立体几何大题求体积习题集汇总

合集下载

体积计算速算题目

体积计算速算题目

体积计算速算题目题目一:正方体的体积计算已知一个正方体的边长为a,请计算该正方体的体积。

解答:正方体的体积可以通过边长a的立方来计算。

即体积V等于a的立方,表示为V = a³。

题目二:长方体的体积计算已知一个长方体的长为L,宽为W,高为H,请计算该长方体的体积。

解答:长方体的体积可以通过长、宽和高的乘积来计算。

即体积V等于长L乘以宽W乘以高H,表示为V = LWH。

题目三:球体的体积计算已知一个球体的半径为r,请计算该球体的体积。

解答:球体的体积可以通过半径r的立方乘以π再除以3来计算。

即体积V等于4/3乘以π乘以半径r的立方,表示为V = (4/3)πr³。

题目四:圆柱体的体积计算已知一个圆柱体的底面半径为r,高为h,请计算该圆柱体的体积。

解答:圆柱体的体积可以通过底面积乘以高来计算。

底面积等于π乘以半径的平方,即底面积A = πr²。

体积V等于底面积A乘以高h,表示为V = Ah,即V = πr²h。

题目五:圆锥体的体积计算已知一个圆锥体的底面半径为r,高为h,请计算该圆锥体的体积。

解答:圆锥体的体积可以通过底面积乘以高再除以3来计算。

底面积等于π乘以半径的平方,即底面积A = πr²。

体积V等于底面积A乘以高h 再除以3,表示为V = (1/3)Ah,即V = (1/3)πr²h。

题目六:棱柱的体积计算已知一个棱柱的底面积为B,高为h,请计算该棱柱的体积。

解答:棱柱的体积可以通过底面积乘以高来计算。

即体积V等于底面积B 乘以高h,表示为V = Bh。

题目七:棱锥的体积计算已知一个棱锥的底面积为B,高为h,请计算该棱锥的体积。

解答:棱锥的体积可以通过底面积乘以高再除以3来计算。

即体积V等于底面积B乘以高h再除以3,表示为V = (1/3)Bh。

题目八:棱台的体积计算已知一个棱台的上底面积为A,下底面积为B,高为h,请计算该棱台的体积。

文科高考数学立体几何大题求各类体积方法

文科高考数学立体几何大题求各类体积方法

A BCD PA B CDP文科高考数学立体几何大题求各类体积方法【三年真题重温】1.【2011⋅新课标全国理,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,∠DAB =60,2AB AD =,PD ⊥底面ABCD . (Ⅰ) 证明:PA ⊥BD ;(Ⅱ) 若PD AD =,求二面角A PB C --的余弦值. 2.【2011 新课标全国文,18】如图,四棱锥P ABCD -中,底面ABCD 为平行四边形.60,2,DAB AB AD PD ∠==⊥底面ABCD .(Ⅰ) 证明:PA BD ⊥;(Ⅱ) 设1PD AD ==,求棱锥D PBC -的高.根据DE PB PD BD ⋅=⋅,得32DE =.即棱锥D PBC -的高为32.3.【2010 新课标全国理,18】如图,已知四棱锥P-ABCD 的底面为等腰梯形,AB CD,AC ⊥BD ,垂足为H ,PH 是四棱锥的高 ,E 为AD 中点.(1) 证明:PE ⊥BC(2) 若∠APB=∠ADB=60°,求直线PA 与平面PEH 所成角的正弦值【解析】命题意图:本题主要考查空间几何体中的位置关系、线面所成的角等知识,考查空间想象能力以及利用向量法研究空间的位置关系以及线面角问题的能力.4.【2010 新课标全国文,18】如图,已知四棱锥P ABCD -的底面为等腰梯形,AB ∥CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高。

(Ⅰ)证明:平面PAC ⊥ 平面PBD ; (Ⅱ)若6AB =,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积。

5.【2012 新课标全国理】(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==, D 是棱1AA 的中点,BD DC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小。

6.【2012 新课标全国文】(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。

立体形的体积计算练习题

立体形的体积计算练习题

立体形的体积计算练习题为了更好地帮您回答题目“立体形的体积计算练习题”,我将按照数学练习题的格式来撰写文章。

如下:立体形的体积计算练习题1. 计算长方体的体积已知长方体的长为L,宽为W,高为H,请计算其体积V。

解答:长方体的体积计算公式为V = L × W × H。

根据题目中给出的长、宽、高的数值,代入公式计算即可得到体积V的结果。

示例:已知长方体的长L为5m,宽W为3m,高H为2m,代入公式V =5 × 3 × 2,计算得到体积V为30立方米。

2. 计算正方体的体积已知正方体的边长为a,请计算其体积V。

解答:正方体的体积计算公式为V = a³。

根据题目中给出的边长a的数值,代入公式计算即可得到体积V的结果。

示例:已知正方体的边长a为4cm,代入公式V = 4³,计算得到体积V为64立方厘米。

3. 计算圆柱体的体积已知圆柱体的底面半径为r,高为h,请计算其体积V。

解答:圆柱体的体积计算公式为V = πr²h,其中π约等于3.14。

根据题目中给出的底面半径r和高h的数值,代入公式计算即可得到体积V的结果。

示例:已知圆柱体的底面半径r为5cm,高h为8cm,代入公式V = 3.14 ×5² × 8,计算得到体积V为628.8立方厘米。

4. 计算球体的体积已知球体的半径为r,请计算其体积V。

解答:球体的体积计算公式为V = (4/3)πr³,其中π约等于3.14。

根据题目中给出的半径r的数值,代入公式计算即可得到体积V的结果。

示例:已知球体的半径r为10cm,代入公式V = (4/3) × 3.14 × 10³,计算得到体积V为4186.7立方厘米。

总结:通过以上练习题的计算,我们可以学会如何计算不同立体形的体积。

无论是长方体、正方体、圆柱体还是球体,只需根据给定的尺寸数据,代入对应的体积计算公式,即可轻松求解。

专题10:立体几何中的体积问题(解析版)

专题10:立体几何中的体积问题(解析版)

专题10:立体几何中的体积问题(解析版)⑴圆柱侧面积;l r S ⋅⋅=π2侧面 ⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面h S V ⋅=柱体h S V ⋅=31锥体()13V h S S S S =+⋅+下下台体上上 球的表面积和体积 32344R V R S ππ==球球,. 正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。

