2020优化方案高考总复习文科数学学案及练习第十章概率第2讲古典概型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 古典概型

1.基本事件的特点

(1)任何两个基本事件是互斥的.

(2)任何事件(除不可能事件)都可以表示成基本事件的和. 2.古典概型 (1)特点

①试验中所有可能出现的基本事件只有有限个,即有限性; ②每个基本事件发生的可能性相等,即等可能性. (2)概率公式

P (A )=A 包含的基本事件的个数基本事件的总数

.

判断正误(正确的打“√”,错误的打“×”)

(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )

(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个事件是等可能事件.( )

(3)某袋中装有大小均匀的三个红球、两个黑球、一个白球,那么每种颜色的球被摸到的可能性相同.( )

(4)“从长为1的线段AB 上任取一点C ,求满足AC ≤1

3的概率是多少”是古典概型.( )

答案:(1)× (2)× (3)× (4)×

(教材习题改编)袋中装有6个白球,5个黄球,4个红球,从中任取一球,取到白球的概率为( )

A.25

B.415

C.35

D.115

解析:选A.从15个球中任取一球有15种取法,取到白球有6种,所以取到白球的概率P =615=25

.

(2018·高考全国卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( )

A .0.6

B .0.5

C .0.4

D .0.3

解析:选D.将2名男同学分别记为x ,y ,3名女同学分别记为a ,b ,c .设“选中的2人都是女同学”为事件A ,则从5名同学中任选2人参加社区服务的所有可能情况有(x ,y ),(x ,a ),(x ,b ),(x ,c ),(y ,a ),(y ,b ),(y ,c ),(a ,b ),(a ,c ),(b ,c ),共10种,其中事件A 包含的可能情况有(a ,b ),(a ,c ),(b ,c ),共3种,故P (A )=3

10

=0.3.故选D.

已知高一年级某班有63名学生,现要选1名学生作为标兵,每名学生被选中是等可能的,若“选出的标兵是女生”的概率是“选出的标兵是男生”的概率的10

11,则这个班的男生人

数为________.

解析:根据题意,设该班的男生人数为x ,则女生人数为63-x ,因为每名学生被选中是等可能的,根据古典概型的概率计算公式知,“选出的标兵是女生”的概率是63-x 63,“选出的标

兵是男生”的概率是x

63,故63-x 63=1011×x 63

,解得x =33,故这个班的男生人数为33.

答案:33

同时抛掷两个骰子,则向上的点数之差的绝对值为4的概率是________.

解析:同时抛掷两个骰子,基本事件总数为36,记“向上的点数之差的绝对值为4”为事件A ,则事件A 包含的基本事件有(1,5),(2,6),(5,1),(6,2),共4个,故P (A )=436=1

9

.

答案:19

简单的古典概型(典例迁移)

(1)(一题多解)甲、乙两人有三个不同的学习小组A ,B ,C 可以参加,若每人必须参加

并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )

A.13

B.14

C.15

D.16

(2)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同,现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )

A.310

B.15

C.110

D.112

【解析】 (1)法一:因为甲、乙两人参加学习小组的所有情况有(A ,A ),(A ,B ),(A ,C ),(B ,A ),(B ,B ),(B ,C ),(C ,A ),(C ,B ),(C ,C ),共9种,其中两人参加同一个学习小组的情况有(A ,A ),(B ,B ),(C ,C ),共3种,所以两人参加同一个学习小组的概率为39=13,

故选A.

法二:甲、乙两人参加A ,B ,C 三个学习小组的方法共有3×3=9(种),其中两人参加同一个学习小组的方法有3种,则两人参加同一个学习小组的概率为39=1

3

.故选A.

(2)从袋中随机取出2个小球的基本事件总数为10,取出小球标注的数字之和为3的事件为(1,2),取出的小球标注的数字之和为6的事件为(1,5),(2,4),所以取出的小球标注的数字之和为3或6的概率P =1+210=3

10

.

【答案】 (1)A (2)A

[迁移探究] (变问法)在本例(2)中,求取出的两个小球标注的数字都不小于2的概率. 解:从袋中随机取出2个小球的基本事件总数为10,其中取出的两个小球标注的数字都不小于2的有(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共6种,故所求的概率为P =610=35

.

(1)古典概型概率的求解步骤

(2)基本事件个数的确定方法

1.(2019·石家庄模拟)为美化环境,从红、黄、白、紫4种颜色的花中任选2种颜色的花种在一个花坛中,余下的2种颜色的花种在另一个花坛中,则红色和紫色的花种在同一花坛的概率是( )

A.110

B.12

C.13

D.56

解析:选 C.把这4种颜色的花种在两个花坛中的所有情况为(红,黄),(白,紫);(红,白),(黄,紫);(红,紫),(黄,白);(黄,白),(红,紫);(黄,紫),(红,白);(白,紫),(红,黄),共有6种,其中红色和紫色的花种在同一花坛的情况有2种,所以红色和紫色的花种在同一花坛的概率P =26=1

3

.故选C.

2.(2019·长春市质量检测(一))长春市的“名师云课”活动自开展以来获得广大家长和学子的高度赞誉,在第二季“名师云课”中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计如下:

相关文档
最新文档