2020优化方案高考总复习文科数学学案及练习第十章概率第2讲古典概型

合集下载

高考总复习·数学(文科)学案 第十章 概率 第二节 古典概型

高考总复习·数学(文科)学案 第十章  概率 第二节 古典概型
部记为事件 C,则 C 表示“点(x, y)在圆 x2+y2=15 上或圆的外部”.
又事件 C 包含基本事件:(1,1),(1,2),(1,3),(2,1),(2, 2),(2,3),(3,1),(3,2)共有 8 个.
∴P(C)=386=92, 从而 P(C)=1-P(C)=1-92=79.
一年级 二年级 三年级
男同学
A
B
C
女同学
X
Y
Z
现从这 6 名同学中随机选出 2 人参加知识竞赛(每人被选到的可
能性相同).
(1)用表中字母列举出所有可能的结果;
(2)设 M 为事件“选出的 2 人来自不同年级且恰有 1 名男同学和 1 名
解:(1)从 6 名同学中随机选出 2 人参加知识竞赛的所有可能结 果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B, X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X, Z},{Y,Z},共 15 种.
地区 A B C 数量 50 150 100 (1)求这 6 件样品中来自 A,B,C 各地区商品的数量; (2)若在这 6 件样品中随机抽取 2 件送往甲机构进行进一步检测,
解:(1)因为样本容量与总体中的个体数的比是50+1560+100= 510.
所以样本中包含三个地区的个体数量分别是: 50×510=1,150×510=3,100×510=2.所以 A,B,C 三个地区 的商品被选取的件数分别为 1,3,2. (2)设 6 件来自 A,B,C 三个地区的样品分别为:A;B1,B2, B3;C1,C2.
(1)求“抽取的卡片上的数字满足 a+b=c”的概率; (2)求“抽取的卡片上的数字 a,b,c 不完全相同”的概率.

高考数学一轮复习 第10章 概率 第2讲 古典概型学案

高考数学一轮复习 第10章 概率 第2讲 古典概型学案

第2讲 古典概型板块一 知识梳理·自主学习[必备知识]考点1 基本事件的特点1.任何两个基本事件是互斥的.2.任何事件(除不可能事件)都可以表示成基本事件的和.考点2 古典概型 1.古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.2.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数. [必会结论]一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.正确的判断试验的类型是解决概率问题的关键.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)某袋中装有大小均匀的三个红球、两个黑球、一个白球,那么每种颜色的球被摸到的可能性相同.( )(2)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.( ) (3)利用古典概型的概率公式求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.( )(4)“从长为1的线段AB 上任取一点C ,求满足AC ≤13的概率是多少”是古典概型. ( )答案 (1)× (2)√ (3)× (4)×2.[2018·武汉调研]同时抛掷两颗均匀的骰子,则向上的点数之差的绝对值为4的概率为( )A.118B.112C.19D.16答案 C解析 同时抛掷两颗骰子,基本事件总数为36,记“向上的点数之差的绝对值为4”为事件A ,则事件A 包含的基本事件有(1,5),(2,6),(5,1),(6,2),共4种,故P (A )=436=19. 3.某天下课以后,教室里还剩下2位男同学和2位女同学.如果他们依次走出教室,则第2位走出的是男同学的概率为( )A.12B.13C.14D.15答案 A解析 已知2位女同学和2位男同学走出的所有可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走出的是男同学的概率是P =36=12. 4.[2016·全国卷Ⅰ]为美化环境,从红,黄,白,紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56答案 C解析 从红,黄,白,紫4种颜色的花中任选2种有以下选法:(红,黄),(红,白),(红,紫),(黄,白),(黄,紫),(白,紫),共6种,其中红色和紫色的花不在同一花坛(亦即黄色和白色的花不在同一花坛)的选法有4种,所以所求事件的概率P =46=23.故选C. 5.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.答案 13解析 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P =39=13. 6.[2018·兰州诊断]从2本不同的数学书和2本不同的语文书中任意抽出2本书(每本书被抽中的机会相等),则抽出的书是同一学科的概率等于________.答案 13 解析 数学书为a 1,a 2,语文书为b 1,b 2,从中任取两本,基本事件为a 1a 2,a 1b 1,a 1b 2,a 2b 2,a 2b 1,b 1b 2,其中抽出的书是同一学科的取法共有a 1a 2,b 1b 22种,因此所求的概率等于26=13. 板块二 典例探究·考向突破考向 简单的古典概型例 1 (1)[2017·全国卷Ⅱ]从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A.110B.15C.310D.25答案 D解析 从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P =1025=25.故选D. (2)[2017·山东高考]从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.79答案 C解析 ∵9张卡片中有5张奇数卡片,4张偶数卡片,且为不放回地随机抽取,∴P (第一次抽到奇数,第二次抽到偶数)=59×48=518, P (第一次抽到偶数,第二次抽到奇数)=49×58=518.∴P (抽到的2张卡片上的数奇偶性不同)=518+518=59.故选C. 触类旁通求古典概型概率的步骤(1)读题,理解题意;(2)判断试验结果是否为等可能事件,设出所求事件A ;(3)分别求出基本事件总数n 与所求事件A 所包含的基本事件的个数m ;(4)利用公式P (A )=mn求出事件A 的概率.【变式训练1】 (1)[2017·天津高考]有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A.45 B.35 C.25 D.15 答案 C解析 从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共4种,所以所求概率P =410=25.故选C. (2)[2018·海淀一模]现有7名数理化成绩优秀者,分别用A 1,A 2,A 3,B 1,B 2,C 1,C 2表示,其中A 1,A 2,A 3的数学成绩优秀,B 1,B 2的物理成绩优秀,C 1,C 2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则A 1和B 1不全被选中的概率为________.答案 56解析 从这7人中选出数学、物理、化学成绩优秀者各1名,所有可能的结果组成的12个基本事件为:(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2).设“A 1和B 1不全被选中”为事件N ,则其对立事件N -表示“A 1和B 1全被选中”,由于N-={(A 1,B 1,C 1),(A 1,B 1,C 2)},所以P (N -)=212=16,由对立事件的概率计算公式得P (N )=1-P (N -)=1-16=56. 考向 较复杂的古典概型问题命题角度1 古典概型与平面几何相结合例 2 [2018·洛阳统考]将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.答案 712解析 依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足2aa 2+b 2≤2,a 2≤b 2的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率等于2136=712. 命题角度2 古典概型与函数相结合例 3 已知M ={1,2,3,4},若a ∈M ,b ∈M ,则函数f (x )=ax 3+bx 2+x -3在R 上为增函数的概率是( ) A.916 B.716 C.14 D.316答案 A 解析 记事件A 为“函数f (x )=ax 3+bx 2+x -3在R 上为增函数”.因为f (x )=ax 3+bx 2+x -3,所以f ′(x )=3ax 2+2bx +1.当函数f (x )在R 上为增函数时,f ′(x )≥0在R 上恒成立.又a >0,所以Δ=(2b )2-4×3a =4b 2-12a ≤0在R 上恒成立,即a ≥b 23. 当b =1时,有a ≥13,故a 可取1,2,3,4,共4个数; 当b =2时,有a ≥43,故a 可取2,3,4,共3个数; 当b =3时,有a ≥3,故a 可取3,4,共2个数;当b =4时,有a ≥163,故a 无可取值. 综上,事件A 包含的基本事件有4+3+2=9种.又a ,b ∈{1,2,3,4},所以所有的基本事件共有4×4=16种.故所求事件A 的概率为P (A )=916.故选A. 命题角度3 古典概型与平面向量相结合 例 4 [2018·宿迁模拟]已知k ∈Z ,AB →=(k,1),AC →=(2,4),若|AB →|≤4,则△ABC 是直角三角形的概率是________.答案 37解析 因为|AB →|=k 2+1≤4,所以-15≤k ≤15,因为k ∈Z ,所以k =-3,-2,-1,0,1,2,3,当△ABC 为直角三角形时,应有AB ⊥AC ,或AB ⊥BC ,或AC ⊥BC ,由AB →·AC →=0,得2k+4=0,所以k =-2,因为BC →=AC →-AB →=(2-k,3),由AB →·BC →=0,得k (2-k )+3=0,所以k =-1或3,由AC →·BC →=0,得2(2-k )+12=0,所以k =8(舍去),故使△ABC 为直角三角形的k 值为-2,-1或3,所以所求概率P =37.触类旁通较复杂的古典概型问题的求解方法解决与古典概型交汇命题的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.核心规律古典概型的两种破题技巧(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求.另外在确定基本事件时,(x,y)可以看成是有序的,如(1,2)与(2,1)不同;有时也可以看成是无序的,如(1,2)与(2,1)相同.(2)含有“至多”“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用P(A)=1-P(A)求解较好.满分策略古典概型求解中的注意事项(1)古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,他们是否是等可能的.(2)用列举法求古典概型,是一个形象、直观的好方法,但列举时必须按照某一顺序做到不重复、不遗漏.(3)注意一次性抽取与逐次抽取的区别:一次性抽取是无顺序的问题,逐次抽取是有顺序的问题.板块三启智培优·破译高考创新交汇系列8——古典概型与统计的精彩交汇[2018·长春模拟]某教师为了了解高三一模所教两个班级的数学成绩情况,将两个班的数学成绩(单位:分)绘制成如图所示的茎叶图.(1)分别求出甲、乙两个班级数学成绩的中位数、众数;(2)若规定成绩大于等于115分为优秀,分别求出两个班级数学成绩的优秀率;(3)从甲班中130分以上的5名同学中随机抽取3人,求至多有1人的数学成绩在140分以上的概率.解题视点 (1)利用中位数、众数的概念求解;(2)由频率的定义求解优秀率即可;(3)分别求出总的基本事件和满足条件的基本事件,利用古典概型的概率计算公式求解.解 (1)由所给的茎叶图知,甲班50名同学的成绩由小到大排序,排在第25,26位的是108,109,数量最多的是103,故甲班数学成绩的中位数是108.5,众数是103;乙班48名同学的成绩由小到大排序,排在第24,25位的是106,107,数量最多的是92和101,故乙班数学成绩的中位数是106.5,众数为92和101.(2)由茎叶图中的数据可知,甲班中数学成绩为优秀的人数为20,优秀率为2050=25;乙班中数学成绩为优秀的人数为18,优秀率为1848=38. (3)将分数为131,132,136的3人分别记为a ,b ,c ,分数为141,146的2人分别记为m ,n ,则从5人中抽取3人的不同情况有abc ,abm ,abn ,acm ,acn ,amn ,bcm ,bcn ,bmn ,cmn ,共10种情况.记“至多有1人的数学成绩在140分以上”为事件M ,则事件M 包含的情况有abc ,abm ,abn ,acm ,acn ,bcm ,bcn ,共7种情况,所以从这5名同学中随机抽取3人,至多有1人的数学成绩在140分以上的概率为P (M )=710. 答题启示 求解古典概型与统计交汇问题的思路,(1)依据题目的直接描述或频率分布表、频率分布直方图、茎叶图等统计图表给出的信息,提炼出需要的信息.,(2)进行统计与古典概型概率的正确计算.跟踪训练某学校高一年级共有20个班,为参加全市钢琴比赛,调查了各班中会弹钢琴的人数,并以组距5将数据分组成[0,5),[5,10),…,[30,35),[35,40],作出频率分布直方图如图所示.(1)由频率分布直方图估计各班中会弹钢琴的人数的平均值;(2)若会弹钢琴的人数为[35,40]的班级作为第一类备选班级,会弹钢琴的人数为[30,35)的班级作为第二类备选班级,现要从这两类备选班级中选出两个班参加市里的钢琴比赛,求这两类备选班级中均有班级被选中的概率.解 (1)设各班中会弹钢琴的人数的平均值为x -,由频率分布直方图知,x -=2.5×0.01×5+7.5×0.01×5+12.5×0.04×5+17.5×0.02×5+22.5×0.04×5+27.5×0.03×5+32.5×0.03×5+37.5×0.02×5=22,所以各班中会弹钢琴的人数的平均值为22.(2)由频率分布直方图知,第一备选班级为2个,第二备选班级为3个,用a i (i =1,2)表示第一备选班级,b j (j =1,2,3)表示第二备选班级.则从两类备选班级中选出两个班参加比赛,有{a 1,a 2},{a 1,b 1},{a 1,b 2},{a 1,b 3},{a 2,b 1},{a 2,b 2},{a 2,b 3},{b 1,b 2},{b 1,b 3},{b 2,b 3},共10种情况.其中第一备选班级和第二备选班级中均有班级被选中的情况有{a 1,b 1},{a 1,b 2},{a 1,b 3},{a 2,b 1},{a 2,b 2},{a 2,b 3},共6种情况. 所以两类备选班级中均有班级被选中的概率为35. 板块四 模拟演练·提能增分 [A 级 基础达标]1.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( ) A.34 B.56 C.16 D.13答案 B解析 该试验中会出现(白1,白2),(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共6种等可能的结果,事件“至少摸出1个黑球”所含有的基本事件为(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共5种,据古典概型概率公式,得事件“至少摸出1个黑球”的概率是56. 2.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15答案 D解析 在正六边形中,6个顶点选取4个,种数为15.选取的4点能构成矩形的,只有对边的4个顶点(例如AB 与DE ),共有3种,∴所求概率为315=15.3.从2男3女共5名同学中任选2名(每名同学被选中的机会均等),这2名都是男生或都是女生的概率等于( )A.25B.35C.12D.34答案 A解析 设2名男生为A ,B,3名女生为a ,b ,c ,则从5名同学中任取2名的方法有(A ,B ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ),(a ,b ),(a ,c ),(b ,c ),共10种,而这2名同学刚好是一男一女的有(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c ),共6种,故所求的概率P =1-610=25.4.为了纪念抗日战争胜利70周年,从甲、乙、丙、丁、戊5名候选民警中选2名作为阅兵安保人员,为阅兵提供安保服务,则甲、乙、丙中有2名被选中的概率为( )A.310B.110C.320D.120答案 A解析 从甲、乙、丙、丁、戊5人中选2人的所有情况为:甲乙、甲丙、甲丁、甲戊、乙丙、乙丁、乙戊、丙丁、丙戊、丁戊,共10种,其中有甲、乙、丙中2人的有甲乙、甲丙、乙丙3种,所以P =310. 5.[2018·梅州质检]如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复.则填入A 方格的数字大于B 方格的数字的概率为( )A.12B.14C.34D.38答案 D解析 只考虑A ,B 两个方格的排法.不考虑大小,A ,B 两个方格有4×4=16(种)排法.要使填入A 方格的数字大于B 方格的数字,则从1,2,3,4中选2个数字,大的放入A 格,小的放入B 格,有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),共6种,故填入A 方格的数字大于B 方格的数字的概率为616=38.选D. 6.[2018·湖北模拟]随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p 1,点数之和大于5的概率记为p 2,点数之和为偶数的概率记为p 3,则( )A .p 1<p 2<p 3B .p 2<p 1<p 3C .p 1<p 3<p 2D .p 3<p 1<p 2答案 C解析 总的基本事件个数为36,向上的点数之和不超过5的有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共10个,则向上的点数之和不超过5的概率p 1=1036=518;向上的点数之和大于5的概率p 2=1-518=1318;向上的点数之和为偶数与向上的点数之和为奇数的个数相等,故向上的点数之和为偶数的概率p 3=12.即p 1<p 3<p 2.故选C.7.[2018·武汉模拟]设m ,n 分别是先后抛掷一枚骰子得到的点数,则在先后两次出现的点数中有5的条件下,方程x 2+mx +n =0有实根的概率为( )A.1136B.736C.711D.710 答案 C解析 先后两次出现的点数中有5的情况有:(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共11种.其中使方程x 2+mx +n =0有实根的情况有:(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共7种.故所求概率为711. 8.[2018·四川模拟]从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________.答案 16解析 从2,3,8,9中任取两个不同的数字,(a ,b )的所有可能结果有(2,3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3),(8,9),(9,2),(9,3),(9,8),共12种,其中log 28=3,log 39=2为整数,所以log a b 为整数的概率为16. 9.[2018·合肥模拟]从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为________.答案 13解析 设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动,共有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,A 2A 1,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1,12种情况,而星期六安排一名男生、星期日安排一名女生共有A 1B 1,A 1B 2,A 2B 1,A 2B 2,4种情况,则发生的概率为P =412=13. 10.[2018·河南省八市联考]已知函数f (x )=2x 2-4ax +2b 2,若a ∈{4,6,8},b ∈{3,5,7},则该函数有两个零点的概率为________.答案 23解析 要使函数f (x )=2x 2-4ax +2b 2有两个零点,即方程x 2-2ax +b 2=0要有两个实根,则Δ=4a 2-4b 2>0,即a >b ,又a ∈{4,6,8},b ∈{3,5,7},a ,b 的取法共有3×3=9种,其中满足a >b 的取法有(4,3),(6,3),(6,5),(8,3),(8,5),(8,7),共6种,所以所求的概率为69=23. [B 级 知能提升]1.[2018·南京模拟]一个三位数的百位、十位、个位上的数字依次为a ,b ,c ,当且仅当a >b ,b <c 时称为“凹数”(如213,312)等.若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“凹数”的概率是( )A.16B.524C.13D.724答案 C解析 由1,2,3组成的三位数有123,132,213,231,312,321,共6个;由1,2,4组成的三位数有124,142,214,241,412,421,共6个;由1,3,4组成的三位数有134,143,314,341,413,431,共6个;由2,3,4组成的三位数有234,243,324,342,423,432,共6个.所以共有6+6+6+6=24个三位数.当b =1时,有214,213,314,412,312,413,共6个“凹数”;当b =2时,有324,423,共2个“凹数”.故这个三位数为“凹数”的概率P =6+224=13. 2.[2018·安徽六校联考]连续投掷两次骰子得到的点数分别为m ,n ,向量a =(m ,n )与向量b =(1,0)的夹角记为α,则α∈⎝⎛⎭⎪⎫0,π4的概率为( ) A.518 B.512 C.12 D.712答案 B解析 cos 〈a ,b 〉=mm 2+n 2,∵α∈⎝ ⎛⎭⎪⎫0,π4, ∴22<m m 2+n2<1,∴n <m . 又满足n <m 的骰子的点数有(2,1),(3,1),(3,2),…,(6,3),(6,4),(6,5),共15个. 故所求概率为P =1536=512. 3.[2018·武汉调研]某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线x 2a 2-y 2b 2=1的离心率e >5的概率是________.答案 16解析 由e =1+b 2a2>5,得b >2a .当a =1时,b =3,4,5,6四种情况;当a =2时,b =5,6两种情况,总共有6种情况.又同时掷两颗骰子,得到的点数(a ,b )共有36种结果.∴所求事件的概率P =636=16. 4.按照国家环保部发布的新修订的《环境空气质量标准》,规定:PM2.5的年平均浓度不得超过35微克/立方米.国家环保部门在2017年10月1日到2018年1月30日这120天对全国的PM2.5平均浓度的监测数据统计如下:(2)在(1)中所抽取的样本PM2.5的平均浓度超过75微克/立方米的若干天中,随机抽取2天,求恰好有一天平均浓度超过115微克/立方米的概率.解 (1)在这120天中抽取30天,应采取分层抽样,第一组应抽取32×30120=8天;第二组应抽取64×30120=16天;第三组应抽取16×30120=4天;第四组应抽取8×30120=2天. (2)设PM2.5的平均浓度在(75,115]内的4天记为A 1,A 2,A 3,A 4,PM2.5的平均浓度在115以上的2天记为B 1,B 2.所以从这6天中任取2天的情况有A 1A 2,A 1A 3,A 1A 4,A 1B 1,A 1B 2,A 2A 3,A 2A 4,A 2B 1,A 2B 2,A 3A 4,A 3B 1,A 3B 2,A 4B 1,A 4B 2,B 1B 2,共15种.记“恰好有一天平均浓度超过115微克/立方米”为事件A ,其中符合条件的情况有A 1B 1,A 1B 2,A 2B 1,A 2B 2,A 3B 1,A 3B 2,A 4B 1,A 4B 2,共8种,故所求事件A 的概率P (A )=815.5.[2018·兰州双基测试]一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取一张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解 (1)由题意,(a ,b ,c )所有可能的结果为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P (A )=327=19,因此,“抽取的卡片上的数字满足a +b =c ”的概率为19. (2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种,所以P (B )=1-P (B )=1-327=89,因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.。