正四面体是每个面都是全等的等边三角形的三棱锥。

1.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,点D 是AB 的中点.(1)求证:1AC BC ⊥;(2)若1CC BC =,求三棱锥1B BCD -的体积.【答案】(1)证明见解析;(2)4【分析】(1)利用勾股定理,可得AC BC ⊥,结合1AC CC ⊥,根据线面垂直的判定定理以及性质定理,可得结果.(2)计算∆BCD S ,1BB ,然后根据三棱锥的体积公式,可得结果.【详解】(1)∵三棱柱111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC ,∵AC ⊂平面ABC ,∴1CC AC ⊥,∵在ABC ∆中,3AC =,4BC =,5AB =,∴222AC BC AB +=,∴90ACB ∠=︒,∴AC BC ⊥,∵1CC ⊂平面11CC B B ,CB ⊂平面11CC B B ,1CC CB C =,∴AC ⊥平面11CC B B ,∵1BC ⊂平面11CC B B ,∴1AC BC ⊥.(2)∵D 是AB 中点, ∴111343222BCD ABC S S ∆∆==⨯⨯⨯=, ∵1BB ⊥平面ABC ,114BB AA ==,∴111134433B BCD BCD V S BB -∆=⋅=⨯⨯=. 【点睛】本题考查线面垂直的判定定理以及性质定理,还考查了锥体的体积公式,难点在于根据线段长度关系利用勾股定理得出垂直,重点在于对定理的应用,属基础题.2.如图所示:在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB ∆为等边三角形,AC BC ⊥且2AC BC ==,,O M 分别为,AB VA 的中点.(1)求证:平面MOC ⊥平面VAB ;(2)求三棱锥V ABC -的体积.【答案】(1)详见解答;(23. 【分析】(1)由已知可得OC AB ⊥,再由面面垂直定理可得OC ⊥平面VAB ,即可证明结论; (2)OC ⊥平面VAB ,用等体积法求三棱锥V ABC -的体积.【详解】(1),AC BC O =为AB 中点,OC AB ∴⊥,平面VAB ⊥平面ABC ,平面VAB 平面ABC AB =,OC ⊂平面ABC ,OC ∴⊥平面,VAB OC ∴⊂平面MOC ,平面MOC ⊥平面VAB ;(2)AC BC ⊥且2AC BC ==,O 分别为AB 的中点,11,2,2332VAB OC AB S ∆∴===⨯⨯=, OC ⊥平面VAB ,133V ABC C VAB VAB V V OC S --∆==⨯⨯=, 3V ABC V -∴=. 【点睛】本题考查面面垂直证明,注意空间垂直间的相互转化,考查椎体体积,意在考查直观想象、逻辑推理能力,属于基础题.3.如图所示,四棱锥的底面ABCD 是一个矩形,AC 与BD 交于点M ,VM 是四棱锥的高.若4VM cm =,4cm AB =,5VC cm =,求四棱锥的体积.【答案】35(cm )3. 【分析】在Rt VMC ∆中求出3(cm),MC =在Rt ABC ∆中求出25(cm)BC =,再根据棱锥的体积公式可得结果.【详解】 VM 是棱锥的高,VM MC ∴⊥.在Rt VMC ∆中,2222543(cm),MC VC VM =-=-=.26cm AC MC ∴==,在Rt ABC ∆中,22226425(cm)BC AC AB =-=-=.242585(cm )S AB BC ∴=⨯=⨯=底,3 11325854(cm )333V S VM ∴=⋅=⨯⨯=四棱锥底. 【点睛】本题考查了求三棱锥的体积,属于基础题.4.如图,四棱锥P ABCD -的底面是边长为2的菱形,PD ⊥底面ABCD .(1)求证:AC ⊥平面PBD ;(2)若2PD =,直线PB 与平面ABCD 所成的角为45,求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(243 【分析】 (1)通过AC ⊥BD 与PD ⊥AC 可得AC ⊥平面PBD ;(2)由题先得出∠PBD 是直线PB 与平面ABCD 所成的角,即∠PBD =45°,则可先求出菱形ABCD 的面积,进而可得四棱锥P - ABCD 的体积.【详解】解:(1)因为四边形ABCD 是菱形,所以AC ⊥BD ,又因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以PD ⊥AC ,又PD BD D ⋂=,故AC ⊥平面PBD ;(2)因为PD ⊥平面ABCD ,所以∠PBD 是直线PB 与平面ABCD 所成的角,于是∠PBD =45°,因此BD =PD =2.又AB = AD =2,所以菱形ABCD 的面积为sin 6023S AB AD ︒=⋅⋅=,故四棱锥P - ABCD 的体积1433V S PD =⋅=. 【点睛】本题主要考查空间线、面关系等基础知识,同时考查空间想象能力、推理论证能力以及运算求解能力,是基础题.5.如图,在边长为2的菱形ABCD 中,60ADC ∠=︒,现将ADC 沿AC 边折到APC △的位置.(1)求证:PB AC ⊥;(2)求三棱锥P ABC -体积的最大值.【答案】(1)见解析;(2)1【分析】(1)取AC 的中点为O ,连接PO OB 、,由线面垂直的判定定理即可证出.(2)由体积相等转化为P ABC ΔPOB 1V AC S 3-=⋅即可求出. 【详解】(1)如图所示,取AC 的中点为O ,连接PO OB 、,易得AC PO AC OB ⊥⊥,,PO OB O = AC POB ∴⊥平面,又PB ⊆ 面POB AC PB ∴⊥(2)由(1)知AC POB 260? AC 2PO OB ABCD ADC ⊥∠=︒===平面,且在边长为的菱形中,,所以,3 ,P ABC A POB C POB V V V ---=+体积转化为 ΔPOB 1AC S 3=⋅ =11233sin sin 32POB POB ⨯⨯⨯⨯∠=∠ ,当POB 90∠=︒时,P ABC V -的最大值为1. 【点睛】本题考查了线面垂直的判定定理和等体积转化思想,属于基础题.6.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,PA PD ⊥,1PA PD ==,E 为AD 的中点.(1)求证:PE ⊥平面ABCD ;(2)求四棱锥P ABCD -的体积.【答案】(1)证明见解析;(2)23【分析】(1)根据等腰三角形证明PE AD ⊥,得到答案. (2)计算得到2AD =,22PE =,再利用体积公式计算得到答案. 【详解】(1)1PA PD ==,E 为AD 的中点,故PE AD ⊥,平面PAD ⊥平面ABCD , 平面PAD 平面ABCD AD =,故PE ⊥平面ABCD .(2)PA PD ⊥,1PA PD ==,故2AD =,22PE =. 故122223P ABCD V -=⨯⨯⨯=. 【点睛】 本题考查了线面垂直,四棱锥的体积,意在考查学生的空间想象能力和计算能力. 7.如图所示,在长方体ABCD A B C D ''''-中,求棱锥D A CD ''-的体积与长方体的体积之比.【答案】1:6【解析】【分析】棱锥D A CD ''-可以看成棱锥C A DD ''-,然后结合棱锥与棱柱的体积公式求解即可.【详解】解:已知的长方体可以看成直四棱柱ADD A BCC B '''-,设它的底面ADD A ''面积为S ,高为h ,则长方体的体积为ADD A BCC B V Sh '''-=.因为棱锥D A CD ''-可以看成棱锥C A DD ''-,且A DD ''的面积为12S ,棱锥C A DD ''-的高是h ,所以111326D A CD C A DD V V Sh Sh ''''--==⨯=. 因此所求体积之比为1:6.【点睛】本题考查了棱锥及棱柱的体积公式,重点考查了转换顶点求棱锥的体积,属基础题 8.如图,过圆柱的两条母线1AA 和1BB 的截面11A ABB 的面积为S ,母线1AA 的长为l ,11190AO B ︒∠=,求此圆柱的体积.【答案】22S l π. 【分析】 根据已知易得AOB 是等腰直角三角形,根据截面11A ABB 的面积为S 求出AB 长,进而求得底面圆面积再求体积即可。

数学题目立体几何的表面积与体积练习题

数学题目立体几何的表面积与体积练习题

数学题目立体几何的表面积与体积练习题数学题目:立体几何的表面积与体积练习题1. 题目一:计算一个半径为3厘米的球体的表面积和体积。

解答:首先计算球的表面积。

球的表面积公式为S=4πR²,其中R 为球的半径。

代入半径为3厘米,得到表面积S=4π×3²=36π cm²。

接下来计算球的体积。

球的体积公式为V=4/3πR³,代入半径为3厘米,得到体积V=4/3π×3³=36π cm³。

2. 题目二:一个长方体的长、宽和高分别为5厘米、4厘米和6厘米。

求该长方体的表面积和体积。

解答:长方体的表面积公式为S=2(长×宽+长×高+宽×高),代入长为5厘米、宽为4厘米和高为6厘米,得到表面积S=2(5×4+5×6+4×6)=2(20+30+24)=148 cm²。

