:②④ 【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案. 【详解】①要得到()5sin 2g x x =的图象,应将()ππ5sin 25sin 248f x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向左平移π8个单位长度,所以①错误;②令ππ2π42x k -=+,k ∈Z ,解得3ππ82k x =+,k ∈Z ,所以直线3π8x =是()y f x =的一条对称轴,故②正确;③令ππ3π22π42π22k k x ≤+≤-+,k ∈Z ,解得3π7πππ88k x k +≤≤+,k ∈Z ,因为[]π,πx ∈-,所以()f x 在定义域内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦和5ππ,88⎡⎤--⎢⎥⎣⎦,所以③错误;④5π5ππ5sin 25sin 2884y f x x x ⎡⎤⎛⎫⎛⎫=+=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦是奇函数,所以该说法正确. 【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对()sin y A ωx φ=+的图象与性质的掌握,属于中档题.19.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】 由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=- ⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈ ⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.20.【分析】根据图象得出函数的最小正周期可得出的值再将点代入函数解析式结合的取值范围可求出的值【详解】由图象可知函数的最小正周期则将点代入函数解析式得即因为函数在附近单调递减则得故答案为:【点睛】本题考 解析:6π【分析】根据图象得出函数()y f x =的最小正周期T ,可得出ω的值,再将点5,012π⎛⎫⎪⎝⎭代入函数解析式,结合ϕ的取值范围,可求出ϕ的值. 【详解】由图象可知,函数()y f x =的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,222T ππωπ∴===, 则()()sin 2f x A x ϕ=+, 将点5,012π⎛⎫⎪⎝⎭代入函数解析式得55sin 201212f A ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即5sin 06πϕ⎛⎫+= ⎪⎝⎭, 因为函数()y f x =在512x π=附近单调递减,则()526k k Z πϕππ+=+∈, 得()26k k Z πϕπ=+∈,πϕπ-<<,0k ∴=,6π=ϕ. 故答案为:6π. 【点睛】本题考查利用图象求三角函数解析式中的参数,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)422,3x k x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣.【分析】(1)化简()f x ,应用整体思想,结合正弦函数的递增区间,即可得出结论; (2)应用整体思想,运用正弦函数图像,建立不等式,即可求解. 【详解】()sin cos cos sincoscos sinsin cos 16633f x x x x x x ππππ=-+++-11cos cos cos 1cos 122x x x x x x x =-++-=+-12cos 12sin 126x x x π⎫⎛⎫=+-=+-⎪ ⎪⎪⎝⎭⎝⎭. (1)由22,262k x k k Z πππππ-+++∈,解得222,33k x k k Z ππππ-++∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭.因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭.所以1sin 62x π⎛⎫+< ⎪⎝⎭, 所以7+2++2,666k x k k Z πππππ-<<∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422,3xk x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣. 【点睛】方法点睛:解决正弦型函数的单调性和不等式的相关问题,运用整体思想,先由三角函数恒等变换,化简解析式为同一角同一三角函数的形式,再运用三角函数的性质以及建立三角不等式求解.22.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==,又26312fππ⎛⎫+⎪=- ⎪⎪⎝⎭,故5cos2+112πϕ⎛⎫⨯=-⎪⎝⎭,所以526kπϕππ+=+即2,6k k Zπϕπ=+∈,因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x xπ=+.(2)()cos(2)cos266g x x xππ=-+=,故()3()cos(2)3cos26f xg x m x x mπ-⋅-=+--cos2cos sin2sin3cos2cos2666x x x m m xπππ⎛⎫=---=---⎪⎝⎭故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m=-与cos26y xπ⎛⎫=-⎪⎝⎭图象交点的个数,cos26y xπ⎛⎫=-⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得:当1m-=-31m<-<即1m=或31m-<<时,方程有2个不同的解;当31m-<-≤31m≤<时,方程有4个不同的解;当3322m-<-≤即3322m-≤<时,方程有3个不同的解;【点睛】方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.23.(1)=1ω,对称中心是(,0),82k k Z ππ-+∈,(2)1524ω≤≤【分析】(1)先对函数化简变形得(2+4f x x πω(),由函数的周期为π,得=1ω,再由2+=4x k ππ,可求出对称中心的横坐标,进而可得对称中心;(2)由题意得到())24g x x ωππω=++,由0,8x π⎡⎤∈⎢⎥⎣⎦可得424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,而y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,所以可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围 【详解】解:(1)()sin 2+cos 22+4f x x x x πωωω=(),()f x 的最小正周期是π,2==12ππωω∴∴,此时()2+4f x x π=(),令2+=4x k ππ,得,82k x k Z ππ=-+∈ ()f x ∴的对称中心是(,0),82k k Z ππ-+∈. (2)由题知())24g x x ωππω=++, 0,4824244x x πωππωπππωωπ⎡⎤⎡⎤∈∴++∈++⎢⎥⎢⎥⎣⎦⎣⎦,,,又()y g x =在08π⎡⎤⎢⎥⎣⎦,上单调递减,322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤∴++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,即32154242,242242k k k k Z k ππωππωωππππ⎧+≤+⎪⎪⇒+≤≤+∈⎨⎪+≥+⎪⎩, 150,24ωω>∴≤≤【点睛】关键点点睛:此题考查三角函数的恒等变换,考查三角函数的图像和性质,第2问解题的关键是求出424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,再由y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围,属于中档题 24.()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭;(2)296【分析】(1)根据条件先求ω,再根据()0f =ϕ,最后再验证ϕ值,确定函数的解析式;(2)根据条件求函数的零点,确定b 的最大值应是第5个零点. 【详解】 (1)函数的最大值是2,∴,函数的周期2T =,即22πωπω=⇒=,()02sin f ϕ==,且0ϕπ<<,3πϕ∴=或23π, 当3πϕ=时,()2sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,5,3312x ππππ⎡⎤+∈⎢⎥⎣⎦ 0,2π⎡⎤⎢⎥⎣⎦,满足条件; 当23ϕπ=时,()22sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,223,334x ππππ⎡⎤+∈⎢⎥⎣⎦ 3,22ππ⎡⎤⎢⎥⎣⎦,所以函数在区间10,12⎡⎤⎢⎥⎣⎦上为减函数,所以舍去, 所以函数()2sin 3f x x ππ⎛⎫=+⎪⎝⎭; (2)()2sin 103g x x ππ⎛⎫=++= ⎪⎝⎭,得1sin 32x ππ⎛⎫+=- ⎪⎝⎭, 72,36x k k Z ππππ+=+∈,解得:52,6x k k Z =+∈, 或112,36x k k Z ππππ+=+∈,解得:32,2x k k Z =+∈, 函数()()1g x f x =+在区间()0,b 上只有4个零点,∴这四个零点应是56,32,176,72,那么b 的最大值应是第5个零点,即296,所以b 的最大值是296. 【点睛】关键点点睛:本题第一问注意求出两个ϕ 后需验证是否满足条件,第二个关键点是,注意()0,b 是开区间,开区间内只有四个零点,则b 的最大值是第5个零点.25.(1)112⎡⎤-⎢⎥⎣⎦,;(2)ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【分析】(1)根据余弦的二倍角公式、辅助角公式化简()f x ,得到()πsin 26f x x ⎛⎫=- ⎪⎝⎭,再利用正弦函数的性质确定当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的取值范围; (2)根据图象的平移得到()πsin 26g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质可求得()g x 得单调递增区间. 【详解】(1)()211πcos cos2sin 2226f x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,π02x ⎡⎤∈⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴-∈-⎢⎥⎣⎦,, π1sin 2162x ⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,.∴函数()f x 的取值范围为112⎡⎤-⎢⎥⎣⎦,.(2)由题意知:()ππππsin 2sin 26666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 令πππ2π22π262k x k -≤+≤+,k Z ∈, 解得πππ2π.36k k k Z -≤≤+∈, ∴()g x 的单调递增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【点睛】本题考查了三角函数的性质,根据二倍角的余弦公式、辅助角公式化简函数,并求函数在区间上的最值,及函数的单调区间,考查学生的运算能力,属于中档题. 26.(1)12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)[]1,2-. 【分析】(1)由三角函数的图象,求得函数的解析式12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得2()2sin 223g x x m π⎛⎫=-+ ⎪⎝⎭,根据()g x 的图象关于直线512x π=对称,求得m 的值,得到()2sin 23g x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解. 【详解】(1)由图象可知2A =,422433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, 所以212T πω==,所以1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 由图可求出最低点的坐标为,23π⎛⎫- ⎪⎝⎭,所以2sin 236f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, 所以262k ππϕπ+=-+,所以22,3k k Z πϕπ=-+∈, 因为||ϕπ<,所以23πϕ=-,所以12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由1222,2232k x k k Z πππππ-+≤-≤+∈,可得744,33k x k k Z ππππ+≤≤+∈. 所以函数()f x 的单调递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)由题意知,函数22()2sin 2()2sin 2233g x x m x m ππ⎡⎤⎛⎫=+-=-+ ⎪⎢⎥⎣⎦⎝⎭, 因为()g x 的图象关于直线512x π=对称, 所以5222,1232m k k Z ππππ⨯-+=+∈,即,62k m k Z ππ=+∈, 因为02m π<<,所以6m π=,所以()2sin 23g x x π⎛⎫=-⎪⎝⎭. 当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,可得1sin 2,132x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 2[1,2]3x π⎛⎫-∈- ⎪⎝⎭,即函数()g x 的值域为[]1,2-.【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.。