2020届高考数学总复习第十章概率10_2古典概型课件文新人教A版

2020届高考数学总复习第十章概率10_2古典概型课件文新人教A版
因为S中元素的个数是4×4=16, 所以基本事件总数n=16. (1)记“xy≤3”为事件A, 则事件A包含的基本事件数共5个,即(1,1),(1,2), (1,3),(2,1),(3,1),
所以 P(A)=156,即小亮获得玩具的概率为156. (2)记“xy≥8”为事件 B,“3<xy<8”为事件 C, 则事件 B 包含的基本事件数共 6 个, 即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4), 所以 P(B)=166=83,
所选两个国家都是亚洲国家的事件所包含的基本事件有 :{A1,A2},{A1,A3},{A2,A3},共3个.
则所求事件的概率为:P=135=51. (2)从亚洲国家和欧洲国家中各任选 1 个,其一切可能的结果 组成的基本事件有: {A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2, B3},{A3,B1},{A3,B2},{A3,B3},共 9 个. 包括 A1 但不包括 B1 的事件所包含的基本事件有:{A1,B2}, {A1,B3},共 2 个, 则所求事件的概率为:P=92.
率等于________.
【解析】 基本事件共 36 个,符合题意的基本事件有(1,6),
(6,1),(2,3),(3,2),共 4 个,故所求概率为19.
【答案】
1 9
5.有一个正方体的玩具,六个面分别标注了数字1,2 ,3,4,5,6.甲、乙两位学生进行如下游戏:甲先抛掷一 次,记下正方体朝上的数字为a,再由乙抛掷一次,记下 正方体朝上的数字为b.若|a-b|≤1就称甲、乙两人“默契 配合”,则甲、乙两人“默契配合”的概率为 ____________.
第2讲 古典概型
1.基本事件的特点 (1)任何两个基本事件是__互__斥___的. (2)任何事件(除不可能事件)都可以表示成_基__本__事__件___ 的和.

高考数学(文)一轮复习备考学案:《古典概型》(北师大版)

高考数学(文)一轮复习备考学案:《古典概型》(北师大版)

第二节古典概型对应学生用书P149古典概型(1)特点:①试验中所有可能出现的结果个数只有有限个,即有限性. ②每个结果发生的可能性相等,即等可能性. (2)概率公式:P (A )=事件A 包含的可能结果数试验的所有可能结果数=m n.1.在计算古典概型中试验的所有可能结果数和事件发生结果数时,易忽视他们是否是等可能的.2.概率的一般加法公式P (A +B )=P (A )+P (B )-P (A ∩B )中,易忽视只有当A ∩B =∅,即A ,B 互斥时,P (A +B )=P (A )+P (B ),此时P (A ∩B )=0.[试一试]1.从3台甲型彩电和2台乙型彩电中任选两台,其中两种品牌的彩电齐全的概率是( ) A.45 B.35 C.25D.15解析:选B P =3×210=35.2.从1,2,3,4,5,6六个数中任取3个数,则取出的3个数是连续自然数的概率是( ) A.35 B.25 C.13D.15 解析:选D 取出的三个数是连续自然数有4种情况,则取出的三个数是连续自然数的概率P =420=15.古典概型中试验发生结果个数的探求方法(1)枚举法:适合给定的试验结果个数较少且易一一列举出的.(2)树状图法:适合于较为复杂的问题的试验结果数的探求,注意在确定结果数时(x ,y )可以看成是有序的,如(1,2)与(2,1)不同.有时也可以看成是无序的,如(1,2)(2,1)相同.[练一练]从集合A ={2,3,-4}中随机选取一个数记为k ,从集合B ={-2,-3,4}中随机选取一个数记为b ,则直线y =kx +b 不经过第二象限的概率为( )A.29B.13C.49D.59解析:选C 依题意k 和b 的所有可能的取法一共有3×3=9种,其中当直线y =kx +b 不经过第二象限时应有k >0,b <0,一共有2×2=4种,所以所求概率为49.对应学生用书P149考点一古典概型1.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( )A.132B.164C.332D.364解析:选D 试验所有结果为(1,1),(1,2),…,(1,8),(2,1),(2,2),…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),∴所求概率为364.2.(2013·温州调研)一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是( )A.15B.310C.25D.12 解析:选C 共有(黑1,黑2)、(黑1,黑3)、(黑1,红1)、(黑1,红2)、(黑2,黑3)、(黑2,红1)、(黑2,红2)、(黑3,红1)、(黑3,红2)、(红1,红2)10个结果,同色球为(黑1,黑2)、(黑1,黑3)、(黑2,黑3)、(红1,红2)共4个结果,∴P=410=2 5.3.(2013·深圳第一次调研)一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个.(1)求连续取两次都是白球的概率;(2)假设取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的概率是多少?解:(1)连续取两次的结果有:(红,红),(红,白1),(红,白2),(红,黑);(白1,红),(白1,白1),(白1,白2),(白1,黑);(白2,红),(白2,白1),(白2,白2),(白2,黑);(黑,红),(黑,白1),(黑,白2),(黑,黑),共16个.连续取两次都是白球的结果有:(白1,白1),(白1,白2),(白2,白1),(白2,白2),共4个,故所求概率为416=1 4.(2)连续取三次的结果有:(红,红,红),(红,红,白1),(红,红,白2),(红,红,黑);(红,白1,红),(红,白1,白1),(红,白1,白2),(红,白1,黑),…,共64个.因为取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的结果如下:(红,白1,白1),(红,白1,白2),(红,白2,白1),(红,白2,白2),(白1,红,白1),(白1,红,白2),(白2,红,白1),(白2,红,白2),(白1,白1,红),(白1,白2,红),(白2,白1,红),(白2,白2,红),(红,红,黑),(红,黑,红),(黑,红,红),共15个.故所求概率为1564.[类题通法]计算古典概型事件的概率三步法第一步:算出试验可能结果的总个数n;第二步:求出事件A所包含的结果个数m;第三步:代入公式求出概率P.考点二古典概型的交汇命题问题古典概型在高考中常与平面向量、集合、函数、解析几何、统计等知识交汇命题,命题的角度新颖,考查知识面全,能力要求较高,归纳起来常见的交汇命题角度有:(1)古典概型与平面向量相结合; (2)古典概型与直线、圆相结合; (3)古典概型与函数相结合.角度一 古典概型与平面向量相结合1.(2013·济南模拟)设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3).(1)求使得事件“a ⊥b ”发生的概率; (2)求使得事件“|a |≤|b |”发生的概率.解:(1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )所有可能的取法共36种. 使得a ⊥b ,即m -3n =0,即m =3n ,共有2种:(3,1)、(6,2),所以事件a ⊥b 的概率为236=118. (2)|a |≤|b |,即m 2+n 2≤10,共有(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(3,1)6种使得|a |≤|b |,其概率为636=16.角度二 古典概型与直线、圆相结合2.连掷骰子两次得到的点数分别记为a 和b ,则使直线3x -4y =0与圆(x -a )2-(y -b )2=4相切的概率为( )A.16B.118C.19D.13解析:选B 连掷骰子两次总的试验结果有36种,要使直线3x -4y =0与圆(x -a )2+(y -b )2=4相切,则|3a -4b |5=2,即满足|3a -4b |=10,符合题意的(a ,b )有(6,2),(2,4),共2种,由古典概型的概率计算公式可得所求概率为P =118.角度三 古典概型与函数相结合3.(2014·安徽省级示范高中一模)设a ∈{2,4},b ∈{1,3},函数f (x )=12ax 2+bx +1.(1)求f (x )在区间(-∞,-1]上是减函数的概率;(2)从f (x )中随机抽取两个,求它们在(1,f (1))处的切线互相平行的概率.解:(1)f ′(x )=ax +b ,由题意f ′(-1)≤0,即b ≤a ,而(a ,b )共有(2,1),(2,3)(4,1),(4,3)四种,满足b ≤a 的有3种,故概率为34.(2)由(1)可知,函数f (x )共有4种可能,从中随机抽取两个,有6种抽法. ∵函数f (x )在(1,f (1))处的切线的斜率为f ′(1)=a +b ,∴这两个函数中的a 与b 之和应该相等,而只有(2,3),(4,1)这1组满足, ∴概率为16.[类题通法]解决与古典概型交汇命题的问题时,把相关的知识转化为试验结果个数,求出m 、n 的值.然后利用古典概型的概率计算公式进行计算.对应学生用书P150[课堂练通考点]1.(2013·江南十校联考)第16届亚运会于2010年11月12日在中国广州举行,运动会期间从来自A 大学的2名志愿者和来自B 大学的4名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A 大学志愿者的概率是( )A.115 B.25 C.35D.1415解析:选C 记2名来自A 大学的志愿者为A 1,A 2,4名来自B 大学的志愿者为B 1,B 2,B 3,B 4.从这6名志愿者中选出2名的结果有:(A 1,A 2),(A 1,B 1),(A 1, B 2),(A 1,B 3),(A 1,B 4),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 2,B 3),(B 2,B 4),(B 3,B 4),共15种.其中至少有一名A 大学志愿者的事件有9种.故所求概率P =915=35.故选C.2.(2014·亳州高三质检)已知集合M ={1,2,3,4},N ={(a ,b )|a ∈M ,b ∈M },A 是集合N 中任意一点,O 为坐标原点,则直线OA 与y =x 2+1有交点的概率是( )A.12B.13C.14D.18解析:选C 易知过点(0,0)与y =x 2+1相切的直线为y =2x (斜率小于0的无需考虑),集合N 中共有16个元素,其中使OA 斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,由古典概型知概率为416=14.3.我们把日均收看体育节目的时间超过50分钟的观众称为“超级体育迷”.已知5名“超级体育迷”中有2名女性,若从中任选2名,则至少有1名女性的概率为( )A.710B.15C.14D.12解析:选A 用a i 表示男性,其中i =1,2,3,b j 表示女性,其中j =1,2.记“选出的2名全都是男性”为事件A ,“选出的2名有1名男性1名女性”为事件B ,“选出的2名全都是女性”为事件C ,则事件A 包含(a 1,a 2),(a 1,a 3),(a 2,a 3),共3个结果,事件B 包含(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6个结果,事件C 包含(b 1,b 2),共1个结果.事件A ,B ,C 彼此互斥,事件至少有1名女性包含事件B 和C ,所以所求事件的概率为6+13+6+1=710.4.(2013·南京模拟)在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.解析:点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.答案:135.(2013·江西高考)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X ,若X >0就去打球,若X =0就去唱歌,若X <0就去下棋.(1)写出数量积X 的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率.解:(1)X 的所有可能取值为-2,-1,0,1.(2)数量积为-2的有2OA u u u u r ·5OA u u u r,共1种; 数量积为-1的有1OA u u u r ·5OA u u u r ,1OA u u u r ·6OA u u u r ,2OA u u u u r ·4OA u u u r ,2OA u u u u r ·6OA u u u r ,3OA u u u u r ·4OA u u u r,3OA u u u u r ·5OA u u u r ,共6种;数量积为0的有1OA u u u r ·3OA u u u u r ,1OA u u u r ·4OA u u u r ,3OA u u u u r ·6OA u u u r ,4OA u u u r ·6OA u u u r,共4种; 数量积为1的有1OA u u u r ·2OA u u u u r ,2OA u u u u r ·3OA u u u u r ,4OA u u u r ·5OA u u u r ,5OA u u u r ·6OA u u u r,共4种. 故所有可能的情况共有15种. 所以小波去下棋的概率为P 1=715;因为去唱歌的概率为P 2=415,所以小波不去唱歌的概率P =1-P 2=1-415=1115.[课下提升考能]第Ⅰ卷:夯基保分卷1.(2013·惠州模拟)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( )A.45 B.35 C.25D.15解析:选D 从{1,2,3,4,5}中选取一个数a 有5种取法,从{1,2,3}中选取一个数b 有3种取法.所以选取两个数a ,b 共有5×3=15种取法.满足b >a 的取法共有3个.因此b >a 的概率P =315=15.2.高三(4)班有4个学习小组,从中抽出2个小组进行作业检查.在这个试验中,所有可能结果个数为( )A .2B .4C .6D .8解析:选C 设这4个学习小组为A ,B ,C ,D ,“从中任抽取两个小组”的所有可能结果有AB ,AC ,AD ,BC ,BD ,CD ,共6个.3.文科班某同学参加省学业水平测试,物理、化学、生物获得等级A 和获得等级不是A 的机会相等,物理、化学、生物获得等级A 的事件分别记为W 1,W 2,W 3,物理、化学、生物获得等级不是A 的事件分别记为W 1,W 2,W 3.则该同学参加这次学业水平测试获得两个A 的概率为( )A.38B.18C.35D.45解析:选A 该同学这次学业水平测试中物理、化学、生物成绩所有可能的结果有8种,分别为(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3).有两个A 的情况为(W 1,W 2,W 3),(W 1,W 2,W 3),(W 1,W 2,W 3),共3种,从而其概率为P =38.4.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是( )A.112B.110C.325D.1125解析:选D 小正方体三面涂有油漆的有8种情况,故所求其概率为81 000=1125. 5.(2014·浙江联考)一个袋子中装有六个大小形状完全相同的小球,其中一个编号为1,两个编号为2,三个编号为3.现从中任取一球,记下编号后放回,再任取一球,则两次取出的球的编号之和等于4的概率是________.解析:列举可知,共有36种情况,和为4的情况有10种,所以所求概率P =1036=518.答案:5186.(2014·宣武模拟)曲线C 的方程为x 2m 2+y 2n 2=1,其中m ,n 是将一枚骰子先后投掷两次所得点数,事件A =“方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆”,那么P (A )=________.解析:试验中所有可能结果个数为36;若想表示椭圆,则先后两次的骰子点数不能相同,则去掉6种可能,既然椭圆焦点在x 轴上,则m >n ,又只剩下一半情况,即有15种,因此P (A )=1536=512.答案:5127.某种零件按质量标准分为1,2,3,4,5五个等级.现从一批该零件中随机抽取20个,对其等级进行统计分析,得到频率分布表如下:(1)在抽取的20(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.解:(1)由频率分布表得0.05+m +0.15+0.35+n =1, 即m +n =0.45.由抽取的20个零件中,等级为5的恰有2个, 得n =220=0.1,所以m =0.45-0.1=0.35.(2)由(1)得,等级为3的零件有3个,记作x 1,x 2,x 3;等级为5的零件有2个,记作y 1,y 2.从x 1,x 2,x 3,y 1,y 2中任意抽取2个零件,所有可能的结果为(x 1,x 2),(x 1,x 3),(x 1,y 1),(x 1,y 2),(x 2,x 3),(x 2,y 1),(x 2,y 2),(x 3,y 1),(x 3,y 2),(y 1,y 2),共10种.记事件A 为“从零件x 1,x 2,x 3,y 1,y 2中任取2件,其等级相等”. 则A 包含的可能结果有(x 1,x 2),(x 1,x 3),(x 2,x 3),(y 1,y 2),共4种. 故所求概率为P (A )=410=0.4.8.将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a ,正四面体的三个侧面上的数字之和为b ”.设复数为z =a +b i.(1)若集合A ={z |z 为纯虚数},用列举法表示集合A ;(2)求事件“复数在复平面内对应的点(a ,b )满足a 2+(b -6)2≤9”的概率. 解:(1)A ={6i,7i,8i,9i}.(2)满足条件的所有可能结果的个数为24.设满足“复数在复平面内对应的点(a,b)满足a2+(b-6)2≤9”的事件为B.当a=0时,b=6,7,8,9满足a2+(b-6)2≤9;当a=1时,b=6,7,8满足a2+(b-6)2≤9;当a=2时,b=6,7,8满足a2+(b-6)2≤9;当a=3时,b=6满足a2+(b-6)2≤9.即B为(0,6),(0,7),(0,8),(0,9),(1,6),(1,7),(1,8),(2,6),(2,7),(2,8),(3,6)共计11个结果.所以所求概率P=1124.第Ⅱ卷:提能增分卷1.(2013·陕西高考)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表:(2) 在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.解:(1)由题设知,分层抽样的抽取比例为6%,所以各组抽到的人数如下表:(2)记从A组抽到的3个评委为a1,a2,a3,其中a1,a2支持1号歌手;从B组抽到的6个评委为b1,b2,b3,b4,b5,b6,其中b1,b2支持1号歌手.从{a1,a2,a3}和{b1,b2,b3,b4,b5,b6}中各抽取1人的所有结果为:由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a 1b 1,a 1b 2,a 2b 1,a 2b 2共4种,故所求概率p =418=29. 2.已知集合P ={x |x (x 2+10x +24)=0},Q ={y |y =2n -1,1≤n ≤2,n ∈N +},M =P ∪Q .在平面直角坐标系中,点A 的坐标为(x ′,y ′),且x ′∈M ,y ′∈M ,试计算:(1)点A 正好在第三象限的概率;(2)点A 不在y 轴上的概率;(3)点A 正好落在区域x 2+y 2≤10上的概率.解:由集合P ={x |x (x 2+10x +24)=0}可得P ={-6,-4,0},由Q ={y |y =2n -1,1≤n ≤2,n ∈N +}可得Q ={1,3},则M =P ∪Q ={-6,-4,0,1,3},因为点A 的坐标为(x ′,y ′),且x ′∈M ,y ′∈M ,所以满足条件的点A 的所有情况为(-6,-6),(-6,-4),(-6,0),(-6,1),(-6,3),…,(3,3),共25种.(1)点A 正好在第三象限的可能情况为(-6,-6),(-4,-6),(-6,-4),(-4,-4),共4种,故点A 正好在第三象限的概率P 1=425. (2)点A 在y 轴上的可能情况为(0,-6),(0,-4),(0,0),(0,1),(0,3),共5种,故点A不在y 轴上的概率P 2=1-525=45. (3)点A 正好落在区域x 2+y 2≤10上的可能情况为(0,0),(1,0),(0,1),(3,1),(1,3),(3,0),(0,3),(1,1).共8种,故点A 落在区域x 2+y 2≤10上的概率P 3=825. 3.(2014·莱芜模拟)中国共产党第十八次全国代表大会期间,某报刊媒体要选择两名记者去进行专题采访,现有记者编号分别为1,2,3,4,5的五名男记者和编号分别为6,7,8,9的四名女记者.要从这九名记者中一次随机选出两名,每名记者被选到的概率是相等的,用符号(x ,y )表示事件“抽到的两名记者的编号分别为x ,y ,且x <y ”.(1)共有多少个可能结果?并列举出来;(2)求所抽取的两名记者的编号之和小于17但不小于11或都是男记者的概率.解:(1)共有36个结果,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9),共36个.(2)记事件“所抽取的记者的编号之和小于17但不小于11”为事件A ,即事件A 为“x ,y ∈{1,2,3,4,5,6,7,8,9},且11≤x +y <17,其中x <y ”,由(1)可知事件A 共含有15个结果,列举如下:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),共15个.“都是男记者”记作事件B ,则事件B 为“x <y ≤5”,包含:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个.故P (A )+P (B )=1536+1036=2536.。

