数学建模人口预测模型教学内容

合集下载

数学建模人口模型人口预测教学内容

数学建模人口模型人口预测教学内容

数学建模⼈⼝模型⼈⼝预测教学内容数学建模⼈⼝模型⼈⼝预测关于计划⽣育政策调整对⼈⼝数量、结构及其影响的研究【摘要】本⽂着重于讨论两个问题:1、从⽬前中国⼈⼝现状出发,对于中国未来⼈⼝数量进⾏预测。

2、针对深圳市讨论单独⼆胎政策对未来⼈⼝数量、结构及其对教育、劳动⼒供给与就业、养⽼等⽅⾯的影响。

对于问题1从中国的实际情况和⼈⼝增长的特点出发,针对中国未来⼈⼝的⽼龄化、出⽣⼈⼝性别⽐以及乡村⼈⼝城镇化等,提出了 Logistic、灰⾊预测、等⽅法进⾏建模预测。

⾸先,本⽂建⽴了 Logistic 阻滞增长模型,在最简单的假设下,依照中国⼈⼝的历史数据,运⽤线形最⼩⼆乘法对其进⾏拟合,对 2014 ⾄ 2040 年的⼈⼝数⽬进⾏了预测,得出在 2040 年时,中国⼈⼝有 14.32 亿。

在此模型中,由于并没有考虑⼈⼝的年龄、出⽣⼈数男⼥⽐例等因素,只是粗略的进⾏了预测,所以只对中短期⼈⼝做了预测,理论上很好,实⽤性不强,有⼀定的局限性。

然后,为了减少⼈⼝的出⽣和死亡这些随机事件对预测的影响,本⽂建⽴了 GM(1,1)灰⾊预测模型,对 2014 ⾄ 2040 年的⼈⼝数⽬进⾏了预测,同时还⽤ 2002 ⾄ 2013 年的⼈⼝数据对模型进⾏了误差检验,结果表明,此模型的精度较⾼,适合中长期的预测,得出 2040 年时,中国⼈⼝有 14.22 亿。

与阻滞增长模型相同,本模型也没有考虑年龄⼀类的因素,只是做出了⼈⼝总数的预测,没有进⼀步深⼊。

对于问题2针对深圳市⼈⼝结构中⾮户籍⼈⼝⽐重⼤,流动⼈⼝多这⼀特点,我们采⽤了灰⾊GM(1,1)模型,通过matlab 对深圳市⾃2001⾄2010年的数据进⾏拟合,发现其⼈⼝变化近似呈线性增长,线性相关系数⾼达0.99,我们就此认定其为线性相关并给出线性⽅程。

同理,针对其⾮户籍⼈⼝,我们进⾏matlab 拟合发现,其为⾮线性相关,并得出相关函数。

并做出了拟合函数0.0419775(1)17255.816531.2t X t e ?+=?-。

中国人口增长预测数学建模 (2)

中国人口增长预测数学建模 (2)

中国人口增长预测数学建模引言中国作为世界上人口最多的国家之一,人口增长一直是一个备受关注的问题。

人口数量的增长对于国家的经济、社会、环境等方面都有着重要的影响。

因此,预测中国人口的增长趋势对于未来的发展规划具有重要意义。

本文将介绍一种基于数学建模的方法,用于预测中国人口的增长情况。

方法数据收集为了进行人口增长预测的数学建模,我们需要收集一系列历史人口数据。

这些数据可以从各种统计年鉴、人口普查、政府发布的数据等渠道获取。

通常,我们需要收集的数据包括中国的总人口数量、出生率、死亡率、迁入率和迁出率等。

建立数学模型基于收集到的数据,我们可以建立一个数学模型来描述中国人口的增长情况。

常用的数学模型包括指数增长模型、Logistic增长模型等。

在本文中,我们以Logistic增长模型为例。

Logistic增长模型基于以下假设: 1. 人口增长率与当前人口数量成正比; 2. 当人口数量接近一定的上限时,人口增长率会逐渐减小。

Logistic增长模型的公式可以表示为:dP/dt = r*P*(1-P/K)其中,P表示人口数量,t表示时间,r表示人口增长率,K表示人口的上限。

参数估计为了应用Logistic增长模型进行人口预测,我们需要估计模型中的参数。

参数估计可以通过拟合历史数据来完成。

常用的参数估计方法包括最小二乘法、最大似然估计等。

模型验证一旦完成参数估计,我们可以使用模型预测未来的人口变化情况。

为了验证模型的准确性,我们可以将预测结果与实际观测数据进行比较。

如果预测结果与实际观测数据较为接近,说明模型具有较好的预测能力。

预测未来人口增长利用建立的数学模型和参数估计,我们可以进行未来人口增长的预测。

通过不同的假设和参数值,我们可以探讨不同因素对人口增长的影响。

例如,我们可以考虑不同的出生率和死亡率情况下的人口增长,或者研究不同人口政策下的人口增长趋势。

结论本文介绍了一种基于数学建模的方法,用于预测中国人口的增长情况。

数学建模 之 人口模型

数学建模 之 人口模型

数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。

首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。

对两种模型的求解,我们引入了微分方程。

其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。

先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。

一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。

然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。

附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。

故假设等价于:单位时间人口增长量与当时人口成正比。

设人口增长率为常数r 。

时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。

高中数学建模活动实例教案

高中数学建模活动实例教案

高中数学建模活动实例教案
主题:探索人口增长模型
目标:通过学习和实践建立人口增长模型,了解人口增长的规律和影响因素。

教学内容:
1. 人口增长的基本模型:Malthus模型、Logistic模型等;
2. 人口增长的影响因素:出生率、死亡率、移民等;
3. 使用数学方法分析人口增长问题。