长方体的体积公式为V=长×宽×高,代入长为5厘米、宽为4厘米和高为6厘米,得到体积V=5×4×6=120 cm³。

3. 题目三:一个圆锥的底面圆半径为2.5厘米,高为7厘米。

求该圆锥的表面积和体积(保留π)。

解答:首先计算圆锥的母线,母线公式为l=√(r²+h²),其中r为底面圆半径,h为圆锥的高。

代入半径为2.5厘米和高为7厘米,得到母线l=√(2.5²+7²)≈7.416 cm。

圆锥的表面积公式为S=πr(r+l),代入底面圆半径为2.5厘米和母线长为7.416厘米,得到表面积S=π×2.5(2.5+7.416)≈82.512 cm²。

圆锥的体积公式为V=1/3πr²h,代入底面圆半径为2.5厘米和高为7厘米,得到体积V=1/3π×2.5²×7≈36.750 cm³。

专题5:立体几何体积与面积的求法基础练习题

专题5:立体几何体积与面积的求法基础练习题

专题5:立体几何体积与面积的求法基础练习题专题5:立体几何体积与面积的求法基础练习题1.如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,120BCD ?∠=,侧面P AB ⊥底面ABCD ,22PB =,2.AB AC PA ===(1)求证:BD ⊥平面PAC(2)过AC 的平面交PD 于点M ,若——12P AC PAC D M V V =,求三棱锥P AMC -的体积. 2.如图所示,在棱长为2的正方体1111ACBD AC B D -中,M 是线段AB 上的动点.(1)证明:AB ∥平面11A B C ;(2)若M 是AB 的中点,证明:平面1MCC ⊥平面11ABB A ;(3)求三棱锥11M A B C -的体积.3.现有一个底面是菱形的直四棱柱,它的体对角线长为9和15,高是5,求该直四棱柱的侧面积.4.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,点D 是AB 的中点.(1)求证:1AC BC ⊥;(2)若1CC BC =,求三棱锥1B BCD -的体积.5.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,PA PD ⊥,1PA PD ==,E 为AD 的中点.(1)求证:PE ⊥平面ABCD ;(2)求四棱锥P ABCD -的体积.6.若长方体的三个面的面积分别是2222cm ,3cm ,6cm ,求:(1)长方体的体对角线的长;(2)长方体的表面积.7.正四棱台两底面边长分别为3和9.(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.8.如图,四边形ABCD 是边长为2的正方形,平面ABCD ⊥平面ABEF ,//AF BE ,,2,1AB BE AB BE AF ⊥===.(1)求证:AC ⊥平面BDE ;(2)求三棱锥A DEF -的体积.9.如图,在底半径为2,母线长为4的圆锥中内接一个高为3的圆柱,(1)求圆锥的表面积和体积.(2)求圆柱的表面积.10.已知一个球的外切圆台的上、下底面半径分别为r 、R ,求出该球的表面积. 11.已知A 是圆锥的顶点,BD 是圆锥底面的直径,C 是底面圆周上一点,2BD =,1BC =,AC 与底面所成角的大小为3π,过点A 作截面ABC ,ACD ,截去部分后的几何体如图所示.(1)求原来圆锥的侧面积;(2)求该几何体的体积.12.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AD CD ⊥,且AD CD =,45ABC ?∠=.(1)证明:AC PB ⊥;(2)若2AD PA =,且四棱锥P ABCD -的体积为14,求PAB △的面积.参考答案1.(1)证明见解析;(2)3 【分析】(1)由菱形的性质有BD AC ⊥,勾股定理知PA AB ⊥,结合面面垂直的推论可得PA BD ⊥,根据线面垂直的判定证垂直即可;(2)由PA ⊥面ABCD 即可计算P ACD V -,结合已知条件可求三棱锥P AMC -的体积;【详解】(1)由题意知:底面ABCD 是菱形,且 2.AB AC ==∴BD AC ⊥,又在△PAB 中2AB PA ==,PB =90PAB ∠=?,∴PA AB ⊥,又面P AB ⊥面ABCD ,面P AB 面ABCD AB =,PA ?面P AB ,∴PA ⊥面ABCD ,而BD ?面ABCD ,有:PA BD ⊥,PAAC A =,∴BD ⊥平面PAC ;(2)由(1)知:PA ⊥面ABCD ,有11||222sin 6036P ACD ACD V PA S -=?==,而——M PAC P AMC V V =,且——12P AC PAC D M V V =,∴—P AMC V =【点睛】本题考查了应用几何图形的性质,及线面垂直的判定证明垂直,根据已知体积关系结合三棱锥的体积公式求三棱锥的体积.2.(1)证明见解析;(2)证明见解析;(3)43.【分析】(1)利用11//AB A B 得出//AB 平面11A B C .(2)通过证明CM ⊥平面11ABB A ,可证得平面1MCC ⊥平面11ABB A .(3)利用等体积转化111111M B A C A B A C B ACA V V V ---==求出即可.【详解】(1)证明:因为在正方体1111ACBD AC B D -中,11//AB A B ,11A B ?平面11A B C ,AB ?平面11A B C ,//AB ∴平面11A B C(2)证明:在正方体1111ACBD AC B D -中,BC AC =,M 是AB 中点,CM AB ∴⊥.1AA ⊥平面ABC ,CM ?平面ABC ,则1CM AA ⊥.AB ?平面11ABB A ,1AA ?平面11ABB A ,且1AB AA A ?=,CM ∴⊥平面11ABB A .CM ?平面1MCC ,∴平面1MCC ⊥平面11ABB A(3)因为//AB 平面11A B C ,所以点M ,点A 到平面11A B C 的距离相等.故111111M B A C A B A C B ACA V V V ---== 114222323==.【点睛】本题考查了证明线面平行的判定定理和面面垂直的判定定理的应用,注意判定定理中的条件,利用等体积转化求三棱锥的体积是常用的方法,属于基础题.3.160【分析】由于该直四棱柱的底面是菱形,所以求其中一个侧面的面积乘以4即可,由菱形其对角线垂直于勾股定理求得底面边长,再由矩形面积公式求得答案.【详解】如图,设底面对角线AC =a ,BD =b ,交点为O ,对角线A 1C =15,B 1D =9,∴a 2+52=152,b 2+52=92,∴a 2=200,b 2=56.∵该直四棱柱的底面是菱形,∴AB 2=22AC ?? ???22BD ??+ =224a b +=200564+=64,∴AB =8. ∴直四棱柱的侧面积S =4×8×5=160. 【点睛】本题考查求直四棱柱的侧面积,属于基础题.4.(1)证明见解析;(2)4【分析】(1)利用勾股定理,可得AC BC ⊥,结合1AC CC ⊥,根据线面垂直的判定定理以及性质定理,可得结果.(2)计算?BCD S ,1BB ,然后根据三棱锥的体积公式,可得结果.【详解】(1)∵三棱柱111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC ,∵AC ?平面ABC ,∴1CC AC ⊥,∵在ABC ?中,3AC =,4BC =,5AB =,∴222AC BC AB +=,∴90ACB ∠=?,∴AC BC ⊥,∵1CC ?平面11CC B B ,CB ?平面11CC B B , 1CC CB C =,∴AC ⊥平面11CC B B ,∵1BC ?平面11CC B B ,∴1AC BC ⊥.(2)∵D 是AB 中点,∴111343222BCD ABC S S ??===,∵1BB ⊥平面ABC ,114BB AA ==,∴111134433B BCD BCD V S BB -?==??=. 【点睛】本题考查线面垂直的判定定理以及性质定理,还考查了锥体的体积公式,难点在于根据线段长度关系利用勾股定理得出垂直,重点在于对定理的应用,属基础题.5.(1)证明见解析;(2)3 【分析】(1)根据等腰三角形证明PE AD ⊥,得到答案.(2)计算得到AD =PE =. 【详解】(1)1PA PD ==,E 为AD 的中点,故PE AD ⊥,平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD =,故PE ⊥平面ABCD .(2)PA PD ⊥,1PA PD ==,故AD =2PE =.故13P ABCD V -==【点睛】本题考查了线面垂直,四棱锥的体积,意在考查学生的空间想象能力和计算能力.6.(1.(2)2S cm =表【分析】(1)设长方体的长,宽,高分别为cm,cm,cm a b c ,根据已知条件列出方程,求出,,a b c ,即可求出对角线;(2)根据已知条件,即可求解.【详解】(1)设长方体的长,宽,高分别为cm,cm,cm a b c ,如图.可令2,3,6,ab bc ac ?=??=??=??解得2,1,3.a b c ?=?=??=?2222222221116BD DD BD DD AD AB a b c =+=++=++=,16cm BD ∴=6cm .(2)2(222326)cm S =表.【点睛】本题考查长方体面的面积与边长的关系,明确长方体的对角线与长、宽、高的关系,属于基础题.7.(1)3(2)94. 【分析】(1)设1O 、O 分别为上、下底面的中心,过1C 作1C E AC ⊥于E ,过E 作EF BC ⊥于F ,连接1C F ,则1C F 为正四棱台的斜高,求出斜高即可求出侧面积;(2)求出侧面积,即可求出斜高,即可由勾股定理求出高.【详解】(1)如图,设1O 、O 分别为上、下底面的中心,过1C 作1C E AC ⊥于E ,过E 作EF BC ⊥于F ,连接1C F ,则1C F 为正四棱台的斜高,由题意知145C CO ∠=,112(93)322CE CO EO CO C O =-=-=-= 又2sin 453232EF CE =?==,∴斜高222211(32)333C F C E EF =+=+= ∴1(4349)337232S =??+??=侧(2)由题意知,223990S S +=+=上底下底,∴1(39)4902h ?+??=斜,∴902151244h ?==?斜,又9332EF -==,2294h h EF =-=斜. 8.(1)证明见解析;(2)23. 【分析】(1)先由面面垂直的性质得BE ⊥平面ABCD ,即得AC BE ⊥,再结合AC BD ⊥即可证明;(2)利用等体积法可求出.【详解】(1)证明:AB BE ⊥,平面ABCD ⊥平面ABEF ,平面ABCD 平面ABEF AB =,∴BE ?平面ABEF .∴BE ⊥平面ABCD ,因为AC ?平面ABCD ,所以AC BE ⊥,因为四边形ABCD 是正方形,所以AC BD ⊥,因为BD BE B ?=,,BD BE ?平面BDE ,所以AC ⊥平面BDE ;(2)11123323A DEF D AEF AEF V V S AD AE AF AD --====.9.(1)12π;(2)(2π+. 【分析】(1)求出圆锥的高可得体积,由表面积公式计算出表面积;(2)求出圆柱的底面半径后可得表面积.【详解】(1)由题意圆锥的高为h ==所以圆锥的表面积为222412S πππ=?+??=,体积为2123V π=??=.(2)设圆柱半径为r ,则2r =,1r =,所以圆柱的表面积为22121(2S πππ'=?+?=+.【点睛】本题考查圆柱与圆锥的表面积和体积,属于基础题.10.4πRr【分析】若圆台有内切球,则圆台的母线长为r R +,进而求出圆台的高,即圆台的内切球的直径,可得球的表面积.【详解】解:如图所示圆台及内切球的轴截面ABCD 、1O 、2O 、O 分别为上、下底面中心及球心,设球半径为x ,则122O O x =,过C 作CE AB ⊥于E ,则2CE x =,BE R r =-,BC R r =+,∴在Rt CBE 中,由222CB BE CE =+,得()()()2222R r R r x +=-+, 2x Rr =,∴球的表面积为24π4πx Rr =.【点睛】本题考查球的表面积,熟练掌握圆台的几何特征是解答的关键,属于基础题.11.(1)2π(2)33π+ 【分析】(1)设BD 的中点为O ,连结OA ,OC ,则OA ⊥平面BCD .由经能求出S 圆锥侧;(2)该几何体的体积()13BCD V S S AO ?=+?半圆,由此能求出结果. 【详解】(1)设BD 的中点为O ,连结OA ,OC ,A 是圆锥的顶点,BD 是圆锥底面的直径,∴ OA ⊥平面BCD .2BD =,1BC =,AC 与底面所成角的大小为3π,过点A 作截面ABC ,ACD , ∴在Rt AOC ?中,1OC =,3ACO π∠=,2AC =,3AO =∴ 2222S rl πππ==??=圆锥侧. (2)该几何体为三棱锥与半个圆锥的组合体AO =90BCD ∠=?, ∴CD =, 该几何体的体积()13BCD V S S AO ?=+?半圆11313226π??=??= . 【点睛】本题考查几何体的体积的求法和圆锥的侧面积,掌握线面间的位置关系等基础知识是解题关键,考查运算求解能力和空间思维能力.12.(1)证明见解析;【分析】(1)根据已知可得90BAC ?∠=,即AC AB ⊥,再由PA ⊥平面ABCD 可得PA AC ⊥,根据线面垂直的判定定理可得AC ⊥平面PAB ,从而可得AC PB ⊥;(2)根据(1)可求得四边形ABCD 的面积232S AD =,由PA ⊥平面ABCD 可知PA 为四棱锥P ABCD -的高,再根据锥体的体积公式可求出1AD =,从而可求出12PA =,AB =由三角形面积公式即可求出答案.【详解】(1)证明:因为AD CD ⊥,且AD CD =,所以45ACD DAC ?∠=∠=,因为//AD BC ,AD CD ⊥,所以CD BC ⊥,所以90BCD ∠=,所以45ACB ?∠=,又45ABC ?∠=,所以90BAC ?∠=,即AC AB ⊥.因为PA ⊥平面ABCD ,AC ?平面ABCD ,所以PA AC ⊥,又PA AB A =,PA ,AB 平面PAB ,所以AC ⊥平面PAB ,又PB ?平面PAB ,所以AC PB ⊥.(2)解:由(1)可知,2==BC AD .因为AD CD =,所以四边形ABCD 的面积213(2)22S AD AD AD AD =+?=,又2AD PA =,所以12PA AD =,因为PA ⊥平面ABCD ,所以PA 为四棱锥P ABCD -的高,所以四棱锥P ABCD -的体积21131133224V S PA AD AD = =??=,解得1AD =.因为PA ⊥平面ABCD ,AB平面ABCD ,所以PA AB ⊥,又1122PA AD ==,AB ==所以PAB △的面积为11224?=. 【点睛】本题主要考查线面垂直的判定定理,锥体的体积公式,属于基础题.。