2020年高三数学复习教案设计:古典概型复习教案设计

2020年高三数学复习教案设计:古典概型复习教案设计

高三数学复习教案:古典概型复习教案以下是为大家整理的关于《高三数学复习教案:古典概型复习教案》,供大家学习参考!本文题目:高三数学复习教案:古典概型复习教案【高考要求】古典概型(B); 互斥事件及其发生的概率(A)【学习目标】:1、了解概率的频率定义,知道随机事件的发生是随机性与规律性的统一;2、理解古典概型的特点,会解较简单的古典概型问题;3、了解互斥事件与对立事件的概率公式,并能运用于简单的概率计算.【知识复习与自学质疑】1、古典概型是一种理想化的概率模型,假设试验的结果数具有性和性.解古典概型问题关键是判断和计数,要掌握简单的记数方法(主要是列举法).借助于互斥、对立关系将事件分解或转化是很重要的方法.2、(A)在10件同类产品中,其中8件为正品,2件为次品。

从中任意抽出3件,则下列4个事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是 .3、(A)从5个红球,1个黄球中随机取出2个,所取出的两个球颜色不同的概率是。

4、(A)同时抛两个各面上分别标有1、2、3、4、5、6均匀的正方体玩具一次,“向上的两个数字之和为3”的概率是 .5、(A)某人射击5枪,命中3枪,三枪中恰好有2枪连中的概率是 .6、(B)若实数 ,则曲线表示焦点在y轴上的双曲线的概率是 .【例题精讲】1、(A)甲、乙两人参加知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?2、(B)黄种人群中各种血型的人所占的比例如下表所示:血型 A B AB O该血型的人所占的比(%) 28 29 8 35已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若小明因病需要输血,问:(1) 任找一个人,其血可以输给小明的概率是多少?(2) 任找一个人,其血不能输给小明的概率是多少?3、(B)将两粒骰子投掷两次,求:(1)向上的点数之和是8的概率;(2)向上的点数之和不小于8 的概率;(3)向上的点数之和不超过10的概率.4、(B)将一个各面上均涂有颜色的正方体锯成 (n个同样大小的正方体,从这些小正方体中任取一个,求下列事件的概率:(1)三面涂有颜色;(2)恰有两面涂有颜色;(3)恰有一面涂有颜色;(4)至少有一面涂有颜色.【矫正反馈】1、(A)一个三位数的密码锁,每位上的数字都可在0到10这十个数字中任选,某人忘记了密码最后一个号码,开锁时在对好前两位号码后,随意拨动最后一个数字恰好能开锁的概率是 .2、(A)第1、2、5、7路公共汽车都要停靠的一个车站,有一位乘客等候着1路或5路汽车,假定各路汽车首先到站的可能性相等,那么首先到站的正好是这位乘客所要乘的的车的概率是 .3、(A)某射击运动员在打靶中,连续射击3次,事件“至少有两次中靶”的对立事件是 .4、(B)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下出现乙级品和丙级品的概率分别为3%和1%,求抽验一只是正品(甲级)的概率 .5、(B)袋中装有4只白球和2只黑球,从中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.【迁移应用】1、(A)将一粒骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率是 .2、(A)从鱼塘中打一网鱼,共M条,做上标记后放回池塘中,过了几天,又打上来一网鱼,共N条,其中K条有标记,估计池塘中鱼的条数为 .3、(A)从分别写有A,B,C,D,E的5张卡片中,任取2张,这两张上的字母恰好按字母顺序相邻的概率是 .4、(B)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率是 .5、(B)将甲、乙两粒骰子先后各抛一次,a,b分别表示抛掷甲、乙两粒骰子所出现的点数.(1)若点P(a,b)落在不等式组表示的平面区域记为A,求事件A 的概率;(2)求P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率,求m的值.--------------------文章说明---------------------本文是经过精选整理后的精品文档,具有很强的实用性,下载后可对文档进行重新编辑,可按您的想法稍作修改直接套用,标题或正文中所有带()处可自行修改为需要字词,以便更好的为您所用!精挑精选精加工的精品文档,感谢您下载使用,希望使您的学习办公更便捷高效!。