教学活动:
1. 导入:通过介绍人口增长问题引起学生兴趣,引导学生讨论人口增长可能的规律和影响因素;
2. 学习建模方法:教师讲解人口增长的基本模型和影响因素,引导学生理解建模方法;
3. 分组实践:学生分组,根据给定的数据,通过计算和分析建立人口增长模型,并预测未来的人口变化;
4. 展示成果:学生展示他们的建模结果,并对模型的优缺点进行讨论;
5. 总结与讨论:教师总结本节课的内容,引导学生回顾人口增长模型的建立过程,并讨论不同因素对人口增长的影响。

作业:要求学生继续完善人口增长模型,并结合实际情况进行思考,撰写一篇关于人口增长的数学建模报告。

评估:根据学生的建模过程、建模结果和展示表现进行评定,重视学生的合作能力、创新思维和数学建模能力。

延伸活动:邀请专业人士或相关机构进行讲座,深入探讨人口增长模型和其在社会发展中的作用。

教学资源:教师PPT、实验数据、计算工具等。

备注:该活动旨在培养学生的数学建模能力,提高他们的分析问题和解决问题的能力,同时引导学生关注人口增长问题及其对社会和环境的影响。

(完整word版)数学建模-人口预测实验报告

(完整word版)数学建模-人口预测实验报告

数学与计算科学学院实验报告实验项目名称人口预报所属课程名称数学模型实验类型综合型实验日期班级信计1001班学号201053100127姓名徐超成绩129207 129735 130137)得人口预测方程:0.022552ˆ()176060.7575988.75t Xt e -=- 将各个年份分别代入上面的方程即得各个年份的人口数据预测值,然后将其分别与实际值比较,并计算出其误差.实际值与预测值的比较图[1]该模型对于中短期的人口预测,所得结果较为准确,大部分预测数据与实际数据的误差率都在2%以内,较好地估计出了最近几十年的人口数量。

根据我们的模型所预测出的结果,到本世纪中叶我国的人口数量将超过15亿,但是根据国内的本课题专家研究,随着我国经济社会发展和计划生育工作加强,可以预测我国的总人口将于2010年、2020年分别达到13.6亿人和14。

5亿人,2033年前后达到峰值15亿人左右,即我国人口的上限不会超过15亿人。

这一结论与我们的模型所得到的数据有所出入。

于是我们将模型进行改进,选择在长期预测方面比较精准的模型(2)Logistic 人口模型来求解. B 、模型(2)这个问题是典型的伯努利方程初值问题,其解为:()-(-)01(-1)0w mw t t t w m ew μ=+分析上式可知:(1)当t →∞时,()m w t w →,即无论人口初值如何随着时间推移而变化,人口总数总是趋向于一个确定的值m w ;(2)222(1)md w wdt w μ=-,所以当人口达到极限值的一半2m w 时,属于加速增长,超过一半属于减速增长,但是增长率仍为正的,并且其增长率随时间的增加而减少。

根据1981年~2005年的全国人口统计数据,利用计算机Matlab 编程得,0.0422μ=,150000Wm =从而得到全国总人口数的Logistic 模型方程为:0.0422(1981)150000()1500001(1)100072t w t e --=+-利用该模型对1981年~2005年的人口数据进行检验并对2006年~2050年的人口数据进行预测。

示范:人口预测的数学模型

示范:人口预测的数学模型

人口预测的数学模型摘要本题要求根据给出的01到05年的人口情况的数据,对我国的人口增长建立数学模型并做出预测。

我们建立递归模型,从2005年开始预测。

按照性别和市,镇,乡的区别把人口分为6类。

按照年龄进行分段,每一个年龄作为一段。

用2005年的每个年龄的人数预测06年统一年龄的人数。

把06年各年龄的预测值相加,即可得到2006年的总人数的预测值。

然后依次递归,得出其他年份的人口数据。

影响人口增长的主要因素有:出生率、死亡率、政府政策、老龄化、和乡村城镇化的影响。

我们在递归模型主题框架的基础上,逐步深入建立了四个模型:模型一,只考虑出生率和死亡率对人口增长的影响,从2001年到2005年的数据中,求出平均出生率和平均死亡率,并假定2005年以后的平均出生率和平均死亡率不变。

为了减少累计误差,用05年数据逐步迭代得到人口随时间的变化曲线。

然后,用01年的数据运用模型一迭代出01~05年人数,与修正后的数据进行比较,求得我们的模型的估计值与实际值相近,进而推出模型基本的合理性。

模型二,在模型一的基础上加上政策因素的影响,引进人口政策影响因子R,通过对结果进行分析,发现政府政策对人口的变化情况会产生较大的影响。

体现为了控制人口数量,国家可以进行较好的宏观调控。

模型三,在模型二的基础上加上老龄化对人口增长的影响,引进阻滞因子,建立人口随时间的变化曲线。

模型四,在模型三的基础上加上乡村人口城镇化的影响,通过对结果进行分析我们发现模型四与前几个模型的主要区别是在城镇人口的数量,及城镇人口在全国人口总人口的比率上,更符合实际情况。

在每个模型的基础上,进一步分别对人口总数,性别比例,老龄化程度,生育期内妇女总数,有劳动力的人数等做出了预测。

此外根据《国家人口发展战略研究报告》计划的目标,在模型四的基础上,通过对R值进行调整,得到当R=1.36基本能够满足国家的战略计划。

并对国家的政策给出合理化建议。

运用matlab编程求解,求得四个模型人口峰值及达到峰值时间如下表;模型一模型二模型三模型四2025 2040 2038 203513.67亿14.81亿14.65亿14.56亿在模型的最后,对模型的优缺点及不足之处进行了分析。

