圆锥曲线解题技巧和方法综合经典
高中数学圆锥曲线解题的十个大招(适用于2020高考)

1高中数学圆锥曲线解题的十个大招招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k - ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 32。
221212()()AB x x y y =-+-222141k k k -=+212k d k+=222314112k k k k -++=39k =053x =。
【涉及到弦的垂直平分线问题】2这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
圆锥曲线的解题方法(精选4篇)

圆锥曲线的解题方法(精选4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、应急预案、演讲致辞、规章制度、合同协议、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, work plans, emergency plans, speeches, rules and regulations, contract agreements, document letters, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!圆锥曲线的解题方法(精选4篇)圆锥曲线的七种题型归纳:篇1一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
圆锥曲线解题技巧归纳(9篇)

圆锥曲线解题技巧归纳(9篇)化为一元二次方程,利用判别式求最值篇一如果能把圆锥曲线的最值问题转化为含有一个未知量的一元二次方程,利用,解得要求未知量的范围,然后确定其最值。
例3:直线,椭圆C:。
求以椭圆C的焦点F1、F2为焦点,且与直线l有公共点M的椭圆中长轴最短的。
分析:因为直线l与所求椭圆有公共点,可以由方程组得到一个一元二次方程,再利用判别式确定所求椭圆长轴的`最小值。
解:椭圆C的焦点。
说明:直线l与椭圆有公共点,可得方程组,消去一个未知数,得到一个一元二次方程,由一元二次方程有实根的条件得,构造参变量的不等式,确定的最小值,这种解法思路清晰、自然。
圆锥曲线的八大解题方法:篇二1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法圆锥曲线的解题方法:篇三一、求圆锥曲线方程(1)轨迹法:设点建立方程,化简证明求得。
例题:动点P(x,y)到定点A(3,0)的距离比它到定直线x=—5的距离少2。
求动点P的轨迹方程。
解析:依题意可知,{C},由题设知{C},{C}{C}。
(2)定义法:根据圆锥曲线的定义确定曲线的形状。
上述例题同样可以由定义法求出曲线方程:作直线x=—3,则点P到定点A与到定直线x=—3的距离相等,所以点P的轨迹是以A为焦点,以x=—3为准线的抛物线。
(3)待定系数法:通过题设条件构造关系式,待定参数即可。
例1:已知点(—2,3)与抛物线{C}的焦点的距离是5,则P=_____。
解析:抛物线{C}的焦点为{C},由两点间距离公式解得P=4。
例2:设椭圆{C}的右焦点与抛物线{C}的焦点相同,离心率为{C},则椭圆的方程为_____。
解析:抛物线{C}的焦点坐标为(2,0),所以椭圆焦半径为2,故离心率{C}得m=4,而{C},所以椭圆方程为{C}。
一、化为二次函数,求二次函数的最值依据条件求出用一个参数表示的二次函数解析式,而自变量都有一定的变化范围,然后用配方法求出限制条件下函数的最值,就可得到问题的解。
圆锥曲线知识点总结与经典例题

圆锥曲线知识点总结与经典例题圆锥曲线解题方法技巧第一、知识储备: 1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈2121y y k x x -=-②点0(,)P x y 到直线0Ax By C ++=的距离 0022Ax By C d A B++=+③夹角公式:直线111222::l y k x b l y k x b =+=+ 夹角为α, 则2121tan 1k kk kα-=+ (3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离①222121()()AB x x y y =-+-2121AB k x =+-221212(1)[()4]k x x x x =++-③12211AB y k =+-(4)两条直线的位置关系 (Ⅰ)111222::l y k x b l y k x b=+=+ ①1212l lk k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且(Ⅱ) 11112222:0:0l A x B y C l A x B y C ++=++=①1212120l lA AB B ⊥⇔+=②1212211221//0l l A B A B AC A C ⇔≠-=0且-或111222AB C AB C =≠者(222A B C≠)两平行线距离公式1122::l y kx b l y kx b =+⎧⎨=+⎩ 距离1221d k =+1122:0:0l Ax By C l Ax By C ++=⎧⎨++=⎩ 距离1222d A B =+二、椭圆、双曲线、抛物线:椭圆 双曲线 抛物线定义1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹 2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1) 与定点和直线的距离相等的点的轨迹. 