第20章__典型相关分析

合集下载

初中数学 第20章数据的分析 全章教案

初中数学 第20章数据的分析 全章教案

第二十章数据的分析20.1数据的代表20.1.1平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值第二十章数据的分析课题20.1 数据的代表课时:六课时第一课时20.1.1 平均数【学习目标】1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。

【重点难点】重点:会求加权平均数难点:对“权”的理解【导学指导】学习教材P124-P127相关内容,思考、讨论、合作交流后完成下列问题:1.你认为P124“思考”中小明的做法有道理吗?为什么?2.正确的解法应是怎样的?请谈谈你的看法。

3.什么是加权平均数?4.P125“例1”中,所求的结果已不再是各人听说读写成绩的简单平均,而是听说读写成绩的加权平均数,它们的权分别是多少?5.P126“例2”中,两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同呢?谈谈你对权的作用的体会。

【课堂练习】1.教材P127练习第1,2题。

2、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为.3、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶环。

4、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:试判断谁会被公司录取,为什么?5、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。

初中数学《八下》 第二十章 数据的分析-数据的集中趋势 考试练习题

初中数学《八下》 第二十章 数据的分析-数据的集中趋势 考试练习题

初中数学《八下》第二十章数据的分析-数据的集中趋势考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7 份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表甲、乙两种西瓜得分统计表(1 )___________ ,___________ ;(2 )从方差的角度看, ___________ 种西瓜的得分较稳定(填“ 甲” 或“ 乙” );(3 )小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.知识点:数据的集中趋势【答案】(1 )a =88 ,b =90 ;(2 )乙;(3 )见解析【分析】(1 )根据中位数、众数的意义求解即可;(2 )根据数据大小波动情况,直观可得答案;(3 )从方差、中位数、众数的比较得出答案.【详解】解:(1 )甲品种西瓜测评得分从小到大排列处在中间位置的一个数是 88 ,所以中位数是 88 ,即a =88 ,将乙品种西瓜的测评得分出现次数最多的是90 分,因此众数是 90 ,即b =90 ,故答案为:a =88 ,b =90 ;(2 )由甲、乙两种西瓜的测评得分的大小波动情况,直观可得S 乙2<S 甲2,故答案为:乙;(3 )小明认为甲种西瓜的品质较好些,是因为甲的得分众数比乙的得分众数高;小军认为乙种西瓜的品质较好些,是因为乙的得分方差小和得分中位数比甲的高.【点睛】本题考查统计表,中位数、众数、平均数,理解中位数、众数、平均数的意义和计算方法是正确解答的前提.2、现有一组数据4 、 5 、 5 、 6 、 5 、 7 ,这组数据的众数是 ___ .知识点:数据的集中趋势【答案】5【分析】根据众数的意义求解即可.【详解】这组数据中出现次数最多的是5 ,共出现 3 次,因此众数是 5 ,故答案为: 5 .【点睛】本题考查的是众数:一组数中出现次数最多的数,熟练掌握众数的意义是解决本题的关键.3、一组数据:5,7,10,5,7,5,6. 这组数据的中位数和众数()A . 7 和 10B . 7 和 5C . 7 和 6D . 6 和 5知识点:数据的集中趋势【答案】D【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.【详解】将这组数据重新排列为5 、 5 、 5 、 6 、 7 、 7 、 10 ,所以这组数据的众数为5 、中位数为 6 ,故选D .【点睛】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.4、在5 月 31 日世界禁烟日到来之际,某校为了提高禁烟意识,在七、八年级举办了“ 关爱健康,远离香烟” 的知识竞赛,两个年级分别有 500 人为了了解本次竞赛成绩情况,现从中各随机抽取了部分同学的测试成绩x(得分均为整数,满分为100 分)进行调查分析,过程如下:第一步:收集数据七年级:68 88 100 100 79 94 89 85 100 88 81 69 98 7977 94 96 75 92 67八年级:69 97 78 89 98 100 99 100 95 99 99 69 75 1 00 99 78 79 87 85 79第二步:整理、描述数据第三步:分析数据第四步:应用数据(1 )直接写出a的值和八年级抽取了多少个同学的成绩进行分析(2 )在此次测试中,七年级甲学生的成绩为 89 分,八年级乙学生成绩为 90 分,甲、乙两人的成绩在各自年级中哪一个更靠前?请说明理由.(3 )若成绩在 90 分至 99 分之间(含 90 分, 99 分)的学生为二等奖,请估计七、八年级一共获得二等奖的学生总人数.知识点:数据的集中趋势【答案】(1 )a=99 ,八年级抽取了 20 个同学的成绩进行分析;(2 )甲的成绩在自己年级中更靠前;(3 )七、八年级一共获得二等奖的学生总人数为 300 人.【分析】(1 )根据众数的定义分别进行解答即可;(2 )把甲、乙两人的成绩与各自年级的中位数比较即可得到结论;(3 )七、八年级的总人数乘以 90 分至 99 分之间(含 90 分, 99 分)的学生数所占的百分比即可的结论.【详解】(1 )a=99 ,八年级抽取了 20 个同学的成绩进行分析;(2 )∵七年级同学的成绩的中位数是 88 ,八年级同学的成绩的中位数是 92 ,∴甲的成绩在自己年级中更靠前;(3 ) 1000×=300 人,答:七、八年级一共获得二等奖的学生总人数为300 人【点睛】本题主要考查了平均数、众数、中位数在实际问题中的正确应用,熟练掌握定义和计算公式是解题的关键.5、北京市6 月某日 10 个区县的最高气温如下表: ( 单位:℃)则这10 个区县该日最高气温的中位数是() .A . 32B . 31C . 30D . 29知识点:数据的集中趋势【答案】A【详解】∵从小到大排列后,排在中间位置的两个数都是 32 ,∴中位数是 32.故选A.6、某小组个人在一次数学小测试中,有个人的平均成绩为,其余个人的平均成绩为,则这个小组的本次测试的平均成绩为 ________.知识点:数据的集中趋势【答案】89【分析】先求出总成绩,再运用求平均数公式即可求出平均成绩.【详解】∵有 3 个人的平均成绩为 96 ,其余 7 个人的平均成绩为 86 ,∴这个小组的本次测试的总成绩为: 3×96+7×86=890 ,∴这个小组的本次测试的平均成绩为: 890÷10=89 .【点睛】本题主要考查的是平均数的求法,属于基础题型.熟记计算公式是解决本题的关键.7、甲、乙、丙、丁四人10 次随堂测验的成绩如图所示,从图中可以看出这 10 次测验平均成绩较高且较稳定的是()A .甲B .乙C .丙D .丁知识点:数据的集中趋势【答案】C【分析】利用平均数和方差的意义进行判断.【详解】解:由折线统计图得:丙、丁的成绩在92 附近波动,甲、乙的成绩在 91 附近波动,∴丙、丁的平均成绩高于甲、乙,由折线统计图得:丙成绩的波动幅度小于丁成绩的波动幅度,∴这四人中丙的平均成绩好又发挥稳定,故选:C .【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,与平均值的离散程度越差,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了折线统计图.8、某校开展了以“爱我家乡”为主题的艺术活动,从九年级 5 个班收集到的艺术作品数量(单位:件)分别为 48 , 50 , 47 , 44 , 50 ,则这组数据的中位数是()A . 44B . 47C . 48D . 50知识点:数据的集中趋势【答案】C【分析】根据中位数的意义,排序后处在中间位置的数即可.【详解】解:将这五个数据从小到大排列后处在第3 位的数是 48 ,因此中位数是 48 ;故选:C.【点睛】本题考查中位数的意义,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.9、在庆祝中国共产党成立100 周年的“红色记忆”校园歌咏比赛中, 15 个参赛班级按照成绩(成绩各不相同)取前 7 名进入决赛,小红知道了自己班级的比赛成绩,如果要判断自己的班级能否进入决赛,还需要知道这 15 个参赛班级成绩的()A .平均数B .中位数C .众数D .方差知识点:数据的集中趋势【答案】B【分析】由于比赛取前7 名参加决赛,共有 15 名选手参加,根据中位数的意义分析即可.【详解】解:15 个不同的成绩按从小到大排序后,中位数之后的共有 7 个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.10、已知一组数据,,的平均数为5 ,方差为 4 ,那么数据,,的平均数和方差分别为__ .知识点:数据的集中趋势【答案】3 , 4【分析】根据平均数,方差定义进行解答即可.【详解】解:数据,,的平均数为5 ,,,数据,,的平均数是3 ;数据,,的方差为4 ,,,,的方差.故答案为:3 , 4 .【点睛】本题考查了平均数和方差,解题的关键是灵活运用平均数和方差.11、为了纪念建党100 周年,学校组织了“建党 100 周年党史知识竞赛”,张同学根据评分为小李的分数制作了如下表格:如果去掉一个最高分和最低分,那么下列哪个数据不会发生变化()A .众数B .平均数C .中位数D .方差知识点:数据的集中趋势【答案】C【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】解:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数,故选C .【点睛】本题主要考查了中位数,解决本题的关键是掌握中位数定义.12、已知一组数据,,,,的平均数是4 ,方差是 5 ,将这组数据中的每个数据都减去 2 ,得到一组新数据,则这组新数据的方差是 ______ .知识点:数据的集中趋势【答案】5【分析】根据一组数据的平均数与方差的定义和性质即可求解.【详解】解:由题意得:数据,,,,的平均数是4 ,方差是 5 ,新数据是,,,,,所以新数据的平均数是4-2=2 ,方差是:==5 .故答案为:5 .【点睛】本题考查了平均数和方差,解题的关键是掌握平均数和方差的变换特点.13、如图,小强同学根据乐清市某天上午和下午各四个整点时间的气温绘制成的折线统计图.(1 )根据图中信息分别求出上午和下午四个整点时间的平均气温.(2 )请你根据所学统计学知识,从四个整点时间温度猜测,这天上午和下午的气温哪个更稳定,并说明理由.知识点:数据的集中趋势【答案】(1 ) 24 , 24 ;(2 )上午的气温更加稳定,理由见解析.【分析】(1 )根据平均数的定义进行求解即可;(2 )分别求出上午和下午四个整点时间的方差然后进行比较即可.【详解】解:(1 )∴∴上午的气温更加稳定.【点睛】本题主要考查了平均数与方差,解题的关键在于能够熟练掌握相关知识进行求解.14、车间有22 名工人,某一天他们生产的零件个数统计如下:(1 )求这一天 22 名工人生产零件的平均个数.(2 )为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,请你确定这个“定额”,并说明理由.知识点:数据的集中趋势【答案】(1 ) 13 个;(2 )如果我是管理者,会将 13 个作为“定额”,因为平均数、众数、中位数都是 13 ,选 13 为定额,确保了大多数人能完成定额,有 7 人超产有奖,能起到较好的激励作用.(表达合理即可)【分析】(1 )根据平均数的计算方法进行计算即可;(2 )求出中位数、众数、平均数,从大多数员工能够完成任务为标准“定额”.【详解】解:(1 )(个)∴这一天 22 名工人生产零件的平均个数为 13 个.(2 )如果我是管理者,会将 13 个作为“定额”.因为平均数、众数、中位数都是13 ,选 13 为定额,确保了大多数人能完成定额,有 7 人超产有奖,能起到较好的激励作用.(表达合理即可)【点睛】本题考查平均数、中位数、众数,理解中位数、众数、平均数的意义和计算方法是正确解答的关键.15、开学前,根据学校防疫要求,小芸同学连续14 天进行了体温测量,结果统计如下表:这14 天中,小芸体温的众数是 ____________.知识点:数据的集中趋势【答案】36.6【分析】根据众数的定义就可解决问题.【详解】根据表格数据可知众数是36.6℃,故答案为:36.6 .【点睛】本题主要考查了众数的求解,正确理解众数的意义是解决本题的关键.16、东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为: 85 , 87 , 89 , 91 , 85 , 92 , 90 .则这组数据的中位数为 ______ .知识点:数据的集中趋势【答案】89【分析】根据中位数的定义即可得.解:将这组数据按从小到大进行排序为,则中位数为89 ,故答案为:89 .【点睛】本题考查了中位数,熟记定义是解题关键.17、“最美鄂州,从我做起”.“五四”青年节当天,马桥村青年志愿小组到胡林社区参加美化社区活动. 6 名志愿者参加劳动的时间(单位:小时)分别为: 3 , 2 , 2 , 3 , 1 , 2 ,这组数据的中位数是 ______ .知识点:数据的集中趋势【答案】2【分析】根据中位数的求解方法求解即可.【详解】解:将所给6 个数据从小到大排列: 1 , 2 , 2 , 2 , 3 , 3 ,则中位数为=2 ,故答案为:2 .【点睛】本题考查中位数,熟练掌握中位数的求解方法是解答的关键.18、在2021 年初中毕业生体育测试中,某校随机抽取了 10 名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是()A .中位数是 10.5B .平均数是 10.3C .众数是 10D .方差是 0.81知识点:数据的集中趋势【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9 , 9 , 10 , 10 , 10 , 10 , 11 , 11 , 11 , 12 ;位于最中间的两个数是10 , 10 ,它们的平均数是 10 ,所以该组数据中位数是10 ,故 A 选项符合题意;该组数据平均数为:,故B 选项不符合题意;该组数据10 出现次数最多,因此众数是 10 ,故 C 选项不符合题意;该组数据方差为:,故D 选项不符合题意;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.19、某学校八年级(2 )班有 20 名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是 ___ .知识点:数据的集中趋势【答案】95.5【分析】利用加权平均数的定义计算即可.【详解】解:由题意可得:=95.5 ,故答案为:95.5 .【点睛】本题考查了加权平均数的求法,解题的关键是结合统计图,掌握运算法则.20、如图所示是某校初中数学兴趣小组年龄结构条形统计图,该小组年龄最小为11 岁,最大为 15 岁,根据统计图所提供的数据,该小组组员年龄的中位数为 ________ 岁.知识点:数据的集中趋势【答案】13【分析】直接根据中位数定义求解即可.【详解】解:根据题意排列得:11 , 11 , 12 , 12 , 12 , 13 , 13 ,13 , 13 , 13 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 15 ,个数为偶数,中间的两个数为:13 , 13 ,∴中位数为 13 ,故答案为:13【点睛】本题主要考查中位数的定义,将一组数据按照从小到大( 或从大到小 ) 的顺序排列,如果这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.。

八年级数学下册第二十章《数据的分析》经典复习题(3)

八年级数学下册第二十章《数据的分析》经典复习题(3)