数学建模之人口预测

数学建模之人口预测

四、符号说明
1.模型一 t 表示某一时刻; P(t) 表示时刻 t 我国的人口数,P0 = P(0); r 表示人口增长率为常数。 2.模型二 t 表示某一时刻; P(t) 表示时刻 t 我国的人口数; Pm(t)表示自然资源和环境条件能容纳的最大人口数量; r 为固有增长率,表示人口很少是(理论上是 x=0)的增长率。 3.模型三 1)F(r,t):人口分布函数; 2)f(t):婴儿出生率; 3) (t):总和生育率; 4)h(r,t):生育模式。
查权威数据可知,我国最大的人口容量是 15--16 亿,上表中的数据大于 16 亿,并有继续上升的趋势,因此,此模型误差较大,究其原因,主要在于没有资 源、环境的限制。
5.2 阻滞增长模型 5.2.1 模型建立 人口增长到一定数量后增长率下降的主要原因中,自然资源、环境条件等因 素对人口的增长起着阻滞作用,并且随着人口的增加,阻滞作用越来越大。阻滞 增长模型就是考虑了这些因素,对指数增长的基本假设进行修改后得到的。 阻滞增长作用主要是体现在对人口增长率 r 的影响上,使得随着 r 的增长人 口数量 P(t)的增长而下降。 则可以把 r 表示为 P 的函数 r(P),且它应是减函数。 于是方程应该改写为 dP (1) rP ,P(0)=P0 dt 假设 r(P)是一个关于 P 的线性函数,即 r(P)=r-Ps(r>=0,s>0) (2) 其中这里的 r 为固有增长率,表示人口很少是(理论上是 x=0)的增长率。引入 自然资源和环境条件能容纳的最大人口数量 Pm(t)当 P(t)= Pm(t)时,人口不再增
3
令△t
0,得到 P(t)满足微分方程 dP (2) rP dt 由这个方程可以解出 rt P(t)=P0e (3) r>0 时,表示人口将按指数规律随时间无限增长。 [3] 利用线性最小二乘法 ,将(3)式取对数,得到 y=rt+a,y=ln P ,a=ln P0 (4) [4] 运用Matlab编程 (程序见附录1),以1999-2006年至的数据对(4)进行数据 拟合,得到相关的参数 a=lnP0=7.1385; r=0.0063,得到 P0=exp(a)=1259.5 (百万) 。 因此可以得到指数增长模型的方程为: P(t)=1259.5 *exp(0.0063*t) (5) 同理可得:若以全部数据拟合对(4)进行数据拟合,得到指数增长模型的方 程为: P(t)= 1262.6*exp(0.0055*t) (6)

数学建模 人口数量预测ppt

数学建模   人口数量预测ppt

模型建立: 假设时刻t=0是人口数为 x0 ,时刻t的人口为 是t的连续、可微函数。 x(t ) x(t ) t到 t& t ) x(t ) rx(t ) t
由此得到微分方程
dx rx (*) dt x(0) x0
人口增长到一定数量后,资源, 环境等因素将对人口的增长加以 限制 ,并且,人口数量越大,资 源,环境问题越明显,人口增长 率值将会减小,即r(x)是x的减函 数,当人口数量达到人口最大容 量 时,人口不在增长,即人口 增长率r(x)=0
忽略因素: 1-近似认为x(t)是t的一个连续可微函数 2-忽略战争、瘟疫、地震等灾害造成人口数 骤变 3-医疗水平稳定,对人口数量影响较小 4-计划生育政策在短期内不会发生重大改变
模型分析: 搜集我国历史上每年的人口数量,统计分 析,认识和了解人口数量的变化规律,从 而建立初步的数学模型,应用数学软件等 对数据进行拟合,求解出已建立模型中的 未知参数,从而监理处完善的,可供利用 的数学模型,最后,利用模型求解出所需 要的数据。
人口数量预测
组长:李 组员:宋 李 李 * * * * 石** 孙 ** 马**
题目:根据中国历史上每年人 口数量,分析其变化规律,预 测2020年以前每年的人口数量。
符号说明



r——人口增长率 t——时间 ——1978年人口数量 x(t)——时刻t的人口数 r(x)——增长率的函数 ——人口最大容量 S ——人口增长率函数系数
设r(x)= r-sx (r,s > 0) 由上述分析得0= r -s x 从而 r ( x) r (1 )
xm
解得 (**)
r s xm
将(**)代入(*)可得