(压轴题)高中数学必修四第一章《三角函数》测试(含答案解析)

(压轴题)高中数学必修四第一章《三角函数》测试(含答案解析)

一、选择题1.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 2.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .83.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.假设在水流量稳定的情况下,简车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O 的半径为4米,盛水筒M 从点0P 处开始运动,0OP 与水平面的所成角为30,且每分钟恰好转动1圈,则盛水筒M 距离水面的高度H (单位;m )与时间t (单位:s )之间的函数关系式的图象可能是( )A .B .C .D .4.下列结论正确的是( ) A .sin1cos1< B .2317cos cos 54ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C .()()tan 52tan 47->-D .sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭5.平面直角坐标系xOy 中,点()00,P x y 在单位圆O 上,设xOP α∠=,若5,36ππα⎛⎫∈ ⎪⎝⎭,且3sin 65πα⎛⎫+= ⎪⎝⎭,则0x 的值为A .3310- B .3310+ C .3310D .43310- 6.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C7.已知函数y =f (x )的部分图象如图所示,则其解析式可能是( )A .()sin 2f x x x =B .()||sin 2f x x x =C .()cos 2f x x x =D .()||cos2f x x x =8.《九章算术》中《方田》章有弧田面积计算问题,术日:以弦乘矢,矢又自乘,并之,二而一.其大意是弧田面积计算公式为:弧田面积12=(弦×矢+矢×矢).弧田是由圆弧(弧田弧)及圆弧两端点的弦(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到孤田弦的距离之差,现有一弧田,其矢长等于8米,若用上述弧田面积计算公式算得该弧田的面积为128平方米,则其弧田弧所对圆心角的正弦值为( ) A .60169B .120169C .119169D .591699.设函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减,则下述结论: ①()f x 关于,012π⎛⎫⎪⎝⎭中心对称;②()f x 关于直线23x π=轴对称;③()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦;④方程()1f x =在[]0,2π有4个不相同的根. 其中正确结论的编号是( ) A .①②B .②③C .②④D .③④10.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .1311.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .112.若函数()22()sin 23cos sin f x x x x =+-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数 D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 二、填空题13.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.14.设函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图象为C ,给出下列命题:①图象C 关于直线1112π=x 对称;②函数()f x 在区间5,1212ππ⎛⎫- ⎪⎝⎭内是减函数;③函数()f x 是奇函数;④图象C 关于点,03π⎛⎫⎪⎝⎭对称.其中,错误命题的是______.15.已知函数()()2sin 0f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是-2,则ω的最小值等于__________.16.已知M 是函数()()238sin f x x x x R π=--∈的所有零点之和.则M 的值为_____. 17.给出下列4个命题:①函数2cos 32y x π⎛⎫=+ ⎪⎝⎭是奇函数;②函数y =sin (2x +3π)的图象关于点(12π,0)成中心对称; ③x =8π是函数y =sin (2x +54π)的一条对称轴方程;④存在实数α,使得32sin 42πα⎛⎫+= ⎪⎝⎭.把你认为正确命题的序号都填在横线上____. 18.关于函数()4sin(2)(),3f x x x R π=+∈有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍;②()y f x =的图象关于点(,0)6π-对称;③()y f x =的表达式可改写为4cos(2);6y x π=-④()y f x =的图象关于直线6x π=-对称.其中正确命题的序号是_________.19.已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.20.函数()()0,0,2(f x Asin x A πωϕωϕ=+>><)的部分图像如图所示.则()f x 的解析式是_____.三、解答题21.已知函数()()2sin 0,22x f x ωϕωπϕ=≥<⎛⎫+ ⎪⎝⎭的图像向右平移6π个单位长度得到()g x 的图像, ()g x 图像关于原点对称,()f x 的相邻两条对称轴的距离是2π. (1)求()f x 在[]0,π上的增区间; (2)若()230f x m -=+在0,2x π⎡⎤∈⎢⎥⎣⎦上有两解,求实数m 的取值范围.22.已知函数2()3sin cos cos (0)f x x x x ωωωω=->周期是2π. (1)求()f x 的解析式,并求()f x 的单调递增区间;(2)将()f x 图像上所有点的横坐标扩大到原来的2倍,再向左平移6π个单位,最后将整个函数图像向上平移32个单位后得到函数()g x 的图像,若263x ππ≤≤时,()2g x m -<恒成立,求m 得取值范围.23.如图所示,摩天轮的半径为50m ,最高点距离地面高度为110m ,摩天轮的圆周上均匀地安装着24个座舱,并且运行时按逆时针匀速旋转,转一周大约需要12min .甲,乙两游客分别坐在P ,Q 两个座舱里,且他们之间间隔2个座舱(本题中将座舱视为圆周上的点).