一、选择题1.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( ) A .中位数是55 B .众数是60C .平均数是54D .方差是29D解析:D 【分析】根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否. 【详解】这组数据按照从小到大的顺序排列为:40,50,50,50,55,55,60,60,60,60, 则众数为:60,中位数为:55, 平均数为:405050505555606060606010++++++++++=54,方差为:22221(4054)3(5054)2(5554)4(6054)10⎡⎤-+⨯-+⨯-+⨯-⎣⎦=39. 故选D .2.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( ) A .平均数改变,方差不变 B .平均数改变,方差改变C .平均数不变,方差改变 D .平均数不变,方差不变A 解析:A 【解析】试题分析:根据平均数、方差的计算公式即可判断. 由题意得该数组的平均数改变,方差不变,故选A. 考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.3.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分 B .中位数C .极差D .平均数B解析:B 【解析】共有21名学生参加预赛,取前11名,小颖知道了自己的成绩,我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B .4.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( ) A .50分 B .82分C .84分D .86分D解析:D 【分析】计算出各项学习成绩的分数再相加即是数学成绩. 【详解】研究性学习成绩为:8040%32⨯=分 期末卷面成绩为:9060%54⨯=分 数学成绩为;325486+=分 故选:D 【点睛】本题考查了加权平均数的相关定义,解题的关键是根据加权平均数的相关定义计算. 5.一组数据中有m 个a ,n 个b ,k 个c ,那么这组数据的平均数为( ) A .3a b c++ B .3m n k++ C .3ma nb kc++D .ma nb kcm n k++++D解析:D 【分析】先求得这组数据的和和个数,再根据平均数的定义求解. 【详解】∵一组数据中有m 个a ,n 个b ,k 个c , ∴这组数据的和=ma+nb+kc ,数据的个数=m+n+k , ∴这组数据的平均数为:ma nb kcm n k++++.故选:D. 【点睛】考查了加权平均数的计算,解题关键是计算出这组数据的和和个数. 6.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):A .80,80B .81,80C .80,2D .81,2A解析:A 【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案. 【详解】根据题意得:805(81778082)80⨯-+++=(分),则丙的得分是80分;众数是80,故选A.【点睛】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.7.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:成绩(分) 24 25 26 27 28 29 30人数(人) 65 5 8 7 7 4根据上表中的信息判断,下列结论中错误的是( )A.该班一共有42名同学B.该班学生这次考试成绩的众数是8C.该班学生这次考试成绩的平均数是27D.该班学生这次考试成绩的中位数是27分B解析:B【解析】【分析】根据众数,中位数,平均数的定义解答.【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B.【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.8.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】∵S 2甲=1.7,S 2乙=2.4, ∴S 2甲<S 2乙, ∴甲队成员身高更整齐; 故选B. 【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键9.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( ) A .中位数 B .平均数C .方差D .极差A解析:A 【分析】根据中位数的定义解答可得. 【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数, 故选A . 【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.10.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135 138 142 144 140 147 145 145;则这组数据的中位数、平均数分别是( ) A .142,142 B .143,142C .143,143D .144,143B解析:B 【解析】 【分析】把数据从小到大排序,第4,5个数的平均数是中位数;根据平均数的公式求值. 【详解】 中位数:142144=1432+ 平均数:135138142144140147145145=1428+++++++故选B 【点睛】考核知识点:中位数,算术平均数.理解定义是关键.二、填空题11.已知一组样本数据1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为2,方差为3,则数据12+5x ,22+5x ,325x +,⋅⋅⋅,2+5n x 的平均数为__________,方差为__________.912【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可【详解】∵x1x2…xn 的平均数为2∴x1+x2+…+xn=2n ∴=2×2+5=9∵原平均数为2新数据的平均数变为9则原来解析:9 12 【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可. 【详解】∵x 1、x 2、…x n 的平均数为2, ∴x 1+x 2+…+x n =2n , ∴12252525n x x x n++++⋯++ =2×2+5=9,∵原平均数为2,新数据的平均数变为9, 则原来的方差S 12=1n[(x 1-2)2+(x 2-2)2+…+(x n -2)2]=3, 现在的方差S 22=1n[(2x 1+5-9)2+(2x 2+5-9)2+…+(2x n +5-9)2] =1n[4(x 1-2)2+4(x 2-2)2+…+4(x n -2)2]=4×3=12. 故答案为:9,12. 【点睛】此题考查平均数与方差的意义,掌握平均数与方差的计算方法是解题的关键. 12.图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为___________千元.67【分析】首先根据题意求出销售额为5千元的人数由此进一步求出该柜台的人均销售额即可【详解】由题意得:销售额为5千元的人数为:(人)∴该柜台的人均销售额为:(千元)故答案为:【点睛】本题主要考查了平解析:6.7 【分析】首先根据题意求出销售额为5千元的人数,由此进一步求出该柜台的人均销售额即可. 【详解】 由题意得:销售额为5千元的人数为:1012214----=(人),∴该柜台的人均销售额为:()1324452812010 6.7⨯+⨯+⨯+⨯+⨯÷=(千元), 故答案为:6.7. 【点睛】本题主要考查了平均数的计算,熟练掌握相关概念是解题关键.13.有一组数据:1,3,5,3,若再添加一个数,所得的新一组数据与原数据的中位数,众数,平均数都没有发生变化,则添加的数为____.3【分析】依据定义和公式分别计算新旧两组数据的平均数中位数众数求解即可【详解】原数据的1335的平均数为=3中位数为=3众数为3;添加的数为3后新数据13335的平均数为=3中位数为3众数为3;故答解析:3. 【分析】依据定义和公式分别计算新旧两组数据的平均数、中位数、众数求解即可. 【详解】原数据的1、3、3、5的平均数为13354+++ =3,中位数为332+=3,众数为3;添加的数为3后,新数据1、3、3、3、5的平均数为133355++++ =3,中位数为3,众数为3; 故答案为:3. 【点睛】此题考查众数、中位数、平均数,熟练掌握相关概念和公式是解题的关键.14.已知一组数据-1,x ,0, 1,-2的平均数是0,这组数据的极差和标准差分别是 _____4【解析】试题解析:4 【解析】 试题∵x=0-(-1+0-2+1), 解得x=2,故极差为:2-(-2)=4, 则方差s 2=15[(-1-0)2+(2-0)2+(0-0)2+(1-0)2+(-2-0)2]=2,.15.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________.【分析】根据平均数的计算公式可得再根据众数是5所以可得xy中必须有一个5则另一个就是6通过方差的计算公式计算即可【详解】解:∵一组数据的平均数为6众数为5∴中至少有一个是5∵一组数据的平均数为6∴∴解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可. 【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5, ∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6,∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6,∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.16.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表:则这100名学生所植树棵数的中位数为_____.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5 【解析】 【分析】直接利用中位数定义求解. 【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵). 故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是______.9【解析】【分析】根据平均数的定义先求出x的值再根据中位数的定义即可得出答案【详解】根据平均数的定义可知(5+10+15+x+9)÷5=8解得:x=1把这组数据从小到大的顺序排列为1591015处于解析:9【解析】【分析】根据平均数的定义先求出x的值,再根据中位数的定义即可得出答案.【详解】根据平均数的定义可知,(5+10+15+x+9)÷5=8,解得:x=1,把这组数据从小到大的顺序排列为1,5,9,10,15,处于中间位置的那个数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为9.【点睛】考查了中位数,掌握中位数的定义是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.18.已知一组数据的方差s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],那么这组数据的总和为_____.24【分析】根据方差公式S2=(x1﹣)2+(x2﹣)2+…+(xn ﹣)2中各个字母表示的意义得出这组数据的平均数是6数据个数是4从而得出这组数据的总和【详解】∵s2=(x1﹣6)2+(x2﹣6)2解析:24【分析】根据方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2]中各个字母表示的意义,得出这组数据的平均数是6,数据个数是4,从而得出这组数据的总和.【详解】∵s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],∴这组数据的平均数是6,数据个数是4,∴这组数据的总和为4×6=24.故答案为24.【点睛】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]. 19.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________.2012【解析】∵=10∴=10设222的方差为则=2×10=20∵∴==4×3=12故答案为20;12点睛:本题考查了当数据加上一个数(或减去一个数)时方差不变即数据的波动情况不变平均数也加或减这解析:20 12 【解析】 ∵x =10, ∴1233x x x ++=10, 设21x ,22x ,23x 的方差为, 则1232223x x x y ++==2×10=20,∵22221231(10)(10)(10)3s x x x ⎡⎤=-+-++⎣⎦ , ∴22221231(2)(2)(2)S x y x y x y n '⎡⎤=-+-+-⎣'⎦ =132221234(10)4(10)4(10)x x x ⎡⎤-+-++⎣⎦ =4×3=12.故答案为20;12.点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.20.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x (单位:分)及方差S 2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.丙【分析】先比较平均数得到乙组和丙组成绩较好然后比较方差得到丙组的状态稳定于是可决定选丙组去参赛【详解】因为乙组丙组的平均数比甲组丁组大而丙组的方差比乙组的小所以丙组的成绩比较稳定所以丙组的成绩较好解析:丙【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为丙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.三、解答题21.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)这100个样本数据的平均数是、众数是和中位数是;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?解析:(1)11.6吨,11吨,11吨;(2)约有350户.【分析】(1)根据平均数的计算公式、众数与中位数的定义即可得;(2)先求出月平均用水量不超过12吨的户数占比,再乘以500即可得.【详解】(1)这100个样本数据的平均数是1020114012101320141011.6100⨯+⨯+⨯+⨯+⨯=(吨),因为11吨出现的次数最多,所以众数是11吨,由中位数的定义得:将这100个样本数据按从小到大进行排序后,第50个和第51个数据的平均数即为中位数,则中位数是1111112+=(吨),故答案为:11.6吨,11吨,11吨;(2)月平均用水量不超过12吨的户数占比为204010100%70% 100++⨯=,则70%500350⨯=(户),答:500户家庭中月平均用水量不超过12吨的约有350户.【点睛】本题考查了平均数的计算公式、众数与中位数的定义、用样本估计总体,熟练掌握数据分析的相关知识是解题关键.22.为了了解某学校八年级学生每周平均体育锻炼时间的情况,随机抽查了该年级的部分学生,对其每周锻炼时间进行统计,根据统计数据绘制成图1和图2两个不完整的统计图.请你根据统计图提供的信息,回答下列问题:(1)本次共抽取了学生人,并请将图1条形统计图补充完整;(2)这组数据的中位数是,求出这组数据的平均数;(3)若八年级有学生1800人,请你估计体育锻炼时间为3小时的学生有多少人?解析:(1)60;(2)中位数是3小时,平均数是2.75小时;(3)600.【分析】(1)根据统计图求出2小时人数所占百分比,再根据2小时的人数可以求得本次共抽取了学生多少人,阅读3小时的学生有多少人,从而可以将条形统计图补充完整;(2)根据统计图中的数据可以求得众数和平均数;(3)根据统计图中的数据可以求得课外阅读时间为3小时的学生有多少人.【详解】由扇形统计图知,2小时人数所占的百分比为90360︒⨯︒100%=25%,∴本次共抽取的学生人数为15÷25%=60(人),则3小时的人数为60﹣(10+15+10+5)=20(人),补全条形图如下:故答案为60;(2)这组数据的中位数是332+=3(小时),平均数为1102153204105560⨯+⨯+⨯+⨯+⨯=2.75(小时).故答案为中位数是3小时.平均数为2.75小时.(3)估计体育锻炼时间为3小时的学生有18002060⨯=600(人). 【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元; (2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.解析:(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元. 【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果; (3)由总人数乘以平均数即可得出答案. 【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元; 故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元). 【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.24.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表 组别分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a =________; (2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人? 解析:(1)50; 8;(2)C 组;(3)320人 【分析】(1)利用统计表和扇形统计图中D 组的信息可得样本容量,从而得出表1中A 对应的人数;(2)成绩已经按照从小到大的顺序排列,找出最中间的2人,即第25和第26位,取二者的平均值即可;(3)先求出80分以上的比例,然后乘总人数可得. 【详解】解:(1)本次调查一共随机抽取学生:1836%50÷=(人),8a = (2)∵抽样了50人,则最中间的为第25和第26位的平均值第25位落在C 组,第26位落在C 组 ∴中位数落在C 组(3)该校九年级竞赛成绩达到80分以上(含80分)的学生有141850032050+⨯=(人) 【点睛】本题考查调查与统计,解题关键是结合残缺不全的统计表和扇形统计图,得出样本容量. 25.2020年拟继续举办丽水市中学生汉字听写、诗词诵写大赛.经过初赛、复赛,选出了两个代表队参加市内7月份的决赛.两个队各选出的5名选手的复赛成绩如图所示.(1)根据图示补全下表;平均数(分) 中位数(分) 众数(分)A 队83 85B 队95(2)结合两队成绩的平均数和中位数,分析哪个队的复赛成绩较好; (3)计算两队成绩的方差,并判断哪一个代表队选手成绩较为稳定.解析:(1)A 众数85,B 平均数83,中位数80;(2)A 队;(3)226A S =,2106B S =,A 队选手成绩较为稳定.【分析】(1)根据条形统计图即可求出A 队的众数,将B 队的分数从小到大排列即可求出B 队的中位数,然后根据平均数公式即可求出B 队的平均分; (2)结合两队成绩的平均数和中位数即可得出结论;(3)根据方差公式:()()()2222121n S x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦计算出A 、B 两队的方差,从而得出结论. 【详解】解:()1由条形统计图可知:A 队的众数为85, 将B 队的分数从小到大排列为70,75,80,95,95 ∴B 队的中位数为80,B 队的平均分为(70+75+80+95+95)÷5=83 补全图表如下:()2两队成绩的平均分一样,但A 队成绩的中位数高,故A 队成绩较好()3()()()()()222222175838083858385839083265A S =⎡-+-+-+-+⎤⎦=⎣-, ()()()()()222222170839583958375838083106,5B S =-+-+-+-+-=⎡⎤⎣⎦∵26106<,因此A 队选手成绩较为稳定. 【点睛】此题考查的是平均数、众数、中位数和方差的意义和求法,掌握平均数、众数、中位数和方差的定义和公式是解决此题的关键.26.图甲和图乙分别是A ,B 两家酒店去年下半年的月营业额(单位:百万元)统计图.(1)求A 酒店12月份的营业额a 的值.(2)已知B 酒店去年下半年的月平均营业额为2.3百万元,求8月份的月营业额,并补全折线统计图.(3)完成下面的表格(单位:百万元)(4)综合以上分析,你认为哪一些数据更能较为准确的反映酒店的经营业绩?你认为哪家酒店的经营状况较好?请简述理由.解析:(1)4百万元;(2)3百万元,见解析;(3)2.5,见解析;(4)平均数,中位数反映酒店的经营业绩,A酒店的经营状况较好,见解析【分析】(1)想办法求出12月份的扇形图中的圆心角,构建方程即可解决问题;(2)根据平均数的定义即可解决问题;(3)根据平均数,中位数,众数的定义计算即可;(4)平均数,中位数反映酒店的经营业绩,A酒店的经营状况较好.【详解】解:(1)设7、8、9、10所占的圆心角为x.则有:2.4 2.2 2.2 1.2x+++=372,解得x=192°,∴12月份的圆心角为360°-192°-72°=96°,则有:a96=372,∴a=4百万元,(2)由题意,8月份的月营业额为3百万元.作图:(3)A酒店的平均数=3 2.4 2.2 2.2 1.246+++++=2.5,B酒店的中位数为1.9,众数为1.7,故答案为2.5,1.9,1.7.(4)平均数,中位数反映酒店的经营业绩,A酒店的经营状况较好.理由:平均数.中位数比较大.【点睛】此题考查折线统计图、扇形统计图、中位数、平均数、众数,解题的关键是熟练掌握基本知识.27.某班级从甲、乙两位同学中选派一人参加知识竞赛,老师对他们的五次模拟成绩(单位:分)进行了整理,并计算出甲成绩的平均数是80分,甲、乙成绩的方差分别是320,40,但绘制的统计图表尚不完整.甲、乙两人模拟成绩统计表第一次第二次第三次第四次第五次甲成绩901009050a乙成绩8070809080甲、乙两人模拟成绩折线图根据以上信息,请你解答下列问题:(1)a=(2)请完成图中表示甲成绩变化情况的折线;(3)求乙成绩的平均数;(4)从平均数和方差的角度分析,谁将被选中.解析:(1)70;(2)详见解析;(3)80;(4)乙将被选中,理由详见解析【分析】(1)根据平均数公式即可求得a的值;(2)根据(1)计算的结果即可作出折线图;(3)利用平均数公式即可秋求解;(4)首先比较平均数,选择平均数大的,若相同,则比较方差,选择方差小,比较稳定的.【详解】解:(1)根据题意得:901009050805a++++=,解得:a=70.(2)完成图中表示甲成绩变化情况的折线如图:(3)()乙1=8070809080=805x ++++, (4)甲乙成绩的平均数相同,乙的方差小于甲的方差,乙比甲稳定,所以乙将被选中. 【点睛】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.28.某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示: (1)根据图示填写下表 班级 中位数(分) 众数(分)平均数(分)一班 85二班10085(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好? (3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?解析:(1)85、85 80(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)(3)一班成绩较为稳定. 【分析】(1)观察图分别写出一班和二班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好; (3)根据方差公式计算即可:S 2=()()()222121n x x x x x x n ⎡⎤-+--⎣⎦(可简单记忆为“等于差方的平均数”) 【详解】解:(1)由条形统计图可知一班5名选手的复赛成绩为:75、80、85、85、100, 二班5名选手的复赛成绩为:70、100、100、75、80, 一班的众数为85,一班的平均数为(75+80+85+85+100)÷5=85,二班的中位数是80;(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)(3)S二班2=()()()()() 22222 70851008510085758580851605-+-+-+-+-=因为S一班2=70则S一班2<S二班2,因此一班成绩较为稳定.【点睛】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.。