数学建模-人口增长模型

数学建模-人口增长模型

数学建模-人口增长模型人口增长模型是一种基于数理统计学方法的计算机模型,用于描绘全球各地的人口增长情况。

人口增长模型能够预测人口数量、年龄分布、死亡率、出生率、移民等方面的变化趋势,为社会规划带来指导性的建议,具有很高的实用价值。

本文将从多个方面来探究人口增长模型。

一、人口增长的三个阶段第一阶段:原始社会阶段,这个时期的人口增长缓慢。

由于食物水平低下和医疗条件落后,死亡率非常高,而出生率仍然很高。

第二阶段:传统社会阶段,人口增长迅速。

由于改进了农业技术、医疗技术以及水、电、煤等基础设施建设的改善,死亡率降低,但出生率仍然很高。

第三阶段:现代社会阶段,人口增长开始放缓。

由于生育规律的改变,人们生育晚、生育次数减少,导致出生率下降。

另一方面,医疗技术和生活水平的提高,使得人们的寿命增加,死亡率下降。

人口增长模型是一种以数学为基础、能够预测人口增长变化趋势的计算机模型。

它解决了传统的统计分析方法难以预测未来人口增长趋势的问题,方便了研究人口增长对于社会经济发展的影响。

目前,常用的人口模型有四种:1.经验模型:该模型主要是针对已有数据进行平衡分析,所以只能反映人口变动的历史趋势,难以预测未来人口变化。

2. 非参数回归模型:它又称为核回归模型,它是一种无参数模型,可以从数据本身中学习出应该如何比较好地去拟合数据,因此预测效果相较于经验模型提高了不少。

3. 参数回归模型:这种模型较为复杂,它基于特定的模型,通过拟合已有的数据,建立一个完整的模型,目的是预测新的数据变化趋势。

4. 知识驱动模型:该模型结合了经验模型和参数回归模型的基本特点,它将专家的知识与历史数据相结合,通过精细化的调整,建立能够反映人口增长趋势的模型。

该模型可广泛应用于国家人口预测、社会福利计划等领域。

人口增长有其基本的规律,这些规律可以帮助我们更好地了解和解决人口问题。

1.现代社会阶段的人口增长趋势是死亡率下降,而出生率下降,且死亡率的下降速度比出生率的下降速度快。

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析

中国人口增长的预测和人口结构的简析摘要本文根据过去数十年的人口数据,通过建立不同的数学模型,对中国人口的增长进行了短期和中长期的预测。

模型一:从中国统计年鉴—2008,查找得到2000-2007年的人口数据,然后用灰色模型进行人口的短期(2008-2017)预测。

这里,我们采用两种算法进行人口总数的预测。

一种是用灰色模型分别对城镇人口和乡村人口进行人口预测,然后求加和得到总的人口数;另一种是用灰色模型对实际的总人口数进行预测,预测未来10年的总人口数。

通过比较相对误差率知道第二种方法预测得到的数据误差较小,故采用第二种方法预测的未来10年的人口数为:模型二:对于中长期的预测我们采用Leslie模型进行预测。

我们利用题中所提供的人口数据的比例,将人分为6种类型,在考虑年龄结构的基础上,对各类人中的女性人数分别进行预测,然后根据男女的性别比例,求出男性的人口数,再将预测得到的各类人数进行汇总加和,最终得到总的人口数。

由于我们是根据年龄结构进行的预测,所以可以对人口进行简单的分析,得到老龄化变化趋势,乡镇市的人口所占比例的变化等。

关键词:人口预测;灰色模型;分类计算;Leslie模型一、模型假设模型一的假设:1、不考虑国际迁移,认为国家内部迁移不改变人口总量;2、不考虑自然灾害、疾病等因素对人口数量的影响;3、文中短期预测到2017年4、大面积自然灾害、疾病的发生以及人们的生育观念等因素会对当年的生育率和人口数量产生影响,认为这些因素在预测误差允许的范围内.模型二的假设:1、每一年龄组的女性在每一个时间段内有相同的生育率和死亡率;2、在预测的时间段内男女的性别比例保持现状不变;3、不考虑人口的迁入和迁出;4、不考虑空间等自然因素的影响,不考虑自然灾害对人口数量的影响。

二、问题分析中国是一个人口大国,随着经济的不断发展,生产力达到较高的水平,现在的问题已不是仅仅满足个人的需要,而是要考虑社会的需要。

中国未富先老,对经济的发展产生很大的影响。

【数学建模】人口增长Leslie模型

【数学建模】人口增长Leslie模型

【数学建模】⼈⼝增长Leslie模型问题分析· ⽤数学建模预测⼈⼝增长的⽅法:差分⽅程、微分⽅程、回归分析、时间序列等.· 结合所给数据以差分⽅程组的Leslie模型为基础.· 考虑不同地区、不同性别⼈⼝参数的差别及农村⼈⼝向城市迁移等因素.· 按照地区和性别建⽴以时间和年龄为基本变量的中国⼈⼝增长模型.· 利⽤历史数据估计⽣育率、死亡率及⼈⼝迁移等参数,代⼊模型求解并作预测.模型假设·中国⼈⼝是封闭系统, 将数据中的市、镇合并为城市, 与农村(乡)作为两个地区; 只考虑农村向城市⼈⼝的单向迁移, 不考虑与境外的相互移民.· 对中短期⼈⼝预测, ⽣育率、死亡率及⼈⼝迁移等参数⽤历史数据估计; 长期预测考虑总和⽣育率的控制、城镇化指数的变化趋势等因素.· ⼥性每胎⽣育⼀个⼦⼥.模型建⽴按地区和性别划分、以年龄为离散变量、随时段演变的⼈⼝发展模型,为4n阶差分⽅程组.参数估计存活率的估计死亡率与年龄关系⼤, 与地区、性别和时间的关系⼩.中国⼏⼗年来死亡率降低较快, 未来趋势仍持续下降.中短期预测:将过去若⼲年不同地区、性别和各年龄⼈⼝的死亡率简单地取平均值.长期预测:⽤统计⽅法对历史数据加以处理,并参考发达国家⼈⼝死亡率的演变过程给出估计值.⽣育率的估计中短期预测:将过去若⼲年不同地区、性别和各年龄⼈⼝的⽣育率简单地取平均值.长期预测:设定⼏个不同⽔平的总和⽣育率.⼈⼝迁移的估计模型求解选定初始年份⽤⼈⼝发展模型递推计算MATLAB实现clc;%初始化,设置各种参数和初始⼈数矩阵x = [206.46422.50478.72229.9253.44]';%x0⼥性各阶段⼈数%x0 = x .*0.4988x0 = [102.9822210.7430238.7855114.684126.6559]';%H为状态转移矩阵,其实是存活矩阵H = zeros(5,5);H(2)=0.88; H(8)=0.97; H(14)=0.86; H(20)=0.22;%B是⽣育矩阵,即各个年龄段妇⼥的⽣育率B = [020.300];for n =1:1:5%y是x之下⼀年的⼈⼝数⽬,尚不包括迁移⼈数和1岁的⼈数y = H*x;%y(1)是下⼀年1岁的⼈⼝数⽬,即今年刚出⽣的⼈y(1)= B*x0;%g是迁移⼈数,也得按照年龄⽐例来存储数据g = [301201202010]';%迁移⼈数加到y上y = y + g;%求与y对应的年份的各个年龄段妇⼥⼈数%包括x0中存活下来的,迁移的⼀部分,第⼀时间段为刚出⽣的⼥性⼈数 y0 = zeros(5,1);y0(1)= y(1)/2;%或y(1)乘以⼥婴占总男⼥婴的⽐例for i=1:1:4y0(i+1)= x0(i)*H(i+1+5*(i-1));endg0 = g ./2;y0 = y0 + g0;%g0为迁移过来的各个年龄段的⼥性⼈数disp(2008+n*20)zong = y'nv = y0'x = y;x0 = y0;end%⾃此,则完成了⼀轮的计算%要预测更多,只需要循环计算以上步骤即可。