(1)求劣弧PQ 的弧长l (单位:m );(2)设游客丙从最低点M 处进舱,开始转动min t 后距离地面的高度为m H ,求在转动一周的过程中,H 关于时间t 的函数解析式;(3)若游客在距离地面至少85m 的高度能够获得最佳视觉效果,请问摩天轮转动一周能有多长时间使甲,乙两位游客都有最佳视觉效果.24.游客乘坐位于长沙贺龙体育场的摩天轮可近观长沙中心城区城市美景,远眺岳麓山,俯瞰橘子洲,饱览湘江风光.据工作人员介绍,该摩天轮直径约100米,摩天轮的最低处P 与地面的距离为20米,设有60个座舱,游客先乘坐直升电梯到入口(人口在摩天轮距地面的最低处)处等待,当座舱到达最低处P 时有序进入座舱,摩天轮逆时针方向匀速运行一周约需20分钟.以摩天轮的圆心为坐标原点,水平线为x 轴建立如图所示的平面直角坐标系.(1)试将游客甲离地面的距离()h t (单位:米)表示为其坐上摩天轮的时间t (单位:分钟)的函数;(2)若游客乙在甲后的5分钟也在点P 处坐上摩天轮,求在乙坐上摩天轮后的多少分钟时甲乙的离地面距离之差首次达到最大.25.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 图象上每个点的横坐标变为原来的2倍(纵坐标不变),再将得到的图象向右平移4个单位长度,所得图象的函数为()g x ,若不等式()0g x m -≤在[]0,6x ∈恒成立,求实数m 的取值范围.26.己知函数()sin 3cos (0, 0 )f x A x A x A ωωω=+>>,其部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[]0,π的单调增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈, 因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.2.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标,可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.3.D解析:D 【分析】先根据题意建立坐标系,写出盛水筒M 距离水面的高度H 与时间t 之间的函数关系式,再根据关系式即可判断. 【详解】解:以O 为圆心,过点O 的水平直线为x 轴,建立如图所示的平面直角坐标系:0306xOP π∠==,OP ∴在()t s 内转过的角为:26030t t ππ=, ∴以x 轴正半轴为始边,以OP 为终边的角为:306t ππ-,P ∴点的纵坐标为:4sin 306t ππ⎛⎫-⎪⎝⎭, H ∴与t 之间的函数关系式为:4sin 2306H t ππ⎛⎫=-+⎪⎝⎭, 当sin 1306t ππ⎛⎫-= ⎪⎝⎭时,max 426H =+=, 当sin 1306t ππ⎛⎫-=-⎪⎝⎭时,max 422H =-+=-, 对A ,B ,由图像易知max min H H =-,故A ,B 错误; 对C ,max min H H <-,故C 错误; 对D ,max min H H >-,故D 正确. 故选:D. 【点睛】关键点点睛:本题解题的关键是理解题意,根据题意写出H 与t 之间的函数关系式.4.D解析:D 【分析】利用正弦函数的单调性可判断AD 选项的正误;利用正切函数的单调性可判断C 选项的正误;利用余弦函数的单调性可判断B 选项的正误. 【详解】对于A 选项,因为正弦函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增, 且01122ππ<-<<,则sin1sin 1cos12π⎛⎫>-=⎪⎝⎭,A 选项错误; 对于B 选项,因为余弦函数cos y x =在()0,π上为减函数,23233cos cos cos 555πππ⎛⎫-== ⎪⎝⎭,1717cos cos cos 444πππ⎛⎫-== ⎪⎝⎭, 3045πππ<<<,则3cos cos 54ππ<,即2317cos cos 54ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,当900x -<<时,正切函数tan y x =单调递增,因为9052470-<-<-<,所以,()()tan 52tan 47-<-,C 选项错误;对于D 选项,因为正弦函数sin y x =在,02π⎛⎫- ⎪⎝⎭上单调递增,因为021018πππ-<-<-<,所以,sin sin 1810ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,D 选项正确. 故选:D. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.5.A解析:A 【分析】由题意根据三角函数定义可知0x cos α=,先根据角α的取值范围求出6πα⎛⎫+⎪⎝⎭的取值范围继而求出4cos 65πα⎛⎫+=- ⎪⎝⎭,再通过凑角求cos α. 【详解】5,36ππα⎛⎫∈ ⎪⎝⎭,则26ππαπ<+<,则由3sin 65πα⎛⎫+= ⎪⎝⎭,得4cos 65πα⎛⎫+=- ⎪⎝⎭.由点()00,P x y 在单位圆O 上,设xOP α∠=,则0x cos α=. 又cos αcos 66ππα⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦cos sin 6666cos sin ππππαα⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭431552=-+⨯310-=故0x =.选A. 【点睛】本题考查三角函数定义及三角恒等变换的简单应用.解题中注意所求角的取值范围.由配凑法根据已知角构造所求角进行求解是三角恒等变换中常用的解题技巧.6.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.7.B解析:B 【分析】利用函数()0f π=排除两个选项,再由奇偶性排除一个后可得正确选项. 【详解】由图象知()0f π=,经验证只有AB 满足,C 中()cos 2f ππππ==,D 中()f ππ=,排除CD ,A 中函数满足()sin(2)sin 2()f x x x x x f x -=--==为偶函数,B 中函数满足()sin(2)sin 2()f x x x x x f x -=--=-=-为奇函数,而图象关于原点对称,函数为奇函数,排除A ,选B . 故选:B . 【点睛】思路点睛:由函数图象选择解析式可从以下方面入手:(1)从图象的左右位置,观察函数的定义域;从图象的上下位置,观察函数的值域; (2)从图象的变化趋势观察函数的单调性; (3)从图象的对称性观察函数的奇偶性; (4)从图象的特殊点,排除不合要求的解析式..8.B解析:B 【分析】求出弦长,再求出圆的半径,然后利用三角形面积求解. 【详解】如图,由题意8CD =,弓琖ACB 的面积为128,1(8)81282AB ⨯+⨯=,24AB =, 设所在圆半径为R ,即OA OB R ==,则22224(8)2R R ⎛⎫=-+ ⎪⎝⎭,解得13R =, 5OD =,由211sin 22AB OD OA AOB ⨯=∠得 2245120sin 13169AOB ⨯∠==. 