第20章 数据的分析整章教学

第20章 数据的分析整章教学

叫做这n 个数的加权平均数;
1 小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,
90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是( D )
用比例表示的“权”
A.255分
B.84分
C.84.5分
D.86分
2 某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末
乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49
根据这些数据估计,农科院应该选择哪种甜玉米种子呢? 上面两组数据的平均数分别是 x甲 =7.537,x乙 =7.515,
说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个 地区种植这两种甜玉米,它们的平均产量相差不大.
s2=
1 n
(
x1
x)2
(
x2
x)2
( xn x)2 ,
它反映了一组数据的波动大小,方差越小,波动性越小,越稳定.
1 对于一组统计数据3,3,6,5 , 3下列说法错误的是( D )
A.众数是3
B.平均数是4
C.方差是1.6
D.中位数是6
2 现有甲、乙两个合唱队,队员的平均身高为170 cm,方差分别是s 2甲,s 2乙,且s 2
你怎样看待该公司员工的收入?
问题3 某公司员工的月工资如下:
员工
经理 副经理 职员A 职员B 职员C 职员D 职员E 职员F 杂工G
月工资/元 7 000 4 400 2 400 2 000 1 900 1 800 1 800 1 800 1 200
我公司员工收入很高, 月平均工资为2 700元.
元,混合后什锦糖的售价应为每千克( C )

这月我当家(第1课时)(教学设计)-2023-2024学年六年级上册数学北师大版

这月我当家(第1课时)(教学设计)-2023-2024学年六年级上册数学北师大版
七、板书设计
1. 统计的定义
- 数据收集
- 数据整理
- 数据分析
2. 统计的组成部分
- 数据收集:调查、实验等
- 数据整理:分类、排序等
- 数据分析:平均数、中位数等
3. 统计的应用案例
- 人口普查
- 市场调查
- 体育竞赛数据分析
4. 统计软件的使用
- Excel
- SPSS
- R
5. 统计在生活中的应用
(3)检查学生使用统计软件进行数据分析的情况,评价学生的数据分析能力和技巧,提出改进建议,帮助学生提高数据分析的准确性和效率。
(4)阅读学生撰写的短文或报告,评价学生对统计在生活中的应用的理解和运用能力,提出改进意见,鼓励学生进一步探索和应用统计知识。
3. 作业布置与反馈的目的:
(1)通过作业布置,帮助学生巩固所学知识,提高对统计知识和技能的掌握程度。
(2)作业反馈要及时,以便学生能够及时发现问题并加以改进。
(3)作业反馈要具体,指出学生存在的问题并提供具体的改进建议,帮助学生明确改进的方向和方法。
(4)作业反馈要鼓励学生,肯定学生的进步和努力,激发学生的学习积极性和自信心。
九.教学反思
在本节课的教学过程中,我尝试采用了多种教学方法,如启发式教学、小组合作、实际操作等,以提高学生的学习兴趣和参与度。通过课堂讨论和小组活动,我发现大部分学生能够积极参与,对统计知识产生了浓厚的兴趣,同时也能够通过实际操作掌握基本的统计技能。
布置课后作业:让学生撰写一篇关于统计的短文或报告,以巩固学习效果。
六、拓展与延伸
1. 提供与本节课内容相关的拓展阅读材料,包括以下几方面:
a. 统计的起源和发展:介绍统计学的起源、发展历程以及重要的统计学家和他们的贡献。

华东师大版数学八年级下册教学设计《第20章数据的整理与初步处理20.1平均数(第1课时)》

华东师大版数学八年级下册教学设计《第20章数据的整理与初步处理20.1平均数(第1课时)》

华东师大版数学八年级下册教学设计《第20章数据的整理与初步处理20.1平均数(第1课时)》一. 教材分析华东师大版数学八年级下册第20章数据的整理与初步处理,主要让学生掌握平均数的计算方法和应用。

本章内容紧密联系生活实际,通过实例让学生理解平均数的概念,并学会用平均数解决实际问题。

本节内容为第20章的第1课时,主要介绍平均数的定义及其计算方法。

二. 学情分析八年级的学生已经掌握了整数、分数和小数的运算,对数学概念有一定的理解能力。

但部分学生对实际问题的理解程度不同,解题能力有所差异。

在导入环节,教师可通过生活中的实例让学生初步理解平均数的概念,激发学生的学习兴趣。

三. 教学目标1.知识与技能:理解平均数的定义,掌握平均数的计算方法,能运用平均数解决实际问题。

2.过程与方法:通过合作交流,培养学生的团队协作能力;通过实践操作,提高学生的动手能力。

3.情感态度与价值观:培养学生对数学的兴趣,感受数学与生活的紧密联系。

四. 教学重难点1.重点:平均数的定义及其计算方法。

2.难点:如何运用平均数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例导入,让学生感受数学与生活的联系。

2.合作学习法:分组讨论,培养学生的团队协作能力。

3.实践操作法:让学生动手计算,提高学生的动手能力。

六. 教学准备1.准备相关的生活实例,用于导入环节。

2.准备练习题,用于巩固环节。

3.准备课件,用于呈现环节。

七. 教学过程1.导入(5分钟)教师展示一组数据:小明身高165cm,小红身高160cm,小刚身高162cm。

提问:这三人的平均身高是多少?引导学生思考并回答。

2.呈现(10分钟)教师讲解平均数的定义:一组数据的总和除以数据的个数。

并通过课件展示平均数的计算方法。

3.操练(10分钟)教师给出几个练习题,让学生独立完成。

如:一组数据:2,3,4,5,求这组数据的平均数。

4.巩固(10分钟)教师选取一些学生的作业进行讲评,重点讲解正确解题思路和错误原因。

八年级生物上册第6单元第20章第1节遗传和变异现象教案(新版)北师大版

八年级生物上册第6单元第20章第1节遗传和变异现象教案(新版)北师大版
3. 科学探究:鼓励学生参与实践活动,如观察生物的遗传和变异现象、分析实验数据等,提高学生的实验操作能力和证据收集能力。
4. 社会责任:通过学习遗传和变异现象,使学生认识到生物科技在人类生活中的重要作用,培养学生的社会责任感,激发学生关注生物科学发展的兴趣。
三、重点难点及解决办法
重点:
1. 遗传和变异的概念及其在生物中的应用。
展示一些关于遗传和变异现象的图片或视频片段,让学生初步感受生物的多样性和统一性。
简短介绍遗传和变异的定义和重要性,为接下来的学习打下基础。
2. 遗传和变异基础知识讲解(10分钟)
目标: 让学生了解遗传和变异的基本概念、类型和特点。
过程:
讲解遗传和变异的定义,包括其主要类型和特点。
详细介绍遗传和变异的类型、特点和作用,使用图表或示意图帮助学生理解。
6. 互动环节:准备一些与遗传和变异现象相关的问题和案例,以便在课堂上进行互动讨论和思考。
7. 教学反馈:准备一份教学反馈表,用于收集学生对课堂内容和教学方法的反馈意见,以便及时调整和改进教学。
五、教学过程设计
1. 导入新课(5分钟)
目标: 引起学生对遗传和变异现象的兴趣,激发其探索欲望。
过程:
开场提问:“你们知道什么是遗传和变异吗?它们与我们的生活有什么关系?”
七、教学评价与反馈
1. 课堂表现:观察学生在课堂中的参与程度、提问和回答问题的积极性、课堂纪律等。评估学生对遗传和变异概念的理解程度,以及他们参与小组讨论和实验操作的主动性。
2. 小组讨论成果展示:评估学生在小组讨论中的表现,包括他们的合作能力、问题解决能力和创新思维。关注学生对遗传和变异案例的分析深度,以及他们提出的解决方案的实际可行性。
4. 学生小组讨论(10分钟)

人教版八年级下册第二十章数据的分析第26讲_中位数和众数 讲义

人教版八年级下册第二十章数据的分析第26讲_中位数和众数 讲义

初中八年级数学下册第26讲:中位数和众数一:知识点讲解知识点一:中位数➢定义:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数➢意义:中位数是刻画一组数据“中等水平”的一个代表,反映了一组数据的集中趋势,一组数据的中位数是唯一的➢求法:1.把数据由小到大(或由大到小)排列2.确定这组数据的个数3.当数据是奇数个时,取最中间的一个数作为中位数;当数据是偶数个时,取最中间两个数的平均数作为中位数例1:求数据2、3、14、16、7、8、10、11、13的中位数例2:10名工人某天生产同一种零件的个数是15、17、14、10、15、19、17、16、14、12。

求这一天10名工人生产零件的中位数。

知识点二:众数➢定义:一组数据中出现次数最多的数据称为这组数据的众数➢意义:众数是刻画一组数据“大多数水平”的重要代表,在我们日常生活中,经常用众数来解决一些实际问题➢求法:众数是出现次数最多的数据,而不是出现次数,若一组数据中有两个或两个以上数据出现的次数并列最多,则这些数据都是众数,故众数可能不止一个。

例3:一组数据2、3、x、5、7的平均数是4,则这组数据的众数是。

知识点三:平均数、中位数和众数的综合➢平均数✧优点:平均数能充分利用各数据提供的信息,在实际生活中常用样本的平均数估计总体的平均数。

✧缺点:在计算平均数时,所有的数据都参与运算,所以它易受极端值的影响。

➢中位数✧优点:中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用中位数来描述数据的集中趋势。

✧缺点:不能充分地利用各数据的信息。

➢众数✧优点:众数考察的是各数据所出现的频数,其大小只与部分数据相关,当一组数据中某些数据多次重复出现时,众数往往更能反映问题。

✧缺点:当各数据重复出现的次数大致相等时,它往往就没有什么特别意义。

典型相关分析

典型相关分析

引言在一元统计分析中,用相关系数来衡量两个随机变量之间的线性相关关系;用复相关系数研究一个随机变量和多个随机变量的线性相关关系。

然而,这些统计方法在研究两组变量之间的相关关系时却无能为力。

比如要研究生理指标与训练指标的关系,居民生活环境与健康状况的关系,人口统计变量与消费变量(之间是否具有相关关系。

阅读能力变量(阅读速度、阅读才能)与数学运算能力变量(数学运算速度、数学运算才能)是否相关。

典型相关分析(Canonical Correlation )是研究两组变量之间相关关系的一种多元统计方法。

它能够揭示出两组变量之间的内在联系。

1936年霍特林(Hotelling )最早就“大学表现”和“入学前成绩”的关系、政府政策变量与经济目标变量的关系等问题进行了研究,提出了典型相关分析技术。

之后,Cooley 和Hohnes (1971),Tatsuoka (1971)及Mardia ,Kent 和Bibby (1979)等人对典型相关分析的应用进行了讨论,Kshirsagar (1972)则从理论上给出了最好的分析。

典型相关分析的目的是识别并量化两组变量之间的联系,将两组变量相关关系的分析,转化为一组变量的线性组合与另一组变量线性组合之间的相关关系分析。

目前,典型相关分析已被应用于心理学、市场营销等领域。

如用于研究个人性格与职业兴趣的关系,市场促销活动与消费者响应之间的关系等问题的分析研究。

第一章、典型相关的基本理论 1.1 典型相关分析的基本概念典型相关分析由Hotelling 提出,其基本思想和主成分分析非常相似。

首先在每组变量中找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数。

然后选取和最初挑选的这对线性组合不相关的线性组合,使其配对,并选取相关系数最大的一对,如此继续下去,直到两组变量之间的相关性被提取完毕为此。

被选出的线性组合配对称为典型变量,它们的相关系数称为典型相关系数。

典型相关系数度量了这两组变量之间联系的强度。

第20章 成本分析概述

第20章 成本分析概述

第20章成本分析概述一、学习目的与要求通过本章学习,了解成本分析的意义和任务,一般了解影响产品成本的三个因素,掌握成本分析的原则与评价标准,熟练掌握成本分析的程序与方法,重点掌握因素分析方法中连环替代法和差额计算法的运用。

二、思考题1.影响产品成本的因素有哪些?2.成本分析的任务是什么?3.成本分析的原则是什么?4.成本分析评价标准有哪些?各有什么作用?5.成本分析的基本程序可分哪几个阶段?各阶段的主要工作是什么?6.成本分析的方法有哪些?7.成本报表整体分析方法是什么?8.指标分析法具体包括哪些形式?各有什么作用?9.比率分析法具体包括哪些形式?各有什么作用?10.连环替代分析法的分析程序是什么?运用时应注意什么问题?11.差额计算法的分析程序是什么?差额计算法与连环替代分析法有什么关系?12.成本分析报告的内容包括什么?13.编制成本分析报告的基本要求是什么?三、要点提示(一)成本分析的意义和任务1.成本分析的内涵成本分析是利用成本核算及其他相关资料,对成本水平与构成的变动情况进行分析评价,以揭示影响成本升降的各种因素及其变动的原因,寻找降低成本的潜力。

广义的成本分析可以在成本形成前后进行事前、事中和事后分析。

狭义的成本分析主要指事后成本分析。

成本分析主要包括产品成本分析和成本效益分析。

2.影响产品成本的因素影响产品成本的因素可以分为固有因素、宏观因素和微观因素三大类。

固有因素是指企业建厂时先天条件的好坏对企业产品成本影响的因素,包括企业地理位置和资源条件,企业规模和技术装备水平,企业的专业化协作水平等;宏观因素是从整个国民经济活动这样一个宏观的方面来观察的因素,包括宏观经济政策的调整,成本管理制度的改革,市场需求和价格水平等;微观因素是从企业本身的经济活动这样一个微观的方面来观察的因素,包括劳动生产率水平,生产设备利用效果,原材料和燃料动力的利用情况,产品生产的工作质量,企业的成本管理水平,企业精神文明建设状况等。

八年级数学下册第二十章数据的分析基础知识点归纳总结(带答案)

八年级数学下册第二十章数据的分析基础知识点归纳总结(带答案)