(完整版)立体几何体积问题-

(完整版)立体几何体积问题-

立体几何体积问题未命名一、解答题1.如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且,求点到平面的距离.2.如图,多面体中,为正方形,,,且.(1)证明:平面平面;(2)求三棱锥的体积.3.在如图所示的几何体中,平面,四边形为等腰梯形,,,,,,.(1)证明:;(2)若多面体的体积为,求线段的长.4.如图,在四棱锥中,,,,点在线段上,且,,平面.(1)证明:平面平面;(2)当时,求四棱锥的表面积.5.如图,在四棱锥中,是等边三角形,,,.(Ⅰ)求证:(Ⅱ)若平面平面,,求三棱锥的体积6.如图,三棱柱中,平面平面,平面平面,,点、分别为棱、的中点,过点、的平面交棱于点,使得∥平面.(1)求证:平面;(2)若四棱锥的体积为,求的正弦值.7.如图,在几何体中,平面底面,四边形是正方形,,是的中点,且,.(1)证明:;(2)若,求几何体的体积.8.在多面体中,底面是梯形,四边形是正方形,,,面面,..(1)求证:平面平面;(2)设为线段上一点,,试问在线段上是否存在一点,使得平面,若存在,试指出点的位置;若不存在,说明理由?(3)在(2)的条件下,求点到平面的距离.9.已知直三棱柱,底面是边长为2的等边三角形,,为棱的中点,在棱上,且.(1)证明:平面;(2)求三棱锥的体积.10.如图,在三棱锥中,,,,,为线段的中点,将折叠至,使得且交平面于F.(1)求证:平面⊥平面PAC.(2)求三棱锥的体积.11.在矩形所在平面的同一侧取两点、,使且,若,,.(1)求证:(2)取的中点,求证(3)求多面体的体积.12.如图,在菱形中,,平面,,是线段的中点,.(1)证明:平面;(2)求多面体的表面积.13.如图,在三棱柱中,,,为的中点,.(1)求证:平面平面;(2)求到平面的距离.14.如图,四棱锥中,底面是直角梯形,,,,侧面是等腰直角三角形,,平面平面,点分别是棱上的点,平面平面(Ⅰ)确定点的位置,并说明理由;(Ⅱ)求三棱锥的体积.15.如图,三棱柱中,侧面侧面,,,,为棱的中点,为的中点.(1) 求证:平面;(2) 若,求三棱柱的体积.参考答案1.解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.【解析】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.由知,OP⊥OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC==2,CM==,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.2.(1)见解析;(2)【解析】分析:(1)证明面面垂直可通过证明线面垂直得到,证A平面即可,(2)由已知,连接交于,作于,由等体积法:,进而可得出结论.(1)证明:∵,由勾股定理得:又正方形中,且∴平面,又∵面,∴平面平面(2)由已知,连接交于作于,则又由(1)知平面平面,平面平面,面,得面由,知四边形为平行四边形,即,而,进而又由,所以,三棱锥的体积.点睛:考查面面垂直、几何体体积,能正确分析线条关系,利用等体积法转化求体积是解题关键.3.(1)证明见解析;(2).【解析】分析:(1)通过证明AB平面ACFE得到;(2)作于点G,设,分别计算出四棱锥的体积,再根据已知条件,求出的值,在直角三角形CFG 中求出CF的值。