故选:B .【点睛】关键点点睛:本题考查扇形与弓形的的有关计算问题,解题关键是读懂题意,在读懂题意基础上求出弦长AB ,然后求得半径R ,从而可解决扇形中的所有问题.9.D解析:D 【分析】利用题干中的已知条件求得2ω=,可得出()sin 216f x x π⎛⎫=-+ ⎪⎝⎭,利用正弦型函数的对称性可判断①②的正误,利用正弦型函数的值域可判断③的正误,求出方程()1f x =在[]0,2π上的解,可判断④的正误. 【详解】N ω*∈,由55,126x ππ⎡⎤∈⎢⎥⎣⎦可得55126666x πωπππωπω-≤-≤-, 由于函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以,()553,2,21266622k k k Z πωππωπππππ⎡⎤⎡⎤--⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以,521262532662k k ωππππωππππ⎧-≥+⎪⎪⎨⎪-≤+⎪⎩,解得()248121055k k k Z ω++≤≤∈,由248121055k k ++≤,解得16k ≤,N ω*∈且k Z ∈,0k ∴=,可得825ω≤≤,2ω∴=,则()sin 216f x x π⎛⎫=-+ ⎪⎝⎭.对于①,sin 2sin 00126ππ⎛⎫⨯-==⎪⎝⎭,所以,112f π⎛⎫= ⎪⎝⎭, 所以,函数()f x 的图象关于点,112π⎛⎫⎪⎝⎭成中心对称,①错误; 对于②,271sin 2sin 13662πππ⎛⎫⨯-==-≠± ⎪⎝⎭,②错误;对于③,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,5112,666x πππ⎡⎤-∈⎢⎥⎣⎦,则11sin 262x π⎛⎫-≤-≤ ⎪⎝⎭, 所以,()302f x ≤≤,即()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦,③正确; 对于④,当[]0,2x π∈时,232,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 令()1f x =,可得sin 206x π⎛⎫-= ⎪⎝⎭,206x π∴-=或26x ππ-=或226x ππ-=或236x ππ-=.所以,方程()1f x =在[]0,2π有4个不相同的根,④正确. 故选:D. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).10.A解析:A 【分析】由题意知函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数,作出两个函数图象,数形结合即可求解. 【详解】令()()()0h x f x g x =-=可得()()f x g x =,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数等价于 函数()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象在区间[]2,2ππ-上交点的个数. 分别作出()tan 3f x x π=-与()sin 3g x x π⎛⎫=-⎪⎝⎭图象,由图知两个函数图象在区间[]2,2ππ-上有4个交点,所以函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是4, 故选:A 【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点; (2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.11.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+,故()f x 是周期函数且周期为π,故③正确. 又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 12.C解析:C 【分析】利用二倍角和辅助角公式化简函数为()2sin(2+)3f x x π=;根据正弦型函数的性质验证选项得解 【详解】()sin 222sin(2+)3f x x x x π==()f x 最小正周期22T ππ==,A 错误; ()2sin[2()+]2sin(2)2sin 2333f x x x x ππππ-=-=-=,B 错误; 当7(,)1212x ππ∈时,32(,)322x πππ+∈ ()f x ∴在7(,)1212ππ上是减函数,C 正确; 将2sin 2y x =向左平移3π个单位长度得到22sin[2()]2sin(2)33y x x ππ=-=-,D 错误. 故选:C 【点睛】本题考查正弦型函数性质的相关命题的辨析,涉及到二倍角和辅助角公式化简三角函数、正弦型函数的周期性、对称性和单调区间的求解、三角函数平移变换的应用等知识;关键是能够熟练掌握整体对应的方法,通过代入检验,结合正弦函数图象可确定正弦型函数的性质.二、填空题13.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的 解析:(40303)π+【分析】如图,作出月牙湖的示意图,由题意可得3sin QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin 2QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+.故答案为:(40π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.14.②③④【分析】根据函数的图象与性质分析函数的对称性奇偶性与单调性即可得出结论【详解】解:①由得令直线为函数图象的对称轴故图象C 关于直线对称故①正确;由得令得函数在区间内是增函数故②错误;故函数不是奇解析:②③④ 【分析】根据函数()3sin 23f x x π⎛⎫=- ⎪⎝⎭的图象与性质,分析函数的对称性,奇偶性与单调性,即可得出结论. 【详解】 解:①由232x k πππ-=+,Z k ∈,得25121x k ππ=+,Z k ∈, 令1k =,直线1112π=x 为函数图象的对称轴, 故图象C 关于直线1112π=x 对称,故①正确; 由222232k x k πππππ-+≤-≤+,k Z ∈,得5,1212x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,k Z ∈, 令0k =,得函数()f x 在区间5,1212ππ⎛⎫-⎪⎝⎭内是增函数,故②错误; ()00f ≠,故函数()f x 不是奇函数,故③错误;由23x k ππ-=,k Z ∈,得612x k ππ=+,k Z ∈,图象C 不关于点,03π⎛⎫ ⎪⎝⎭对称,故④错误.故答案为:②③④. 