轨迹条件 点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a}. 点集:{M ||MF 1|-|MF 2|.=±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方 标准12222=+by a x (b a >>012222=-by a x (a>0,b>0pxy 22=程方程) )参数方程为离心角)参数θθθ(sincos⎩⎨⎧==byax为离心角)参数θθθ(tansec⎩⎨⎧==byax⎩⎨⎧==ptyptx222(t为参数)范围─a≤x≤a,─b≤y≤b|x| ≥ a,y∈R x≥0中心原点O(0,0)原点O(0,0)顶点(a,0), (─a,0),(0,b) , (0,─b)(a,0), (─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0),F2(─c,0)F1(c,0), F2(─c,0))0,2(pF准线x=±ca2准线垂直于长轴,且在椭圆外.x=±ca2准线垂直于实轴,且在两顶点的内侧.x=-2p准线与焦点位于顶点两侧,且到顶点的距离相等.焦距 2c (c=22b a -) 2c (c=22b a +) 离心率)10(<<=e a ce)1(>=e acee=1焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点|PF 1|=a+ex 0|PF 2|=a-ex 0 P 在右支时:P 在左支时:|PF 1|=a+ex 0|PF 1|=-a-ex 0|PF 2|=-a+ex 0|PF 2|=a-ex 0|PF|=x 0+2p 【备注1】双曲线:⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x互为共轭双曲线,它们具有共同的渐近线:02222=-by a x .⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y ax 的渐近线方程为2222=-b y a x 如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为)0(2222≠=-λλb y ax .【备注2】抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p,0),准线方程x=-2p ,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p ,开口向上; 抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p ,开口向下.(2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20px MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x p MF-=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B两点,则线段AB 称为焦点弦,设A(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2p AB =(α为直线AB 的倾斜角),221p yy -=,2,41221p x AF p x x +==(AF 叫做焦半径).椭圆典型例题一、已知椭圆焦点的位置,求椭圆的标准方程。
圆锥曲线解题十招全归纳

《圆锥曲线解题十招全归纳》招式一:弦的垂直平分线问题 (2)招式二:动弦过定点的问题 (4)招式四:共线向量问题 (6)招式五:面积问题 (13)招式六:弦或弦长为定值、最值问题 (16)招式七:直线问题 (20)招式八:轨迹问题 (24)招式九:对称问题 (30)招式十、存在性问题 (33)招式一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
解:依题意知,直线的斜率存在,且不等于0。
设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。
由2(1)y k x y x=+⎧⎨=⎩消y 整理,得2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。
则线段AB 的中点为22211(,)22k k k--。
线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d 。
AB =21k =+2d k=21k +=k =053x =。