八年级数学下册第二十章数据的分析基础知识点归纳总结单选题1、一组数据:3,2,1,5,2的中位数和众数分别是()A.1和2B.1和5C.2和2D.2和1答案:C分析:根据众数是出现次数最多的数据可求得众数,将所给数据从小到大排列,中位数是最中间位置的数据即可求得中位数.解:该组数据中2出现次数最多,所以众数为2,将所给数据从小到大排列为1,2,2,3,5,最中间位置的数为2,所以中位数为2,故选:C.小提示:本题考查中位数、众数,熟练掌握中位数和众数的求法是解答的关键.2、某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:,则该班四项综合得分(满分100)为()A.81.5B.82.5C.84D.86答案:B分析:根据加权平均数的定义计算可得.解:80×40%+90×25%+84×25%+70×10%=82.5(分)故选:B小提示:本题主要考查平均数,解题的关键是掌握算术平均数和加权平均数的定义.3、在一次素养比赛中,6位学生的成绩分别为65分,65分,80分,85分,90分,90分,统计时误将一位学生的成绩65分记成了60分,则其中不受影响的统计量是()A.平均数B.中位数C.众数D.方差答案:B分析:利用已知条件可知统计时误将一位学生的成绩65分记成了60分,平均数和方差都要变,可对A,D作出判断;同时众数也要变化,可对C作出判断;此时的中位数不变,可对B作出判断.解:∵6位学生的成绩分别为65分,65分,80分,85分,90分,90分,统计时误将一位学生的成绩65分记成了60分,∴众数要变,故C不符合题意;平均数与每个数有关,因此平均数也要变,故A不符合题意;方差与每个数据有关,数据变了方差也要变化,故D不符合题意;中位数是82.5,不会变化,故B符合题意;所以答案是:B.小提示:本题考查了平均数;中位数;方差;众数等知识,掌握平均数、方差、中位数、众数的含义是解题的关键.4、在一次15人参加的歌唱比赛中,预赛成绩各不同要取前8名参加决赛杨超越已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这15名选手成绩的()A.平均数B.众数C.方差D.中位数答案:D分析:15人成绩的中位数是第8名的成绩,杨超越要想知道自己是否能进入决赛,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解:共有15名学生参加预赛,取前8名,所以杨超越需要知道自己的成绩是否进入前8,我们把所有同学的成绩按大小顺序排列,第8名的成绩是这组数据的中位数,所以她知道这组数据的中位数,才能知道自己是否进入决赛,故选D.小提示:本题考查了统计量的选择,熟练掌握中位数的意义是解本题的关键.5、为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差分析:分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,x 甲=2+6+7+7+85=6, S 甲2=15×[(2−6)2+(6−6)2+(6−7)2+(6−7)2+(8−6)2]=4.4, 乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,x 乙=2+3+4+8+85=5, S 乙2=15×[(2−5)2+(3−5)2+(4−5)2+(8−5)2+(8−5)2]=6.4, 所以只有D 选项正确,故选D.小提示:本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.6、一组数据为5,6,7,7,10,10,某同学在抄题的时候,误将其中的一个10抄成了16,那么该同学所抄的数据和原数据相比,不变的统计量是( )A .极差B .平均数C .中位数D .众数答案:C分析:根据中位数、平均数、众数、极差的定义和计算方法判断即可解:将一组数据为5,6,7,7,10,10,中的一个10抄成了16,不影响找第3、4位的两个数,因此中位数不变,故选:C .小提示:考查平均数、众数、中位数的意义和计算方法,理解各个统计量的意义是正确解答的前提.7、北京今年6月某日部分区县的高气温如下表:则这10个区县该日最高气温的众数和中位数分别是( ).分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中32是出现次数最多的,故众数是32;把数据按从小到大的顺序排列后,处于这组数据中间位置的数是32、32,那么由中位数的定义可知,这组数据的中位数是32.故选:A.小提示:本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8、二次根式√2x+4中的x的取值范围是()A.x<﹣2B.x≤﹣2C.x>﹣2D.x≥﹣2答案:D分析:根据“二次根式有意义满足的条件是被开方数是非负数”,可得答案.由题意,得2x+4≥0,解得x≥-2,故选:D.小提示:本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.9、若x1,x2,…,x10的平均数为a,x11,x12,…,x30的平均数为b,则x1,x2,…,x30的平均数为()A.12(a+b)B.130(a+b)C.13(a+2b)D.14(a+4b)答案:C分析:根据平均数的定义进行计算即可求解.因为x1,x2,…,x10的平均数为a,x11,x12,…,x30的平均数为b,根据平均数的定义,x1,x2,…,x30的平均数=10a+20b30=13(a+2b).小提示:本题考查平均数,掌握平均数的定义是解决此题的关键.10、如果x1与x2的平均数是5,那x1−1与x2+5的平均数是()A.4B.5C.6D.7答案:D分析:根据x1与x2的平均数是5,求出x1+x2=10,再根据平均数的计算公式求出答案.解:∵x1与x2的平均数是5,∴x1+x1=2×5=10,∴x1−1与x2+5的平均数是x1−1+x2+52=x1+x2+42=7,故选:D.小提示:此题考查了平均数的计算公式,熟记公式是解题的关键.填空题11、某地10家电商6月份的销售额如下表所示,销售额的中位数为 _______万元.分析:根据中位数的定义进行解答即可.解:∵10家电商6月份的销售额为:1,2,2,2,2,3,3,3,11,11,∴中位数为第5个数和第6个数的平均数,即中位数为2+32=2.5(万元),所以答案是:2.5.小提示:本题考查了中位数,解题的关键是掌握中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.12、为庆祝中国共产党建党100周年,某校开展主题为《党在我心中》的绘画、书法、摄影等艺术作品征集活动,从八年级5个班收集到的作品数量(单位:件)分别为50,40,30,70,60,则这组数据的平均数是_________.答案:50分析:根据算术平均数的求法计算即可.解:这组数据的平均数为:50+40+30+70+605=50,所以答案是:50.小提示:本题考查了算术平均数,掌握算术平均数的求法是解题的关键.13、某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分3:3:4的比例确定测试总分,已知小王三项得分分别为88:72:50,则小王的招聘得分为 _____.答案:70.2分分析:根据加权平均数的计算方法进行计算即可.小王的招聘得分为:88×310+72×410+50×310=70.2(分)故答案为70.2分小提示:本题考查加权平均数的意义和计算方法,掌握加权平均数的计算方法是正确计算的前提.14、已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.答案:5.5分析:先判断出x,y中至少有一个是5,再用平均数求出x+y=11,即可得出结论.∵一组数据4,x,5,y,7,9的众数为5,∴x,y中至少有一个是5,∵一组数据4,x,5,y,7,9的平均数为6,∴16(4+x+5+y+7+9)=6,∴x+y=11,∴x,y中一个是5,另一个是6,∴这组数为4,5,5,6,7,9,∴这组数据的中位数是12×(5+6)=5.5,故答案为5.5.小提示:本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是5是解本题的关键.15、若四个数据4,5,x,6的平均数是5,那么x的值是________.答案:5分析:根据平均数的定义计算即可.(4+5+x+6)=5,解得:x=5.根据题意知14故答案为5.小提示:本题考查了平均数的定义,解题的关键是根据平均数的定义构建方程解决问题.解答题16、新世纪百货茶江商都统计了30名营业员在某月的销售额,统计图如图,根据统计图中给出的信息,解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时为基本称职,当20≤x<25为称职,当x≥25时为优秀.称职和优秀的营业员共有的人数为.(2)根据(1)中规定,所有称职以上(称职和优秀)的营业员月销售额的中位数为,平均数是多少?(写出计算平均数的解答过程)(3)为了调动营业员的工作积极性,决定制定月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得称职以上(称职和优秀)的营业员有一半能获奖,你认为这个奖励标准应定月销售额为多少元合适?并简述其理由.答案:(1)21(2)中位数是22万元,平均数是225万元21(3)这个奖励标准应定月销售额为22万元合适,因为称职以上的营业员月销售额的中位数是22万元,说明销售额达到和超过22万元的营业员占称职营业员的一半,正好使称职以上营业员有一半能获奖分析:(1)根据条形统计图的数据即可求出称职、优秀层次营业员人数;(2)根据中位数和平均数的意义解答即可;(3)如果要使得称职和优秀这两个层次的所有营业员的半数左右能获奖,月销售额奖励标准可以定为称职和优秀这两个层次销售额的中位数,因为中位数以上的人数占总人数的一半左右.(1)由图可知营业员优秀人数为:2+1=3(人),称职人数为:5+4+3+3+3=18(人),所以称职和优秀的营业员共有的人数为:18+3=21(人),所以答案是:21;(2)由(1)知称职以上的营业员人数为:21人所以,月销售额的中位数是第11人的销售额,即22万元,平均数是:(5×20+4×21+3×22+3×23+3×24+2×25+1×26)÷21=225(万元).21所以答案是:22万元;(3)这个奖励标准应定月销售额为22万元合适.因为称职以上的营业员月销售额的中位数是22万元,说明销售额达到和超过22万元的营业员占称职营业员的一半,正好使称职以上营业员有一半能获奖.小提示:本题考查的是条形统计图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,本题也考查了加权平均数、中位数的认识.17、2021年,我国粮食总产量再创新高.小刘同学登录国家统计局网站,查询到了我国2021年31个省、直辖市、自治区的粮食产量数据(万吨).并对数据进行整理、描述和分析.下面给出了部分信息.a.反映2021年我国31个省、直辖市、自治区的粮食产量数据频数分布直方图如图(数据分成8组:0≤x<1000,1000≤x<2000,2000≤x<3000,3000≤x<4000,4000≤x<5000,5000≤x<6000,6000≤x<7000,7000≤x≤8000):b.2021年我国各省、直辖市、自治区的粮食产量在1000≤x<2000这一组的是:1092 .8,1094.9,1231.5,1270.4,1279.9,1386.5,1421.2,1735.8,1930.3(1)2021年我国各省、直辖市、自治区粮食产量的中位数为______万吨;(2)小刘同学继续收集数据的过程中,发现北京市与河南省的单位面积粮食产量(千克/公顷)比较接近,如下图所示,他将自2016年至2021年北京市与河南省的单位面积粮食产量表示出来:)(单位面积粮食产量=粮食总产量播种面积自2016-2021年间,设北京市单位面积粮食产量的平均值为x A,方差为S A2;河南省单位面积粮食产量的平均值为x B,方差为S B2;则x A______x B,S A2______S B2(填写“”或“<”);(3)国家统计局公布,2021年全国粮食总产量13657亿斤,比上一年增长2.0%.如果继续保持这个增长率,计算2022年全国粮食总产量约为多少亿斤(保留整数).答案:(1)1279.9(2)>,<(3)2022年全国粮食总产量13930亿斤分析:(1)根据中位数的定义计算即可;(2)分别计算出北京和河南的单位面积粮食产量的平均数即可比较平均数大小,方差大小根据图像判断:方差越小越稳定,方差越大波动越大;(3)2022年全国粮食总产量=2021年全国粮食总产量×(1+2.0%),即可得出.(1)解:将2021年我国各省、直辖市、自治区的粮食产量从小到大排列:1092 .8,1094.9,1231.5,1270.4,1279.9,1386.5,1421.2,1735.8,1930.3,一共9个数字,中间的数字1279.9即为中位数,2021年我国各省、直辖市、自治区粮食产量的中位数为:1279.9(2)(6148+6146+6137+6183+6244+6197)≈6176,x A=16(5781+5894+6097+6237+6356+6075)≈6073,x B=16∴x A>x B,由图中可以看出:北京单位面积粮食产量波动小,比较稳定,河南单位面积粮食产量波动大,所以可知S A2<S B2;(3)由题意得:2022年全国粮食总产量=13657×(1+2.0%)=13657×1.02≈13930故2022年全国粮食总产量13930亿斤.小提示:本题考查了中位数的定义,平均数和方差的公式,方差的意义以及增长率问题,牢固掌握各项概念和公式以及正确计算是本题关键.18、某校依据教育部印发的《大中小学劳动教育指导纲要(试行)》指导学生积极参加劳动教育.该校七年级数学兴趣小组利用课后托管服务时间,对七年级学生一周参加家庭劳动次数情况.开展了一次调查研究.请将下面过程补全.①收集数据通过问卷调查,兴趣小组获得了这20名学生每人一周参加家庭劳动的次数,数据如下:3 1 2 24 3 3 2 3 4 3 4 05 5 26 4 6 3②整理、描述数据:整理数据,结果如下:6≤x<8 2③分析数据(1)兴趣小组计划抽取该校七年级20名学生进行问卷调查,下面的抽取方法中,合理的是()A.从该校七年级1班中随机抽取20名学生B.从该校七年级女生中随机抽取20名学生C.从该校七年级学生中随机抽取男、女各10名学生(2)补全频数分布直方图;(3)填空:a=___________;(4)该校七年级现有400名学生,请估计该校七年级学生每周参加家庭劳动的次数达到平均水平及以上的学生人数;(5)根据以上数据分析,写出一条你能得到的结论.答案:(1)C(2)补全频数分布直方图见解析;(3)3(4)160人(5)七年级一周参加家庭劳动的次数偏少,故学校应该加强学生的劳动教育.(答案不唯一)分析:(1)根据抽样调查的要求判断即可;(2)根据频数分布表的数据补全频数分布直方图即可;(3)根据中位数的定义进行解答即可;(4)用样本的比估计总体的比进行计算即可;(5)根据平均数、中位数和众数的意义解答即可.(1)解:∵抽样调查的样本要具有代表性,∴兴趣小组计划抽取该校七年级20名学生进行问卷调查,合理的是从该校七年级学生中随机抽取男、女各10名学生,故选:C(2)解:补全频数分布直方图如下:(3)解:∵被抽取的20名学生每人一周参加家庭劳动的次数从小到大排列后为:0 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 6 6 ,排在中间的两个数分别为3、3,∴中位数a=3+3=3,2所以答案是:3;(4)解:由题意可知,被抽取的20名学生中达到平均水平及以上的学生人数有8人,=160(人),400×820答:该校七年级学生每周参加家庭劳动的次数达到平均水平及以上的学生为160人;(5)解:根据以上数据可知,七年级一周参加家庭劳动的次数偏少,故学校应该加强学生的劳动教育.(答案不唯一)小提示:此题考查条形统计图、中位数、众数、用样本估计总体等知识,解答本题的关键是明确题意,利用数形结合的思想来解答.。

第20章 点的轨迹假期晋级利器之初升高数学衔接教材精品(解析版)

第20章 点的轨迹假期晋级利器之初升高数学衔接教材精品(解析版)

第20章 点的轨迹【知识衔接】————初中知识回顾————初中阶段的动点问题主要为“动态几何问题”。

所谓“动态几何问题”是指题设图形中存在一个或多个动点、动线、动面,它们在线段、射线或弧线上运动的一类开放性题目.动态几何问题有两个显著特点:一是“动态”,常以图形或图象中点、线、面的运动(包括图形的平移、翻折、旋转、相似等图形变换)为重要的构图背景;二是“综合”,主要表现为三角形、四边形等几何知识与函数、方程等代数知识的综合.解决动点问题的关键是在认真审题的基础上先做到静中求动,按照题意画一些不同运动时刻的图形,想像从头至尾的整个运动进程,对整个运动进程有一个初步的理解,理清运动进程中的各类情形;然后是做到动中取静,画出运动进程中各类情形的刹时图形,寻觅转变的本质,或将图中的相关线段代数化,转化为函数问题或方程问题解决.————高中知识链接————高中动点问题主要为求曲线的轨迹方程问题。