【点睛】本题考查正弦函数的图象与性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.15.【分析】先根据函数在区间上的最小值是确定的取值范围进而可得到或求出的范围得到答案【详解】函数在区间上的最小值是则的取值范围是当时函数有最小值或或的最小值等于故答案为:【点睛】本题主要考查正弦函数的最解析:32【分析】先根据函数在区间[,]34ππ-上的最小值是2-确定x ω的取值范围,进而可得到32ωππ--或342ωππ,求出ω的范围得到答案. 【详解】函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-, 则x ω的取值范围是[,]34ωπωπ-,当22x k πωπ=-+,k Z ∈时,函数有最小值2-,32ωππ∴--,或342ωππ,k Z ∈, ∴32ω≥,或6ω,k Z ∈, 0ω>,ω∴的最小值等于32.故答案为:32. 【点睛】本题主要考查正弦函数的最值的应用.考查基础知识的运用能力.三角函数式高考的重要考点,一定要强化复习.16.【分析】根据和的函数图像的对称点和交点个数得出答案【详解】令可得作出和的函数图像如图所示:由图像可知两函数图像有个交点又两函数图像均关于直线对称的个零点之和为故答案为:【点睛】本题考查了函数零点之和 解析:12【分析】根据8sin y x π=和23y x =-的函数图像的对称点和交点个数得出答案. 【详解】令()0f x =可得8sin 23x x π=-,作出8sin y x π=和23y x =-的函数图像如图所示:由图像可知两函数图像有8个交点, 又两函数图像均关于直线32x =对称, ∴()f x 的8个零点之和为324122⨯⨯=.故答案为:12 【点睛】本题考查了函数零点之和,考查了转化与化归、数形结合的思想,属于基础题.17.①③【分析】根据三角函数的奇偶性对称中心对称轴和最值对四个命题逐一分析由此确定正确命题的序号【详解】①为奇函数所以①正确②由于所以②错误③由于所以③正确④由于的最大值为所以④错误故答案为:①③【点睛解析:①③ 【分析】根据三角函数的奇偶性、对称中心、对称轴和最值对四个命题逐一分析,由此确定正确命题的序号. 【详解】①,22cos sin 323y x x π⎛⎫=+=- ⎪⎝⎭为奇函数,所以①正确.②,由于sin 2sin 11232πππ⎛⎫⨯+== ⎪⎝⎭,所以②错误. ③,由于53sin 2sin 1842πππ⎛⎫⨯+==- ⎪⎝⎭,所以③正确. ④24πα⎛⎫+ ⎪⎝⎭2322<,所以④错误.故答案为:①③ 【点睛】本小题主要考查三角函数的奇偶性、对称性、最值以及诱导公式,属于中档题.18.②③【分析】根据三角函数的零点性质三角函数对称和三角函数诱导公式依次判断每个选项得到答案【详解】①中是的两个零点即是的整数倍①错误;②中②正确;故④错误;③中③正确;所以正确命题序号是②③故答案为:解析:②③ 【分析】根据三角函数的零点性质,三角函数对称和三角函数诱导公式依次判断每个选项得到答案. 【详解】①中12,x x 是()f x 的两个零点,即12x x -是2π的整数倍,①错误; ②中06f π⎛⎫-= ⎪⎝⎭,②正确;故④错误; ③中4sin 24cos 2cos 23236y x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,③正确; 所以正确命题序号是②③. 故答案为:②③. 【点睛】本题考查了三角函数的对称,零点,诱导公式,意在考查学生对于三角函数知识的综合应用.19.【分析】和的图象都关于对称所以①②由①②结合即可得到答案【详解】由题意因为和的图象都关于对称所以①②由①②得又所以将代入①得注意到所以所以故答案为:【点睛】本题考查正弦型函数的性质涉及到函数图象的平解析:34π-【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对 称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π- 【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.20.【分析】由图像对应横坐标可求再将代入可进一步求解由图像过点可求进而求解【详解】由解得又函数过所以解得又图像过可得解得故故答案为:【点睛】本题考查由三角函数图像求解析式属于中档题解析:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【分析】由34T 图像对应横坐标可求ω,再将6x π=代入可进一步求解ϕ,由图像过()0,1点可求A ,进而求解 【详解】由1132312644T πππω-==⋅,解得2ω=,又函数过()max ,6f x π⎛⎫⎪⎝⎭, 所以63A f Asin ππϕ⎛⎫⎛⎫=⎪ ⎪⎝⎝⎭+⎭=,解得6π=ϕ,又图像过()0,1可得()106f Asin π==,解得2A =,故()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭故答案为:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【点睛】本题考查由三角函数图像求解析式,属于中档题三、解答题21.(1)70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦;(2)12⎛ ⎝⎦. 【分析】(1)由()f x 的相邻两条对称轴的距离是2π,可得函数的周期,从而得出ω的值,由平移得出()g x 的解析式,根据()g x 图像关于原点对称,可求出ϕ的值,从而可求()f x 单调增区间,得出答案.(2)令23t x π=+则4,33t ππ⎡⎤∈⎢⎥⎣⎦,则[2s n 2]i t ∈,根据()230f x m -=+有两解,即2sin 32t m =-有两解,从而可得答案. 【详解】解:由()f x 的相邻两条对称轴的距离是2π,则22T ππω==,1,ω∴= ()()2sin 2f x x ϕ∴=+()2sin 2sin 2326x g x x ππϕϕ⎡⎤⎛⎫-+ ⎪⎢⎛⎫==-+ ⎪⎝⎥⎝⎣⎦⎭⎭函数()g x 的图像关于原点对称,3k πϕπ-+=,,2πϕ<所以3πϕ=()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭(1)由222232k x k πππππ-≤+≤+,k Z ∈得51212k x k ππππ-≤≤+,k Z ∈ 令0k =得51212x ππ-≤≤ 1k =得7131212x ππ≤≤ ()f x ∴在[]0,π增区间是70,,,1212ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦()2令23t x π=+,0,,2x π⎡⎤∈⎢⎥⎣⎦则4,33t ππ⎡⎤∴∈⎢⎥⎣⎦所以[2s n 2]i t ∈若()230f x m -=+有两解,即2sin 32t m =-在4,33t ππ⎡⎤∈⎢⎥⎣⎦上有两解,由2sin y t =322m -<,即123m <≤12m ∴<≤m ∴的取值范围是12⎛ ⎝⎦【点睛】关键点睛:本题考查求正弦型函数的单调增区间和根据方程的解个数求参数的范围问题,解答本题的关键是设23t x π=+,由0,,2x π⎡⎤∈⎢⎥⎣⎦则4,33t ππ⎡⎤∈⎢⎥⎣⎦所以[2s n ,2]i 3t ∈-若()230f x m -=+有两解,即2sin 32t m =-在4,33t ππ⎡⎤∈⎢⎥⎣⎦上有两解,然后数形结合求解,属于中档题.22.