【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理........产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
圆锥曲线解题方法技巧归纳(整理)

圆锥曲线解题方法技巧归纳一、知识储备:1.直线方程的形式(1)直线方程的形式有五种:点斜式、两点式、斜截式、截距式、一般式。
(2 )与直线相关的重要内容(3 )弦长公式直线y kx b 与圆锥曲线两交点 A(x 1,y 1), B(x 2,y 2)间的距离:AB 1 k 2 X 1 X2I ,:(1 k 2 )[(x1 X 2)4x 1X 2]或 AB(若A 点为交点,另一点不在圆锥曲线上,上式仍然成立。
)(4)两条直线的位置关系① l 1 l 2 k 1 k 2 =-1 ② h 〃l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式(三种形式)2 2x y —1(m 0,n 0 且 m n) m n距离式方程:.(x c)2y 2 , (x c)2 y 22a参数方程:x a cos , y bsin (2)、双曲线的方程的形式有两种2 2标准方程:——1(m n 0)m n①倾斜角与斜率k tan , [0,)②点到直线的距离Ax o By 。
C .■ A 2 B 2③夹角公式:tan 1 k 2k 1④两直线距离公式I CT -C S I标准方程:参数方程:u 二atane , y = b⑶、三种圆锥曲线的通径⑹、记住焦半径公式:(1)椭圆焦点在x 轴上时为a ex o ;焦点在y 轴上时为a ey 0 ,可简记为“左加右减,上加下减”。
(2)双曲线焦点在x 轴上时为e|X o | a(3)抛物线焦点在x 轴上时为|X i | $焦点在y 轴上时为|%|(6)、椭圆和双曲线的基本量三角形 二、方法储备 1点差法(中点弦问题)2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立, 消去一个未知数,得到一个二次方程,使用判 别式 0,以及根与系数的关系,代入弦长公式,设曲线上的两点 A(x ,, y 1), B(x 2, y 2), 将这两点代入曲线方程得到 ①②两个式子,然后01 -②,整体消元•母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点椭圆:空;双曲线: a 竺;抛物线:2pa⑷、 圆锥曲线的定义 ⑸、 焦点三角形面积公式:P 在椭圆上时,S F 1PF 2P 在双曲线上时,S F 1PF 2(其中F 1PF 2,cos 卅护b 2cot —2,P F 1?P F 2|P F1设A X i , y i 、B X 2, y2 ,yi 为椭圆专+詈二L ab的弦AB 中点则有x 1 x 2 x 1X 2Vi T =1;两式相减得y 1 y 2 屮 y_K AB =,若有两个字F共线解决之。
(完整版)解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
(完整版)圆锥曲线解题方法技巧归纳

圆锥曲线解题方法技巧归纳第一、知识储备: 1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。
(2) 与直线相关的重要内容 ① 倾斜角与斜率k tan , [0,)② 点到直线的距离dA/ B y0_C tan(3) 弦长公式 直线 y kx b 上两点 A(x i , yj, B(X 2, y 2)间的距离:AB| J i k 2|x X 2J (1 k 2)[(X i X 2)2 4沁]或 AB J i *|y i y 2(4) 两条直线的位置关系 ① l 1 l 2 k 1k 2=-1② l 1 //12k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1) 、椭圆的方程的形式有几种?(三种形式)标准方程: 2 2—匚 1(m 0, n 0且 m n) m n 距离式方程:.(x c)2 y 2 . (x c)2 y 2 2a参数方程: x a cos , y bsin(2) 、双曲线的方程的形式有两种③夹角公式:k 2 12 2标准方程:—-1(m n 0)(3) 、三种圆锥曲线的通径你记得吗?椭圆:近;双曲线:玄;抛物线:2pa a(4) 、圆锥曲线的定义你记清楚了吗?b 2 tan —2P 在双曲线上时,S FP F 2 b 2 cot —,t| PF |2 | PF |2 4c 2 uur ujrn uur uimr(其中 F 1PF 2,COS 】1鳥尙,PF ?PF 2 |PF 1||PF 2|COS(6)、 记住焦 半 径公式: (1 )椭圆焦点在x 轴上时为a ex g ;焦点在y 轴上时为a ey °,可简记为“左加右减,上加下减”(2) 双曲线焦点在x 轴上时为e|x 01 a(3) 抛物线焦点在x 轴上时为| x , | 2,焦点在y 轴上时为| % | 2 (6)、椭圆和双曲线的基本量三角形你清楚吗? _ 第二、方法储备 1、点差法(中点弦问题)2B X 2,y 2,M a,b 为椭圆— 42 2 2 2 2222如: 已知F ,、 2 2F 