2020届高中数学一轮复习北师大版第2讲古典概型学案Word版

2020届高中数学一轮复习北师大版第2讲古典概型学案Word版

第2讲古典概型[最新考纲]1.理解古典概型及其概率计算公式.2.会计算一些随机事件所包含的基本事件数及事件发生的概率.知识梳理1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.3.古典概型的概率公式P(A)=A包含的基本事件的个数基本事件的总数.辨析感悟1.古典概型的意义(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.(×)(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.(×)(3)(教材习题改编)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.(√)2.古典概型的计算(4)在古典概型中,如果事件A中基本事件构成集合A,所有的基本事件构成集合I,则事件A的概率为card(A) card(I).(√)(5)从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是0.2.(×)(6)(2018·新课标全国Ⅱ卷改编)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是0.2.(√)[感悟·提升]1.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型,(1)、(2)不符合定义.2.从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I,基本事件的个数n就是集合I的元素个数,事件A是集合I的一个包含m个元素的子集,故P(A)=card(A)card(I)=mn,如(4);根据古典概型概率公式计算,如(5)、(6).考点一简单古典概型的概率【例1】现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.解从6道题中任取2道有n=C26=15(种)取法.(1)记“所取的2道题都是甲类题”为事件A,则A发生共有m=C24=6种结果.∴所求事件概率P(A)=mn=615=25.(2)记“所取的2道题不是同一类题”事件为B,事件B包含的基本事件有C14C12=8(种),则事件B的概率为P(B)=8 15.规律方法有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.学生用书第183页【训练1两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两种卡片颜色不同且标号之和小于4的概率.解(1)从5张卡片中任取两张,共有n=C25=10种方法.记“两张卡片颜色不同且标号之和小于4”为事件A,则A包含基本事件m=C12 C12-1=3个.由古典概型概率公式,P(A)=mn=310.(2)从6张卡片中任取两张,共有n=C26=15个基本事件,记“两张卡片颜色不同且标号之和小于4”为事件B,则事件B包含基本事件总数m=C11(C12+C13)+(C12C12-1)=8,∴所求事件的概率P(B)=mn=815.考点二复杂的古典概型的概率【例2】将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数中至少有一个奇数的概率;(2)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的外部或圆上的概率.解由题意,先后掷2次,向上的点数(x,y)共有n=6×6=36种等可能结果,为古典概型.(1)记“两数中至少有一个奇数”为事件B,则事件B与“两数均为偶数”为对立事件,记为B.∵事件B包含的基本事件数m=C13C13=9.∴P(B)=936=14,则P(B)=1-P(B)=34,因此,两数中至少有一个奇数的概率为3 4.(2)点(x,y)在圆x2+y2=15的内部记为事件C,则C表示“点(x,y)在圆x2+y2=15上或圆的外部”.又事件C包含基本事件:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共有8个.∴P(C)=836=29,从而P(C)=1-P(C)=1-29=79.∴点(x,y)在圆x2+y2=15上或圆外部的概率为7 9.规律方法(1)一是本题易把(2,4)和(4,2),(1,2)和(2,1)看成同一个基本事件,造成计算错误.二是当所求事件情况较复杂时,一般要分类计算,即用互斥事件的概率加法公式或考虑用对立事件求解.(2)当所求事件含有“至少”“至多”或分类情况较多时,通常考虑用对立事件的概率公式P(A)=1-P(A)求解.【训练2】某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:(1) 1.78以下的概率;(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.解(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6个. 由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的. 选到的2人身高都在1.78以下的事件有(A ,B ),(A ,C ),(B ,C ),共3个. 因此选到的2人身高都在1.78以下的概率为 P =36=12.(2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的. 选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有(C ,D ),(C ,E ),(D ,E ),共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为P =310.考点三 古典概型与统计的综合问题【例3】 (2018·广东卷)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.审题路线 (1)阅读茎叶图得出样本数据,利用平均数公式计算出样本均值.(2)根据样本算出优秀工人的比例,再估计12人中优秀工人的个数.(3)用组合数公式求出所有可能的组合的个数和符合条件的组合的个数,利用古典概型概率公式计算.解 (1)由茎叶图可知:样本数据为17,19,20,21,25,30.则x =16(17+19+20+21+25+30)=22, 故样本均值为22.(2)日加工零件个数大于样本均值的工人有2名,故优秀工人的频率为26=13.该车间12名工人中优秀工人大约有12×13=4(名),故该车间约有4名优秀工人.(3)记“恰有1名优秀工人”为事件A,其包含的基本事件总数为C14C18=32,所有基本事件的总数为C212=66.由古典概型概率公式,得P(A)=3266=1633.所以恰有1名优秀工人的概率为16 33.学生用书第184页规律方法(1)本题求解的关键在于从茎叶图准确提炼数据信息,进行统计与概率的正确计算.(2)一是题目考查茎叶图、样本均值、古典概型等基础知识,考查样本估计总体的思想方法,以及数据处理能力.二是求解时要设出所求事件,进行必要的说明,规范表达,这都是得分的重点.【训练3】从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.解(1)由题意知苹果的样本总数n=50,在[90,95)的频数是20,∴苹果的重量在[90,95)的频率是2050=0.4.(2)设从重量在[80,85)的苹果中抽取x 个,则从重量在[95,100)的苹果中抽取(4-x )个.∵表格中[80,85),[95,100)的频数分别是5,15, ∴5∶15=x ∶(4-x ),解得x =1. 即重量在[80,85)的有1个.(3)在(2)中抽出的4个苹果中,重量在[80,85)中有1个,记为a ,重量在[95,100)有3个,记为b 1,b 2,b 3.任取2个,有ab 1,ab 2,ab 3,b 1b 2,b 1b 3,b 2b 3共6种不同方法,记基本事件总数为n ,则n =6.其中重量在[80,85)和[95,100)中各有1个的事件记为A ,事件A 包含的基本事件为ab 1,ab 2,ab 3,共3个,由古典概型的概率计算公式得P (A )=36=12.1.古典概型计算三步曲第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A 是什么,它包含的基本事件有多少个. 2.确定基本事件的方法(1)当基本事件总数较少时,可列举计算;(2)利用计数原理、排列与组合求基本事件的个数.3.较复杂事件的概率可灵活运用互斥事件、对立事件、相互独立事件的概率公式简化运算.易错辨析10——基本事件计数不正确致误【典例】 (2018·江西卷,文)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图所示)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X ,若X >0就去打球,若X =0就去唱歌,若X <0就去下棋. (1)写出数量积X 的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率. [错解] (1)数量积X 的所有可能取值为-1,0,1. (2)X =0时,有OA 1→·OA 3→,OA 4→·OA 6→,共2种情况;X =1时,有OA 1→·OA 2→,OA 2→·OA 3→,OA 4→·OA 5→,OA 5→·OA 6→,共4种情况; X =-1时,有OA 1→·OA 6→,OA 3→·OA 4→,共2种情况, ∴所有基本事件总数n =2+4+2=8. 因此,小波去下棋的概率p 1=28=14,小波唱歌的概率p 2=24=12,从而不去唱歌的概率p =1-p 2=12.[错因] (1)没能准确计算出X 的所有可能值,由数量积的运算知X 可能取-2,-1,0,1,忽视OA 2→·OA 5→=-2.(2)基本事件列举不全面,思维定势,如X =-1,盲目认为向量共线,遗漏向量夹角为34π的4种情形.[正解] (1)X 的所有可能取值为-2,-1,0,1. (2)数量积为-2的有OA 2→·OA 5→,共1种,数量积为-1的有OA 1→·OA 5→,OA 1→·OA 6→,OA 2→·OA 4→,OA 2→·OA 6→,OA 3→·OA 4→,OA 3→·OA 5→,共6种.数量积为0的有OA 1→·OA 3→,OA 1→·OA 4→,OA 3→·OA 6→,OA 4→·OA 6→,共4种情形. 数量积为1的有OA 1→·OA 2→,OA 2→·OA 3→,OA 4→·OA 5→,OA 5→·OA 6→,共4种情形. 故所有可能的情况共有15种. 所以小波去下棋的概率为p 1=715; 因为去唱歌的概率为p 2=415,所以小波不去唱歌的概率p =1-p 2=1-415=1115.[防范措施] (1)准确理解题意,向量数量积由向量的模、夹角共同确定,要考虑各种情形,注意分类求解.(2)计算基本事件总数时,画出几何图形、树形图、分类列举法、坐标网格法是克服此类错误的有效手段. 【自主体验】1.(2018·安徽卷)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ). A.23B.25C.35D.910解析 设事件“甲或乙被录用”为事件A ,则A 表示甲、乙都没被录用,由古典概型,P (A )=1C 35=110,∴P (A )=1-110=910.答案 D2.(2018·江苏卷)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.解析 因1≤m ≤7,1≤n ≤9且m ,n ∈N *,∴m 为正奇数有4种情形,n 为正奇数有5种,因此所求事件的概率P =C 14C 15C 17C 19=2063.20答案63。

2020年高考数学一轮复习学案+训练+课件(北师大版文科): 第10章 概率 第3节 几何概型学案 文 北师大版.doc

2020年高考数学一轮复习学案+训练+课件(北师大版文科): 第10章 概率 第3节 几何概型学案 文 北师大版.doc

第三节 几何概型[考纲传真] 1.了解随机数的意义,能运用模拟方法估计概率.2.了解几何概型的意义.(对应学生用书第153页)[基础知识填充]1.几何概型向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.2.几何概型中的G 也可以是空间中或直线上的有限区域,相应的概率是体积之比或长度之比.3.借助模拟方法可以估计随机事件发生的概率.(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M 和总的随机数的个数N ;③计算频率f n (A )=M N作为所求概率的近似值.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)随机模拟方法是以事件发生的频率估计概率.( ) (2)从区间[1,10]内任取一个数,取到1的概率是110.( )(3)概率为0的事件一定是不可能事件.( )(4)在几何概型定义中的区域可以是线段、平面图形、立体图形.( ) [答案] (1)√ (2)× (3)× (4)√2.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )A [P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).]3.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A .710B .58 C .38D .310B [如图,若该行人在时间段AB 的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB 长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B .]4.(2018·石家庄模拟)如图10­3­1所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.图10­3­10.18 [由题意知,S 阴S 正=1801 000=0.18. ∵S 正=1,∴S 阴=0.18.]5.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是________. 【导学号:00090357】1-π4 [如图所示,区域D 为正方形OABC 及其内部,且区域D 的面积S =4.又阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积S 阴=4-π, ∴所求事件的概率P =4-π4=1-π4.](对应学生用书第154页)7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .13B .12 C .23D .34图10­3­2(2)如图10­3­2所示,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内作射线AP ,则射线AP 与线段BC 有公共点的概率为________.(3)(2017·江苏高考)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.(1)B (2)13 (3)59 [(1)如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=12.故选B .(2)以A 为圆心,以AD =1为半径作圆弧交AC ,AP ,AB 分别为C ′,P ′,B ′.依题意,点P ′在上任何位置是等可能的,且射线AP 与线段BC 有公共点,则事件“点P ′在上发生”.又在Rt△ABC 中,易求∠BAC =∠B ′AC ′=π6.故所求事件的概率P ==π6·1π2·1=13. (3)由6+x -x 2≥0,解得-2≤x ≤3,∴D =[-2,3].如图,区间[-4,5]的长度为9,定义域D 的长度为5, ∴P =59.][规律方法] 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.(1)第(2)题易出现“以线段BD 为测度”计算几何概型的概率,导致错求P =12.(2)当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比.[变式训练1] (1)(2017·唐山质检)设A 为圆周上一点,在圆周上等可能地任取一点与A 连接,则弦长超过半径2倍的概率是( ) 【导学号:00090358】 A .34B .12C .13D .35(2)(2016·山东高考)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.(1)B (2)34[(1)作等腰直角△AOC 和△AMC ,B 为圆上任一点,则当点B 在上运动时,弦长|AB |>2R ,∴P ==12.(2)由直线y =kx 与圆(x -5)2+y 2=9相交,得|5k |k 2+1<3,即16k 2<9,解得-34<k <34.由几何概型的概率计算公式可知P =34-⎝ ⎛⎭⎪⎫-342=34.]角度1 (2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4nmB .2nmC .4m nD .2m nC [因为x 1,x 2,…,x n ,y 1,y 2,…,y n 都在区间[0,1]内随机抽取,所以构成的n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n )都在正方形OABC 内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC 内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC 内的数对有m 个.用随机模拟的方法可得S 扇形S 正方形=m n ,即π4=m n ,所以π=4mn.] 角度2 与线性规划交汇问题(2018·长沙模拟)在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为( ) A .14B .316C .916D .34D [由x ,y ∈[0,4]可知(x ,y )构成的区域是边长为4的正方形及其内部,其中满足x +2y ≤8的区域为如图所示的阴影部分.易知A (4,2),S 正方形=16,S 阴影=+2=12.故“使得x +2y ≤8”的概率P =S 阴影S 正方形=34.] [规律方法] 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解. [变式训练2] (1)(2017·全国卷Ⅰ)如图10­3­3,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )【导学号:00090359】图10­3­3A .14B .π8C .12D .π4(2)(2018·莆田模拟)从区间(0,1)中任取两个数作为直角三角形两直角边的长,则所取的两个数使得斜边长不大于1的概率是( ) A .π8B .π4C .12D .34(1)B (2)B [(1)不妨设正方形ABCD 的边长为2,则正方形内切圆的半径为1,可得S 正方形=4.由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S 黑=S 白=12S 圆=π2,所以由几何概型知所求概率P =S 黑S 正方形=π22×2=π8.故选B .(2)任取的两个数记为x ,y ,所在区域是正方形OABC 内部,而符合题意的x ,y 位于阴影区域内(不包括x ,y 轴),故所求概率P =14π×121×1=π4.]1111ABCD ­A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A .π12B .1-π12C .π6D .1-π6B [设“点P 到点O 的距离大于1”为事件A .则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=23π.∴P (A )=23-23π23=1-π12.] [规律方法] 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件求解.[变式训练3] 如图10­3­4,正方体ABCD ­A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M ­ABCD 的体积小于16的概率为________.图10­3­412[设四棱锥M ­ABCD 的高为h ,由于V 正方体=1. 且13·S ABCD ·h <16,又S ABCD =1,∴h <12,即点M 在正方体的下半部分, ∴所求概率P =12V 正方体V 正方体=12.]。

2020年高考数学一轮复习学案+训练+课件(北师大版文科): 第10章 概率 第2节 古典概型学案 文 北师大版.doc

2020年高考数学一轮复习学案+训练+课件(北师大版文科): 第10章 概率 第2节 古典概型学案 文 北师大版.doc

第二节 古典概型[考纲传真] 1.理解古典概型及其概率计算公式.2.会用列举法计算一些随机事件所包含的基本事件数及事件发生的概率.(对应学生用书第151页)[基础知识填充]1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每个基本事件出现的可能性相等.3.古典概型的概率公式P (A )=事件A 包含的可能结果数试验的所有可能结果数=m n. [基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( )(3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.( )(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.( )[答案] (1)× (2)× (3)√ (4)×2.(教材改编)下列试验中,是古典概型的个数为( )①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD 内,任意抛掷一点P ,点P 恰与点C 重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A .0B .1C .2D .3B [由古典概型的意义和特点知,只有③是古典概型.]3.(2016·全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )【导学号:00090351】A .815B .18C .115D .130C [∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)},∴事件总数有15种.∵正确的开机密码只有1种,∴P =115.] 4.(2015·全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .310B .15C .110D .120C [从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C .] 5.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.13[甲、乙两名运动员选择运动服颜色的情况为(红,红),(红,白),(红,蓝),(白,白),(白,红),(白,蓝),(蓝,蓝),(蓝,白),(蓝,红),共9种.而同色的有(红,红),(白,白),(蓝,蓝),共3种.所以所求概率P =39=13.](对应学生用书第151页)1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A .110B .15C .310D .25(2)(2016·全国卷Ⅰ)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A .13B .12C .23D .56(1)D (2)C [(1)从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P =1025=25. 故选D .(2)从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C .] [规律方法] 1.计算古典概型事件的概率可分三步,(1)计算基本事件总个数n ;(2)计算事件A 所包含的基本事件的个数m ;(3)代入公式求出概率P .2.用列举法写出所有基本事件时,可借助“树状图”列举,以便做到不重、不漏.[变式训练1] (1)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...该正方形边长的概率为( ) A .15B .25C .35D .45(2)(2016·江苏高考)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.(1)C (2)56[(1)设正方形的四个顶点分别是A ,B ,C ,D ,中心为O ,从这5个点中,任取两个点的事件分别为AB,AC,AD,AO,BC,BD,BO,CD,CO,DO,共有10种,其中只有顶点到中心O的距离小于正方形的边长,分别是AO,BO,CO,DO,共有4种.所以所求事件的概率P=1-410=35.(2)将一颗质地均匀的骰子先后抛掷2次,所有等可能的结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36种情况.设事件A=“出现向上的点数之和小于10”,其对立事件A=“出现向上的点数之和大于或等于10”,A包含的可能结果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6种情况.所以由古典概型的概率公式,得P(A)=636=16,所以P(A)=1-16=56.]儿童需转动如图10­2­1所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【导学号:00090352】图10­2­1[解]用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以基本事件总数n=16. 3分(1)记“xy≤3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516. 5分(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C .则事件B 包含的基本事件数共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),所以P (B )=616=38. 8分事件C 包含的基本事件数共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).10分 所以P (C )=516. 因为38>516, 所以小亮获得水杯的概率大于获得饮料的概率. 12分 [规律方法] 1.本题易错点有两个:(1)题意理解不清,不能把基本事件列举出来;(2)不能恰当分类,列举基本事件有遗漏.2.求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.[变式训练2] (2017·潍坊质检)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3.现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率. 【导学号:00090353】[解] (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,2分 故至少参加上述一个社团的共有45-30=15人,所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13. 5分(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有 {A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3},共15个.8分根据题意,这些基本事件的出现是等可能的.事件“A1被选中且B1未被选中”所包含的基本事件有{A1,B2},{A1,B3},共2个.因此A1被选中且B1未被选中的概率为P=215. 12分查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图图10­2­2①B地区用户满意度评分的频数分布表地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B地区用户满意度评分的频率分布直方图图10­2­2②(2)根据用户满意度评分,将用户的满意度分为三个等级:[解](1)如图所示.4分通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散. 6分(2)A地区用户的满意度等级为不满意的概率大. 8分记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25. 11分所以A地区用户的满意度等级为不满意的概率大. 12分[规律方法] 1.本题求解的关键在于作出茎叶图,并根据茎叶图准确提炼数据信息,考查数据处理能力和数学应用意识.2.有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表、分布直方图、茎叶图等给出信息,准确从题中提炼信息是关键.[变式训练3] (2018·湘潭模拟)长沙某购物中心在开业之后,为了解消费者购物金额的分布情况,在当月的电脑消费小票中随机抽取n张进行统计,将结果分成6组,分别是[0,100),[100,200),[200,300),[300,400),[400,500),[500,600],制成如图10­2­3所示的频率分布直方图(假设消费金额均在[0,600]元的区间内).(1)若按分层抽样的方法在消费金额为[400,600]元区间内抽取6张电脑小票,再从中任选2张,求这2张小票均来自[400,500)元区间的概率;(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案.方案一:全场商品打八折.方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值)图10­2­3[解] (1)由题意知,在[400,500)元区间内抽4张,分别记为a ,b ,c ,d ,在[500,600]元区间内抽2张,分别记为E ,F , 2分 设“2张小票均来自[400,500)元区间”为事件A ,从中任选2张,有以下选法:ab 、ac 、ad 、aE 、aF 、bc 、bd 、bE 、bF 、cd 、cE 、cF 、dE 、dF 、EF ,共15种. 4分 其中,2张小票均来自[400,500)元区间的有ab 、ac 、ad 、bc 、bd 、cd ,共6种,∴P (A )=25. 6分(2)法一:由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05.方案一:购物的平均费用为0.8×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.8×275=220(元). 8分 方案二:购物的平均费用为50×0.1+130×0.2+230×0.25+270×0.3+370×0.1+430×0.05=228(元). 10分 ∵220<228,∴方案一的优惠力度更大. 12分法二:由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05,方案一:平均优惠金额为0.2×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.2×275=55(元). 8分方案二:平均优惠金额为20×(0.2+0.25)+80×(0.3+0.1)+120×0.05=47(元).10分 ∵55>47.∴方案一的优惠力度更大. 12分。

第10章概率专题2 古典概型-新教材高中数学必修(第二册)常考题型专题练习(教育机构专用)

第10章概率专题2 古典概型-新教材高中数学必修(第二册)常考题型专题练习(教育机构专用)
则从五人中选出两人共有以下10 种情况:
a,b,a, x, a, y , a, z , b, x , b, y , b, z , x, y , x, z , y, z 两名组长分别选自 20, 40和 40,60的共有以下 6种情况: a, x,a, y , a, z , b, x , b, y , b, z
B.3
10
5
C.2
D.1
5
5
解析:选 C 若函数 f(x)=(a2-2)ex+b 为减函数,则 a2-2<0,又 a∈{-2,0,1,2,3}, 故只有 a=0,a=1 满足题意,又 b∈{3,5},所以函数 f(x)=(a2-2)ex+b 为减函数的概率是 2×2=2. 5×2 5
2.从分别标有 1,2,…,9 的 9 张卡片中不放回地随机抽取 2 次,每次抽取 1 张,则抽到的 2 张卡片上的数奇偶性不同的概率是( )
5
【答案】(1)3,2,2(2)(i)见解析(ii)
21
【解析】(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为 3∶2∶2,由于采用 分层抽样的方法从中抽取 7 名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取 3 人,2 人,2 人. (Ⅱ)(i)从抽出的 7 名同学中随机抽取 2 名同学的所有可能结果为 {A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B, F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F}, {E,G},{F,G},共 21 种. (ii)由(Ⅰ),不妨设抽出的 7 名同学中,来自甲年级的是 A,B,C,来自乙年级的是 D,
A.
B.