(1)1()sin 462f x x π⎛⎫=-- ⎪⎝⎭,单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈;(2)()0,2. 【分析】(1)根据正弦和余弦的二倍角公式化简可得1()sin 262f x x πω⎛⎫=-- ⎪⎝⎭,由222T ππω==,解得2ω=,带入正弦函数的递增区间242262k x k πππππ-≤-≤+,化简即可得解; (2)根据三角函数的平移和伸缩变换可得()sin 216g x x π⎛⎫=++ ⎪⎝⎭,根据题意只需要max min [()2][()2]g x m g x -<<+,分别在263x ππ≤≤范围内求出()g x 的最值即可得解. 【详解】(1)2()3cos cos f x x x x ωωω=-312(cos 21)22x x ωω=-+ 1sin 262x πω⎛⎫=-- ⎪⎝⎭由222T ππω==,解得2ω=所以,1()sin 462f x x π⎛⎫=-- ⎪⎝⎭ ∵242262k x k πππππ-≤-≤+∴224233k x k ππππ-≤≤+∴21226k k x ππππ-≤≤+ ∴()f x 的单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈ (2)依题意得()sin 216g x x π⎛⎫=++ ⎪⎝⎭因为|()|2g x m -<,所以()2()2g x m g x -<<+因为当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()2()2g x m g x -<<+恒成立所以只需max min [()2][()2]g x m g x -<<+转化为求()g x 的最大值与最小值当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()y g x =为单调减函数所以max ()1126g x g π⎛⎫==+= ⎪⎝⎭,()min21103g x g π⎛⎫==-+= ⎪⎝⎭, 从而max [()2]0g x -=,min [()2]2g x +=,即02m <<所以m 的取值范围是()0,2. 【点睛】本题考查了三角函数的单调性和最值,考查了三角函数的辅助角公式和平移伸缩变换,有一定的计算量,属于中档题.本题关键点有: (1)三角函数基本量的理解应用; (2)三角函数图像平移伸缩变换的方法; (3)恒成立思想的理解及转化. 23.(1)252m π;(2)50sin()6062H x ππ=-+,其中012t ≤≤;(3)5min 2. 【分析】(1)根据弧长的计算公式可求PQ 的长度.(2)建立如图所示的平面直角坐标系,利用三角函数的定义可求H 关于时间t 的函数解析式.(3)利用(2)中所得的解析式并令85H ≥,求出不等式的解后可得甲,乙两位游客都有最佳视觉效果的时间长度. 【详解】(1)因为摩天轮的圆周上均匀地安装着24个座舱,故每个座舱与中心连线所成的扇形的圆心角为22412ππ=, 故25350122lm ππ. (2)建立如图所示的平面直角坐标系,设sin()H A wx B ϕ=++, 由题意知,12T =,所以26w T ππ==, 又由50,1105060A r B ===-=,所以50sin()606H x πϕ=++,当0x =时,可得sin 1ϕ=-,所以2πϕ=-,故H 关于时间t 的函数解析式为50sin()6062H x ππ=-+,其中012t ≤≤.(3)令50sin()608562H x ππ=-+≥,即1sin()622x ππ-≥, 令522,6626k x k k Z ππππππ+≤-≤+∈,解得412812,k x k k Z +≤≤+∈, 因为甲乙两人相差3312min 242⨯=, 又由354min 22-=,所以有5min 2甲乙都有最佳视觉效果. 【点睛】三角函数实际应用问题的处理策略: 1、已知函数模型求解数学问题;2、把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题;3、根据实际问题转化为已知条件转化为三角函数的解析式和图象,然后在根据数形结合思想研究三角函数的性质,进而加深理解函数的性质. 24.(1)()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭;(2)52分钟. 【分析】(1)根据题意分析游客甲绕原点作匀速圆周运动,根据三角函数定义可把他离地面的距离()h t 表示出来;(2)先求出游客乙离地面距离的函数()g t ,则()()h h t g t =-△即为甲乙的离地面距离之差,利用函数求最值. 【详解】(1)法1:据题意,游客甲绕原点按逆时针方向作角速度为22010ππ=弧度/分钟的匀速圆周运动,设经过t 分钟后甲到达Q ,则以OP 为始边,OQ 为终边的角的大小是10t π, 因为圆的半径为50r =米,由三角函数定义知点Q 的纵坐标为50sin 102y t ππ⎛⎫=-⎪⎝⎭, 则其离地面的距离为:()()205050sin 7050cos 010210h t t t t πππ⎛⎫=++-=-≥⎪⎝⎭. 法2:因为摩天轮是作匀速圆周运动,故可设()()()sin 0,0h t A t b A ωϕω=++>>,据题意有12050,2070,A b A A b b ⎧+==⎧⇒⎨⎨-+==⎩⎩又周期20T =,所以10πω=,由在最低点入舱得01022πππϕϕ⋅+=-⇒=-,故得()50sin 707050cos ,010210h t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭. (2)由(1)可知游客乙离地面的距离:()()7050cos 57050sin 1010g t t t ππ⎡⎤=--=-⎢⎥⎣⎦,其中时间t 表示游客甲坐上摩天轮的时间,则甲乙的离地面距离之差为:()()50sin cos 1010104h h t g t t t t ππππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭△,当()21042t k k ππππ-=+∈Z ,即()15202t k k =+∈Z 时,甲乙离地面距离之差达到最大,所以152t =,即游客乙坐上摩天轮552t -=分钟后,甲乙的离地面距离之差首次达到最大. 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式:(1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;。