2是椭圆勻七1的两个焦点,平面内一个动点 M足MF !MF 22则动点M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式:P 在椭圆上时,S F1p F2设 A x ,, y ,2仝1的弦AB 中点则有3仝生1,空空1 ;两式相减得二竺上上04 3 4 3 4 3x i X2 捲X2 y i y2 y i y2 3a4 3 k AB一不2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0,以及根与系数的关系,代入弦长公式,设曲线上的两点A(X!, y i), B(X2, y2),将这两点代入曲线方程得到①②两个式子,然后①-②,整体消元..................... ,若有两个字母未知数,贝S要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A、B、F共线解决之。
圆锥曲线中的典型问题与方法:圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有0220=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有0220=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ;(2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型一、解圆锥曲线问题常用的八种方法:1.直线的交点法:利用直线与圆锥曲线的交点来解题,求出直线与曲线的交点坐标,从而得到问题的解。
该方法适用于直线与圆锥曲线有交点的情况。
2.过顶点的直线法:通过过顶点的直线与圆锥曲线的交点性质来解题。
一般情况下,过顶点的直线与圆锥曲线有两个交点,利用这两个交点可以得到问题的解。
3.平行线法:对于平行线与圆锥曲线的交点性质进行分析,可以得到问题的解。
一般情况下,平行线与圆锥曲线有两个交点,通过求解这两个交点可以得到问题的解。
4.切线法:利用切线与圆锥曲线的交点性质来解题。
一般情况下,切线与圆锥曲线有一个交点,通过求解这个交点可以得到问题的解。
5.对称法:通过对称性质,将圆锥曲线转化为标准形式或特殊形式,从而简化问题的求解过程。
6.几何平均法:利用几何平均的性质,将圆锥曲线的方程进行变换,从而得到问题的解。
7.参数方程法:通过给定的参数方程,求解参数,从而得到与曲线相关的问题的解。
8.解析几何法:通过解析几何的方法,将问题抽象为代数方程,从而求解问题。
二、解圆锥曲线问题常规题型:1.已知曲线方程,求曲线的性质:如给定椭圆的方程,求椭圆的长短轴、焦点、离心率等。
2.已知曲线性质,求曲线方程:如给定一个椭圆的长短轴、焦点、离心率等,求椭圆的方程。
3.已知曲线方程和一个点,判断该点是否在曲线上:如给定一个椭圆的方程和一个点P,判断点P是否在椭圆上。
4.已知曲线方程和一个直线,判断该直线是否与曲线有交点:如给定一个椭圆的方程和一条直线L,判断直线L是否与椭圆有交点。
5.已知曲线方程和一个点,求该点到曲线的距离:如给定一个椭圆的方程和一个点P,求点P到椭圆的距离。
6.已知曲线方程和一个点,求该点在曲线上的切线方程:如给定一个椭圆的方程和一个点P,求点P在椭圆上的切线方程。
7.已知曲线方程和两个点,求该曲线上两点之间的弧长:如给定一个椭圆的方程和两个点A、B,求椭圆上从点A到点B的弧长。
(完整版)圆锥曲线解题技巧和方法综合(经典)

圆锥曲线解题方法技巧归纳第一、知识储备:1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。
(2) 与直线相关的重要内容①倾斜角与斜率 k tan , [0, )② 点 到 直 线 的 距 离 d Ax 0 By 0 CA 2B 2tan3)弦长公式直线 y kx b 上两点 A(x 1, y 1), B( x 2 , y 2 )间的距离: AB 1 k 2 x 1 x 2(1 k 2 )[( x 1 x 2)2 4x 1x 2] 或 AB 1 k 12 y 1 y 2 (4)两条直线的位置关系①l 1 l 2 k 1k 2=-1 ② l 1 //l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:22x y1(m 0,n 0且 m n) mn 距离式方程:(x c)2 y 2 (x c)2 y 22a 参数方程:x acos ,y bsin(2)、双曲线的方程的形式有两种③夹角公式:k21222标准方程:x y1(m n 0)mn距离式方| (x c)2 y 2 (x c) 2 y 2 | 2a(3) 、三种圆锥曲线的通径你记得吗?椭圆:2b;双曲线:2b;抛物线:2 p aa(4) 、圆锥曲线的定义你记清楚了吗?b 2tan2 P 在双曲线上时, S F PF b cot| PF |2 | PF |2 4c 2 uuur uuuur uuur uuuur 其中 F 1PF 2,cos |PF 1||PF 1||P |F P 2F |2 | 4c ,u P u F ur1?u P u Fuur 2|u P uu F r 1 ||uu P u Fur2|cos(6) 、 记 住 焦 半 径 公 式 : ( 1 )椭圆焦点在 x 轴上时为 a ex 0 ;焦点在 y 轴上时为 a ey 0,可简记为“左加右减,上加下减”(2)双曲线焦点在 x 轴上时为 e|x 0 | a(3) 抛物线焦点在 x 轴上时为 | x 1 | 2p ,焦点在 y 轴上时为 | y 1 | 2p(6)、椭圆和双曲线的基本量三角形你清楚吗?