2019-2020学年高考数学总复习 古典概型学案 新人教A版.doc

2019-2020学年高考数学总复习 古典概型学案 新人教A版.doc

2019-2020学年高考数学总复习古典概型学案新人教A版重难点:理解古典概型的特征以及能用枚举法解决古典概型的概率问题.学习目标:①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率.经典例题:一个各面都涂有色彩的正方体,被锯成1000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:⑴有一面涂有色彩的概率;⑵有两面涂有色彩的概率;⑶有三面涂有色彩的概率.创设情境:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),统计正面朝上的次数。

试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后统计数据。

提出问题:前面我们学习了由频率估计概率,思考为了知道某一事件发生的概率,我们要做重复大量的试验。

思考:1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?基本概念:古典概型:练习:判断下列试验是否为古典概型?1、某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。

2、从字母中任意取出两个不同字母的试验3、掷两个骰子观察点数。

4、从红黄兰三个球中任取一球观察颜色。

5、从4件正品和2件次品中任取一件产品?两件产品?提出问题:对于古典概型如何计算概率?概率的古典定义:例1、从2件正品和1件次品中每次任取一件产品,每次取出不放回,连续取两次,取出两件产品中恰有一件次品的概率?变式:当堂练习:1.某人忘记了电话号码的最后一个数字,随意拨号,则拨号不超过三次而接通电话的概率为()A. 9/10 B. 3/10 C. 1/8 D. 1/102.从甲,乙,丙三人中任选两名代表,甲被选中的概率()A. 1/2 B. 1/3 C. 2/3 D. 13.先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3 ,则()A. P1=P2<P3B. P1<P2<P3C. P1<P2=P3D.P3=P2<P14.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率()A. 1 B.12 C.13D.235.袋中有红球、黄球、白球各1个,每次任取一个,有放回地抽取3次,则下旬事件中概率是8/9的是()A.颜色全相同B.颜色不全相同C.颜色全不同D.颜色无红色6. 5名乒乓球队员中选3人参加团体比赛,其中甲在乙前出场的概率为()A.310 B.320 C.120 D.1107.某人射击5枪,命中3枪,3枪中恰有2枪从连中的概率为()A.35 B.310 C.110 D.1208.将一颗骰子连续抛掷两次,至少出现一次6点向上的概率是()A.118B.1136C.2536D.1369、有5张卡片,上面分别写有0,1,2,3,4中的1个数.求:①从中任取2张卡片,2张卡片上的数字之和等于4的概率;②从中任取2次卡片,每次取1张.第一次取出卡片,记下数字后放回,再取第二次.两次取出的卡片上的数字之和恰好等于4的概率.归纳小节:9.盒中有100个铁钉,其中90个是合格的10个是不合格的,从中任意抽取10个,其中没有一个是不合格铁钉的概率是()A.0.9 B.19 C.0.1 D.109010100CC10.某小组有成员3人,每人在一个星期中参加一天劳动,如果劳动日期可随机安排,则3人在不同的3天参加劳动的概率为()A.37B.335 C.3049 D.17011.5个人站成一排,其中甲乙丙三人恰巧站在一起的概率为12.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这两位数大于40的概率是13.同时掷两颗骰子,下列命题正确的个数是()①“两颗点数都是6”比“两颗点数都是4”的可能性小;②“两颗点数相同的概率”都是1 6;③“两颗点数都是6”的概率最大;④“两颗点数之和为奇数”的概率与“两颗点数之和为偶数”的概率相等。