中国人口增长预测数学建模

中国人口增长预测数学建模

中国人口增长预测数学建模引言中国作为世界人口最多的国家之一,人口增长一直是一个备受关注的话题。

为了能够合理规划和管理资源,预测中国人口的增长趋势对决策者来说至关重要。

本文将运用数学建模的方法,通过分析历史数据,来预测中国人口的增长。

数据收集与处理为了进行人口增长预测,首先需要收集和处理相关的数据。

我们可以通过查阅统计年鉴、人口普查数据等公开的数据来获取所需信息。

然后,需要对数据进行清洗和整理,以便进行后续的分析和建模工作。

人口增长模型选择人口增长涉及到多个因素的复杂影响,如出生率、死亡率、迁移率等。

为了能够对中国人口的增长进行模型化,我们需要选择适合的数学模型。

常用的人口增长模型有Malthusian模型、Logistic模型等。

在选择模型时,需要考虑模型的适用性和可解释性。

Malthusian模型Malthusian模型是由英国经济学家Malthus提出的,他认为人口增长是按指数规律进行的。

该模型是基于以下假设:1.出生率和死亡率是恒定的;2.人口的增长率与人口规模成正比。

Malthusian模型的数学表达式为:$$ \\frac{{dP}}{{dt}} = rP $$其中,P为人口规模,P为时间,P为每个个体的平均增长率。

根据该模型,人口规模以指数形式增长。

Logistic模型Logistic模型是在Malthusian模型的基础上发展起来的,它考虑到了环境资源的有限性对人口增长的限制。

Logistic模型的数学表达式为:$$ \\frac{{dP}}{{dt}} = rP(1 - \\frac{{P}}{{K}}) $$其中,P为人口规模,P为时间,P为每个个体的平均增长率,P为环境资源的极限容量。

该模型认为人口规模在达到环境资源的极限容量时,增长率将逐渐减小。

变量的估计和参数的拟合在建立模型之后,需要对模型进行参数估计和拟合。

可以利用历史数据来对模型中的参数进行估计,并通过优化算法来拟合模型与实际数据的拟合度。

数学建模_人口模型与预测

数学建模_人口模型与预测

人口模型与预测摘要人口的增长是当前世界上引起普遍关注的问题,作为世界上人口最多的国家,我国的人口问题是十分突出的,由于人口基数大,尽管我国已经实行了20多年的计划生育政策,人口的增长依然很快,巨大的人口压力给我国的社会、政治、经济、医疗、就业等带来了一系列的问题。

因此,研究和解决人口问题在我国显得尤为重要。

我们经常在报刊上看见关于人口增长的预报,说到本世纪末,或到下世纪中叶,全世界(或某地区)的人口将达到多少亿。

你可能注意到不同报刊对同一时间人口的预报在数字上长有较大的区别,这显然是由于用了不同的人口模型计算的结果。

人类社会进入20世纪以来,在科学技术和生产力飞速发展的同时,世界人口也以空前的规模增长。

人口每增加十亿的时间,由一百年缩短为十二三年.我们赖以生存的地球,已经携带着它的60亿子民踏入21世纪.长期以来,人类的繁殖一直在自发地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律,以及如何进行人口控制等问题本文建立两个模型(1)中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。

(2)中国人口的Logistic模型,并用该模型进行预测,与实际人口数据进行比较。

而且利用MATLAB图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线和两种预测模型的误差比较图,并分别标出其误差。

关键词指数增长模型Logistic模型MATLAB软件人口增长预测1 问题的提出下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。

要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。

(2)建立中国人口的Logistic 模型,并用该模型进行预测,与实际人口数据进行比较。

(3)利用MATLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。

数学建模上海人口预测2050

数学建模上海人口预测2050

数学建模上海人口预测2050【原创版】目录一、引言1.1 背景介绍:数学建模在人口预测中的应用1.2 目的和意义:预测上海 2050 年的人口状况二、数学建模方法2.1 数学模型的定义2.2 建立数学模型的步骤三、数据收集与处理3.1 数据来源:统计年鉴、政府公报等3.2 数据处理:时间序列分析、回归分析等四、模型建立与优化4.1 选择合适的数学模型4.2 模型参数估计与优化五、模型预测与结果分析5.1 对 2050 年上海人口的预测5.2 结果分析:人口规模、年龄结构等六、结论与政策建议6.1 结论:上海 2050 年人口预测结果6.2 政策建议:针对预测结果的人口政策正文一、引言1.1 背景介绍:数学建模在人口预测中的应用随着科技的进步和社会的发展,人口预测已成为我国政府和社会关注的重要问题。