第二、方法储备1、点差法(中点弦问题)2y1的弦 AB 中点则有3如: 已知 F 1、 22F2是椭圆 x4 y3 1的两个焦点, 平面内一个动点 M 足 MF 1MF 2 2 则动点 M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式: P 在椭圆上时, S F 1PF 2设 A x 1, y 1B x 2,y 2 , M a,b 为椭圆 x42 2 2 2 2 2 2 2 x 1 y 1 1, x 2 y 2 1;两式相减得 x 1 x 2y 1 y 24 3 4 3 4 3x 1 x 2 x 1 x 2y 1 y 2 y 1 y 23a4 3kAB =4b2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到 一个二次方程, 使用判别式 0,以及根与系数的关系, 代入弦 长公式,设曲线上的两点 A( x 1, y 1), B(x 2 , y 2 ) ,将这两点代入曲线方 程得到 ○1 ○2 两个式子,然后 ○1-○2 ,整体消元······,若有两个 字母未知数, 则要找到它们的联系, 消去一个,比如直线过焦点, 则可以利用三点 A 、B 、 F 共线解决之。
数学圆锥曲线题解题技巧方法总结

数学圆锥曲线题解题技巧方法总结圆锥曲线最值问题从方程与曲线着手,反映了数学问题中的数与形的密切关系,这类问题涉及的数学知识较多,解题方法灵活。
下面是小编为大家整理的关于数学圆锥曲线解题技巧,希望对您有所帮助!圆锥曲线解题技巧题型一:求曲线方程<1>曲线形状已知,待定系数法解决<2>曲线形状未知,求轨迹方程题型二:直线和圆锥曲线关系把直线方程代入到曲线方程中,解方程,进而转化为一元二次方程后利用判别式、韦达定理,求根公式等来处理(应该特别注意数形结合的思想)题型三:两点关于直线对称问题求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。
题型四:两直线垂直斜率相乘等于-1题型五:中点弦问题点差法:设曲线上两点为(X1,Y1),(X2,Y2),代入方程,然后两方程相减,再应用中点关系及斜率公式(注意斜率不存在D的情况讨论),从而消去四个参数。
题型六:焦点三角形椭圆或双曲线上一点和其两个焦点构成三角形,多用正余弦定理解决问题。
题型七:最值问题(求范围)<1>若命题条件和结论有几何意义,可用图形性质来解答。
<2>若命题条件和结论有函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。
圆锥曲线大题解题技巧首先,我们要知道直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用。
其次当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”。
典型例题1:研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解。
解圆锥曲线问题常用的八种方法及七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法〔点参数、K 参数、角参数〕7、代入法8、充分利用曲线系方程法七种常规题型〔1〕中点弦问题 〔2〕焦点三角形问题〔3〕直线与圆锥曲线位置关系问题 〔4〕圆锥曲线的有关最值〔围〕问题 〔5〕求曲线的方程问题1.曲线的形状--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程〔6〕存在两点关于直线对称问题 〔7〕两线段垂直问题常用的八种方法1、定义法〔1〕椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
〔2〕双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离〞互相转化。
〔3〕抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要无视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法〞。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法〞,即设弦的两个端点A(*1,y 1),B(*2,y 2),弦AB 中点为M(*0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求〞法,具体有:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有02020=+k by a x 。
【高中数学】圆锥曲线解题技巧+7大题型汇总+常用公式推论!