求点轨迹方程的方式(1)直接法:从条件中直接寻觅到,x y 的关系,列出方程后化简即可(2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可按照条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可取得关于,x y 的方程(3)概念法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过肯定相关曲线的要素,求出曲线方程.常见的曲线特征及要素有:① 圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上肯定方程的要素:圆心坐标(),a b ,半径r② 椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹 肯定方程的要素:距离和2a ,定点距离2c③ 双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹 注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支 肯定方程的要素:距离差的绝对值2a ,定点距离2c④ 抛物线:平面上到必然点的距离与到必然直线的距离(定点在定直线外)相等的点的轨迹肯定方程的要素:焦准距:p .若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或核心坐标也可肯定方程【经典题型】初中经典题型一、如图,在△ABC 中,AB =BC =8,AO =BO ,点M 是射线CO 上的一个动点,∠AOC =60°,则当△ABM 为直角三角形时,AM 的长为 . 【答案】43或47或4.【分析】分三种情况讨论:①当M 在AB 下方且∠AMB =90°时,②当M 在AB 上方且∠AMB =90°时,③当∠ABM =90°时,别离按照含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.三角形,∴AM =AO =4;如图3,当∠ABM =90°时,∵∠BOM =∠AOC =60°,∴∠BMO =30°,∴MO =2BO =2×4=8,∴Rt △BOM 中,BM 22MO OB -=3Rt △ABM 中,AM 22AB BM +7.综上所述,当△ABM 为直角三角形时,AM 的长为4374.故答案为:43474. 【方式归纳】从点动的特殊情形入手,进行推理或判断,再对一般情形作出猜想或判断并证明.二、如图,在等腰△ABC 中,AB =AC =4cm ,∠B =30°,点P 从点B 3m/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 动身,以1c m/s 的速度沿BA ﹣AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】D .【分析】作AH ⊥BC 于H ,按照等腰三角形的性质得BH =CH ,利用∠B =30°可计算出AH =12AB =2,BH =3AH =23,则BC =2BH =43,利用速度公式可得点P 从B 点运动到C 需4s ,Q 点运动到C 需8s ,然后分类讨论:当0≤x ≤4时,作QD ⊥BC 于D ,如图1,BQ =x ,BP =3x ,DQ =12BQ =12x ,利用三角形面积公式取得234y x =;当4<x ≤8时,作QD ⊥BC 于D ,如图2,CQ =8﹣x ,BP =43,DQ =12CQ =12(8﹣x ),利用三角形面积公式得383y x =-+,于是可得0≤x ≤4时,函数图象为抛物线的一部份,当4<x ≤8时,函数图象为线段,则易患答案为D .△BDQ 中,DQ =12CQ =12(8﹣x ),∴y =12•12(8﹣x )•43,即33y x =+,综上所述,23(04)33(48)x x y x x ⎧≤≤⎪=⎨⎪+<≤⎩.故选D .【方式归纳】从点动的特殊情形入手,进行推理或判断,再对一般情形作出猜想或判断并证明.3、如图,矩形AOCB的极点A、C别离位于x轴和y轴的正半轴上,线段OA、OC的长度知足方程15130x y-+-=(OA>OC),直线y=kx+b别离与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=34.(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.【答案】(1)B(15,13);(2)183y x=+;(3)215 (08)33996(813)2t tSt t t<≤⎧⎪=⎨-+-<≤⎪⎩.【分析】(1)由非负数的性质可求得x、y的值,则可求得B点坐标;(2)过D作EF⊥OA于点E,交CB于点F,由条件可求得D点坐标,且可求得OMON=34,结合DE∥ON,利用平行线分线段成比例可求得OM和ON的长,则可求得N点坐标,利用待定系数法可求得直线BN的解析式;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方时,可知S即为▱BNN′B′的面积,当N′在y轴的负半轴上时,可用t表示出直线B′N′的解析式,设交x轴于点G,可用t表示出G点坐标,由S=S四边形BNN′B′﹣S△OGN′,可别离取得S与t的函数关系式.【解答】(3)设直线BN平移后交y轴于点N′,交AB于点B′,分两种情况讨论:①当点N′在x轴上方,即0<t≤8时,如图2,由题意可知四边形BNN′B′为平行四边形,且NN′=t,∴S=NN′•OA=15t;【方式归纳】按线动的位置进行分类,画出各状态图形,利用这些等量关系转化为方程来解决.4、如图1,在平面直角坐标系中,,直线MN别离与x轴、y轴交于点M(6,0),N(0,3,等边△ABC 的极点B与原点O重合,BC边落在x轴正半轴上,点A恰好落在线段MN上,将等边△ABC从图l的位置沿x轴正方向以每秒l个单位长度的速度平移,边AB,AC别离与线段MN交于点E,F(如图2所示),设△ABC平移的时间为t(s).学-科网(1)等边△ABC的边长为_______;(2)在运动进程中,当t=_______时,MN垂直平分AB;(3)若在△ABC 开始平移的同时.点P 从△ABC 的极点B 动身.以每秒2个单位长度的速度沿折线BA —AC 运动.当点P 运动到C 时即停止运动.△ABC 也随之停止平移. ①当点P 在线段BA 上运动时,若△PEF 与△MNO 相似.求t 的值;②当点P 在线段AC 上运动时,设PEF S S ∆=,求S 与t 的函数关系式,并求出S 的最大值及此时点P 的坐标.【答案】(1)3;(2)3;(3)①t =1或34或32;②S =233388t t -+,当t =32时,△PEF 的面积最大,最大值为9332,此时P (3,332). 【分析】(1)按照,∠OMN =30°和△ABC 为等边三角形,求证△OAM 为直角三角形,然后即可得出答案. (2)易知当点C 与M 重合时直线MN 平分线段AB ,此时OB =3,由此即可解决问题;(3)①如图1中,由题意BP =2t ,BM =6﹣t ,由△PEF 与△MNO 相似,可得PE EF =236或EF PE=236,即53232t t-=33或32532t t -=33,解方程即可解决问题;②当P 点在EF 上方时,过P 作PH ⊥MN 于H ,如图2中,构建二次函数利用二次函数的性质即可解决问题;∵∠BAC=60°,∴EF =3AE=32t,当点P在EF下方时,PE=BE﹣BP=3﹣52t,由235302ttt⎧⎪≥⎪≤⎨⎪⎪->⎩,解得0≤t<65,∵△PEF与△MNO相似,∴PEEF=236或EFPE=236,∴53232tt-=33或32532tt-=33,解得t=1或t=34.当点P在EF上方时,PE=BE﹣BP=52t-3,∵△PEF与△MNO相似,∴PEEF=236或EFPE=236,∴53232tt-=33或32532tt-=33,解得t=32或3.∵0≤t≤32,且52t-3>0,即65<t≤32,∴t=32.综上所述,t=1或34或32.②当P点在EF上方时,过P作PH⊥MN于H,如图2中,由题意,EF=32t,FC=MC=3﹣t,∠PFH=30°,∴PF=PC﹣CF=(6﹣2t)﹣(3﹣t)=3﹣t,∴PH=12PF=32t-,∴S=12•EF•PH=12×32t×【方式归纳】按照题意画一些不同运动时刻的图形,想象从头至尾的整个运动进程,对整个运动进程有一个初步的理解,理清运动进程中的各类情形;然后是做到动中取静,画出运动进程中各类情形的刹时图形,寻觅转变的本质,或将图中的相关线段代数化,转化为函数问题或方程问题解决.高中经典题型例1.如图,已知线段AB 上有一动点D (D 异于A B 、),线段CD AB ⊥,且知足2CD AD BD λ=⋅(λ是大于0且不等于1的常数),则点C 的运动轨迹为( )A . 圆的一部份B . 椭圆的一部份C . 双曲线的一部份D . 抛物线的一部份 【答案】B例2.设点A 到图形C 上每一个点的距离的最小值称为点A 到图形C 的距离.已知点A (1,0),圆C :x 2+2x+y 2=0,那么平面内到圆C 的距离与到点A 的距离之差为1的点的轨迹是( ) A . 双曲线的一支 B . 椭圆 C . 抛物线 D . 射线 【答案】D【解析】圆的标准方程为()2211x y ++=,如图所示,设圆心坐标为'A ,知足题意的点为点P ,由题意有:'11PA PA --=,则'2'PA PA AA -==,设()2,0B ,结合几何关系可知知足题意的轨迹为射线AB . 本题选择D 选项. 例3.动点在曲线上移动,点和定点连线的中点为,则点的轨迹方程为( ).A .B .C .D .【答案】B 例4.点是圆上的动点,定点,线段的垂直平分线与直线的交点为,则点的轨迹方程是___. 【答案】【解析】由垂直平分线的性质有,所以,又,按照双曲线的概念,点Q 的轨迹是C ,F 为核心,以4为实轴长的双曲线, ,,所以点Q 的轨迹方程是.例5.已知直线l 过抛物线C : 24y x =的核心, l 与C 交于A , B 两点,过点A , B 别离作C 的切线,且交于点P ,则点P 的轨迹方程为________.【答案】1x =-1y =-,故原抛物线C 相应的点P 的轨迹方程为x 1=-,故答案为x 1=-.学/科..网 例6.已知抛物线:的核心为F ,平行于x 轴的两条直线别离交C 于A ,B 两点,交C 的准线于P ,Q 两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(II )若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 【答案】(I )详观点析;(II ).【解析】由题设.设,则,且.记过两点的直线为,则的方程为.(I )由于在线段上,故. 记的斜率为,的斜率为,则当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合.所以,所求轨迹方程为.【实战演练】————先作初中题 —— 夯实基础————A 组如图1,抛物线213y x bx c =++通过A (23-,0)、B (0,﹣2)两点,点C 在y 轴上,△ABC 为等边三角形,点D 从点A 动身,沿AB 方向以每秒2个单位长度的速度向终点B 运动,设运动时间为t 秒(t >0),过点D 作DE ⊥AC 于点E ,以DE 为边作矩形DEGF ,使点F 在x 轴上,点G 在AC 或AC 的延长线上.学科/-网(1)求抛物线的解析式;(2)将矩形DEGF 沿GF 所在直线翻折,得矩形D 'E 'GF ,当点D 的对称点D '落在抛物线上时,求此时点D '的坐标;(3)如图2,在x 轴上有一点M (23,0),连接BM 、CM ,在点D 的运动进程中,设矩形DEGF 与四边形ABMC 重叠部份的面积为S ,直接写出S 与t 之间的函数关系式,并写出自变量t 的取值范围.【答案】(1)213233y x x =+-;(2)D ′(433,109);(3)22423(0)353412383(2)23t t S t t t ⎧<≤⎪⎪=⎨⎪-+-<≤⎪⎩.【分析】(1)把A 、B 的坐标代入抛物线的解析式求解即可;(2)由等边三角形的性质可知∠BAC =60°,依据特殊锐角三角函数值可取得AE =t ,DE =3t ,AF =23t ,然后再证明AD =DF =2t ,过点D ′作D ′H ⊥x 轴与点H ,接下来,再求得点D ′的坐标,最后将点D ′的坐标代入抛物线的解析式求解即可;(3)当0<t ≤43时,S =ED •DF ;当43<t ≤2时,S =矩形DEGF 的面积﹣△CGN 的面积. ∵∠D ′FH =∠AFD =30°,∴D ′H =12D ′F =t ,FH =3D ′H =3t ,∴AH =AF +FH =33t ,∴OH =AH ﹣AO =3323t -,∴D ′(3323t -,t ). ∴当0<t ≤43时,S =ED •DF =223t . 当43<t ≤2时,如图3所示: ∵CG =AG ﹣AC ,∴CG =3t ﹣4,∴G N =3343t -∴S =ED •DF ﹣12CG •GN =223t ﹣12(3t ﹣4)×3(3t ﹣4)=2533832t -+- 综上所述,S 与t 的函数关系式为22423(0)353412383(2)23t t S t t ⎧<≤⎪⎪=⎨⎪-+-<≤⎪⎩.二、如图,已知抛物线2y x bx c =++的图象通过点A (1,0),B (-3,0),与y 轴交于点C ,抛物线的极点为D ,对称轴与x 轴相交于点E ,连接BD . (1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE =PC 时,求点P 的坐标.(3)在(2)的条件下,作PF ⊥x 轴于F ,点M 为x 轴上一动点,N 为直线PF 上一动点,G 为抛物线上一动点,当以点F ,N ,G ,M 四点为极点的四边形为正方形时,求点M 的坐标. 【答案】(1)223y x x =+-;(2)P (﹣2,﹣2);(3)点M 的坐标为(1212-+,0),(1212--,0),(3132-+,0),(3132--,0). 【分析】(1)利用待定系数法即可得出结论;(2)先肯定出点E 的坐标,利用待定系数法得出直线BD 的解析式,利用PC =PE 成立方程即可求出a 即可得出结论;(3)设出点M 的坐标,进而得出点G ,N 的坐标,利用FM =MG 成立方程求解即可得出结论.(﹣1,0),设直线BD 的解析式为y =mx +n ,∴304m n m n -+=⎧⎨-+=-⎩,∴26m n =-⎧⎨=-⎩,∴直线BD 的解析式为y =﹣2x ﹣6,设点P (a ,﹣2a ﹣6).∵C (0,﹣3),E (﹣1,0),按照勾股定理得,PE 2=(a +1)2+(﹣2a ﹣6)2,PC 2=a 2+(﹣2a ﹣6+3)2.∵PC =PE ,∴(a +1)2+(﹣2a ﹣6)2=a 2+(﹣2a ﹣6+3)2,∴a =﹣2,∴y =﹣2×(﹣2)﹣6=﹣2,∴P (﹣2,﹣2);(3)如图,作PF ⊥x 轴于F ,∴F (﹣2,0).设M (d ,0),∴G (d ,d 2+2d ﹣3),N (﹣2,d 2+2d ﹣3).∵以点F ,N ,G ,M 四点为极点的四边形为正方形,必有FM =MG ,∴|d +2|=|d 2+2d ﹣3|,∴d =1212-±或d 313-±,∴点M 121-+,0),121--,0),313-+,0),313--,0).3、如图,直线l的解析式为y=﹣x+4,它与x轴和y轴别离相交于A,B两点.平行于直线l的直线m从原点O动身,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴别离相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点别离在CD双侧).若△CDE和△OAB的重合部份的面积为S,则S与t之间的函数关系的图象大致是()A.B.C.D.【答案】C.【分析】别离求出0<t≤2和2<t≤4时,S与t的函数关系式即可爬判断.4、将一个直角三角形纸片ABO放置在平面直角坐标系中,点A(3,0),点B(0,1),点O(0,0).P 是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.(1)如图①,当点A'在第一象限,且知足A'B⊥OB时,求点A'的坐标;(2)如图②,当P为AB中点时,求A'B的长;(3)当∠BP A'=30°时,求点P的坐标(直接写出结果即可).【答案】(1)(2,1);(2)1;(3)点P的坐标为(332-,332-)或(2332-,32).【分析】(1)由点A和B的坐标得出OA=3,OB=1,由折叠的性质得:OA'=OA3,由勾股定理求出A'B的值,即可得出点A'2,1);(2)由勾股定理求出AB=2,证出OB=OP=BP,得出△BOP 是等边三角形,得出∠BOP=∠BPO=60°,求出∠OP A=120°,由折叠的性质得:∠OP A'=∠OP A=120°,P A'=P A=1,证出OB∥P A',得出四边形OP A'B是平行四边形,即可得出A'B=OP=1;(3)分两种情况:①点A'在y轴上,由SSS证明△OP A'≌△OP A,得出∠A'OP=∠AOP=12∠AOB=45°,得出点P在∠AOB的平分线上,由待定系数法求出直线AB 的解析式,即可得出点P 的坐标;②由折叠的性质得:∠A '=∠A =30°,OA '=OA ,作出四边形OAP A '是菱形,得出P A =OA =3,作PM ⊥OA 于M ,由直角三角形的性质求出PM 的长,把32y =代入313y x =-+求出点P 的纵坐标即可. 【解答】(1)∵点A (3,0),点B (0,1),∴OA =3,OB =1,由折叠的性质得:OA '=OA =3,∵A 'B ⊥OB ,∴∠A 'BO =90°,在Rt △A 'OB 中,A 'B =22'OA OB -=2,∴点A '的坐标为(2,1);①如图③所示:点A '在y 轴上,在△OP A '和△OP A 中,∵OA ′=OA ,P A ′=P A ,OP =OP ,∴△OP A '≌△OP A (SSS ),∴∠A 'OP =∠AOP =12∠AOB =45°,∴点P 在∠AOB 的平分线上,设直线AB 的解析式为y =kx +b ,把点A (3,0),点B (0,1)代入得:301k b b ⎧+=⎪⎨=⎪⎩,解得:331k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为313y x =-+,∵P (x ,y ),∴313x x =-+,解得:x =332-,∴P (332-,332-); ②如图④所示:由折叠的性质得:∠A '=∠A =30°,OA '=OA ,∵∠BP A '=30°,∴∠A '=∠A =∠BP A ',∴OA '∥AP ,P A '∥OA ,∴四边形OAP A '是菱形,∴P A =OA =3,作PM ⊥OA 于M ,如图④所示:学/科+-网∵∠A =30°,∴PM =12P A =32,把y =32代入313y x =-+得:32 =313x -+,解得:x =2332-,∴P (2332-,32); 综上所述:当∠BP A '=30°时,点P 的坐标为(332-,332-)或(2332-,32).————再战高中题 —— 能力提升————B 组1.到两坐标轴的距离相等的动点的轨迹方程是( )A .B .C .D .【答案】D2.斜率为的直线过抛物线核心,交抛物线于,两点,点为中点,作,垂足为,则下列结论中不正确的是()A.为定值B.为定值C.点的轨迹为圆的一部份D.点的轨迹是圆的一部份【答案】C【解析】由题意知抛物线的核心为,故直线的方程为,由消去y整理得,设,则,∴.选项A中,,为定值.故A正确.选项B中,,为定值,故B正确.选项C中,由消去k得,故点的轨迹不是圆的一部份,所以C不正确.选项D中,由于,直线过定点,所以点Q在以为直径的圆上,故D正确.综上选C.3.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是()A.(x+2)2+(y-1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x-2)2+(y+1)2=1【答案】D4.设为椭圆上任意一点,,,延长至点,使得,则点的轨迹方程为()A.B.C.D.【答案】B【解析】为椭圆上任意一点,且A,B为核心,,又,,所以点的轨迹方程为.5.△ABC的极点A(-5,0),B(5,0),△ABC的周长为22,则极点C的轨迹方程是( )A.B.C.D.【答案】D6.已知坐标平面上两个定点,,动点知足:.(1)求点的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为,过点的直线被所截得的线段的长为,求直线的方程.【答案】(1)观点析;(2).【解析】分析:(1)直接利用,列出方程即可求出点M的轨迹方程,然后说明轨迹的形状;(2)设出直线方程,利用圆心到直线的距离,半径与半弦长知足的勾股定理,求出直线l的方程.详解:(1)由得化简得:,轨迹为圆(2)当直线的斜率不存在时,直线符合题意;当直线的斜率存在时,设的方程为:由圆心到直线的距离等于得此时直线的方程为:.。