人口预测是对未来一段时间内人口数量、结构、分布等方面的预测,可以为政府制定相关政策提供科学依据。

数学建模作为一种有效的预测方法,在人口预测领域得到了广泛应用。

1.2 目的和意义:预测上海 2050 年的人口状况上海作为我国的国际化大都市,其人口变化对于全国乃至全球都具有重要意义。

本文旨在预测 2050 年上海的人口状况,为政府制定相关政策提供参考。

二、数学建模方法2.1 数学模型的定义数学模型是对现实世界中某一特定问题或现象的抽象描述,通常用数学方程式或关系式表示。

2.2 建立数学模型的步骤(1)确定问题:明确预测目标和问题背景;(2)收集数据:搜集与问题相关的历史数据;(3)分析数据:对数据进行处理和分析,找出规律;(4)建立模型:根据分析结果选择合适的数学模型;(5)模型优化:通过参数估计和优化,使模型更接近现实;(6)模型预测:使用优化后的模型对未来进行预测。

三、数据收集与处理3.1 数据来源:统计年鉴、政府公报等本文采用的数据主要来源于《上海市统计年鉴》、《中国统计年鉴》等官方出版物。

3.2 数据处理:时间序列分析、回归分析等对收集到的数据进行时间序列分析、回归分析等处理,找出人口变化的规律。

数学建模人口预测模型

数学建模人口预测模型

• 生育率, [i1 , i2 ] 为育龄区间, ki (t ) 为第t 年 i 岁人口 的女性比, 则第t 年的出生人数为
f (t ) bi (t )ki (t ) xi (t )
i i1
i2
(2)
• 记 d00 (t ) 为第t 年婴儿死亡率,即第t 年出生但未活到 人口统计时刻的婴儿比例 (婴儿死亡率通常较高, 在人 口统计和建模中一般都不能忽略),
• 于是
f (t ) x0 (t ) d 00 (t ) f (t )
x0 (t ) (1 d00 (t )) f (t )
(3)
对于i=0将(2),(3)代入(1)得:
x1 (t 1) (1 d00 (t ))( 1 d0 (t )) bi (t )ki (t ) xi (t )
• 人口发展方程 时间以年为单位,年龄按周岁计算,设最 大年龄为 m岁,记 xi (t ) 为第t 年i岁(满 i 周岁而不到i+1 周岁)的人数, t 0,1,2,, i 0,1,2,, m .只考虑由 于生育, 老化和死亡引起的人口演变,而不计迁移等社会 因素的影响. 记 d i (t ) 为第 t年 i 岁人口的死亡率,即
• 的增长率, 不涉及年龄结构. 但在实际上, 在人口预测 这人口按年龄分布状况是十分重要的,因为不同年龄人 的生育率和死亡率有着很大的差别. 两个国家或地区目 前人口总数一样,如果一个国家或地区年青人的比例高 于另一个国家或地区,那么两者人口的发展状况将大不 一样. 因此考虑人口按年龄的分布, 除了时间是一个变 量, 年龄也是一个变量. • 如果用连续性模型来描述它, 就要用偏微分方程来 描述. 但在实际应用中连续模型很不方便, 需要建立 相应的离散模型. 因为作为已知的输入数据是离散的, 要得到的输出数据也是离散的, 再者对连续模型求解也 是非常困难的.因此我们选择建立一个离散性模型来描 述, 用差分方程来实现它. •

综合实验二:人口增长模型及其数量预测

综合实验二:人口增长模型及其数量预测

综合实验一:人口增长模型及其数量预测一、实验目的及意义1.学习由实际问题去建立数学模型的全过程;2.训练综合应用数学模型、微分方程、函数拟合和预测的知识分析和解决实际问题;3.应用matlab 软件求解微分方程、作图、函数拟合等功能,设计matlab 程序来求解其中的数学模型;4.提高论文写作、文字处理、排版等方面的能力;通过完成该实验,学习和实践由简单到复杂,逐步求精的建模思想,学习如何建立反映人口增长规律的数学模型,学习在求解最小二乘拟合问题不收敛时,如何调整初值,变换函数和数据使优化迭代过程收敛。

二、实验内容1.数学建模的基本方法;2.查阅资料理解Malthus 人口指数增长模型和Logistic 模型;3.Matlab 软件中曲线拟合函数的异常情况处理;4.误差分析与模型检验。

三、实验步骤1.分析理解Malthus 人口指数增长模型和Logistic 模型;2.利用Matlab 软件求解上述两个模型;3.设计数据拟合方法;4.编写M 文件, 保存文件并运行观察运行结果( 数值或图形) ,并进行误差分析;5.利用至少两种模型预测人口数量;6.分析、整理和总结,写出实验报告。

四、实验要求与任务从 1790 — 1980 年间美国每隔 10 年的人口记录如表综 2.1 所示:表综 2.1年份1790 1800 1810 1820 1830 1840 1850 人口 ( × 10 6 ) 3.9 5.3 7.2 9.6 12.9 17.1 23.2年份1860 1870 1880 1890 1900 1910 1920 人口 ( × 10 6 ) 31.4 38.6 50.2 62.9 76.0 92.0 106.5年份1930 1940 1950 1960 1970 1980人口 ( × 10 6 ) 123.2 131.7 150.7 179.3 204.0 226.5 用以上数据检验马尔萨斯 ( Malthus) 人口指数增长模型,根据检验结果进一步讨论马尔萨斯人口模型的改进,并利用至少两种模型来预测美国 2010 年的人口数量。