【高中数学】圆锥曲线解题技巧+7大题型汇总+常用公式推论!学好圆锥曲线的几个关键点1、牢记核心知识点核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。
2、计算能力与速度计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。
后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。
当然也要掌握一些解题的小技巧,加快运算速度。
3、思维套路拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。
老师建议:山重水复疑无路,没事你就算两步。
大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。
一设:设直线与圆锥曲线的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。
二联立:通过快速计算或者口算得到联立的二次方程。
三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。
走完三部曲之后,在看题目给出了什么条件,要求什么。
例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。
4、题型总结圆锥曲线中常见题型总结这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论。
这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。
弦长问题主要记住弦长公式:设直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则:1)定点问题可先运用特殊值或者对称探索出该定点,再证明结论,即可简化运算;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得这类常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.轨迹问题一般方法有三种:定义法,相关点法和参数法。
圆锥曲线解题技巧综合运用不同解题方法

圆锥曲线解题技巧综合运用不同解题方法圆锥曲线是高中数学中的一个重要内容,经常在各类考试中出现。
掌握圆锥曲线的解题技巧,可以帮助我们高效解答题目。
本文将介绍几种常见的圆锥曲线解题方法,并综合运用它们来解决各类题目。
一、直接法直接法是最常用的解题方法之一,它适用于给定了圆锥曲线的方程,要求我们找出特定点或确定一些性质的情况。
以二次曲线为例,我们可以通过将方程标准化,然后研究其各项系数的符号、平方项的系数与常数项的关系等来推导出特定点的坐标、曲线的类型等信息。
二、参数法参数法常用于求解曲线上的点的坐标或曲线的方程。
当我们遇到较复杂的曲线方程,难以直接分析时,可以通过引入参数的方法,将曲线的方程转化为参数方程进行处理。
例如,对于椭圆和双曲线,我们可以通过引入参数来表示曲线上的点的坐标。
设参数为θ,则椭圆的参数方程为x=acosθ,y=bsinθ;双曲线的参数方程为x=asecθ,y=btanθ。
通过选取不同的参数值,我们可以得到曲线上的不同点,进而求解问题。
三、几何法几何法是通过几何图形的性质来解决问题的方法。
在圆锥曲线的学习过程中,我们会学到各种曲线的几何性质,如椭圆的离心率、焦点定理、双曲线的渐近线等。
利用这些性质,我们可以通过绘制几何图形,运用几何关系来解决问题。
四、导数法导数法常用于求解曲线的切线、法线以及曲率等问题。
对于给定的曲线方程,我们可以通过求导数来得到曲线的斜率,从而得到切线或法线的方程。
同时,导数还可以帮助我们研究曲线的凸凹性、极值等性质,进一步推导出曲线的特点。
五、解析法解析法是一种基于代数分析的方法,适用于较复杂的曲线方程求解。
通过对方程进行代数运算、化简等操作,我们可以得到曲线的一些基本性质或特定点的坐标。
在解析法中,我们常用的技巧包括配方法、消元法、代入法等,根据方程的特点和题目要求来灵活选择合适的方法。
此外,还需要注意方程中的各项系数和常数项之间的关系,以便得到准确的解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线解题方法技巧归纳第一、知识储备: 1、 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d = ③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-= 或12AB y =- (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且距离式方程2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:2a = (3)、三种圆锥曲线的通径您记得不?22222b b p a a椭圆:;双曲线:;抛物线:(4)、圆锥曲线的定义您记清楚了不?如:已知21F F 、就是椭圆13422=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则动点M 的轨迹就是( )A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:122tan 2F PF P b θ∆=在椭圆上时,S122cot 2F PF P b θ∆=在双曲线上时,S(其中2221212121212||||4,cos ,||||cos ||||PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅u u ur u u u u r u u u r u u u u r )(6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。
(2)0||x e x a ±双曲线焦点在轴上时为(3)11||,||22p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆与双曲线的基本量三角形您清楚不? 第二、方法储备 1、点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba43-2、联立消元法:您会解直线与圆锥曲线的位置关系一类的问题不?经典套路就是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。
若有向量的关系,则寻找坐标之间的关系,根与系数的关系结合消元处理。
一旦设直线为y kx b =+,就意味着k 存在。