高考数学一轮复习 第10章 概率 10.2 古典概型学案 文-人教版高三全册数学学案

高考数学一轮复习 第10章 概率 10.2 古典概型学案 文-人教版高三全册数学学案

10.2 古典概型[知识梳理] 1.基本事件的特点(1)任何两个基本事件都是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)有限性:试验中所有可能出现的基本事件只有有限个. (2)等可能性:每个基本事件出现的可能性相等.3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=m n.4.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.[诊断自测] 1.概念思辨(1)在一次试验中,其基本事件的发生一定是等可能的. ( )(2)事件A ,B 至少有一个发生的概率一定比A ,B 中恰有一个发生的概率大.( ) (3)在古典概型中,如果事件A 中基本事件构成集合A ,所有的基本事件构成集合I ,那么事件A 的概率为card (A )card (I ).( )(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.( )答案 (1)× (2)× (3)√ (4)× 2.教材衍化(1)(必修A3P 134A 组T 5)在平面直角坐标系中点(x ,y ),其中x ,y ∈{0,1,2,3,4,5},且x ≠y ,则点(x ,y )在直线y =x 的左上方的概率是( )A.13B.12C.14D.23 答案 B解析 在平面直角坐标系中满足x ,y ∈{0,1,2,3,4,5},且x ≠y 的点(x ,y )共有6×6-6=30个,而满足在直线y =x 的左上方,即y >x 的点(x ,y )的基本事件共有15个,故所求概率为P =1530=12.故选B.(2)(必修A3P 134A 组T 4)已知A ,B ,C ,D 是球面上的四个点,其中A ,B ,C 在同一圆周上,若D 不在A ,B ,C 所在的圆周上,则从这四点中的任意两点的连线中取2条,这两条直线是异面直线的概率等于________.答案 15解析 A ,B ,C ,D 四点可构成一个以D 为顶点的三棱锥,共6条棱,则所有基本事件有:(AB ,BC ),(AB ,AC ),(AB ,AD ),(AB ,BD ),(AB ,CD ),(BC ,CA ),(BC ,BD ),(BC ,AD ),(BC ,CD ),(AC ,AD ),(AC ,BD ),(AC ,CD ),(AD ,BD ),(AD ,CD ),(BD ,CD ),共15个,其中满足条件的基本事件有:(AB ,CD ),(BC ,AD ),(AC ,BD ),共3个,所以所求概率P =315=15.3.小题热身(1)(2016·全国卷Ⅰ)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56 答案 C解析 解法一:从红、黄、白、紫4种颜色的花中任选2种有以下选法:(红黄)、(红白)、(红紫)、(黄白)、(黄紫)、(白紫),共6种,其中红色和紫色的花不在同一花坛(亦即黄色和白色的花不在同一花坛)的选法有4种,所以所求事件的概率P =46=23,故选C.解法二:设红色和紫色的花在同一花坛为事件A ,则事件A 包含2个基本事件:红紫与黄白,黄白与红紫.由解法一知共有6个基本事件,因此P (A )=26=13,从而红色和紫色的花不在同一花坛的概率是P (A -)=1-P (A )=23.故选C.(2)(2018·山西联考)从(40,30),(50,10),(20,30),(45,5),(10,10)这5个点中任取一个,这个点在圆x 2+y 2=2016内部的概率是( )A.35B.25C.15D.45 答案 B解析 从(40,30),(50,10),(20,30),(45,5),(10,10)这5个点中任取一个的基本事件总数为5,这个点在圆x 2+y 2=2016内部包含的基本事件有(20,30),(10,10),共2个, ∴这个点在圆x 2+y 2=2016内部的概率P =25,故选B.题型1 简单古典概型的求解典例1 (2016·北京高考)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A.15B.25C.825D.925考虑用树状图表示各种结果或用组合表示各种结果.答案 B解析 设其他3名学生为丙、丁、戊,从中任选2人的所有情况有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共4+3+2+1=10种.其中甲被选中的情况有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种,故甲被选中的概率为410=25.典例2 (2017·山西一模)现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为( )A.13B.23C.12D.34 答案 C解析 记两道题分别为A ,B ,所有抽取的情况为AAA, AAB ,ABA ,ABB ,BAA ,BAB ,BBA ,BBB (其中第1个,第2个分别表示两个女教师抽取的题目,第3个表示男教师抽取的题目),共有8种;其中满足恰有一男一女抽到同一道题目的情况为ABA ,ABB ,BAA ,BAB ,共4种.故所求事件的概率为12.故选C.方法技巧1.基本事件个数的确定方法第一步,判断本试验的结果是否为等可能事件,设出所求事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ; 第三步,利用公式P (A )=m n,求出事件A 的概率.见典例1,2. 冲关针对训练(2018·安徽名校模拟)某车展展出甲、乙两种最新款式的汽车,现从参观人员中随机选取100人对这两种汽车均进行评价,评价分为三个等级:优秀、良好、合格,由统计信息可知,甲种汽车被评价为优秀的频率为35,良好的频率为25;乙种汽车被评价为优秀的频率为710,良好的频率是合格的频率的5倍.(1)求这100人中对乙种汽车评价优秀或良好的人数;(2)如果从这100人中按甲种汽车的评价等级用分层抽样的方法抽取5人,再从其他对乙种汽车评价优秀、良好的人中各选取1人进行座谈会,会后从这7人中随机抽取2人,求选取的2人评价都是优秀的概率.解 (1)因为对乙种汽车评价优秀的频率为710,故评价良好或合格的频率为1-710=310.设评价合格的频率为x ,则评价良好的频率为5x ,由题意可得x +5x =310,解得x =120.所以这100人中对乙种汽车评价优秀或良好的人数为100×⎝ ⎛⎭⎪⎫710+5×120=95.(2)因为对甲种汽车评价优秀的频率为35,良好的频率为25,则用分层抽样的方法抽取5人,其中有3人评价优秀,分别记为A ,B ,C,2人评价良好,分别记为a ,b .记抽取到对乙种汽车评价优秀、良好的2人分别为D ,d ,则从这7人中随机抽取2人,不同的结果为{A ,B },{A ,C },{A ,a },{A ,b },{A ,D },{A ,d },{B ,C },{B ,a },{B ,b },{B ,D },{B ,d },{C ,a },{C ,b },{C ,D },{C ,d },{a ,b },{a ,D },{a ,d },{b ,D },{b ,d },{D ,d },共21种.记“选取的2人评价都是优秀”为事件M ,则事件M 的结果为{A ,B },{A ,C },{A ,D },{B ,C },{B ,D },{C ,D },共6种.所以选取的2人评价都是优秀的概率P (M )=621=27.题型2 复杂古典概型的求解典例(2016·山东高考)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.本题采用列表法计算事件数.解用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以基本事件总数n=16.(1)记“xy≤3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).P(A)=516,即小亮获得玩具的概率为516.(2)记“xy≥8”为事件B,“3<xy<8”为事件C,则事件B包含的基本事件数共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P (B )=616=38.事件C 包含的基本事件数共5个,即(1,4),(2,2),(2,3),(3,2),(4,1). 所以P (C )=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.[结论探究] 本例中条件不变,试求小亮不能获得玩具的概率.解 由题意知当xy >3时,小亮不能获得玩具,此时包含基本事件共11个,即(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),而基本事件总数共16个,所以此事件概率为P =1116.或根据对立事件求解:xy ≤3时包含事件个数为5个,故其获得玩具的概率为516,则不能获得玩具的概率为1-516=1116.方法技巧复杂古典概型的求解策略求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.冲关针对训练(2017·江西新余一中模拟)某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下表:(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.解 (1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为40100=0.4.(2)该会员第1次消费时,公司获得的利润为200-150=50(元),第2次消费时,公司获得的利润为200×0.95-150=40(元),所以,公司获得的平均利润为50+402=45(元).(3)因为20∶10∶5∶5=4∶2∶1∶1,所以用分层抽样方法抽出的8人中,消费2次的有4人,分别设为A 1,A 2,A 3,A 4,消费3次的有2人,分别设为B 1,B 2,消费4次和5次及以上的各有1人,分别设为C ,D ,从中抽出2人,抽到A 1的有A 1A 2,A 1A 3,A 1A 4,A 1B 1,A 1B 2,A 1C ,A 1D ,共7种;去掉A 1后,抽到A 2的有A 2A 3,A 2A 4,A 2B 1,A 2B 2,A 2C ,A 2D ,共6种;……去掉A 1,A 2,A 3,A 4,B 1,B 2后,抽到C 的有:CD ,共1种,总的抽取方法有7+6+5+4+3+2+1=28种,其中恰有1人消费两次的抽取方法有4+4+4+4=16种, 所以,抽出的2人中恰有1人消费两次的概率为1628=47.题型3 古典概型与统计的综合问题典例 (2018·安徽阶段测试)某校高三期中考试后,数学教师对本次全部数学成绩按1∶20进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:(1)求表中a ,b 的值及成绩在[90,110)范围内的样本数,并估计这次考试全校高三学生数学成绩的及格率(成绩在[90,150]内为及格);(2)若从茎叶图中成绩在[100,130)范围内的样本中一次性抽取两个,求取出两个样本数字之差的绝对值小于或等于10的概率.解 (1)由茎叶图知成绩在[50,70)范围内的有2人,在[110,130)范围内的有3人, ∴a =0.1,b =3.∵成绩在[90,110)范围内的频率为1-0.1-0.25-0.25=0.4, ∴成绩在[90,110)范围内的样本数为20×0.4=8, 估计这次考试全校高三学生数学成绩的及格率为P =1-0.1-0.25=0.65.(2)一切可能的结果组成的基本事件空间为Ω={(100,102), (100,106),(100,106),(100,116),(100,118),(100,128),(102,106),(102,106),(102,116),(102,118),(102,128),(106,106),(106,116),(106,118),(106,128),(106,116),(106,118),(106,128),(116,118),(116,128),(118,128)},共21个基本事件,设事件A =“取出的两个样本中数字之差小于或等于10”,则A ={(100,102),(100,106),(100,106),(102,106),(102,106),(106,106),(106,116),(106,116),(116,118),(118,128)},共10个基本事件,∴P (A )=1021.方法技巧求解古典概型与统计交汇问题的思路1.依据题目的直接描述或频率分布表、频率分布直方图、茎叶图等统计图表给出的信息,提炼出需要的信息.2.选择恰当的方法找出符合条件的基本事件总数及所求事件包含的基本事件数.3.进行统计与古典概型概率的正确计算.冲关针对训练(2018·广东五校诊断)某市为庆祝北京夺得2022年冬奥会举办权,围绕“全民健身促健康、同心共筑中国梦”主题开展全民健身活动,组织方从参加活动的群众中随机抽取120名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],得到的频率分布直方图如图所示.(1)若电视台记者要从抽取的群众中选人进行采访,估计被采访人恰好在第1组或第4组的概率;(2)已知第1组群众中男性有3名,组织方要从第1组中随机抽取2名群众组成志愿者服务队,求至少有1名女性群众的概率.解(1)设第1组[20,30)的频率为f1,则由题意可知,f1=1-(0.010+0.035+0.030+0.020)×10=0.05.被采访人恰好在第1组或第4组的频率为0.05+0.020×10=0.25.∴估计被采访人恰好在第1组或第4组的概率为0.25.(2)第1组[20,30)的人数为0.05×120=6.∴第1组中共有6名群众,其中女性群众共3名.记第1组中的3名男性群众分别为A,B,C,3名女性群众分别为x,y,z,从第1组中随机抽取2名群众组成志愿者服务队包含(A ,B ),(A ,C ),(A ,x ),(A ,y ),(A ,z ),(B ,C ),(B ,x ),(B ,y ),(B ,z ),(C ,x ),(C ,y ),(C ,z ),(x ,y ),(x ,z ),(y ,z ),共15个基本事件.至少有一名女性群众包含(A ,x ),(A ,y ),(A ,z ),(B ,x ),(B ,y ),(B ,z ),(C ,x ),(C ,y )(C ,z ),(x ,y ),(x ,z ),(y ,z ),共12个基本事件.∴从第1组中随机抽取2名群众组成志愿者服务队,至少有1名女性群众的概率为1215=45.1.(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( )A.110 B.15 C.310 D.25答案 D解析 从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P =1025=25.故选D.2.(2017·山东高考)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518 B.49 C.59 D.79答案 C解析 ∵9张卡片中有5张奇数卡片,4张偶数卡片,且为不放回地随机抽取,∴抽取两次共有9×8=72种基本事件,其中满足卡片上数字奇偶性不同共有4×5+5×4=40种基本事件,故抽取到的2张卡片上的数奇偶性不同的概率是4072=59.故选C.3.(2017·天津高考)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A.45B.35C.25D.15答案 C解析从5支彩笔中任取2支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,其中取出的2支彩笔中含有红色彩笔的取法有红黄、红蓝、红绿、红紫,共4种,所以所求概率P=410=25.故选C.4.(2018·洛阳统考)将一颗骰子先后投掷两次分别得到点数a,b,则直线ax+by=0与圆(x-2)2+y2=2有公共点的概率为________.答案7 12解析a=1时,b=1,2,…6,共6种情况;a=2时,b=2,3,…6,共5种情况;a =3时,b=3,4,5,6,共4种情况;a=4时,b=4,5,6,共3种情况;a=5时,b=5,6,共2种情况;a=6时,b=6,共1种情况.[基础送分提速狂刷练]一、选择题1.先后抛掷两枚质地均匀的骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3 B.P1<P2<P3C.P1<P2=P3 D.P3=P2<P1答案 B解析先后抛掷两枚骰子点数之和共有36种可能,而点数之和为12,11,10的概率分别为P1=136,P2=118,P3=112.故选B.2.(2017·浙江金丽衢十二校联考)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为( )A.12B.13C.23D.34答案 B解析 因为从四张卡片中任取出两张的情况为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种.其中两张卡片上数字和为偶数的情况为(1,3),(2,4),共2种,所以两张卡片上的数字之和为偶数的概率为13.故选B.3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12 B.13 C.14 D.16 答案 B解析 从1,2,3,4中任取2个不同的数有以下六种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足取出的2个数之差的绝对值为2的(1,3),(2,4),故所求概率是26=13.故选B.4.(2018·山西朔州模拟)某校食堂使用大小、手感完全一样的餐票,小明口袋里有一元餐票2张,两元餐票2张,五元餐票1张,若他从口袋中随机地摸出2张,则其面值之和不少于四元的概率为( )A.310 B.25 C.12 D.35答案 C解析 小明口袋里共有5张餐票,随机地摸出2张,基本事件总数n =10,其面值之和不少于四元包含的基本事件数m =5,故其面值之和不少于四元的概率为m n =510=12.故选C.5.(2018·保定模拟)甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”,现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A.13B.59C.23D.79 答案 D解析 甲任想一数字有3种结果,乙猜数字有3种结果,基本条件总数为3×3=9. 设“甲、乙心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2,包含2个基本事件,∴P (B )=29.∴P (A )=1-29=79.故选D.6.(2018·合肥模拟)从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )A.13B.512C.12D.712 答案 A解析 设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动,共有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,A 2A 1,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 112种情况,而星期六安排一名男生、星期日安排一名女生共有A 1B 1,A 1B 2,A 2B 1,A 2B 24种情况,则发生的概率为P =412=13,故选A.7.(2017·银川模拟)连掷骰子两次得到的点数分别记为a 和b ,则使直线3x -4y =0与圆(x -a )2+(y -b )2=4相切的概率为( )A.16B.118C.19D.13 答案 B解析 连掷骰子两次总的试验结果有36种,要使直线3x -4y =0与圆(x -a )2+(y -b )2=4相切,则|3a -4b |5=2,即满足|3a -4b |=10,符合题意的(a ,b )有(6,2),(2,4),共2种,由古典概型的概率计算公式可得所求概率为P =118.故选B. 8.抛掷两枚均匀的骰子,得到的点数分别为a ,b ,那么直线x a +y b =1的斜率k ≥-12的概率为( )A.12B.13C.34D.14 答案 D解析 记a ,b 的取值为数对(a ,b ),由题意知(a ,b )的所有可能取值有36种.由直线x a +y b =1的斜率k =-b a ≥-12,知b a ≤12,那么满足题意的(a ,b )可能的取值为(2,1),(3,1),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),(6,3),共有9种,所以所求概率为936=14.故选D.9.(2018·太原模拟)记连续投掷两次骰子得到的点数分别为m ,n ,向量a =(m ,n )与向量b =(1,0)的夹角为α,则α∈⎝⎛⎭⎪⎫0,π4的概率为( )A.518 B.512 C.12 D.712答案 B解析 解法一:依题意,向量a =(m ,n )共有6×6=36(个),其中满足向量a =(m ,n )与向量b =(1,0)的夹角α∈⎝⎛⎭⎪⎫0,π4,即n <m 的(m ,n )可根据n 的具体取值:第一类,当n=1时,m 有5个不同的取值;第二类,当n =2时,m 有4个不同的取值;第三类,当n =3时,m 有3个不同的取值;第四类,当n =4时,m 有2个不同的取值;第五类,当n =5时,m 有1个取值,因此满足向量a =(m ,n )与向量b =(1,0)的夹角α∈⎝⎛⎭⎪⎫0,π4的(m ,n )共有1+2+3+4+5=15(个),所以所求概率为1536=512.故选B.解法二:依题意可得向量a =(m ,n )共有6×6=36(个),其中满足向量a =(m ,n )与向量b =(1,0)的夹角α∈⎝ ⎛⎭⎪⎫0,π4,即n <m 的向量a =(m ,n )有36-62=15(个),所以所求概率为1536=512.故选B.10.(2018·淄博模拟)将一颗骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设任意投掷两次使两条不重合直线l 1:ax +by =2,l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,若点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-518,+∞B.⎝ ⎛⎭⎪⎫-∞,718C.⎝ ⎛⎭⎪⎫-718,518D.⎝ ⎛⎭⎪⎫-518,718 答案 D解析 对于a 与b 各有6种情形,故总数为36种.两条直线l 1:ax +by =2,l 2:x +2y =2平行的情形有a =2,b =4或a =3,b =6,故概率为P 1=236=118.两条直线l 1:ax +by =2,l 2:x +2y =2相交的情形除平行与重合(a =1,b =2)即可, ∴P 2=3336=1112.∵点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,∴⎝⎛⎭⎪⎫118-m 2+⎝ ⎛⎭⎪⎫11122<137144,解得-518<m <718,故选D.二、填空题11.(2017·海淀模拟)现有7名数理化成绩优秀者,分别用A 1,A 2,A 3,B 1,B 2,C 1,C 2表示,其中A 1,A 2,A 3的数学成绩优秀,B 1,B 2的物理成绩优秀,C 1,C 2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则A 1和B 1不全被选中的概率为________.答案 56解析 从这7人中选出数学、物理、化学成绩优秀者各1名,所有可能的结果组成的12个基本事件为:(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2).设“A 1和B 1不全被选中”为事件N ,则其对立事件N -表示“A 1和B 1全被选中”,由于N -={(A 1,B 1,C 1),(A 1,B 1,C 2)},P (N -)=212=16,由对立事件的概率计算公式得P (N )=1-P (N -)=1-16=56.12.(2018·武汉调研)某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线x 2a 2-y 2b2=1的离心率e >5的概率是________.答案 16解析 由e =1+b 2a2>5,得b >2a .当a =1时,b =3,4,5,6四种情况;当a =2时,b =5,6两种情况,总共有6种情况.又同时掷两颗骰子,得到的点数(a ,b )共有36种结果.∴所求事件的概率P =636=16.13.(2018·湖南长沙模拟)抛掷两枚质地均匀的骰子,得到的点数分别为a ,b ,则使得直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423的概率为________.答案 19解析 根据题意,得到的点数所形成的数组(a ,b )共有6×6=36种,其中满足直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423,则圆心到直线的距离不小于13,即1>1a 2+b 2≥13,即1<a 2+b 2≤9的有(1,1),(1,2),(2,1),(2,2)四种,故直线bx +ay =1与圆x 2+y 2=1相交且所得弦长不超过423的概率为436=19.14.(2017·宿迁模拟)已知k ∈Z , AB →=(k,1), AC →=(2,4),若|AB →|≤4,则△ABC 是直角三角形的概率是________.答案 37解析 因为|AB →|=k 2+1≤4,所以-15≤k ≤15,因为k ∈Z ,所以k =-3,-2,-1,0,1,2,3,当△ABC 为直角三角形时,应有AB ⊥AC ,或AB ⊥BC ,或AC ⊥BC ,由AB →·AC →=0,得2k +4=0,所以k =-2,因为BC →=AC →-AB →=(2-k,3),由AB →·BC →=0,得k (2-k )+3=0,所以k =-1或3,由AC →·BC →=0,得2(2-k )+12=0,所以k =8(舍去),故使△ABC为直角三角形的k 值为-2,-1或3,所以所求概率P =37.三、解答题15.为了解收购的每只小龙虾的重量,某批发商在刚从甲、乙两个水产养殖场收购的小龙虾中分别随机抽取了40只,得到小龙虾的重量的频数分布表如下.从甲水产养殖场中抽取的40只小龙虾的重量的频数分布表从乙水产养殖场中抽取的40只小龙虾的重量的频数分布表重量/克 [5,15)[15,25) [25,35) [35,45) [45,55] 频数 2618104(1)试根据上述表格中的数据,完成从甲水产养殖场中抽取的40只小龙虾的重量的频率分布直方图;(2)依据小龙虾的重量,将小龙虾划分为三个等级:重量/克 [5,25) [25,45) [45,55] 等级三级二级一级若规定二级以上(包括二级)的小龙虾为优质小龙虾,估计甲、乙两个水产养殖场的小龙虾哪个的“优质率”高?并说明理由.(3)从乙水产养殖场抽取的重量在[5,15),[15,25),[45,55]内的小龙虾中利用分层抽样的方法抽取6只,再从这6只中随机抽取2只,求至少有1只的重量在[15,25)内的概率.解 (1)(2)若把频率看作相应的概率,则“甲水产养殖场的小龙虾为优质小龙虾”的概率为16+10+440=0.75,“乙水产养殖场的小龙虾为优质小龙虾”的概率为18+10+440=0.8,所以乙水产养殖场的小龙虾“优质率”高.(3)用分层抽样的方法从乙水产养殖场重量在[5,15),[15,25),[45,55]内的小龙虾中抽取6只,则重量在[5,15)内的有1只,在[15,25)内的有3只,在[45,55]内的有2只,记重量在[5,15)内的1只为x ,在[15,25)内的3只分别为y 1,y 2,y 3,在[45,55]内的2只分别为z 1,z 2,从中任取2只,可能的情况有(x ,y 1),(x ,y 2),(x ,y 3),(x ,z 1),(x ,z 2),(y 1,y 2),(y 1,y 3),(y 1,z 1),(y 1,z 2),(y 2,y 3),(y 2,z 1),(y 2,z 2),(y 3,z 1),(y 3,z 2),(z 1,z 2),共15种;记“任取2只,至少有1只的重量在[15,25)内”为事件A ,则事件A 包含的情况有(x ,y 1),(x ,y 2),(x ,y 3),(y 1,y 2),(y 1,y 3),(y 1,z 1),(y 1,z 2),(y 2,y 3),(y 2,z 1),(y 2,z 2),(y 3,z 1),(y 3,z 2),共12种.所以P (A )=1215=45.16.(2017·石景山区一模)“累积净化量(CCM)”是空气净化器质量的一个重要衡量指标,它是指空气净化器从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示.根据GB/T18801-2015《空气净化器》国家标准,对空气净化器的累积净化量(CCM)有如下等级划分:已知这n 台机器的累积净化量都分布在区间(4,14]中,按照(4,6],(6,8],(8,10],(10,12],(12,14],均匀分组,其中累积净化量在(4,6]的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了如下频率分布直方图.(1)求n的值及频率分布直方图中的x值;(2)以样本估计总体,试估计这批空气净化器(共2000台)中等级为P2的空气净化器有多少台?(3)从累积净化量在(4,6]的样本中随机抽取2台,求恰好有1台等级为P2的概率.解(1)∵在(4,6]之间的数据一共有6个,再由频率分布直方图得:落在(4,6]之间的频率为0.03×2=0.06,∴n=60.06=100,由频率分布直方图的性质得:(0.03+x+0.12+0.14+0.15)×2=1,解得x=0.06.(2)由频率分布直方图可知:落在(6,8]之间共:0.12×2×100=24台,又∵在(5,6]之间共4台,∴落在(5,8]之间共28台,∴估计这批空气净化器(共2000台)中等级为P2的空气净化器有560台.(3)设“恰好有1台等级为P2”为事件B,依题意落在(4,6]之间共6台,属于国标P2级的有4台,分别设为a1,a2,b1,b2,b3,b4,则从(4,6]中随机抽取2台,基本事件为(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4),共15种.事件B 包含的基本事件为(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),共8种.∴恰好有1台等级为P 2的概率P (B )=m n =815.。