数学模型课程设计-中国人口增长预测

数学模型课程设计-中国人口增长预测

中国人口增长预测摘要: 中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。

根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。

对此,我们建立了短期与长期两种预测人口增长的模型,并对附录中城镇乡的人口演变趋势做拟合与分析。

本文的建模过程选用了1996年到2005年的人口数据。

短期人口预测用曲线的直接拟合,分析出人口的增长趋势。

人口的出生率与死亡率均符合指数函数bt=+,利y ae c用logistic模型求出人口最大上限x,据此拟合人口增长的指数函数x(t),预测m2006-2011年的人口数量。

长期预测中,建立灰色动态模型GM(1,1)预测中国人口长期增长趋势。

在解系数的过程中运用了最小二乘法,得出预测人口数据的方程)0(ˆx,并预测2011年到2015年的人口数量。

在对中国总人口进行短期和中长期的总体预测后,我们从附件中提取出城、镇、乡三地人口、男女出生性别比、老龄人口比率等相关数据,对中国未来城、镇、乡三地人口比例、男女出生性别比、妇女生育率、老龄人口比率等影响人口发展的主要因素做趋势预测,从而达到了对中国人口全方位的预测。

关键词: 曲线拟合、灰色动态模型、最小二乘法、自然增长率一、问题的重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。

根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。

近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。

2007年初发布的《国家人口发展战略研究报告》还做出了进一步的分析。

关于中国人口问题已有多方面的研究,并积累了大量数据资料。

附录2就是从《中国人口统计年鉴》上收集到的部分数据。

试从中国的实际情况和人口增长的上述特点出发,建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测。

二、符号说明nianfen 年份chusheng 出生率bata0 估计的参数值nlinfit 非线性拟合函数1y出生率函数2y死亡率函数mx人口上限t 时间x(t)人口增长函数X(0)中国各年人口总数X(1) X(0)的一次累加序列Z(1) X(1)的紧邻均值生成数列-a 发展系数b 灰色作用量)0(ˆx人口预测值c 均方差k∆相对误差三、模型的假设1.假设人口迁入迁出对问题产生的影响可以忽略;2.忽略社会环境、自然、经济、文化水平的对人口的影响;3.长期预测中,不考虑出生率、死亡率等因素的影响。

数学建模美国人口预测报告1

数学建模美国人口预测报告1

3.模型建立模型1(1.1) 假设美国人口上限为5亿,根据表中给出的人口增长率,进行适当的处理,建立微分方程模型;(1.2) 利用 (1.1) 中的模型计算各年人口,与实际人口数量比较,计算模型的计算误差;(1.3) 利用 (1.1) 中的模型预测美国2010,2020,2030,2040,2050年的人口; (1.4) 假设人口增长率服从[1.1,1.3]上的均匀分布,结合 (1.1) 中建立微分方程模型,预测美国2010,2020,2030,2040,2050年的人口.图1为美国1790-2000年的人口数据,人口增长率r 为每10年的取值。

首先对人口增长率进行处理求出其他年份相对于1790年的增长率R1.....nnt t t r r R n其中t1=1800年….. t21=2000年(1<n ≤21) 例如1810年相对于1790年的增长率为 (3.11+2.99)/2=3.05 其他年份同理可得如图2;对增长率R 求平均直为Rx=2.64%模型1 为阻滞增长模型 假设人口增长率 r(x)是t 时人口x(t)的函数,r(x)应该是x 的减函数。

一个简单的假设是假设 r(x)为x 的线性函数r(x)=r-s*x , s>0.最大人口数量Xm=500 当x=Xm 时增长率为零。

在线性化假设前提下可以得到r(x) = r (1 – x / Xm),(公式1)其中的r 我们取之前求得的平均增长率r=0.0264 , Xm=500。

在公式1假设下,模型可修改为0(1)(0)xtm d x rx d x x x (公式2)图1上述方程改为Logistic模型x t =m x/1+(m x/0x-1)rt e(公式3)()e取2.718,t为t,求出每10年的rt值带入方程算出各年的人口数以及和实际值的误差见图3。

2010年的R*t=5.808,预测人口为362.32;2020年的R*t=6.072,预测人口为387.59;2030年的R*t=6.336,预测人口为408.16;2040年的R*t=6.6 ,预测人口为427.35;2050年的R*t=6.864,预测人口为442.48;观察预测结果1930年以前只有1800 1810 1820误差较小,其它年份误差正负都稍微偏大,1940年以后预测值逐年大于实际值,说明在给定最大人口数后增长率选择不适当,与给定的最大人口数不匹配,有待改进。

数学建模 人口模型 人口预测教学内容

数学建模 人口模型 人口预测教学内容

数学建模人口模型人口预测关于计划生育政策调整对人口数量、结构及其影响的研究【摘要】本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。

2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。

对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic、灰色预测、等方法进行建模预测。

首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合,对 2014 至 2040 年的人口数目进行了预测,得出在 2040 年时,中国人口有 14.32 亿。

在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。

然后,为了减少人口的出生和死亡这些随机事件对预测的影响,本文建立了 GM(1,1)灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出 2040 年时,中国人口有 14.22 亿。

与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。

对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。

同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。

并做出了拟合函数0.0419775(1)17255.816531.2t X t e ⨯+=⨯-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的女性比, 则第t 年的出生人数为
i2
f(t) bi(t)ki(t)xi(t)
(2)


d00 (t)
ii1
为第t 年婴儿死亡率,即第t 年出生但未活到
人口统计时刻的婴儿比例 (婴儿死亡率通常较高, 在人
口统计和建模中一般都不能忽略),
• 于是
d00(t)
f
(t)x0(t) f(t)
x 0 (t) ( 1 d 0(t0 )f) (t) (3 )
x ( t 1 ) A ( t ) x ( t ) ( t ) B ( t ) x ( t ) ( 1 )4
• 这个向量形式的一阶差分方程就是人口发展方程.当初 始人口分布x(0)已知, 又由统计资料确定了A(t), B(t),并 且给定了总和生育率 (t) 以后,用这个方程不难预测人 口的发展方程.
• 如果用连续性模型来描述它, 就要用偏微分方程来 描述. 但在实际应用中连续模型很不方便, 需要建立 相应的离散模型. 因为作为已知的输入数据是离散的, 要得到的输出数据也是离散的, 再者对连续模型求解也 是非常困难的.因此我们选择建立一个离散性模型来描 述, 用差分方程来实现它.