六年级立体几何组合图形求体积应用题

六年级立体几何组合图形求体积应用题

六年级立体几何组合图形求体积应用题
1、一个圆柱的高是4.2厘米,底面直径是4厘米,它的体积是多少?
2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?
3、用铁皮制10节同样大小的通风管,每节长5分米,底面直径1.2分米,至少需要多少平方分米铁皮?体积是多少?
4、一种压路机的滚筒是圆柱形的筒宽1.5米,直径是0.8米。

这种压路机每分钟向前滚动5周。

这种压路机1分钟压路多少平方米?
5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,
(1)要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?
(2)这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)。

高中几何体试题及答案

高中几何体试题及答案

高中几何体试题及答案试题一:正方体的体积和表面积计算某正方体的边长为a,求该正方体的体积和表面积。

解答:正方体的体积 V = a³正方体的表面积 S = 6a²试题二:圆柱的体积和表面积计算已知圆柱的底面半径为r,高为h,求圆柱的体积和表面积。

解答:圆柱的体积V = πr²h圆柱的表面积S = 2πrh + 2πr²试题三:圆锥的体积和表面积计算已知圆锥的底面半径为r,高为h,求圆锥的体积和表面积。

解答:圆锥的体积V = (1/3)πr²h圆锥的表面积 S = πr(r + l),其中l是圆锥的斜高,可通过勾股定理计算:l = √(r² + h²)试题四:球的体积和表面积计算已知球的半径为R,求球的体积和表面积。

解答:球的体积V = (4/3)πR³球的表面积S = 4πR²试题五:棱锥的体积计算已知一个正四棱锥的底面边长为a,高为h,求棱锥的体积。

解答:正四棱锥的体积 V = (1/3)ah²试题六:棱柱的体积和表面积计算已知一个正六棱柱的底面边长为a,高为h,求棱柱的体积和表面积。

解答:正六棱柱的体积 V = 6a²h正六棱柱的表面积S = 6a(a + √3h)试题七:椭圆的面积计算已知椭圆的长轴为2a,短轴为2b,求椭圆的面积。

解答:椭圆的面积A = πab试题八:双曲线的面积计算已知双曲线的实轴为2a,虚轴为2b,求双曲线的面积。

解答:双曲线的面积A = πa(b + a)结束语:以上试题涵盖了高中几何体的常见体积和面积计算问题,希望同学们能够熟练掌握这些基本公式,并能够灵活运用到实际问题中去。

通过不断的练习和思考,相信你们能够在几何学领域取得优异的成绩。

高中数学立体几何体积复习 题集附答案

高中数学立体几何体积复习 题集附答案

高中数学立体几何体积复习题集附答案高中数学立体几何体积复习题集附答案一、填空题1. 已知四棱锥的底面是一个边长为6cm的正方形,且侧棱长为8cm,求四棱锥的体积。

解答:四棱锥的体积公式为V = (1/3)×底面积×高。

底面积为6^2 = 36cm^2,高为8cm。

所以四棱锥的体积为V = (1/3)×36cm^2×8cm = 96cm^3。

2. 圆柱的底面半径为5cm,高为12cm,求圆柱的体积。

解答:圆柱的体积公式为V = 底面积×高。

底面积为π×5^2 = 25πcm^2,高为12cm。

所以圆柱的体积为V = 25πcm^2×12cm = 300πcm^3。

3. 正方体的体积为64cm^3,求正方体的边长。

解答:正方体的体积公式为V = 边长^3。

已知V = 64cm^3,代入公式可得:64 = 边长^3。

求解得边长 = 4cm。

4. 球的半径为10cm,求球的体积。

解答:球的体积公式为V = (4/3)π×半径^3。

已知半径为10cm,代入公式可得:V = (4/3)π×10^3。

所以球的体积为V = (4/3)π×1000 = 4000πcm^3。

二、选择题1. 下列几何体中,体积最大的是:A. 正方体的棱长为10cmB. 长方体的长、宽、高分别为6cm、8cm、10cmC. 圆柱的底面半径为5cm,高为14cmD. 球的半径为7cm解答:选项C。

计算各几何体的体积,可得:A. 正方体的体积为V = 10^3 = 1000cm^3B. 长方体的体积为V = 6cm×8cm×10cm = 480cm^3C. 圆柱的体积为V = π×5^2×14cm = 350πcm^3D. 球的体积为V = (4/3)π×7^3 = 1434πcm^3可见,C选项的体积最大。

高中数学练习题附带解析立体几何的体积与表面积

高中数学练习题附带解析立体几何的体积与表面积

高中数学练习题附带解析立体几何的体积与表面积高中数学练习题附带解析立体几何的体积与表面积一、圆柱的体积与表面积问题1:一个圆柱的高度为12 cm,底面半径为8 cm,求其体积和表面积。