2020届高考数学一轮复习新课改省份专用学案:第十章+第四节+古典概型与几何概型+Word版含解析

2020届高考数学一轮复习新课改省份专用学案:第十章+第四节+古典概型与几何概型+Word版含解析

第四节 古典概型与几何概型突破点一 古典概型[基本知识]1.基本事件的特点(1)任何两个基本事件都是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.3.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( )(3)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋,测其重量,属于古典概型.( )(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.( ) 答案:(1)× (2)× (3)× (4)√二、填空题1.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为________.答案:252.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.答案:9103.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为________.答案:56[典例] (2018·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.[解] (1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.②由①,不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种.所以事件M 发生的概率P (M )=521. [方法技巧]1.求古典概型概率的步骤(1)判断本试验的结果是否为等可能事件,设出所求事件A ;(2)分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ;(3)利用公式P (A )=m n,求出事件A 的概率. 2.求基本事件个数的三种方法(1)列举法:把所有的基本事件一一列举出来,此方法适用于情况相对简单的试验题.(2)列表法:将基本事件用表格的方式表示出来,通过表格可以弄清基本事件的总数,以及要求的事件所包含的基本事件数.(3)树状图法:树状图法是使用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段.[针对训练]1.(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )A.112B.114C.115D.118解析:选C 不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,∴所求概率为345=115.故选C. 2.(2019·大同一中月考)甲、乙两人玩一种游戏,在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.(1)求甲赢且编号和为8的事件发生的概率.(2)这种游戏规则公平吗?试说明理由.解:(1)设“两个编号和为8”为事件A ,则事件A 包括的基本事件有(2,6),(3,5),(4,4),(5,3),(6,2),共5个.又甲、乙两人取出的数字共有6×6=36个等可能的结果,故P (A )=536. (2)这种游戏规则是公平的.设甲赢为事件B ,乙赢为事件C ,由题可知甲赢即两编号和为偶数所包含的基本事件数有(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6),共18个.所以甲赢的概率P (B )=1836=12,故乙赢的概率P (C )=1-12=12=P (B ), 所以这种游戏规则是公平的.突破点二 几何概型[基本知识]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个基本特点(1)无限性:在一次试验中可能出现的结果有无限多个;(2)等可能性:每个试验结果的发生具有等可能性.3.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积). [基本能力]一、判断题(对的打“√”,错的打“×”)(1)在一个正方形区域内任取一点的概率是零.( )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( )答案:(1)√ (2)√ (3)√二、填空题1.已知球O 内切于棱长为2的正方体,若在正方体内任取一点,则这一点不在球内的概率为________.答案:1-π62.已知四边形ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为________.答案:1-π43.已知函数f (x )=2x (x <0),其值域为D ,在区间(-1,2)上随机取一个数x ,则x ∈D 的概率是________.答案:13[全析考法]考法一 与长度、角度有关的几何概型[例1] (1)(2019·成都毕业班摸底)在区间[-4,1]上随机地取一个实数x ,若x 满足|x |<a的概率为45,则实数a 的值为( ) A.12B .1C .2D .3(2)(2019·福州四校联考)如图,在圆心角为90°的扇形AOB 中,以圆心O 为起点在上任取一点C 作射线OC ,则使得∠AOC 和∠BOC 都不小于30°的概率是( )A.13B.23C.12D.16[解析] (1)设集合A ={x ||x |<a }=(-a ,a )(a >0),若0<a ≤1,则A ⊆[-4,1],由几何概型的意义,得P (A )=a -(-a )1-(-4)=45,解得a =2,不符合题意,若a >1,则P (A )=1-(-a )1-(-4)=45,解得a =3,符合题意,故选D.(2)记事件T 是“作射线OC ,使得∠AOC 和∠BOC 都不小于30°”,如图,记的三等分点为M ,N ,连接OM ,ON ,则∠AON =∠BOM =∠MON =30°,则符合条件的射线OC 应落在扇形MON 中,所以P (T )=∠MON ∠AOB =30°90°=13,故选A. [答案] (1)D (2)A[方法技巧]1.与长度有关的几何概型如果试验的结果构成的区域的几何度量可用长度表示,可直接用概率的计算公式求解.2.与角度有关的几何概型当涉及射线的转动,扇形中有关落点区域问题时,应以角的大小作为区域度量来计算概率,且不可用线段的长度代替,这是两种不同的度量手段.考法二 与面积有关的几何概型[例2] (1)(2019·惠州调研)我国古代数学家赵爽在《周髀算经》一书中给出了勾股定理的绝妙证明.如图是赵爽的弦图.弦图是一个以勾股形(即直角三角形)之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成朱(红)色及黄色,其面积称为朱实、黄实,利用2×勾×股+(股-勾)2=4×朱实+黄实=弦实=弦2,化简得:勾2+股2=弦2.设勾股形中勾股比为1∶3,若向弦图内随机抛掷1 000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A .866B .500C .300D .134(2)(2019·齐齐哈尔八中模拟)如图,四边形ABCD 为正方形,G 为线段BC 的中点,四边形AEFG 与四边形DGHI 也为正方形,连接EB ,CI ,则向多边形AEFGHID 中投掷一点,该点落在阴影部分内的概率为( )A.13B.25C.38D.12[解析] (1)设勾为a ,则股为3a ,所以弦为2a ,小正方形的边长为3a -a ,所以题图中大正方形的面积为4a 2,小正方形的面积为(3-1)2a 2,所以小正方形与大正方形的面积比为(3-1)24=1-32,所以落在黄色图形(小正方形)内的图钉数大约为⎝⎛⎭⎫1-32× 1 000≈134.(2)设正方形ABCD 的边长为1,则可求得S 总=3,S 阴影=2×12×52×1×25=1,所以所求概率为P =13,故选A. [答案] (1)D (2)A[方法技巧]求解与面积有关的几何概型的关键点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.考法三 与体积有关的几何概型[例3] (2019·陕西部分学校摸底)在球O 内任取一点P ,则点P 在球O 的内接正四面体中的概率是( )A.112πB.312πC.239πD.36π[解析] 设球O 的半径为R ,球O 的内接正四面体的棱长为2a ,所以正四面体的高为233a ,所以R 2=⎝⎛⎭⎫63a 2+⎝⎛⎭⎫23a 3-R 2,即3a =2R ,所以正四面体的棱长为26R 3,底面面积为12×26R 3×2R =233R 2,高为4R 3,所以正四面体的体积为8327R 3,又球O 的体积为 4π3R 3,所以P 点在球O 的内接正四面体中的概率为239π,故选C. [答案] C[方法技巧]求解与体积有关的几何概型的关键点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.[集训冲关]1.[考法一]已知函数f (x )=3sin x +3cos x ,当x ∈[0,π]时,f (x )≥ 3的概率为( ) A.13B.12C.15D.14解析:选B f (x )=3sin x +3cos x =23sin ⎝⎛⎭⎫x +π3, ∵x ∈[0,π],∴x +π3∈⎣⎡⎦⎤π3,4π3,令f (x )≥ 3, 得sin ⎝⎛⎭⎫x +π3≥12,得π3≤x +π3≤5π6,∴0≤x ≤π2, ∴f (x )≥ 3的概率为12. 2.[考法三]在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解析:正方体的体积为2×2×2=8,以O 为球心,1为半径且在正方体内部的半球的体积为12×43πr 3=12×43π×13=23π,则点P 到点O 的距离大于1的概率为:1-23π8=1-π12. 答案:1-π123.[考法二]某人随机地在如图所示的正三角形及其外接圆区域内部投针(不包括三角形边界及圆的外界),则针扎到阴影区域(不包括边界)的概率为________.解析:设正三角形的边长为a,圆的半径为R,则正三角形的面积为34a2.由正弦定理得2R=asin 60°,即R=33a.所以圆的面积S=πR2=13πa2.由几何概型的概率计算公式得概率P=34a213πa2=334π.答案:33 4π。

2020学年新教材高中数学第十章概率章末复习提升课学案新人教A版必修第二册(最新整理)

2020学年新教材高中数学第十章概率章末复习提升课学案新人教A版必修第二册(最新整理)

2019-2020学年新教材高中数学第十章概率章末复习提升课学案新人教A 版必修第二册编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年新教材高中数学第十章概率章末复习提升课学案新人教A版必修第二册)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年新教材高中数学第十章概率章末复习提升课学案新人教A版必修第二册的全部内容。

章末复习提升课互斥事件、对立事件的概率某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件以上顾客数(人)x3025y10结算时间(分钟/1 1.52 2.53人)(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)【解】(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20。

该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为错误!=1。

9(分钟).(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2,A3分别表示事件“该顾客一次购物的结算时间为1分钟”“该顾客一次购物的结算时间为1。

5分钟"“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P(A1)=错误!=错误!,P(A2)=错误!=错误!,P(A3)=错误!=错误!.因为A=A1∪A2∪A3,且A1,A2,A3是互斥事件,所以P(A)=P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=错误!+错误!+错误!=错误!。

2020学年新教材高中数学第十章概率10.1.3古典概型学案新人教A版必修第二册(最新整理)

2020学年新教材高中数学第十章概率10.1.3古典概型学案新人教A版必修第二册(最新整理)

10.1。

3 古典概型考点学习目标核心素养基本事件了解基本事件的特点数学抽象古典概型的定义理解古典概型的定义数学抽象古典概型的概率公式会应用古典概型的概率公式解决实际问题数学运算、数学建模问题导学预习教材P233-P238的内容,思考以下问题:1.古典概型的定义是什么?2.古典概型有哪些特征?3.古典概型的计算公式是什么?1.古典概型具有以下特征的试验叫做古典概型试验,其数学模型称为古典概率模型,简称古典概型.(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.■名师点拨古典概型的判断一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点:有限性和等可能性.并不是所有的试验都是古典概型.下列三类试验都不是古典概型:①样本点个数有限,但非等可能.②样本点个数无限,但等可能.③样本点个数无限,也不等可能.2.古典概型的概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=错误!=错误!.其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.同时投掷两枚大小完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5",则事件A包含的基本事件数是( )A.3 B.4 C.5 D.6解析:选D.事件A包含的基本事件有6个:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).故选D.若书架上放有数学、物理、化学书分别是5本、3本、2本,则随机抽出一本是物理书的概率为()A.错误!B。

错误!C.35D。

错误!解析:选B。

基本事件总数为10,“抽出一本是物理书”包含3个基本事件,所以其概率为错误!,故选B。

(2019·河北省石家庄市期末考试)将一枚骰子连续抛掷两次,则向上点数之差的绝对值不大于3的概率是( )A。

错误! B.错误!C.错误!D。

错误!解析:选B。

2020高考数学总复习第十章概率10.2古典概型课件文新人教A版

2020高考数学总复习第十章概率10.2古典概型课件文新人教A版

如表是年龄的频数分布表.
区间 [25,30) [30,35) [35,40) [40,45) [45,50]
人数 25
a
b
(1)求正整数 a,b,N 的值;
(2)现要从年龄较小的第 1,2,3 组中用分层抽样的方法抽取 6 人,则
年龄在第 1,2,3 组的人数分别是多少?
(3)在(2)的条件下,从这 6 人中随机抽取 2 人参加社区宣传交流活
动,求恰有 1 人在第 3 组的概率.
解:①由题干中的频率分布直方图可知,a=25,且 b= 25×00..0082=100,总人数 N=0.0225×5=250.
②因为第 1,2,3 组共有 25+25+100=150(人),利用分层抽样 在 150 人中抽取 6 人,每组抽取的人数分别为:
第 1 组的人数为 6×12550=1(人), 第 2 组的人数为 6×12550=1(人), 第 3 组的人数为 6×110500=4(人), 所以第 1,2,3 组分别抽取 1 人、1 人、4 人.
应用古典概型求某事件概率的步骤 第一步,判断试验的结果是否有限、是否为等可能事件,设 出所求事件 A; 第二步,分别求出基本事件的总数 n 与所求事件 A 中所包含 的基本事件个数 m; 第三步,利用公式 P(A)=mn ,求出事件 A 的概率. 提醒:古典概型中的基本事件都是互斥的.
(1)(2015·全国卷Ⅰ)如果 3 个正整数可作为一个直角三角形三条边
(2)记“xy≥8”为事件 B,“3<xy<8”为事件 C.则事件 B 包含 的基本事件共 6 个,
即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4), 所以 P(B)=166=38. 事件 C 包含的基本事件共 5 个, 即(1,4),(2,2),(2,3),(3,2),(4,1), 所以 P(C)=156. 因为38>156, 所以小亮获得水杯的概率大于获得饮料的概率.

高考数学一轮复习 必考部分 第十篇 概率 第2节 古典概型应用能力提升 文 北师大版

高考数学一轮复习 必考部分 第十篇 概率 第2节 古典概型应用能力提升 文 北师大版

第2节古典概型【选题明细表】知识点、方法题号古典概型的判断与基本事件1,3简单古典概型的计算2,4,5,6,7,8综合应用9,10,11,12,13,141.下列事件属于古典概型的基本事件的是( D )(A)任意抛掷两枚骰子,所得点数之和作为基本事件(B)篮球运动员投篮,观察其是否投中(C)测量某天12时的教室内温度(D)一先一后掷两枚硬币,观察正反面出现的情况解析:A项任意抛掷两枚骰子,所得点数之和作为基本事件,但各点数之和不是等可能的,不是古典概型.B项显然事件“投中”和事件“未投中”发生的可能性不一定相等,所以它也不是古典概型.C项其基本事件空间包含无限个结果,所以不是古典概型.D项含有4个基本事件,每个基本事件出现的可能性相等,符合古典概型.2.(2015石家庄二模)投掷两枚骰子,则点数不同的概率为( C )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

解析:投掷两枚骰子总共的结果为36个,点数不同的结果为30个,所以不同的概率是错误!未找到引用源。

=错误!未找到引用源。

.3.某学校组织了4个学习小组.现从中抽出2个小组进行学习成果汇报,在这个试验中,基本事件的个数为( C )(A)2 (B)4 (C)6 (D)8解析:设4个学习小组为A,B,C,D,从中抽出2个的可能情况有(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6种.故选C.4.(2015兰州一模)从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率是( B )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