完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。

$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。

$-\frac{\pi}{3}$C。

$\frac{\pi}{6}$D。

$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。

2B。

$\frac{1}{6164}$C。

$-\frac{1}{6164}$D。

$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。

在 $x$ 轴上B。

在直线 $y=x$ 上C。

在 $y$ 轴上D。

在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。

$-\frac{2}{3}$B。

$\frac{3}{2}$C。

$\frac{1}{2}$D。

$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。

向左平移 $\frac{\pi}{4}$ 个单位B。

向右平移 $\frac{\pi}{4}$ 个单位C。

高中数学必修四第一章测试题

高中数学必修四第一章测试题

高中数学必修四第一章测试题一、选择题(每题3分,共30分)1. 若函数\( f(x) = 3x^2 + 2x - 5 \),求\( f(-1) \)的值。

A. 0B. 1C. 2D. 32. 已知\( a \),\( b \)为常数,若\( y = ax^2 + bx + c \)的顶点坐标为(-1, -2),则\( a \)的值为:A. -1B. 1C. 2D. 33. 函数\( y = \frac{1}{x} \)的图像在点(1,1)处的切线斜率是:A. 0B. 1C. -1D. 24. 若\( x^2 - 5x + 6 = 0 \)的两个根为\( x_1 \)和\( x_2 \),则\( x_1 + x_2 \)的值是:A. 2B. 3C. 4D. 55. 函数\( y = x^3 - 3x^2 + 2 \)的极大值点是:A. \( x = 1 \)B. \( x = 2 \)C. \( x = 3 \)D. 无极大值点6. 已知\( \sin \theta = \frac{3}{5} \),且\( \theta \)在第一象限,求\( \cos^2 \theta \)的值。