解析:首先计算圆柱的体积。

圆柱的体积公式为V = πr²h,其中V 表示体积,π取近似值3.14,r表示底面半径,h表示高度。

代入已知数据,计算得到 V = 3.14 × 8² × 12 = 2419.52 cm³。

接下来计算圆柱的表面积。

圆柱的表面积包括底面积和侧面积两部分。

底面积为圆的面积,即 A₁ = πr²。

侧面积为矩形的面积,即 A₂ = 2πrh。

所以圆柱的总表面积为 A = 2A₁ + A₂ = 2πr² + 2πrh。

代入已知数据,计算得到 A = 2 × 3.14 × 8² + 2 × 3.14 × 8 × 12 = 659.84 cm²。

因此,该圆柱的体积为 2419.52 cm³,表面积为 659.84 cm²。

问题2:一个空心圆柱的高度为10 cm,内半径为4 cm,外半径为6 cm,求其体积和表面积。

解析:首先计算圆柱的体积。

由于是空心圆柱,体积需要减去内部圆柱的体积。

内部圆柱的体积为 V₁ = πr₁²h,外部圆柱的体积为 V₂ =πr₂²h。

所以空心圆柱的体积为 V = V₂ - V₁ = π(r₂² - r₁²)h。

代入已知数据,计算得到 V = 3.14((6²) - (4²)) × 10 = 376.8 cm³。

接下来计算圆柱的表面积。

空心圆柱的表面积也包括底面积和侧面积两部分。

底面积的计算方式与问题1相同。

侧面积为两个圆柱的高度差乘以底面周长,即 A₂ = 2π(r₂ - r₁)h。

立体几何体积计算练习题

立体几何体积计算练习题

立体几何体积计算练习题1. 正方体计算(1) 已知一个正方体的边长为5cm,计算其体积。

解答:正方体的体积计算公式为V = a³,其中a为正方体的边长。

代入已知数据可得,V = 5cm × 5cm × 5cm = 125cm³。

(2) 若正方体的体积为64cm³,求其边长。

解答:将正方体的体积计算公式改写为a³ = V。

代入已知数据可得,a³ = 64cm³。

对等式两边开立方根可得,a = ∛(64cm³) = ∛(4 × 4 × 4cm³) = 4cm。

因此,正方体的边长为4cm。

2. 长方体计算(1) 已知一个长方体的长、宽、高分别为8cm、6cm和4cm,计算其体积。

解答:长方体的体积计算公式为V = lwh,其中l、w和h分别为长方体的长、宽和高。

代入已知数据可得,V = 8cm × 6cm × 4cm = 192cm³。

(2) 若长方体的体积为360cm³,已知长和宽的比为2:3,求长方体的长、宽和高。

解答:设长和宽分别为2x和3x(其中x为比例系数),代入长方体的体积计算公式可得,(2x) × (3x) × h = 360cm³。

化简该方程可得,6x²h = 360cm³。

解方程可得,h = 360cm³ / (6x²)。

同时,已知长和宽的比为2:3,即有 (2x) / (3x) = 2/3。

解方程可得,x = 3。

代入h的表达式可得,h = 360cm³ / (6 × 3²) = 10cm。

因此,长方体的长为2x = 2 × 3 = 6cm,宽为3x = 3 × 3 = 9cm,高为10cm。

3. 圆柱体计算(1) 已知一个圆柱体的底面半径为4cm,高为10cm,计算其体积。

探索立体几何的体积计算练习题

探索立体几何的体积计算练习题

探索立体几何的体积计算练习题立体几何是数学中一个重要的分支,它研究的是空间中的几何图形以及与其相关的性质和计算方法。

在立体几何中,体积是一个关键的概念,它用来描述一个立体图形所占据的空间大小。

本文将通过一些练习题来探索立体几何的体积计算方法。

练习题一:计算长方体的体积长方体是一种常见的立体图形,它的六个面都是矩形。

我们以一个具体的例子来计算长方体的体积。

例题:一个长方体的长、宽、高分别为10厘米、5厘米、3厘米,求它的体积。

解析:长方体的体积计算公式为 V = lwh,其中 V 表示体积,l、w、h 表示长方体的长度、宽度和高度。

将给定的数值代入公式,即可计算出体积。

解答:V = 10厘米 × 5厘米 × 3厘米 = 150厘米³练习题二:计算圆柱体的体积圆柱体是另一种常见的立体图形,它的底面是一个圆,侧面是由相同大小的矩形所组成。

下面我们来计算一个圆柱体的体积。

例题:一个圆柱体的底面半径为4厘米,高度为6厘米,求它的体积。

解析:圆柱体的体积计算公式为V = πr²h,其中 V 表示体积,r 表示底面半径,h 表示高度,π 是一个常数,约等于3.14。

将给定的数值代入公式,即可计算出体积。

解答:V = 3.14 × 4厘米 × 4厘米 × 6厘米 = 301.44厘米³练习题三:计算球体的体积球体是一种特殊的立体图形,它的表面是由无数个点构成的,体积计算较为复杂。

下面我们来计算一个球体的体积。

例题:一个球体的半径为6厘米,求它的体积。

解析:球体的体积计算公式为V = 4/3πr³,其中 V 表示体积,r 表示半径,π 是一个常数,约等于3.14。

将给定的数值代入公式,即可计算出体积。

解答:V = 4/3 × 3.14 × 6厘米 × 6厘米 × 6厘米 = 904.32厘米³练习题四:计算棱锥的体积棱锥是一种由一个底面和一个尖顶连接而成的立体图形。

立体几何表面积体积和球专题(有答案)

立体几何表面积体积和球专题(有答案)
5.如图所示,在多面体 中,已知四边形 是边长为 的正方形,且 、 均为正三角形, , ,则该多面体的体积为()
A. B.
C. D.
6.如图,直角梯形 中, , , .若将直角梯形绕 边旋转一周,所得几何体的体积为()
A. B.
C. D.
7.如图,在四面体 中,已知 , , ,则四面体 被截面 分得的上下两部分的体积之比为()
(2)内切球的半径.
35.如图所示,正方体 的棱长为 ,过顶点 、 、 截下一个三棱锥.
(1)求剩余部分的体积;
(2)求三棱锥 的高.
36.如图所示,正四棱台 的高是 ,两底面的边长分别是 和 .
(1)求这个棱台的侧棱长和斜高.
(2)求该棱台的侧面积与表面积.
37.如图,正三棱锥 的底面边长为2,侧棱长为3.
29.在三棱锥 中, 平面 , , ,其外接球表面积为 ,则三棱锥 的体积的最大值为________.
30.在三棱锥 中, , , , ,若该三棱锥的体积为 ,则棱锥 外接球的表面积为_________.
31.在三棱柱 中侧棱垂直于底面, ,三棱柱 的高为4,则三棱柱 的外接球的表面积为________.
A. B. C. D.
17.在三棱锥 中, 平面 , , , ,Q是边 上的一动点,且直线 与平面 所成角的最大值为 ,则三棱锥 的外接球的表面积为()
A. B. C. D.
二、填空题
18.三棱锥 中, , ,面 的面积为 ,则此三棱锥外接球的表面积为___.
19.已知 是球 的球面上的四个点, 平面 ,则该球的表面积为________.
A. B. C. D.
4.张衡(78年~139年)是中国东汉时期伟大的天文学家、文学家、数学家.他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点 , ,若线段 的最小值为 ,利用张衡的结论可得该正方体的外接球的表面积为()

2024届新高考数学大题精选30题--立体几何含答案

2024届新高考数学大题精选30题--立体几何含答案

大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。

文科立体几何大题---变换顶点求体积学生版(答案在卷尾)

文科立体几何大题---变换顶点求体积学生版(答案在卷尾)

文科立体几何大题-------求体积 题型一:变换顶点求体积 例题1如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,//AB CD ,2AB =,3CD =,M 为PC 上一点,且2PM MC =.(1)求证:BM ∥平面PAD ; (2)若2AD =,3PD =,3BAD π∠=,求三棱锥P -ADM 的体积.典型题练习1.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(Ⅰ)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(Ⅱ)求三棱锥E-ABC的体积.练习2在四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 为平行四边形,AA 1⊥平面ABCD .AB =2AD =4,3DAB π∠=. (1)证明:平面D 1BC ⊥平面D 1BD ;(2)若直线D 1B 与底面ABCD 所成角为6π,M ,N ,Q 分别为BD ,CD ,D 1D 的中点,求三棱锥C —MNQ 的体积.巩固练习1.如图示,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 是矩形,PD AD =,E 、F 分别CD 、PB 的中点.(Ⅰ)求证:EF ∥平面PAD ;(Ⅱ)求证:EF ⊥平面PAB ; (Ⅲ)设33==BC AB , 求三棱锥P -AEF 的体积.练习2如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,60BAD ∠=︒.(1)求证:平面PBD ⊥平面P AC ;(2)若PA AB =,M 为线段PC 的中点,求三棱锥C -MBD 的体积。