• 人口发展方程 时间以年为单位,年龄按周岁计算,设最
di(t)xi(t)bi x(t ) ix(it1)(t1)
xi 1(t 1 )(1 d i(t)x )i(t),
i0 ,1 ,2 , m 1 ,t0 ,1 ,2 (1 )

• 记 bi (t ) 为第t 年 i岁女性生育率,即每位女性平均生
• 生育率, [i1 , i2 ] 为育龄区间, k i (t ) 为第t 年 i 岁人口
• 1)人口总数N(t)
m

N(t)xi(t)

i0
• 2)平均年龄R(t)
R(t)N 1 (t)i m 0iix(t)
(1)6
(1)7
• 我国人口总数的预测 用模型(14)根据1978年的统计 资料对我国人口总数作的预测如下:

死亡率用下列公式外推:
i(t) i(1i( 9 1 )1 [7 9 ( )t 1 8 79 ) 8 1 3 7 5 ] 0 ii8 5 5 ,i 0 50(1)8
人口预测与控制

人口问题是当今世界上最令人关注的问题之一.
• 一些发展中国家的人口出生率过高, 越来越严重地威胁 着人类的正常生活, 有些发达国家的自然增长率趋近于 零, 甚至变负, 造成劳动力短缺, 也是不容忽视的问题.
对于我国来说, 尤其为甚.
建立数学模型对人口发展过程进行描述,分析和预 测, 并进而研究控制人口增长和老化的生育策略, 已引 起有关专家, 官员和社会各方面的极大关注和兴趣,是数 学在社会发展中的重要应用领域.
(1)0
• 引入向量,矩阵记号
ii1
x(t)[x1(t),x2(t),,xm(t)]T
(11)
0
0 0 0 0
1d1(t) 0
A(t)
1d2(t)
(12)
0
0 1dm1(t) 0
0 B(t)0
0
bi1(t)
bi2(t)
0
0 0
(1)3
0
0mm
• 那么(10)式和(1)式(i=1,2,…m-1)可以记作
对于i=0将(2),(3)代入(1)得:
i2
x 1 (t 1 ) ( 1 d 0(t 0 )1 ) d (0 (t))b i(t)k i(t)x i(t) i i1 将 bi(t)分解为
(4 )
bi(t)(t)hi(t) (5)
其中 hi(t)是生育模式, 用于调整育龄妇女在不同年龄
时生育率的高低, 满足

生育模式取 分布的离散值:
h(r) 716(r81)84er 218,
r18 (1)9
0,

在控制理论中, X(t)成为状态变量, 可将 (t)作为控
制变量.

在稳定的社会环境下可认为死亡率,生育模式和女
性比不随时间变化. 于是A(t), B(t)为常数矩阵,(14)化为
x ( t 1 ) A ( t) x ( t) B ( t)x ( 1 )5
• 注: 这里有两个明显的人口指数:

即 (t) 是第 t
i 年
1
岁的每位妇女一生平均生 bi (t)
育的人数,称为总和生育率, 或生育胎次,是控制
人口数量的主要参数. 生育模式hi (t )是 i 岁妇
女生育的加权因子, 若hi(t)hi(t) 表示 i 岁
妇女的生育率比i 岁妇女的生育率高。制订生 育政策就是确定(t)和hi(t) ,通过 (t)控制生育
我们可以建立人 但是这些模型只考虑人口总数和总
• 的增长率, 不涉及年龄结构. 但在实际上, 在人口预测 这人口按年龄分布状况是十分重要的,因为不同年龄人 的生育率和死亡率有着很大的差别. 两个国家或地区目 前人口总数一样,如果一个国家或地区年青人的比例高 于另一个国家或地区,那么两者人口的发展状况将大不 一样. 因此考虑人口按年龄的分布, 除了时间是一个变 量, 年龄也是一个变量.
大年龄为 m岁,记 xi (t ) 为第t 年i岁(满 i 周岁而不到i+1
周岁)的人数, t 0 , 1 , 2 , ,i 0 , 1 , 2 , ,m .只考虑由
于生育, 老化和死亡引起的人口演变,而不计迁移等社会
因素的影响. 记 d i (t ) 为第 t年 i 岁人口的死亡率,即
• 于是
的多少, 通过hi (t )可以控制生育的早晚和疏密.
• 将(5)式代入(4)式,并记
b i ( t ) ( 1 d 0 ( t ) 0 1 ) d 0 ( t ( ) h i ( t ) ) k i ( t ) ( 9 )
• 则(4)式写x1 作(t1)(t)i2 bi(t)xi(t)
i2
hi(t)1
(6)
ii1
利用 (6)式对 (5)式求和:得到
i2
(t)bi(t) (7) ii1
• 可知 (t)表示第t 年每个育龄妇女平均生育的人 数. 若设在t 年后的一个育龄时期内各个年龄的
女性生育率 bi (t ) 都不变,那么 (t)又可表示为 ( t ) b i 1 ( t ) b i 1 1 ( t 1 ) b i 2 ( t i 2 i 1 )( 8 )
相关文档
最新文档