多元统计分析智慧树知到课后章节答案2023年下浙江工商大学

多元统计分析智慧树知到课后章节答案2023年下浙江工商大学

多元统计分析智慧树知到课后章节答案2023年下浙江工商大学浙江工商大学第一章测试1.在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,可以解决下面哪几方面的问题。

()A:简化系统结构、探讨系统内核 B:进行数值分类,构造分类模型 C:变量之间的相依性分析 D:构造预测模型,进行预报控制答案:简化系统结构、探讨系统内核;进行数值分类,构造分类模型;变量之间的相依性分析;构造预测模型,进行预报控制2.只有调查来的才是数据。

()A:对 B:错答案:错3.以下都属于大数据范畴。

()A:行车轨迹 B:交易记录 C:问卷调查 D:访谈文本答案:行车轨迹;交易记录;问卷调查;访谈文本4.只要是数据,就一定有价值。

()A:对 B:错答案:错5.统计是研究如何搜集数据,如何分析数据的学问,它既是科学,也是艺术.()A:错 B:对答案:对第二章测试1.考虑了量纲影响的距离测度方法有()。

A:欧氏距离 B:Minkowski距离 C:马氏距离 D:切比雪夫距离答案:马氏距离2.不具有单调性的系统聚类方法有()。

A:离差平方和法 B:最短距离法 C:中间距离法 D:重心法 E:类平均距离法答案:中间距离法;重心法3.聚类分析是研究分类问题的一种多元统计分析方法。

()A:对 B:错答案:对4.聚类分析是有监督学习。

()A:错 B:对答案:错5.动态聚类法的凝聚点可以人为主观判别。

()A:对 B:错答案:对第三章测试1.判别分析是通过对已知类别的样本数据的学习、构建判别函数来最大程度区分各类,Fisher判别的准则要求()。

A:各类之间各个类内部变异尽可能大B:各类之间和各类内部变异尽可能小 C:各类之间变异尽可能大、各类内部变异尽可能小D:各类之间变异尽可能小、各类内部变异尽可能大答案:各类之间变异尽可能大、各类内部变异尽可能小2.常用判别分析的方法有()。

A:逐步判别法 B:贝叶斯判别法 C:费舍尔判别法 D:距离判别法答案:逐步判别法;贝叶斯判别法;费舍尔判别法;距离判别法3.较聚类分析,判别分析是根据已知类别的样本信息,对新样品进行分类。

第20章-抗磷脂抗体和抗磷脂抗体综合征193-203

第20章-抗磷脂抗体和抗磷脂抗体综合征193-203

第二十章抗磷脂抗体和抗磷脂抗体综合征北京协和医院张奉春磷脂是指分子中含有醇、脂肪酸和磷酸基团的一类化合物。

人体内的磷脂主要是含有甘油醇的甘油磷脂,包括心磷脂,磷脂酰丝氨酸,磷脂酰胆固醇,磷脂酰乙醇胺等组成。

抗磷脂抗体(antiphospholipid antibody,aPLA)是一族针对带负电荷磷脂或带负电荷磷脂与蛋白复合物的异质性抗体。

一些aPLA在体外可以使磷脂依赖的凝血试验时间延长,故可采用凝固法检测,所检测的aPLA称为狼疮抗凝物(1upus anticoagulant,LA)。

抗磷脂抗体综合征(antiphospholipidsyndrome,APS),是一组与抗磷脂抗体有关的自身免疫性疾病,典型的临床表现有动脉静脉血栓、血小板减少以及习惯性流产。

APS患者血中检出aPLA是确立APS诊断的必要条件。

临床上应用最广泛的是抗心磷脂抗体(anticardiolipin antibody,aCLA)和LA。

第一节历史回顾1907年Wassermann将患有先天性梅毒胎儿的肝脏提取物作为抗原检测梅毒患者血清中的抗体,1941年Pangborn证实这种抗原是一种磷脂,将其命名为心磷脂。

后来发现有许多梅毒血清反应阳性的人并没有梅毒,故称此现象为“梅毒血清反应生物学假阳性(BFP-STS)”,与感染性疾病有关者称“急性BFP-STS”,“慢性BFP-STS”指BFP-STS在血中持续存在数月或数年。

1950年Moore等人发现慢性BFP-STS人群中自身免疫性疾病的患病率很高,其中系统性红斑狼疮(SLE)尤为突出,高达33%~44%。

1957年Conley 和Hertman报道了2例BFP-STS阳性SLE患者,在其血浆中发现了一种特异的抗凝物质,Mueller等人也观察到类似的现象,这种抗凝物质也存在于一些非SLE患者中,尽管如此Feinstein和Rapaport仍将此物质命名为狼疮抗凝物(LA)。

八年级数学下册《第二十章-数据分析》练习题附答案-人教版

八年级数学下册《第二十章-数据分析》练习题附答案-人教版

八年级数学下册《第二十章数据分析》练习题附答案-人教版一、选择题1.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.50B.52C.48D.22.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:每户节水量(单位:吨) 1 1.2 1.5节水户数52 30 18那么,8月份这100户平均节约用水的吨数为(精确到0.01t) ( )A.1.5tB.1.20tC.1.05tD.1t3.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲 90 83 95乙 98 90 95丙 80 88 90A.甲B.乙丙C.甲乙D.甲丙4.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A.15.5,15.5B.15.5,15C.15,15.5D.15,155.如图所示为根据某市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是( )A.30 ℃,22 ℃B.26 ℃,22 ℃C.28 ℃,22 ℃D.26 ℃,26 ℃6.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )月用水量(吨) 4 5 6 9户数(户) 3 4 2 1A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨7.已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )A.平均数B.中位数C.众数D.方差8.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1 队员2 队员3 队员4平均数(秒)51 50 51 50方差s2(秒2) 3.5 3.5 14.5 15.5)A.队员1B.队员2C.队员3D.队员49.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级参加人数中位数方差平均数甲 55 149 191 135乙 55 151 110 135(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)二、填空题10.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_____.11.一组数据2,4,a,7,7的平均数x=5,则方差s2=.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于 .13.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85 83 78 75乙73 80 85 82如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,则甲的得分为,乙的得分为,应该录取 .14.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.15.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,则这5个整数可能的最大的和是_____.三、解答题16.饮料店为了了解本店罐装饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?17.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?18.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.19.某校举办“校园唱红歌”比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理的方案来确定演唱者的最后得分(每个评委打分最高为10分).方案一:所有评委给分的平均分;方案二:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分;方案三:所有评委给分的中位数;方案四:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,下图是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合用来确定这个同学演唱的最后得分?20.某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下表及图1所示:甲队178 177 179 179 178 178 177 178 177 179图1分析数据:两组样本数据的平均数、中位数、众数、方差如表所示:整理、描述数据:平均数中位数众数方差甲队178 178 b 0.6乙队178 a 178 c=,=,=;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.21.今年五一旅游黄金周期间,某旅游区的开放时间为每天10小时,并每小时对进入旅游区的游客人数进行一次统计,下表是5月2日对进入旅游区人数的7次抽样统计数据.记数的次数第1次第2次第3次第4次第5次第6次第7次每小时进入旅游区的人318 310 310 286 280 312 284 数(1)(2)若旅游区的门票为60元/张,则5月2日这一天门票收入是多少?(3)据统计,5月1日至5月5日,每天进入旅游区的人数相同,5月6日和5月7日这两天进入旅游区的人数分别比前一天减少10%和20%,那么从5月1日至5月7日旅游区门票收入是多少?22.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数 2 m 10 6 2 1b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.1 7.7 7.5 7.5 7.3 7.2 7.0 6.5一分钟仰卧起坐* 42 47 * 47 52 * 49其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.参考答案1.【答案】B2.【答案】C3.【答案】C4.【答案】D.5.【答案】B6.【答案】C7.【答案】D.8.【答案】B9.【答案】B. 10.【答案】﹣2•℃ 11.【答案】3.6. 12.【答案】mx +nym +n13.【答案】81,79.3,甲 14.【答案】23.4. 15.【答案】21,20.16.【答案】解:(1)18×(33+32+28+32+25+24+31+35)=30(听).(2)181×30=5 430(听). 17.【答案】解:(1)∵=(85+90+80)÷3=85(分),=(95+80+95)÷3=90(分)∴<,∴乙将被录用;(2)根据题意得:==87(分),==86(分);∴>,∴甲将被录用.18.【答案】解:(1)该班学生60秒跳绳的平均次数至少是:(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次). 因为100.8>100 所以超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数由4+13+19=36,可知该生跳绳成绩一定在100~120次范围内.19.【答案】解:(1)方案一最后得分为110(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7(分);方案二最后得分为18(7.0+7.8+3×8+3×8.4)=8(分);方案三最后得分为8分;方案四最后得分为8分或8.4分.(2)因为方案一中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案一不适合用来确定最后得分.因为方案四中的众数有两个,众数失去了实际意义所以方案四也不适合用来确定最后得分.20.解:(1)乙队共10名队员,中位数落在第3组,为178,即a=178;甲队178出现的次数最多,故众数为178,即b=178;c=110×[(176﹣178)2×2+(177﹣178)2+(178﹣178)2×4+(179﹣178)2+(180﹣178)2×2]=1.8;(2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8∴甲队的方差小于乙队的方差∴甲队的身高比乙队整齐,故选甲队比较好.21.【答案】解:(1)=17(318+310+310+286+280+312+284)=300(人);(2)300×10×60=180 000(元);(3)5月1日至5月5日每天进入旅游区的人数为300×10=3 000(人);5月6日进入旅游区的人数为3 000×90%=2 700(人);5月7日进入旅游区的人数为2 700×80%=2 160(人);5月1日至5月7日进入旅游区的人数共为3 000×5+2 700+2 160=19 860(人);门票收入为19 860×60=1 191 600(元)22.【答案】解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3∴实心球成绩在7.0≤x<7.4这一组优秀的有4人∴全年级女生实心球成绩达到优秀的人数是:65答:全年级女生实心球成绩达到优秀的有65人;②同意理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.。

新人教版八年级下册数学各章专项训练试题 第20章 数据的分析(含答案)

新人教版八年级下册数学各章专项训练试题 第20章 数据的分析(含答案)