例1、已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 就是椭圆短轴的一个端点(点A 在y 轴正半轴上)、(1)若三角形ABC 的重心就是椭圆的右焦点,试求直线BC 的方程; (2)若角A 为090,AD 垂直BC 于D,试求点D 的轨迹方程、分析:第一问抓住“重心”,利用点差法及重心坐标公式可求出中点弦BC 的斜率,从而写出直线BC 的方程。
第二问抓住角A 为090可得出AB ⊥AC,从而得016)(14212121=++-+y y y y x x ,然后利用联立消元法及交轨法求出点D 的轨迹方程; 解:(1)设B(1x ,1y ),C(2x ,2y ),BC 中点为(00,y x ),F(2,0)则有11620,1162022222121=+=+y x y x 两式作差有16))((20))((21212121=+-+-+y y y y x x x x 04500=+ky x (1) F(2,0)为三角形重心,所以由2321=+x x ,得30=x ,由03421=++y y 得20-=y ,代入(1)得56=k 直线BC 的方程为02856=--y x2)由AB ⊥AC 得016)(14212121=++-+y y y y x x (2) 设直线BC方程为8054,22=++=y x b kx y 代入,得080510)54(222=-+++b bkx x k2215410kkbx x +-=+,222154805k b x x +-= 2222122154804,548k k b y y k k y y +-=+=+ 代入(2)式得0541632922=+--kb b ,解得)(4舍=b 或94-=b 直线过定点(0,)94-,设D(x,y),则1494-=-⨯+xy x y ,即016329922=--+y x y 所以所求点D 的轨迹方程就是)4()920()916(222≠=-+y y x 。
4、设而不求法例2、如图,已知梯形ABCD 中CDAB2=,点E 分有向线段AC所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点当4332≤≤λ时,求双曲线离心率e 的取值范围。
分析:本小题主要考查坐标法、定比分点坐标公式、双曲线的概念与性质,推理、运算能力与综合运用数学知识解决问题的能力。
建立直角坐标系xOy ,如图,若设C ⎪⎭⎫⎝⎛h c , 2,代入12222=-b y a x ,求得h =L,进而求得,,E E x y ==L L 再代入12222=-by a x ,建立目标函数(,,,)0f a b c λ=,整理(,)0f e λ=,此运算量可见就是难上加难、我们对h 可采取设而不求的解题策略,建立目标函数(,,,)0f a b c λ=,整理(,)0f e λ=,化繁为简、解法一:如图,以AB 为垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系xOy ,则CD ⊥y 轴因为双曲线经过点C 、D,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称依题意,记A ()0 ,c -,C ⎪⎭⎫ ⎝⎛h c , 2,E ()00 ,y x ,其中||21AB c =为双曲线的半焦距,h 就是梯形的高,由定比分点坐标公式得()()122120+-=++-=λλλλc cc x , λλ+=10h y设双曲线的方程为12222=-by a x ,则离心率a ce =由点C 、E 在双曲线上,将点C 、E 的坐标与ac e =代入双曲线方程得14222=-b h e , ①11124222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-bh e λλλλ ②由①式得14222-=e b h , ③将③式代入②式,整理得()λλ214442+=-e ,故 1312+-=e λ由题设4332≤≤λ得,43231322≤+-≤e解得 107≤≤e所以双曲线的离心率的取值范围为[]10, 7分析:考虑,AE AC 为焦半径,可用焦半径公式, ,AE AC 用,E C 的横坐标表示,回避h 的计算, 达到设而不求的解题策略. 解法二:建系同解法一,(),E C AE a ex AC a ex =-+=+,()()22121E cc c x λλλλ-+-==++,又1AE AC λλ=+,代入整理1312+-=e λ,由题设4332≤≤λ得,43231322≤+-≤e 解得 107≤≤e所以双曲线的离心率的取值范围为[]10, 75、判别式法 例3已知双曲线122:22=-x yC ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。
分析1:解析几何就是用代数方法来研究几何图形的一门学科,因此,数形结合必然就是研究解析几何问题的重要手段、 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切、 而相切的代数表现形式就是所构造方程的判别式0=∆、 由此出发,可设计如下解题思路:()10)2(:<<-=k x k y lkkx y l 2:'-+=的值解得k解题过程略、分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解、 据此设计出如下解题思路:,则点M 到直线l)1<<k ()*于就是,问题即可转化为如上关于x 的方程、 由于10<<k ,所以kx x x >>+22,从而有.222222k x kx k x kx +++-=-+-于就是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x ⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k k kx k k k x k由10<<k 可知:方程()()()022)1(22)1(22122222=--++-++-k k x k k k x k 的二根同正,故02)1(22>+-+kx k k 恒成立,于就是()*等价于把直线l ’的方程代入双曲线方程,消去y ,令判别式0=∆l ’在l 的上方且到直线l 的距离为2()()()022)1(22)1(22122222=--++-++-k kx k k k x k、由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得552=k 、 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性、例4已知椭圆C:x y 2228+=与点P(4,1),过P 作直线交椭圆于A 、B两点,在线段AB 上取点Q,使AP PB AQQB=-,求动点Q 的轨迹所在曲线的方程、分析:这就是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。