解析:试验发生包含的事件是从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,共有5×4=20(种)结果,满足条件的事件可以列举出有41,42,43,45,51,52,53,54共有8个,根据古典概型概率公式得到P=错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 古典概型1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 (1)特点①试验中所有可能出现的基本事件只有有限个,即有限性; ②每个基本事件发生的可能性相等,即等可能性. (2)概率公式P (A )=A 包含的基本事件的个数基本事件的总数.判断正误(正确的打“√”,错误的打“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个事件是等可能事件.( )(3)某袋中装有大小均匀的三个红球、两个黑球、一个白球,那么每种颜色的球被摸到的可能性相同.( )(4)“从长为1的线段AB 上任取一点C ,求满足AC ≤13的概率是多少”是古典概型.( )答案:(1)× (2)× (3)× (4)×(教材习题改编)袋中装有6个白球,5个黄球,4个红球,从中任取一球,取到白球的概率为( )A.25B.415C.35D.115解析:选A.从15个球中任取一球有15种取法,取到白球有6种,所以取到白球的概率P =615=25.(2018·高考全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )A .0.6B .0.5C .0.4D .0.3解析:选D.将2名男同学分别记为x ,y ,3名女同学分别记为a ,b ,c .设“选中的2人都是女同学”为事件A ,则从5名同学中任选2人参加社区服务的所有可能情况有(x ,y ),(x ,a ),(x ,b ),(x ,c ),(y ,a ),(y ,b ),(y ,c ),(a ,b ),(a ,c ),(b ,c ),共10种,其中事件A 包含的可能情况有(a ,b ),(a ,c ),(b ,c ),共3种,故P (A )=310=0.3.故选D.已知高一年级某班有63名学生,现要选1名学生作为标兵,每名学生被选中是等可能的,若“选出的标兵是女生”的概率是“选出的标兵是男生”的概率的1011,则这个班的男生人数为________.解析:根据题意,设该班的男生人数为x ,则女生人数为63-x ,因为每名学生被选中是等可能的,根据古典概型的概率计算公式知,“选出的标兵是女生”的概率是63-x 63,“选出的标兵是男生”的概率是x63,故63-x 63=1011×x 63,解得x =33,故这个班的男生人数为33.答案:33同时抛掷两个骰子,则向上的点数之差的绝对值为4的概率是________.解析:同时抛掷两个骰子,基本事件总数为36,记“向上的点数之差的绝对值为4”为事件A ,则事件A 包含的基本事件有(1,5),(2,6),(5,1),(6,2),共4个,故P (A )=436=19.答案:19简单的古典概型(典例迁移)(1)(一题多解)甲、乙两人有三个不同的学习小组A ,B ,C 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A.13B.14C.15D.16(2)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同,现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A.310B.15C.110D.112【解析】 (1)法一:因为甲、乙两人参加学习小组的所有情况有(A ,A ),(A ,B ),(A ,C ),(B ,A ),(B ,B ),(B ,C ),(C ,A ),(C ,B ),(C ,C ),共9种,其中两人参加同一个学习小组的情况有(A ,A ),(B ,B ),(C ,C ),共3种,所以两人参加同一个学习小组的概率为39=13,故选A.法二:甲、乙两人参加A ,B ,C 三个学习小组的方法共有3×3=9(种),其中两人参加同一个学习小组的方法有3种,则两人参加同一个学习小组的概率为39=13.故选A.(2)从袋中随机取出2个小球的基本事件总数为10,取出小球标注的数字之和为3的事件为(1,2),取出的小球标注的数字之和为6的事件为(1,5),(2,4),所以取出的小球标注的数字之和为3或6的概率P =1+210=310.【答案】 (1)A (2)A[迁移探究] (变问法)在本例(2)中,求取出的两个小球标注的数字都不小于2的概率. 解:从袋中随机取出2个小球的基本事件总数为10,其中取出的两个小球标注的数字都不小于2的有(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共6种,故所求的概率为P =610=35.(1)古典概型概率的求解步骤(2)基本事件个数的确定方法1.(2019·石家庄模拟)为美化环境,从红、黄、白、紫4种颜色的花中任选2种颜色的花种在一个花坛中,余下的2种颜色的花种在另一个花坛中,则红色和紫色的花种在同一花坛的概率是( )A.110B.12C.13D.56解析:选 C.把这4种颜色的花种在两个花坛中的所有情况为(红,黄),(白,紫);(红,白),(黄,紫);(红,紫),(黄,白);(黄,白),(红,紫);(黄,紫),(红,白);(白,紫),(红,黄),共有6种,其中红色和紫色的花种在同一花坛的情况有2种,所以红色和紫色的花种在同一花坛的概率P =26=13.故选C.2.(2019·长春市质量检测(一))长春市的“名师云课”活动自开展以来获得广大家长和学子的高度赞誉,在第二季“名师云课”中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计如下:(1) (2)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1 000]内,则需要花费40分钟进行剪辑,若点击量在区间(1 000,3 000]内,则需要花费20分钟行剪辑,若点击量超过3 000,则不需要剪辑,现从(1)中选出的6节课中任意选出2节课进行剪辑,求剪辑时间为40分钟的概率.解:(1)根据分层抽样,从36节云课中选出6节课,其中点击量超过3 000的节数为636×12=2.(2)在(1)中选出的6节课中,点击量在区间[0,1 000]内的有1节,点击量在区间(1 000,3 000]内的有3节,设点击量在区间[0,1 000]内的1节课为A 1,点击量在区间(1 000,3 000]内的3节课分别为B 1,B 2,B 3,点击量超过3 000的2节课分别为C 1,C 2.从中选出2节课的方式有A 1B 1,A 1B 2,A 1B 3,A 1C 1,A 1C 2,B 1B 2,B 1B 3,B 1C 1,B 1C 2,B 2B 3,B 2C 1,B 2C 2,B 3C 1,B 3C 2,C 1C 2,共15种,其中剪辑时间为40分钟的情况有A 1C 1,A 1C 2,B 1B 2,B 1B 3,B 2B 3,共5种,则剪辑时间为40分钟的概率P =515=13.古典概型中的交汇问题(多维探究)角度一 古典概型与平面向量的交汇从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为( )A.16B.13C.14D.12 【解析】由题意可知m=(a ,b )有:(2,1),(2,3),(2,5),(3,1),(3,3),(3,5),(4,1),(4,3),(4,5),(5,1),(5,3),(5,5),共12种情况.因为m ⊥n ,即m ·n =0,所以a ×1+b ×(-1)=0,即a =b , 满足条件的有(3,3),(5,5)共2种, 故所求的概率为16.【答案】 A角度二 古典概型与函数(方程)的交汇(2019·益阳、湘潭调研试卷)已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x +b 为减函数的概率是( )A.310B.35C.25D.15【解析】 函数f (x )=(a 2-2)e x +b 为减函数,则a 2-2<0,又a ∈{-2,0,1,2,3},故只有a =0,a =1满足题意,又b ∈{3,5},所以函数f (x )=(a 2-2)e x +b 为减函数的概率是2×25×2=25.故选C.【答案】 C角度三 古典概型与解析几何的交汇将一个骰子投掷两次,第一次出现的点数记为a ,第二次出现的点数记为b ,设任意投掷两次使两条不重合的直线l 1:ax +by =2,l 2:x +2y =2平行的概率为P 1,相交的概率为P 2,若点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,则实数m 的取值范围是( )A.⎝⎛⎭⎫-518,+∞ B.⎝⎛⎭⎫-∞,718 C.⎝⎛⎭⎫-718,518 D.⎝⎛⎭⎫-518,718 【解析】 对于a 与b 各有6种情形,故总数为36种.两条直线l 1:ax +by =2,l 2:x +2y =2平行的情形有a =2,b =4或a =3,b =6,故概率为P 1=236=118,两条直线l 1:ax +by =2,l 2:x +2y =2相交的情形除平行与重合(a =1,b =2)即可,所以P 2=3336=1112,因为点(P 1,P 2)在圆(x -m )2+y 2=137144的内部,所以⎝⎛⎭⎫118-m 2+⎝⎛⎭⎫11122<137144, 解得-518<m <718,故选D.【答案】 D解决古典概型中交汇问题的方法解决与古典概型交汇的问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.1.(2019·武汉市部分学校调研)将一枚质地均匀的骰子投掷两次,得到的点数依次记为a 和b ,则方程ax 2+bx +1=0有实数解的概率是( )A.736B.12C.1936D.518解析:选C.投掷骰子两次,所得的点数a 和b 满足的关系为⎩⎪⎨⎪⎧1≤a ≤6,a ∈N *,1≤b ≤6,b ∈N *,所以a 和b 的组合有36种,若方程ax 2+bx +1=0有实数解,则Δ=b 2-4a ≥0,所以b 2≥4a .当b =1时,没有a 符合条件;当b =2时,a 可取1;当b =3时,a 可取1,2;当b =4时,a 可取1,2,3,4;当b =5时,a 可取1,2,3,4,5,6;当b =6时,a 可取1,2,3,4,5,6.满足条件的组合有19种,则方程ax 2+bx +1=0有实数解的概率P =1936,故选C.2.设a ∈{2,4},b ∈{1,3},函数f (x )=12ax 2+bx +1.(1)求f (x )在区间(-∞,-1]上是减函数的概率;(2)从f (x )中随机抽取两个,求它们在(1,f (1))处的切线互相平行的概率. 解:(1)由题意-b2×12a ≥-1,即b ≤a .而(a ,b )共有(2,1),(2,3),(4,1),(4,3)4种,满足b ≤a 的有3种,故概率为34.(2)由(1)可知,函数f (x )共有4种情况,从中随机抽取两个,有6种抽法. 因为函数f (x )在(1,f (1))处的切线的斜率为f ′(1)=a +b ,所以这两个函数中的a 与b 之和应该相等,而只有(2,3),(4,1)这1组满足,故概率为16.数学建模——求古典概型的概率(2018·高考天津卷)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.【解】 (1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.②由①,不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种.所以,事件M 发生的概率P (M )=521.本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.培养学生的数学建模能力.(2019·成都市第一次诊断性检测)某部门为了解该企业在生产过程中的用水量情况,对日用水量做了记录,得到了大量该企业的日用水量的统计数据,从这些统计数据中随机抽取12天的日用水量的数据作为样本,得到的统计结果如下表:(2)已知样本中日用水量在[80,90)内的这6个数据分别为83,85,86,87,88,89.从这6个数据中随机抽取2个,求抽取的2个数据中至少有一个大于86的概率.解:(1)因为3+6+m =12,所以m =3, 所以n =312=14,p =m 12=312=14.所以m =3,n =p =14.(2)从这6个数据中随机抽取2个数据的情况有{83,85},{83,86},{83,87},{83,88},{83,89},{85,86},{85,87},{85,88},{85,89},{86,87},{86,88},{86,89},{87,88},{87,89},{88,89},共15种.其中2个数据都小于或等于86的情况有{83,85},{83,86},{85,86},共3种. 故抽取的2个数据中至少有一个大于86的概率P =1-315=45.[基础题组练]1.(2019·黄冈质检)一部3卷文集随机地排在书架上,卷号自左向右或自右向左恰为1,2,3的概率是( )A.16 B.13 C.12D.23解析:选B.3卷文集随机排列,共有6种结果,卷号自左向右或自右向左恰为1,2,3的只有2种结果,所以卷号自左向右或自右向左恰为1,2,3的概率是26=13.2.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“手气最佳”(即乙领取的钱数不少于其他任何人)的概率是( )A.34B.13C.310D.25解析:选D.用(x ,y ,z )表示乙、丙、丁抢到的红包分别为x 元、y 元、z 元.乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为(1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2).乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1),(2,2,2).根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P =410=25.3.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为( ) A.15 B.25 C.16D.18解析:选B.如图,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率P =615=25.4.(2019·武汉市部分学校调研)标有数字1,2,3,4,5的卡片各1张,从这5张卡片中随机抽取1张,不放回地再随机抽取1张,则抽取的第1张卡片上的数大于第2张卡片上的数的概率为( )A.12B.15C.35D.25解析:选A.5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,基本事件的总数n =5×4=20,抽得的第1张卡片上的数大于第2张卡片上的数的情况有:①第1张抽到2,第2张抽到1;②第1张抽到3,第2张抽到1或2;③第1张抽到4,第2张抽到1或2或3;④第1张抽到5,第2张抽到1或2或3或4,共10种.故抽取的第1张卡片上的数大于第2张卡片上的数的概率P =1020=12,故选A.5.(2019·福建市第一学期高三模拟考试)某商店随机将三幅分别印有福州三宝(脱胎漆器、角梳、油纸伞)的宣传画并排贴在同一面墙上,则角梳与油纸伞的宣传画相邻的概率是________.解析:记脱胎漆器、角梳、油纸伞的宣传画分别为a ,b ,c ,则并排贴的情况有abc ,acb ,bac ,bca ,cab ,cba ,共6种,其中b ,c 相邻的情况有abc ,acb ,bca ,cba ,共4种,故由古典概型的概率计算公式,得所求概率P =46=23.答案:236.设a ∈{1,2,3},b ∈⎩⎨⎧⎭⎬⎫12,4,6,则函数y =log b a1x 是减函数的概率为________.解析:因为f (x )=1x 在区间(0,+∞)上是减函数,又函数y =log b a1x 是减函数,所以ba >1,因为a ∈{1,2,3},b ∈⎩⎨⎧⎭⎬⎫12,4,6,则b a =16,14,12,43,2,3,4,6,共8个值,其中满足ba >1的有43,2,3,4,6,共5个值,所以函数y =log b a1x 是减函数的概率为58. 答案:587.(2017·高考山东卷)某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率. 解:(1)由题意知,从6个国家中任选2个国家,其一切可能的结果组成的基本事件有: {A 1,A 2},{A 1,A 3},{A 2,A 3},{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{B 1,B 2},{B 1,B 3},{B 2,B 3},共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:{A 1,A 2},{A 1,A 3},{A 2,A 3},共3个.则所求事件的概率为:P =315=15.(2)从亚洲国家和欧洲国家中各任选1个,其一切可能的结果组成的基本事件有: {A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},共9个.包括A 1但不包括B 1的事件所包含的基本事件有:{A 1,B 2},{A 1,B 3},共2个, 则所求事件的概率为:P =29.8.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 解:(1)由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.[综合题组练]1.一个三位数的百位,十位,个位上的数字依次为a ,b ,c ,当且仅当a >b ,b <c 时称为“凹数”(如213,312等),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“凹数”的概率是( )A.16 B.524 C.13D.724解析:选C.由1,2,3组成的三位数有123,132,213,231,312,321,共6个;由1,2,4组成的三位数有124,142,214,241,412,421,共6个;由1,3,4组成的三位数有134,143,314,341,413,431,共6个;由2,3,4组成的三位数有234,243,324,342,432,423,共6个.所以共有6+6+6+6=24个三位数.当b =1时,有214,213,314,412,312,413,共6个“凹数”; 当b =2时,有324,423,共2个“凹数”. 所以这个三位数为“凹数”的概率是6+224=13.2.设f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )<f (x )g ′(x ),f (x )=a x ·g (x ),f (1)g (1)+f (-1)g (-1)=52,在有穷数列⎩⎨⎧⎭⎬⎫f (n )g (n )(n =1,2,…,10)中,任意取前k 项相加,则前k 项和大于6364的概率是( )A.15 B.25 C.35D.45解析:选B.设h (x )=f (x )g (x ),则h ′(x )=f ′(x )g (x )-f (x )g ′(x )g 2(x )<0.故h (x )=a x 在R 上单调递减,所以0<a <1,又f (1)g (1)+f (-1)g (-1)=a +1a =52,解得a =12,则数列f (n )g (n )=⎝⎛⎭⎫12n,其前n 项和S n =1-⎝⎛⎭⎫12n ,因为1-⎝⎛⎭⎫12n>6364,所以n >6,故P =410=25. 3.从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是__________. 解析:从2,3,8,9中任取两个不同的数字,(a ,b )的所有可能结果有(2,3),(2,8),(2,9),(3,2),(3,8),(3,9),(8,2),(8,3),(8,9),(9,2),(9,3),(9,8),共12种,其中log 28=3,log 39=2为整数,所以log a b 为整数的概率为16.答案:164.(2019·河北七校4月联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 解析:m 是集合{1,3,5,7,9,11}中任意选取的一个元素,所以基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,所以椭圆x 2m +y 22=1的焦距为整数的概率P =36=12.答案:125.(2019·合肥市第一次教学质量检测)一家大型购物商场委托某机构调查该商场的顾客使用移动支付的情况.调查人员从年龄(单位:岁)在[20,60]内的顾客中,随机抽取了180人,调查结果如下表:场预计有12 000人(年龄在[20,60]内)购物,试根据上述数据估计该商场当天应准备多少个环保购物袋;(2)某机构从被调查的使用移动支付的顾客中,按分层抽样的方式选出7人进行跟踪调查,并给其中2人赠送额外礼品,求获得额外礼品的2人的年龄都在[20,30)内的概率.解:(1)由表可知,该日该商场使用移动支付的顾客人数与顾客总人数之比为7∶12,若某日该商场有12 000人(年龄在[20,60]内)购物,则估计该商场要准备环保购物袋的个数为12000×712=7 000.(2)由题知,抽样比为1∶15,所以应从年龄在[20,30)内的顾客中选出3人,[30,40)内的顾客中选出2人,[40,50)内的顾客中选出1人,[50,60]内的顾客中选出1人.记从年龄在[20,30)内的顾客中选出的3人分别为A,B,C,其他4人分别为a,b,c,d,从7个人中选出2人赠送额外礼品,有以下情况:AB,AC,Aa,Ab,Ac,Ad,BC,Ba,Bb,Bc,Bd,Ca,Cb,Cc,Cd,ab,ac,ad,bc,bd,cd,共21种,其中获得额外礼品的2人的年龄都在[20,30)内的情况有3种,所以获得额外礼品的2人的年龄都在[20,30)内的概率为321=1 7.6.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.得基本事件总数n=16.(1)记“xy≤3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1),所以P (A )=516,即小亮获得玩具的概率为516.(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C . 则事件B 包含的基本事件数共6个. 即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4). 所以P (B )=616=38.事件C 包含的基本事件数共5个, 即(1,4),(2,2),(2,3),(3,2),(4,1). 所以P (C )=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.。

相关文档
最新文档