第20章数据的分析专项训练专训1.平均数、中位数、众数实际应用四种类型名师点金:利用统计量中“三数”的实际意义解决实际生活中的一些问题时,关键要理解“三数”的特征,然后根据题目中的已知条件或统计图表中的相关信息,通过计算相关数据解答.平均数的应用a.平均数在商业营销中的决策作用1.一种什锦糖果是由甲、乙、丙三种不同价格的糖果混合而成的,已知甲种糖果的单价为9元/kg,乙种糖果的单价为10元/kg,丙种糖果的单价为12元/kg.(1)若甲、乙、丙三种糖果数量按2∶5∶3的比例混合,则混合后得到的什锦糖果的单价定为每千克多少元才能保证获得的利润不变?(2)若甲、乙、丙三种糖果数量按6∶3∶1的比例混合,则混合后得到的什锦糖果的单价定为每千克多少元才能保证获得的利润不变?b.平均数在人员招聘中的决策作用2.某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中甲、乙两人的成绩如下表:(单位:分)项目教学能力科研能力组织能力人员甲86 93 73乙81 95 79(1)根据实际需要,将教学能力、科研能力、组织能力三项测试得分按5∶3∶2的比确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由.(第2题)c.平均数在样本估计总体中的作用3.为了估计某市空气的质量情况,某同学在30天里做了如下记录:污染指数w 40 60 80 100 120 140天数 3 5 10 6 5 1其中w≤50时空气质量为优,50<w≤100时空气质量为良,100<w≤150时空气质量为轻度污染,若1年按365天计算,请你估计该城市在一年中空气质量达到良以上(含良)的天数为________.4.(图表信息题)某中学为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)将统计图补充完整;(2)若该校共有1 800名学生,根据以上调查结果估计该校全体学生平均每天完成作业所用(第4题)平均数和中位数的应用5.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表:(1)在图①中,“7分”所在扇形的圆心角等于______.(2)请你将如图②所示的统计图补充完整.(3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分,请写出甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?甲校成绩统计表成绩7分8分9分10分人数11 0 8中位数和众数的应用6.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1~8这8个整数,现提供统计图的部分信息(如图所示),请解答下列问题:(第6题)(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出的合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3时为技能合格,否则,将接受技能再培训,已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.平均数、中位数、众数的综合应用7.甲、乙、丙三个家电厂家在广告中都声称,他们的某品牌节能灯在正确使用的情况下,使用寿命都不低于8年.后来质量检测部门对他们的产品进行抽查,抽查的各8个产品使用寿命的统计结果如下(单位:年):甲厂:6,6,6,8,8,9,9,12乙厂:6,7,7,7,9,10,10,12丙厂:6,8,8,8,9,9,10,10(1)把以上三组数据的平均数、众数、中位数填入下表.平均数众数中位数甲厂乙厂丙厂(2)估计这三个厂家的推销广告分别利用了哪一种统计量.(3)如果你是顾客,应该选哪个厂家的节能灯?为什么?专训2.方差的几种常见应用名师点金:用方差解决实际应用问题,主要是通过计算实际问题中数据的离散程度,从而得出哪个稳定性更好,进行“择优选用”.2·1·c·n·j·y工业方面的应用1.为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据(单位:s)如下表:编一二三四五六七八九十号类型甲种电1 -3 -4 42 -2 2 -1 -1 2子钟乙种4 -3 -1 2 -2 1 -2 2 -2 1电子钟(1)计算甲、乙两种电子钟走时误差的平均数.(2)计算甲、乙两种电子钟走时误差的方差.(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你会买哪种电子钟?为什么?农业方面的应用2.王大伯几年前承包了甲、乙两片荒山,各栽100棵杨梅树,成活率为98%,现已挂果,经济效益初步显现.为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵树的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算估计,哪个山上的杨梅产量较稳定.(第2题)教育科技方面的应用3.七年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据回答下列问题.进球数/个10 9 8 7 6 5一班人数/人 1 1 1 4 0 3二班人数/人0 1 2 5 0 2(1)分别求一班和二班选手进球数的平均数、众数、中位数.(2)如果要从这两个班中选出一个班代表本年级参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?社会生活方面的应用4.在某旅游景区上山的一条小路上,有一些断断续续的台阶.下图是其中的甲、乙两段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题: (1)两段台阶路有哪些相同点和不同点? (2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.图中的数字表示每一级台阶的高度(单位:cm),并且数据15,16,16,14,14,15的方差s 甲2=23,数据11,15,18,17,10,19的方差s 乙2=353.(第4题)专训3.分析数据作决策的三种常见类型 名师点金:解决决策问题时,经常从数据的变化趋势及平均数、众数、中位数、方差等多个统计量进行分析,根据实际需要结合数据的特征,选择恰当的数据,作出合理的决策.用“平均数”决策1.某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:测试项目测试成绩/分甲乙丙教学能力85 73 73科研能力70 71 65组织能力64 72 84(1)如果根据三项测试的平均成绩,谁将被录用,说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用,说明理由用“中位数、众数”决策2.某家电商场的一个柜组出售容积分别为268升、228升、185升、182升四种型号同一品牌的冰箱,每卖出一台冰箱,售货员就在一张纸上写出它的容积作为原始记录,到月底,柜组长清点原始记录,得到一组由10个182、18个185、66个228和16个268组成的数据.(1)这组数据的平均数有实际意义吗?(2)这组数据的中位数、众数分别等于多少?(3)这个商场总经理关心的是中位数还是众数,说明理由?3.公园里有甲、乙两群游客正在做团体游戏,甲群是同一居民小区的初中生在进行联谊游戏活动;乙群是居民小区的两位退休教师义务带领一群学前儿童在做游戏.调查这两群游客的年龄(单位:周岁)得到甲、乙两组数据:甲:12,13,13,13,14,14,14,14,14,15,15,15,16.乙:3,4,4,5,5,5,5,5,6,6,56,58.(1)求甲、乙两组数据的平均数、中位数、众数.(2)在各组数据的平均数、中位数和众数中,哪几个能反映各群游客的年龄特征?用“方差”决策4.为选派一名学生参加全市实践活动技能竞赛,A,B两位同学在校实习基地现场进行加工直径为20 mm的零件的测试,他俩各加工的10个零件的相关数据(单位:mm)依次如图表所示:平均数方差完全符合要求个数A 20 0.026 2B 20 sB2 5根据测试得到的有关数据,试解答下列问题:(1)考虑平均数与完全符合要求的个数,你认为________的成绩好些.(2)计算出sB2的大小,考虑平均数与方差,说明谁的成绩好些.(3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参加竞赛较合适?说明你的理由.(第4题)专训4.七种常见热门考点名师点金:分析数据主要是根据数据的特征,恰当选择平均数、中位数、众数作出符合实际需要的分析,善于利用样本的数据估算总体的数据.本章要考查的主要考点可概括为:四个概念、三个应用.四个概念概念1 平均数1.某种蔬菜按品质分成三个等级销售,销售情况如下表:等级单价/(元/kg) 销售量/kg一等 5.0 20二等 4.5 40三等 4.0 40则售出蔬菜的平均单价为________.2.学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘成了条形统计图(如图),则30名学生参加活动的平均次数是( )(第2题)A.2 B.2.8 C.3 D.3.3概念2 中位数3.学校团委组织“阳光助残”捐款活动,九年级一班学生捐款情况如下表:捐款金额/元 5 10 20 50人数/人10 13 12 15则学生捐款金额的中位数是( )A.13元B.12元C.10元D.20元概念3 众数3.2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100 m男子比赛中,获得好成绩,成为历史上首位突破10 s大关的黄种人.下表是苏炳添近五次大赛参赛情况:比赛日期2012­8­4 2013­5­21 2014­9­28 2015­5­20 2015­5­31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩/s 10.19 10.06 10.10 10.06 9.99则苏炳添这五次比赛成绩的众数和平均数分别为( )A.10.06 s,10.06 s B.10.10 s,10.06 sC.10.06 s,10.08 s D.10.08 s,10.06 s概念4 方差4.在一次数学测试中,某小组五名同学的成绩(单位:分)如下表(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分81 79 ■80 82 ■80那么被遮盖的两个数据依次是( )A.80,2 B.80,10 C.78,2 D.78,106.在一次定点投篮训练中,五位同学投中的个数分别为3,4,4,6,8,则关于这组数据的说法不正确的是( )A.平均数是5 B.中位数是6C.众数是4 D.方差是3.2三个应用应用1 平均数、中位数、众数的应用7.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件个数:2-1-c-n-j-y每人加工零件个数540 450 300 240 210 120 人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件个数定为260,你认为这个定额是否合理?为什么?应用2 方差的应用8.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:(第8题)乙校成绩统计表分数/分人数/人70 78090 1100 8(1)在图①中,“80分”所在扇形的圆心角度数为________;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.应用3 用样本估计总体的应用(第9题)9.随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业个人旅游年消费情况进行问卷调查,随机抽查部分员工,记录每个人年消费金额,并将调查数据适当整理,绘制成尚不完整的表和图(如图).组别个人年消费金额x/元频数(人数) 频率A x≤2 000 18 0.15B 2 000<x≤4 000 a bC 4 000<x≤6 000D 6 000<x≤8 000 24 0.20E x>8 000 12 0.10合计 c 1.00根据以上信息回答下列问题:(1)a=________,b=________,c=________,并将条形统计图补充完整;(2)在这次调查中,个人年消费金额的中位数出现在________组;(3)若这个企业有3 000名员工,请你估计个人旅游年消费金额在6 000元以上的人数.答案专训11.解:(1)9×2+10×5+12×32+5+3=10.4(元).答:混合后得到的什锦糖果的单价定为每千克10.4元才能保证获得的利润不变. (2)9×6+10×3+12×16+3+1=9.6(元).答:混合后得到的什锦糖果的单价定为每千克9.6元才能保证获得的利润不变. 2.解:(1)甲的成绩:86×5+93×3+73×25+3+2=85.5(分),乙的成绩:81×5+95×3+79×25+3+2=84.8(分),所以甲将被录用.(2)甲能,乙不一定能.理由:由频数分布直方图可知,85分及以上的共有7人, 因此甲能被录用,乙不一定能被录用. 3.2924.解:(1)50-6-12-16-8=8(名),补全统计图如图所示.(第4题)(2)由统计图可得x -=6×1+12×2+16×3+8×4+8×550=3(h),估计该校全体学生平均每天完成作业所用总时间为3×1 800=5 400(h).点拨:本题综合考查平均数的应用、样本估计总体以及由统计图获取信息的能力.5.解:(1)144°(2)4÷72°360°=20(人),20-8-4-5=3(人),补全统计图如图所示.(第5题)(3)由(2)知乙校的参赛人数为20人.因为两校参赛人数相等,所以甲校的参赛人数也为20人,所以甲校得9分的有1人,则甲校学生成绩的平均数为(7×11+8×0+9×1+10×8)×120=8.3(分),中位数为7分.由于两个学校学生成绩的平均数一样,因此从中位数的角度进行分析.因为乙校学生成绩的中位数为8分,大于甲校学生成绩的中位数,所以乙校的成绩较好.(4)甲校的前8名学生成绩都是10分,而乙校的前8名学生中只有5人的成绩是10分,所以应选甲校.6.解:(1)因为把合格品数从小到大排列,第25个和第26个数据都为4,所以中位数为4.(2)众数的取值为4或5或6.(3)这50名工人中,单位时间内加工的合格品数低于3的人数为2+6=8(人),故估计该厂将接受技能再培训的人数为400×850=64(人).点拨:此题考查了条形统计图、用样本估计总体、中位数以及众数,弄清题意是解决本题的关键.7.解:(1)甲厂:8,6,8;乙厂:8.5,7,8;丙厂:8.5,8,8.5.(2)甲厂利用平均数或中位数;乙厂利用了平均数或中位数;丙厂利用了平均数或众数或中位数.(3)选丙厂的节能灯.因为无论从哪种统计量来看,与其他两个厂家相比,丙厂水平都比较高或持平,说明多数样本的使用寿命达到或超过8年. 专训21.解:(1)甲种电子钟走时误差的平均数是 110(1-3-4+4+2-2+2-1-1+2)=0(s), 乙种电子钟走时误差的平均数是110(4-3-1+2-2+1-2+2-2+1)=0(s). (2)s 甲2=110[(1-0)2+(-3-0)2+…+(2-0)2]=110×60=6,s 乙2=110[(4-0)2+(-3-0)2+…+(1-0)2]=110×48=4.8. (3)我会买乙种电子钟,因为平均走时误差相同,且甲种电子钟走时误差的方差比乙大,说明乙种电子钟的走时稳定性更好,所以乙种电子钟的质量更优.2.解:(1)x 甲=14(50+36+40+34)=40(kg),x 乙=14(36+40+48+36)=40(kg),估计甲、乙两山杨梅的产量总和为40×100×98%×2=7 840(kg). (2)s 甲2=14[(50-40)2+(36-40)2+(40-40)2+(34-40)2]=38,s 乙2=14[(36-40)2+(40-40)2+(48-40)2+(36-40)2]=24,所以s 甲2>s 乙估计乙山上的杨梅产量较稳定.3.解:(1)一班进球平均数:110(10×1+9×1+8×1+7×4+6×0+5×3)=7(个),二班进球平均数:110(10×0+9×1+8×2+7×5+6×0+5×2)=7(个);一班投中7个球的有4人,人数最多,故众数为7个, 二班投中7个球的有5人,人数最多,故众数为7个;一班中位数:按顺序排第五、第六名同学进7个球,故中位数为7个, 二班中位数:按顺序排第五、第六名同学进7个球,故中位数为7个.(2)一班的方差s12=110[(10-7)2+(9-7)2+(8-7)2+4×(7-7)2+0×(6-7)2+3×(5-7)2]=2.6,二班的方差s22=110[0×(10-7)2+(9-7)2+2×(8-7)2+5×(7-7)2+0×(6-7)2+2×(5-7)2]=1.4,二班选手水平发挥更稳定,如果争取夺得总进球数团体第一名,应该选择二班;一班前三名选手的成绩突出,分别进10个、9个、8个球,如果要争取个人进球数进入学校前三名,应该选择一班.4.解:(1)因为x 甲=16(15+16+16+14+14+15)=15;x 乙=16(11+15+18+17+10+19)=15.甲路段的中位数为:15;乙路段的中位数为:16. 甲路段极差:16-14=2;乙路段极差:19-10=9. s 甲2=23,s 乙2=353.所以相同点:两段台阶路每一级台阶高度的平均数相同.不同点:两段台阶路台阶高度的中位数、方差和极差不同(2)甲段台阶路走起来更舒服一些,因为它的每一级台阶高度的方差小.(3)每一级台阶高度均整修为15 cm(原数据的平均数),使得方差为0,此时游客行走最方便.专训31.解:(1)丙将被录用.理由:甲的平均成绩为(85+70+64)÷3=73(分),乙的平均成绩为(73+71+72)÷3=72(分),丙的平均成绩为(73+65+84)÷3=74(分).因为74>73>72,所以候选人丙将被录用.(2)甲将被录用.理由:甲的测试成绩为(85×5+70×3+64×2)÷(5+3+2)=76.3(分),乙的测试成绩为(73×5+71×3+72×2)÷(5+3+2)=72.2(分),丙的测试成绩为(73×5+65×3+84×2)÷(5+3+2)=72.8(分),因为76.3>72.8>72.2,所以候选人甲将被录用.2.解:(1)这组数据的平均数没有实际意义.(2)这组数据共有110个数据,中位数应是从小到大排列后第55个和第56个数据的平均数,这两个数据都是228,这组数据中228出现的次数最多,所以这组数据的中位数、众数都是228.(3)商场总经理关心的是众数.理由:众数是228,表明容积为228升的冰箱的销量最大,它能为商场带来较多的利润,因此,这种型号的冰箱要多进货,其他的型号则要少进货.3.解:(1)甲组数据的平均数是14,中位数是14,众数是14;乙组数据的平均数是13.5,中位数是5,众数是5.(2)对于甲群游客,平均数、众数、中位数都能反映这群游客的年龄特征;对于乙群游客,只有中位数和众数能反映这群游客的年龄特征.4.解:(1)B(2)由统计图可知sB2=110×[5×(20-20)2+3×(19.9-20)2+(20.1-20)2+(20.2-20)2]=0.008,平均数相同,而sA2=0.026,此时有sA2>sB2,所以B 的波动性小,即B 的成绩较好.(3)派A 去参加竞赛较合适.理由:从图中折线走势可知,尽管A 的成绩前面起伏较大,但后来逐渐稳定,误差小,预测A 的潜力大,选派A 去参加竞赛更容易出好成绩. 专训4 1.4.4元/kg 2.C3.D 点拨:因为10+13+12+15=50(人),按照从小到大顺序排列的第25个和第26个数据都是20元,所以中位数=20+202=20(元).4.C5.C 点拨:根据题意得丙的得分为80×5-(81+79+80+82)=78(分),方差为15×[(81-80)2+(79-80)2+(78-80)2+(80-80)2+(82-80)2]=2.故选C. 6.B7.解:(1)平均数是260个,中位数是240个,众数是240个.(2)不合理.因为表中数据显示,每月能完成260个的人数一共有4人,还有11人不能达到此定额,尽管260个是平均数,但不利于调动多数员工的积极性,而240个既是中位数,又是众数,是大多数人能达到的定额,故定额为240个较为合理. 8.解:(1)54° (2)6÷30%=20(人),20-6-3-6=5(人),统计图补充如下:(第8题)(3)20-1-7-8=4(人),x乙=707804901100820⨯+⨯+⨯+⨯=85(分).(4)因为s甲2<s乙2,所以甲校20名同学的成绩相对乙校较整齐.9.解:(1)36;0.30;120 补全条形统计图如图:(第9题)(2)C(3)估计个人旅游年消费金额在6 000元以上的人数为3 000×(0.10+0.20)=900(人).八年级数学下册知识点汇聚单元测试:第二十章(中考冲刺复习通用,含详解)一、选择题(每小题4分,共28分)1.某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )A.12,13B.12,14C.13,14D.13,162.(2021·天水中考)一组数据:3,2,1,2,2的众数、中位数、方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.23.四个数据:8,10,x,10的平均数与中位数相等,则x等于( )A.8B.10C.12D.8或124.某次射击训练中,一小组的成绩如下表所示:环数7 8 9人数 2 3已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )A.5人B.6人C.4人D.7人5.(2013·雅安中考)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为( )A.3.5,3B.3,4C.3,3.5D.4,36.八年级一、二班的同学在一次数学测验中的成绩统计情况如下表:班级参加人数中位数平均数方差一50 84 80 186二50 85 80 161某同学分析后得到如下结论:①一、二班学生的平均成绩相同;②二班优生人数多于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是( )A.①②B.①③C.①②③D.②③7.某校A,B两队10名参加篮球比赛的队员的身高(单位:cm)如下表所示:队员1号2号3号4号5号A队176 175 174 171 174B队170 173 171 174 182设两队队员身高的平均数分别为,,身高的方差分别为,,则正确的选项是( ) A.=,> B.<,<C.>,>D.=,<二、填空题(每小题5分,共25分)8.(2013·重庆中考)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:时间(单位:h) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是h.9.(2013·营口中考)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为=0.56,=0.45,=0.61,则三人中射击成绩最稳定的是.10.某学生数学的平时成绩、期中考试成绩、期末考试成绩分别是:84分、80分、90分.如果按平时成绩∶期中考试成绩∶期末考试成绩=3∶3∶4进行总评,那么他本学期数学总评分应为分.11.某班同学进行知识竞赛,将所得成绩进行整理后,如图,竞赛成绩的平均数为分.12.某农科所在8个试验点对甲,乙两种玉米进行对比试验,这两种玉米在各个试点的亩产量如下:(单位:kg)甲:450 460 450 430 450 460 440 460乙:440 470 460 440 430 450 470 440在这些试验点中, 种玉米的产量比较稳定(填“甲”或“乙”).三、解答题(共47分)13.(11分)某市2013年的一次中学生运动会上,参加男子跳高比赛的有17名运动员,通讯员在将成绩表送组委会时不慎用墨水将成绩表污染掉一部分(如下表),但他记得这组运动员的成绩的众数是1.75m,表中每个成绩都至少有一名运动员.根据这些信息,计算这17名运动员的平均跳高成绩(精确到0.01m).14.(11分)(2013·扬州中考)为了声援扬州“世纪申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀,这次竞赛中,甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生.(填“甲”或“乙”)(3)甲组同学说他们的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩更好于甲组.请你给出两条支持乙组同学观点的理由.15.(12分)(2013·威海中考)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分.前六名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩(分) 85 92 84 90 84 80面试成绩(分) 90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前两名人选.16.(13分)(2013·黄冈中考)为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:t),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整.(2)求这100个样本数据的平均数、众数和中位数.(3)根据样本数据,估计黄冈市市直机关500户家庭中月平均用水量不超过12t的约有多少户?答案解析1.【解析】选B.在这组数据中,12出现了2次,出现的次数最多,因此,这组数据的众数是12,把这组数据从小到大排列为:12,12,13,14,16,17,18,最中间的数是14,因此这组数据的中位数是14.2.【解析】选B.从大到小排列此数据为:3,2,2,2,1;数据2出现了三次,次数最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.4,即中位数是2,众数是2,方差为0.4.3.【解析】选D.①x最小时,数据为x,8,10,10,中位数是(8+10)÷2=9,则(8+10+x+10)÷4=9,所以x=8;②x最大时,数据为8,10,10,x,中位数是(10+10)÷2=10,则(8+10+x+10)÷4=10,所以x=12;③当8≤x≤10时,中位数是(x+10)÷2,则(x+10)÷2=(8+10+x+10)÷4,可求得x=8.故选D.4.【解析】选A.设成绩为8环的人数是x人,由题意得(7×2+8x+9×3)÷(2+x+3)=8.1,解得x=5.5.【解析】选A.∵一组数据2,4,x,2,4,7的众数是2,∴x=2,∴中位数为3,==3.5.6.【解析】选A.由平均数都是80知①正确;由二班的中位数大于一班的中位数知②正确;一班的方差大,其成绩相对不稳定,故③不正确.。