A. \( \frac{9}{25} \)B. \( \frac{16}{25} \)C. \( \frac{9}{25} \times \frac{16}{25} \)D. \( \frac{16}{25} \times \frac{16}{25} \)7. 以下哪个函数是奇函数?A. \( y = x^2 \)B. \( y = |x| \)C. \( y = x^3 \)D. \( y = \sin x \)8. 已知\( \cos \alpha = \frac{4}{5} \),且\( \alpha \)在第二象限,求\( \sin \alpha \)的值。

A. \( -\frac{3}{5} \)B. \( \frac{3}{5} \)C. \( -\frac{4}{5} \)D. \( \frac{4}{5} \)9. 以下哪个选项是\( y = \ln x \)的图像?A. 直线B. 抛物线C. 双曲线D. 指数曲线10. 若\( \tan \beta = 2 \),求\( \sin^2 \beta \)的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修四第一章复习题
一、选择题(本大题共12小题,每题5分,共60分)
1.下列说法中,正确的是( )
A .第二象限的角是钝角
B .第三象限的角必大于第二象限的角
C .-831°是第二象限角
D .-95°20′,984°40′,264°40′是终边相同的角
2.若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( ) A .0 B.33 C .1 D. 3
3.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在( )
A .第一、三象限
B .第二、四象限
C .第一、三象限或x 轴上
D .第二、四象限或x 轴上
4.如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期是T ,且当 x =2时取得最大值,那么( )
A .T =2,θ=π2
B .T =1,θ=π
C .T =2,θ=π
D .T =1,θ=π2
5.若sin ⎝ ⎛⎭
⎪⎫π2-x =-32,且π<x <2π,则x 等于( ) A.43π B.76π C.53π D.116π
6.已知a 是实数,而函数f (x )=1+a sin ax 的图象不可能是( )
7.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得
到y =sin ⎝ ⎛⎭
⎪⎫x -π6的图象,则φ=( ) A.π6 B.5π6 C.7π6 D.11π6
8.若tan θ=2,则2sin θ-cos θsin θ+2cos θ
的值为( ) A .0 B .1 C.34 D.54
9.函数f (x )=tan x 1+cos x
的奇偶性是( ) A .奇函数
B .偶函数
C .既是奇函数又是偶函数
D .既不是奇函数也不是偶函数
10.函数f (x )=x -cos x 在(0,+∞)内( )
A .没有零点
B .有且仅有一个零点
C .有且仅有两个零点
D .有无穷多个零点
cos A )=m ,lg 11-cos A =n ,则lgsin A B .m -n
D.12(m -n ) C , 对称;
②函数f (x )在区间⎝ ⎛⎭
⎪⎫-π12,5π12内是增函数; ③由y =3sin2x 的图象向右平移π3个单位长度可以得到图象C ,其
中正确命题的个数是( )
A .0
B .1
C .2
D .3
二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上)
13.已知sin ⎝ ⎛⎭⎪⎫α+π2=13,α∈⎝ ⎛⎭
⎪⎫-π2,0,则tan α=________. 14.函数y =3cos x (0≤x ≤π)的图象与直线y =-3及y 轴围成的图形的面积为________.
15.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.
16.给出下列命题:
①函数y =cos ⎝ ⎛⎭
⎪⎫23x +π2是奇函数; ②存在实数x ,使sin x +x =2;
③若α,βα<β,则tan α<tan β;
④x =π8是函数y =sin ⎝ ⎛⎭
⎪⎫2x +5π4的一条对称轴; ⑤函数y =sin ⎝
⎛⎭⎪⎫2x +π3的图象关于点⎝ ⎛⎭⎪⎫π12,0成中心对称. 其中正确命题的序号为__________.
小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(10分)已知方程sin(α-3π)=2cos(α-4π),求sin (π-α)+5cos (2π-α)2sin ⎝ ⎛⎭
⎪⎫3π2-α-sin (-α)的值.
18.(12分)在△ABC 中,sin A +cos A =22,求tan A 的值.
19.(12分)已知f (x )=sin ⎝
⎛2x (1)求函数f (x )(2)求函数f (x )(3)函数f (x )换得到?
20.(12分)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ⎝ ⎛⎭⎪⎫π12,0,图象与P 点最近的一个最高点坐标为⎝ ⎛⎭
⎪⎫π3,5. (1)求函数解析式;
(2)求函数的最大值,并写出相应的x 的值;
(3)求使y ≤0时,x 的取值范围.
21.(12分)已知cos ⎝ ⎛⎭⎪⎫π2-α=-2sin ⎝ ⎛⎭
⎪⎫π2+β,且0<α<π
22.(12分)已知函数f (x )=x 2+2x tan θ-1,x ∈[-1,3],其中
θ∈⎝ ⎛⎭
⎪⎫-π2,π2. (1)当θ=-π6时,求函数的最大值和最小值;
(2)求θ的取值范围,使y =f (x )在区间[-1,3]上是单调函数(在指定区间为增函数或减函数称为该区间上的单调函数).。

相关文档
最新文档