文科立体几何大题-------求体积题型一:变换顶点求体积例题1.解析:1.(1)法一:过作交于点,连接.∵,∴.又∵,且,∴,∴四边形为平行四边形,∴.又∵平面,平面,∴平面.法二:过点作于点,为垂足,连接.由题意,,则,又∵,,∴,∴四边形为平行四边形,∴.∵平面,平面,∴.又,∴.又∵平面,平面;∵平面,平面,;∴平面平面.∵平面,∴平面.(2)过作的垂线,垂足为.∵平面,平面,∴.又∵平面,平面,;∴平面由(1)知,平面,所以到平面的距离等于到平面的距离,即.在中,,,∴.M //MN CD PD N AN 2PM MC =23MN CD=23ABCD =//AB CD //AB MN ABMN//BM AN BM ⊄PAD AN ⊂PAD //BM PAD M MN CD ⊥N N BN 2PM MC =2DN NC =3DC =2DN =//AB DN ABND //BN AD PD ⊥ABCD DC ⊂ABCD PD DC ⊥MN DC ⊥//PD MN BN ⊂MBN MN ⊂,MBN BN MN N =AD ⊂PAD PD ⊂PAD AD PD D ⋂=//MBN PAD BM ⊂MBN //BM PAD B AD E PD ⊥ABCD BE ⊂ABCD PD BE ⊥AD ⊂PAD PD ⊂PAD AD PD D ⋂=BE ⊥PAD //BM PAD M PAD B PAD BE ABC ∆2AB AD ==3BAD π∠=BE =13P ADM M PAD PAD V V S --∆==⨯133BE ⋅=⨯典型题练习1.解析:(Ⅰ)如图所示,取中点,取中点,连结,则即为所求. 证明:取中点,连结,∵为腰长为的等腰三角形,为中点,∴,又平面平面,平面平面,平面,∴平面,同理可证平面,∴,∵平面,平面,∴平面.又,分别为,中点,∴,∵平面,平面,∴平面.又,平面,平面,∴平面平面,又平面,∴平面.(Ⅱ)连结,取中点,连结,则,由(Ⅰ)可知平面,所以点到平面的距离与点到平面的距离相等.又是边长为的等边三角形,∴,又平面平面,平面平面,平面,∴平面,∴平面,∴为中点,∴,又,,∴∴.DC N BD M MN MN BC H AH ABC ∆3H BC AH BC ⊥ABC ⊥BCD ABC BCD BC =AH ⊂ABCAH ⊥BCD EN ⊥BCD //EN AH EN ⊄ABCAH ⊂ABC //EN ABC M N BD DC //MN BC MN ⊄ABC BC ⊂ABC //MN ABC MN EN N =MN ⊂EMN EN ⊂EMN //EMN ABC EF ⊂EMN //EF ABC DH CH G NG //NG DH //EN ABC E ABC N ABC BCD ∆2DH BC ⊥ABC ⊥BCD ABC BCD BC =DH ⊂BCD DH ⊥ABC NG ⊥ABC DH =N CD NG =3AC AB ==2BC =12ABC S BC AC ∆=⋅⋅=V V =1S NG =⋅⋅=练习2解析:(1)证明:∵D 1D ⊥平面ABCD ,, ∴D 1D ⊥BC .又AB =4,AD =2,,∴∵AD 2+BD 2=AB 2,∴AD ⊥BD .又∵AD ∥BC ,∴BC ⊥BD .又∵D 1D∩BD =D ,,,∴BC ⊥平面D 1BD ,而,∴平面D 1BC⊥平面D 1BD ; (2)解:∵D 1D ⊥平面ABCD ,∴∠D 1BD 即为直线D 1B 与底面ABCD 所成的角,即,而,∴DD 1=2.,∴BC ABCD ⊂平面3DAB π∠=BD ==1BD D BD ⊂平面11D D D BD ⊂平面1BC D BC ⊂平面16D BD π∠=BD =14C MNQ Q CMN Q BDC V V V ---==11121432C MNQ V -=⨯⨯⨯⨯=巩固练习1.解析:(Ⅰ)取PA 的中点G ,连FG ,由题可知:BF=FP ,则FG //AB FG = AB ,又CE= ED ,可得:DE//AB 且DE = AB ,∴ FG //DE 且FG = DE ,∴四边形DEFG 为平行四边形,则EF //DG且EF =DG ,DG ⊂平面PAD ;EF ⊄平面PAD ,∴ EF//平面PAD ⋯⋯⋯4分 (Ⅱ)由PD ⊥平面ABCD ,PD ⊂平面PAD ,∴ 平面PAD ⊥平面ABCD ,且交线为AD ,又底面ABCD 是矩形,∴ BA ⊥ AD ,∴BA ⊥ 平面PAD ,∴平面PAB ⊥平面PAD,其交线为PA ,又PD=AD ,G 为PA 的中点,∴DG ⊥ PA ,∴ DG ⊥平面PAB ,由(Ⅰ)知:EF // DG , ∴ EF ⊥平面PAB ⋯⋯⋯8分 (Ⅲ)由BC =1, AB =F 为PB 的中点,∴ = = = == = ⋯⋯⋯⋯12分练习2解析:(Ⅰ)证明:∵四边形ABCD 是菱形,∴. 又∵平面ABCD ,平面ABCD ,∴.又,平面,平面,∴平面, ∵平面,∴平面平面. (Ⅱ)解:1212AEF P V -AEF B V -ABE F V-ABE P V -21PD S ABE ⋅⋅⋅∆3121112213121⋅⋅⋅⋅⋅122AC BD ⊥PA ⊥BD ⊂≠PA BD ⊥PA AC A =PA ⊂≠PAC AC ⊂≠PAC BD ⊥PAC BD ⊂≠PBD PBD ⊥PAC BCD 11=2232C BDM M V V --=⨯⨯⨯。

高考数学立体几何专题:等体积法(一)

高考数学立体几何专题:等体积法(一)

第一个问题:如下图所示:计算:上顶点P 到底面ABC 的距离P h 。

第一种情况:底面ABC 的垂线过上顶点P 。

例题一:已知:在三棱锥ABC P -中:直线⊥PA 底面ABC 。

计算:点P 到底面ABC 的距离P h 。

解答:直线⊥PA 底面ABC ,直线PA 上点P 是上顶点,直线PA 上点A 是底面ABC 上一点PA ⇒是点P 到底面ABC 的距离,PA h P =。

例题二:已知:如下图所示,直线⊥PQ 平面ABC 。

计算:点P 到底面ABC 的距离P h 。

解答:直线⊥PQ 平面ABC ,直线PQ 上点P 是上顶点,直线PQ 上点D 是平面ABC 上一点PD ⇒是点P 到平面ABC 的距离,PD h P =。

第二种情况:底面ABC 的垂线不过上顶点P 。

例题一:已知:在三棱锥ABC P -中:点D 和点E 分别为AB 和PA 的中点,⊥DE 平面ABC 。

计算:点P 到底面ABC 的距离。

解答:点D 和点E 分别为AB 和PA 的中点DE ⇒是PAB ∆的中位线PB DE //⇒,⊥DE 底面ABC⊥⇒PB 底面ABC ,直线PB 上的点P 是上顶点,直线PB 上的点B 在底面ABC 上⇒点P 到底面ABC 的距离为PB 。

例题二:已知:在三棱柱111C B A ABC -中,点P 是棱1BB 的中点,⊥1AB 底面ABC 。

计算:点P 到底面ABC 的距离。

解答:过点P 作1AB 的平行线交AB 于点Q 。

如下图所示:⊥1AB 底面ABC ,⊥⇒PQ AB PQ 1//平面ABC ,直线PQ 上的点P 是上顶点,直线PQ 上的点Q 在底面ABC 上⇒点P 到底面ABC 的距离为PQ 。