20 第二十章 logistic回归分析

20 第二十章 logistic回归分析
吸烟 X1 否 否 是 是 饮酒 X2 否 是 否 是 观察例数 N 199 170 101 416 患者 Y=1 63 63 44 265 正常人 Y=0 136 107 57 151 患病率(%) 31.66 37.06 43.56 63.70
各变量赋值表:
变量
含义
量化值(赋值)
x1
x2 y
X1
X2
一、 logistic回归模型
1、 logistic回归分析属于非线性回归,因为它的因变量y为 二项分类或多项分类,不是连续型正态分布变量,所以不 符合线性回归条件。 2、 logistic回归模型的分类 (1)根据设计类型分: 成组设计的非条件logistic回归分析 配对设计的条件logistic回归分析 (2)根据因变量的分类个数 二分类logistic回归分析 多分类logistic回归分析(无序、有序)
第二十章 logistic回归分析
回顾多重线性回归模型相关知识点
1、适用条件? Line条件 2、模型
Y 0 1 X 1 2 X 2 ...... m X m ˆ b b x b x ...... b x Y
0 1 1 2 2 m m
3、例题 p233-234例13-1 脂联素作为因变量,体重 指数、病程、瘦素、空腹血糖作为自变量。
ˆ b0 b1 x1 b2 x2
不满足,需要进行变量变换(?):logit变换
log it ( ) ln(

1
) ln(odds )
优势的自 然对数
logit变换后,logit(π)就满足多重线性回归模型条件
6
log it ( ) ln(

1
) ln(odds )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型相关
▪ 有两个问题需要解决: ▪ 给定不同组合比例 11,12 ,,1p以及 b11, b12 ,, b1q ,
都可以算出不一样的简单相关系数,这使得这个 方法非常的不科学,每个人都可以依照自己的喜 好来决定组合比例,并且在衡量两组变量之间相 关性的问题上,也没有一个统一的标准。 ▪ 各组内变量之间的尺度不太相同,例如身高的尺 度跟脚掌长度的尺度就不相同,显然前者的变异 数会大于后者,这种情况是不合理的。
1x1 2 x2 p x p 1 y1 2 y2 q yq
典型相关
▪ 对于任意一组系数(1, 2 ,, p ) 和(1, 2 ,, q )都 可以通过上式求出一对典型变量,典型相 关分析中称之为典型变量。进而可以求出 典型变量的简单相关系数,称之为典型相 关系数。
▪ x 组的p个变量组合成一个,y组的q个变量 也组合成一个,然后计算简单相关来衡量 两组之间的相关性。问题是如何组合?
CANCORR过程
▪ SAS系统中利用CANCORR过程步进行典型相关 分析。
▪ CANCORR过程的语法格式如下: PROC CANCORR DATA= OUTSTAT=
OUT= ALL ; VAR 一组变量; WITH 另一组变量; PARTIAL 变量; RUN;
CANCORR过程
▪ DATA语句指定要分析的数据集名及一些选 项,它可以是原SAS数据集,也可以是corr、 cov、ucorr、ucov等矩阵。
本章小节
▪ 冗余分析是通过原始变量与典型变量间的相关性, 分析引起原始变量变异的原因。以原始变量为因 变量,以典型变量为自变量,建立线性回归模型, 则相应的确定系数等于因变量与典型变量间的相 关系数的平方,它描述了由于因变量与典型变量 的线性关系引起的因变量变异在因变量的总变异 中的比例。
▪ 通过实例详细介绍了CANCORR过程步的语法及 基本格式,并阐述了如何利用此SAS过程步进行 典型相关分析以及进行结果解释。
11
1
12
1 p
b11
b1
b12
b1q
典型相关分析的理论架构
▪ 设x组的共变异数矩阵为 , xx y组的共变异
数矩阵为 yy ,x与y的共变异数矩阵为 , xy
则 x1* 的变异数为

Var(x1* ) Var(1x) 1 xx 1
▪ y1*的变异数为
Var(y1*) Var(b1y) b1 yyb1
典型相关
▪ 典型关系分析是分析两组变量之间相关性的一种 统计分析方法,它包含了简单的Pearson相关分 析(两个组均含一个变量)和复相关分析(一个 组含有一个变量,而另一组含有多个变量)这两 种特殊情况。典型相关分析的基本思想和主成分 分析的基本思想相似,它将一组变量与另一组变 量之间单变量的多重线性相关性研究转化为对少 数几对综合变量之间的简单线性相关性的研究, 并且这少数几对变量所包含的线性相关性的信息 几乎覆盖了原变量组所包含的全部相应信息。
典型相关
▪ 典型相关分析的第二步是再次估计组合系数,使 得对应的典型变量相关系数达到第二大,且第二 对典型变量中的第一次变量与第一对典型变量中 的每一个变量不相关。这个最二大的相关系数是 第二典型相关系数,且称具有最二大相关系数的 这对典型变量和为第二典型变量。
▪ 如果两个组中变量的个数为p,q,p<q,那么寻 求典型变量的过程可以一直连续进行下去,直到 得到p对典型变量为止。
典型相关
▪ 针对第一个问题,“在所有的组合中,寻 找一个组合使得简单相关系数为最大”, 可能是个好想法;另外,寻找一个组合使 得简单相关系数为最小,此简单相关系数 就是典型相关系数,而典型相关系数的平 方称为典型根。
典型相关
▪ 对于第二个问题,解决的方法就是对资料 进行标准化。
▪ 典型相关分析的第一步是估计组合系数, 使得对应的典型变量和的相关系数达到最 大。这个最大的相关系数是第一典型相关 系数,且称具有最大相关系数的这对典型 变量为第一典型变量。
▪ ALL选择项指令输出所有结果。 ▪ CORR选择项指令输出原始变量间的相关
系数矩阵。 ▪ VP选择项用来为VAR语句中变量的典型变
量命名前缀,名字不超过40个字符串长。
CANCORR过程
▪ WP选择项用来为WITH语句中变量的典型变量命 名前缀,名字不超过40个字符串长。
▪ EDF选择项用来指定该回归分析的残差自由度。 ▪ VAR语句列出两组变量中的第一组变量。若缺省,
典型相关
▪ 设两组变量分别为x组有p个变量(x1, x2,, xp)T, 而y组有q个变量(y1, y2,, yq )T,我们先分别把 x组和y组的变量组合起来(当然是用线性 组合),也就是
x1* 11x1 12 x2 1p xp y1* b11 y1 b12 y2 b1q yq
▪ 其中这些系数都是一些常数,就是组合的 比例,由于是线性组合,所以11 12 1p 1 且b11 b12 b1q 1 。
则所有不出现在其它语句中的数值变量均将列在 第一组内。 ▪ WITH语句列出两组变量中的第二组变量。该语 句不能省略。 ▪ PARTIAL语句用来指定协变量。系统以此协变量 来计算偏相关系数矩阵,然后进行典型相关分析。 ▪ 另外,freq语句、weight语句、by语句等也实用。
本章小节
▪ 典型相关分析的基本思想和主成分分析的基本思 想相似,它将一组变量与另一组变量之间单变量 的多重线性相关性研究转化为对少数几对综合变 量之间的简单线性相关性的研究,并且这少数几 对变量所包含的线性相关性的信息几乎覆盖了原 变量组所包含的全部相应信息。典型相关分析方 法的基本原理是:所有研究的两组变量为x组和y 组,x 组有p个变量(x1, x2 ,, xp ) , y 组有q个变 量 ( y1, y2 ,, yq ) ,则分别对这两组变量各做线性 组合后,再计算此两加权和的简单相关系数,然 后以这个简单相关系数当做这两组变数之间相关 性的衡量指标。
第20章 典型相关分析
学习目标
▪ 了解典型相关分析的数学表达方式,假定 条件;
▪ 熟悉典型相关系数的数学含义; ▪ 掌握典型变量系数的数学含义; ▪ 掌握简单相关,复相关和典型相关的意义; ▪ 掌握典型相关分析的SAS过程步:
CANCORR过程步。
概述
▪ 对于两个变量,是用它们的相关系数来衡量它们 之间的线性相关关系的。当考虑一个变量与一组 变量的线性相关关系时,是用它们的多重相关系 数来衡量。但是,许多医学实际问题中,常常会 碰到两组变量之间的线性相关性研究问题。例如, 教育研究者想了解3个学术能力指标与5个在校成 绩表现之间的相关性;对于这类问题的研究引进 了典型相关系数的概念,从而找到了揭示两组变 量之间线性相关关系的一种统计分析方法——典 型相关分析。
▪ 共变异数为
Cov(x1*, y1*) Cov(1x,b1y) 1 xyb1
典型相关分析的理论架构
▪ 典型变量的系数称为典型权重,权重愈大 表示此变量对此典型变量的贡献愈大。在 以上的计算中,此权重为标准化后的资料 所得的,故k个资料的第i 典型变量得点为
aij
(x jk sj
xj)
冗余分析
典型相关分析的理论架构
▪ 设两组变量分别为x组有p个变量(x1, x2,, xp ),T 而y组有q个变量(y1, y2,, yq )T,典型相关分析
是找x组的线性组合 x1* 11x1 12x2 1p xp 与y 组的线性组合 y1* b11y1 b12 y2 b1q yq ,使得简 单相关系数为最大,其中
典型相关
▪ 典型相关分析方法的基本原理是:所有研 究的两组变量为x组和y组,x 组有p个变 量 (x1, x2 ,, x p ), y 组有q个变量( y1, y2 ,, yq ) , 则分别对这两组变量各做线性组合后,再 计算此两加权和的简单相关系数,然后以 这个简单相关系数当做这两组变数之上述分析的过程可以看出,第一对典型 变量的第一典型相关系数描述了两个组中 变量之间的相关程度,且它提取的有关这 两组变量相关性的信息量最多。第二对典 型变量的第二典型相关系数也描述了两个 组中变量之间的相关程度,但它提取的有 关这两组变量相关性的信息量次多。以此 类推,
典型相关
▪ 可以得知,由上述方法得到的一系列典型 变量的典型相关系数所包含的有关原变量 组之间相关程度的信息一个比一个少。如 果少数几对典型变量就能够解释原数据的 主要信息,特别是如果一对典型变量就能 够反映出原数据的主要信息,那么,对两 个变量组之间相关程度的分析就可以转化 为对少数几对或者是一对典型变量的简单 相关分析。这就是典型相关分析的主要目 的。
▪ 冗余分析是通过原始变量与典型变量间的相关性, 分析引起原始变量变异的原因。以原始变量为因 变量,以典型变量为自变量,建立线性回归模型, 则相应的确定系数等于因变量与典型变量间的相 关系数的平方,它描述了由于因变量与典型变量 的线性关系引起的因变量变异在因变量的总变异 中的比例。
▪ 典型负荷为变量与典型变量的相关系数,可由相 关系数的平方了解此典型变量解释了此变量多少 比例的变异数。
本章小节
▪ 有典型相关分析得到的一系列典型变量的 典型相关系数所包含的有关原变量组之间 相关程度的信息一个比一个少。如果少数 几对典型变量就能够解释原数据的主要信 息,特别是如果一对典型变量就能够反映 出原数据的主要信息,那么,对两个变量 组之间相关程度的分析就可以转化为对少 数几对或者是一对典型变量的简单相关分 析。这就是典型相关分析的主要目的。
相关文档
最新文档