第二个问题:如下图所示:计算:三棱锥ABC P -的体积。

P ABC ABC P h S V ⨯⨯=∆-31,其中P h 是上顶点P 到底面ABC 的距离。

问题:第一个问题中解决的上顶点P 到底面ABC 的距离,都会有一个共同特点,底面ABC 有一条垂线。

挑战立体几何的体积练习题

挑战立体几何的体积练习题

挑战立体几何的体积练习题在学习立体几何的过程中,计算体积是一个重要的技能。

理解和掌握计算不同几何体的体积公式对于解决实际问题和应用数学知识至关重要。

在本篇文章中,将介绍一些挑战性的立体几何体积练习题,帮助读者提高对体积计算的理解和运用能力。

练习题一:长方体与立方体1. 将一个边长为2厘米的正方形面贴在一个长方体的一个面上,这个正方形位于长方体的中心。

如果长方体的高为5厘米,求这个复合体的体积。

解答:首先计算正方形的面积:2cm × 2cm = 4cm²然后计算长方体的体积:4cm² × 5cm = 20cm³所以,这个复合体的体积为20立方厘米。

2. 一个立方体的棱长为3cm,若将这个立方体切割成六个体积相同的小正方体,求每个小正方体的棱长以及它们的体积。

解答:首先计算原立方体的体积:3cm × 3cm × 3cm = 27cm³然后计算每个小正方体的体积:27cm³ ÷ 6 = 4.5cm³由于六个小正方体在空间中组成一个立方体,所以每个小正方体的棱长也相同,记为x。

则x³ = 4.5cm³,解得x ≈ 1.71cm所以每个小正方体的棱长约为1.71cm,体积为4.5立方厘米。

练习题二:圆柱体与锥体1. 一个圆柱体的直径为8cm,高为10cm,求其体积。

解答:首先计算圆柱体的半径:8cm ÷ 2 = 4cm然后计算圆柱体的底面积:π × 4cm × 4cm = 16π cm²最后计算圆柱体的体积:16π cm² × 10cm = 160π cm³所以,圆柱体的体积为160π立方厘米,约等于502.65立方厘米。

2. 一个锥体的底半径为6cm,高为8cm,求其体积。

解答:首先计算锥体的底面积:π × 6cm × 6cm = 36π cm²然后计算锥体的体积:36π cm² × 8cm ÷ 3 = 96π cm³所以,锥体的体积为96π立方厘米,约等于301.59立方厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国各地高考文科数学试题分类汇编:立体几何
1.[·卷20] 如图1­4所示四棱锥P ­ABCD 中,底面是以O 为中心的菱形,PO ⊥底面
AB =2,∠BAD =π
3
,M
为BC 上一点,且BM =1
2
.
(1)证明:BC ⊥平面POM ;(2)若MP ⊥AP ,求四棱锥P ­ABMO
图1­ 4
2.[·卷17] 如图1
­5,在三棱柱ABC ­A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.
(1)求证:平面ABE ⊥平面B 1BCC 1;(2)求证:C 1F ∥平面ABE ;(3)求三棱锥E ­ABC 的体积.
3.[·卷19] 如图1­6所示,三棱锥A ­BCD 中,AB ⊥平面BCD ,CD ⊥BD .
(1)求证:CD
⊥平面ABD ;(2)若AB =BD =CD
=1,M 为AD 中点,求三棱锥A ­
4.[·新课标全国卷Ⅱ18] 如图1­3,四棱锥P­ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;(2)设AP=1,AD=3,三棱锥P­ABD的体积V=
3
4
,求A到平面PBC的距离.
5.[·卷18] 如图1­2所示,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2,作如图1­3折叠:折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.
(1)证明:CF⊥平面MDF;(2)求三棱锥M­CDE的体积.
图1­ 2 图1­ 3
6.[·卷19] 如图1­4所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.
(1)求证:EF⊥平面BCG;(2)求三棱锥D­BCG的体积.
7.[·全国新课标卷Ⅰ19] 如图1­4,三棱柱ABC ­A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱ABC ­ A 1B 1C 1的高.
8.[·卷20] 如图1­4所示四棱锥P ­ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π
3
,M
为BC 上一点,且BM =1
2
.
(1)证明:BC ⊥平面POM ;(2)若MP ⊥AP ,求四棱锥P ­ABMO 的体积.
图1­ 4
9、如图5所示,在三棱锥ABC P -
中,AB BC ==
⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,
3CD =,2=PD .
(1)求三棱锥ABC P -的体积;(2)证明△PBC 为直角三角形.
图5
P
A
D
10、如图,E 为矩形ABCD 所在平面外一点,⊥AD 平面ABE ,AE=EB=BC=2,F 为CE 是的点,且⊥BF 平面ACE ,
G BD AC =⋂
(1)求证:⊥AE 平面BCE ; (2)求三棱锥C —BGF 的体积。

11、如图,已知AB ⊥平面ACD ,DE ∥AB ,2AD AC DE AB ====1,且F 是CD 的中点.3AF = (Ⅰ)求证:AF ∥平面BCE ; (Ⅱ)求证:平面BCE ⊥平面CDE ; (III) 求此多面体的体积.
12、在如图4所示的几何体中,平行四边形ABCD 的顶点都在以AC 为直径的圆O 上,AD CD DP a ===,
2AP CP a ==,//DP AM ,且1
2
AM DP =
,,E F 分别为,BP CP 的中点. (I)证明://EF 平面ADP ; (II)求三棱锥M ABP -的体积.
A B
C
D
E
F
13、在棱长为a 的正方体1111ABCD A B C D -中,E 是线段11A C 的中点,底面ABCD 的中心是F. (1)求证:CE ⊥BD ;(2)求证:CE ∥平面1A BD ;(3)求三棱锥1D A BC -的体积.
14、矩形ABCD 中,AD AB =2,E 是AD 中点,沿BE 将ABE ∆折起到'A BE ∆的位置,使'
'
AC A D =,F G 、分别是BE CD 、中点.
(1)求证:F A '⊥CD ;
(2)设2=AB ,求四棱锥BCDE A -'的体积.
15、如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,侧面PAD ABCD ⊥底面,且
2
PA PD AD ==
,若E 、F 分别为PC 、BD 的中点. (1)求证:EF ∥平面PAD ;(2)求证:平面PDC ⊥平面PAD . (3)求四棱锥P ABCD -的体积P ABCD V -.
16、如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,5AB =,14AA =,点D 是AB 的中点, (1)求证:1AC BC ⊥;(2)求证:11CDB //平面AC ; (3)求三棱锥11C CDB -的体积。

17、如图1,在正三角形ABC 中,AB=3,E 、F 、P 分别是AB 、AC 、
BC 边上的点,AE=CF=CP=1。

将AFE ∆沿EF 折起到1A EF ∆的位置,使平面1A EF 与平面BCFE 垂直,连结A 1B 、A 1P (如图2)。

(1)求证:PF//平面A 1EB ;
(2)求证:平面BCFE ⊥平面A 1EB ; (3)求四棱锥A 1—BPFE 的体积。

18、如图所示的长方体1111D C B A ABCD -中,底面ABCD 是边长为2的
正方形,O 为AC 与BD 的交点,21=
BB ,M 是线段11D B 的中点.
(1)求证://BM 平面1D AC ; (2)求三棱锥11D AB C -的体积.
191、已知四棱锥P ABCD -的底面ABCD 是边长为4的正方形,PD ABCD ⊥平面,6,,PD E F =分别为,PB AB 中点。

(1)证明:BC PDC ⊥平面; (2)求三棱锥P DEF -的体积。

20、如图6,在四面体PABC 中,PA=PB ,CA=CB ,D 、E 、F 、G 分别是PA ,AC 、CB 、BP 的中点. (1)求证:D 、E 、F 、G 四点共面; (2)求证:PC ⊥AB ;
(3)若△ABC 和PAB 都是等腰直角三角形,且AB=2,2=PC ,求四面体PABC 的体积.
21、如图所示,圆柱的高为2,底面半径为7,AE 、DF 是圆柱的两条母线,过AD 作圆柱的截面交下底面于BC . (1)求证://BC EF ;(2)若四边形ABCD 是正方形,求证BC BE ⊥;
(3)在(2)的条件下,求四棱锥A BCE -的体积.
22、如图,平行四边形ABCD 中,1=CD ,
60=∠BCD ,且CD BD ⊥,正方形ADEF 和平面ABCD 垂直,H
G ,是BE DF ,的中点.
(1)求证:CDE BD 平面⊥;(2)求证://GH 平面CDE ; (3)求三棱锥CEF D -的体积.。

相关文档
最新文档