初一数学应用题归类(十到十七类)

合集下载

完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。

①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。

求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。

2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。

3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。

现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。

你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。

4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。

解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。

初一数学应用题分类汇总(分类全)

初一数学应用题分类汇总(分类全)

应用题练习 行程问题1.甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h ,两地相距298km ,两车同时出发,半小时后相遇。

两车的速度各是多少?2、甲、乙两地相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多长时间与慢车相遇?3、一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?4、甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?5、.甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分.(1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇? (2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?6. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?二、工程类问题1、有水桶两只,甲桶的容量是400升,乙桶的容量是150升,如果从甲桶放出的水是乙桶放出的2倍,则甲桶剩的水是乙桶所剩的4倍。

问每桶放出了多少升水?2、一项任务由甲完成一半以后,乙完成其余的部分,两人共用2小时。

如果甲完成任务的31以后,由乙完成其余部分,则两人共用1小时50分钟。

间由甲、乙两人单独完成分别要用几小时?3、车工班原计划每天生产50个零件,改进操作方法后,实际上每天比原计划多生产6个零件,结果比原计划提前5天,并超额8个零件,间原计划车工班应该生产4、*工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。

若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?5、一项工程,甲队单独做10小时完成,乙队单独做15小时完成,丙队单独做20小时完成。

(完整word版)七年级一元一次方程解应用题分类【大量题目】【经典全面】

(完整word版)七年级一元一次方程解应用题分类【大量题目】【经典全面】

列方程解应用题第一讲和、差、倍、分,盈亏等实际问题的解法1.和、差、倍、分问题例1 小明做了一个实验,把黄豆育成豆芽后,重量可以增加7.5倍,如果小明想要得到3400千克黄豆芽,需要多少千克黄豆?2.盈亏问题例2 用化肥若干千克给一块麦田追肥,每公顷6kg还差17 kg;每公顷5kg就余下3kg.问这块麦田有多少公顷?共有化肥多少千克?3.劳力调配问题例3 在甲处劳动的有52人,在乙处劳动的有23人,现从甲、乙两地共调12人到丙处劳动,使在甲处劳动的人数是在乙处劳动人数的2倍,求应该从甲、乙两处各调走多少人?4.产品配套问题例4星光服装厂接受生产一些某种型号的学生服装的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750 m长的这种布料生产学生服。

应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套5.比赛积分问题例5 在一次有12队参加的足球循环赛(每两个队之间赛且只赛一场),规定胜一场计3分,平一场计1分,负一场计0分,某队在这次循环赛中胜场比负场多2场,结果共积18分,问该队战平几场?6.容积(体积)问题例6 一个容器装47 L水,另一个容器装58 L水。

如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水相当于这个容器容量的一半;如果将第一个容器的水倒满第二个容器,那么第一个容器的水相当于这个容器容积的三分之一,求这两个容器的容量各是多少?基础达标演练l.一桶油连桶重8 kg,油用去一半后连桶重4.5 kg,则桶中原有油多少?2.在甲处工作的有272人,在乙处工作的有196人,如果乙处工作人数是甲处工作人数的1/3,应从乙处调多少人到甲处?3.某课外兴趣小组的女生占全组人数的1/3,再加人6名女生后,女生人数就占原来的一半,问此课外兴趣小组原有多少人?4.甲、乙两仓共有大米50 t,从甲仓取出1/10,从乙仓取出2/5,则两仓所剩大米相等。

初一数学应用题归类(十到十七类)

初一数学应用题归类(十到十七类)

第十类分段计算的问题分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。

解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。

应用最广泛的问题是,网费,电费、水费、打的费、上税费等。

例题1、某地上网有两种收费方式,用户可以任意选择其一:A.计时制:1.5元/时;B.包月制:45元/月;此外,每种上网方式都要加收通信费1元/时。

(1)某用户平均每月的上网时间为20小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(2)某用户平均每月的上网时间为30小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(3)某用户平均每月的上网时间为40小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(4)某用户发现他家10月份的上网费,按方案A与方案B的缴费一样;求他家10月份的上网时间?(5)根据用户上网时间的不同,请你为用户选择省钱收费方式(选择方案A或选择方案B)?练习:昆明市出租车计价规则如下:行程不超过3千米,收起步价8元;超过3公里的部分每公里加收1.8元。

(1)、若乘坐出租车2.5公里,则应缴元车费;(2)、若乘坐出租车8公里,则应缴元车费;(3)、小明从学校坐出租车到家,共付出租车车费为26 元,求学校到小明家的路程?例2、电话计费问题下表有两种移动电话计费方式:月使用费固定收,主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费(1)一个月内用移动电话主叫为t min(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费.(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.例3:某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付出264元,请问张强第一次、第二次分别购买香蕉多少千克?例4. 依法纳税是每个公民的义务,《中华人民共和国个人所得税法》规定,有收入的公民依照下表中的规定的税率交纳个人所得税。

七年级数学应用题大全及答案

七年级数学应用题大全及答案

七年级数学应用题大全及答案1. 张三和李四的年龄比较张三今年25岁,比他年长的李四比他小2岁。

请问李四今年多少岁?解答:李四今年25 - 2 = 23岁。

2. 餐厅打折活动某餐厅举办了一次打折活动,原价10元的饭菜现在只要打8折,那么现在售价是多少?解答:原价10元的饭菜打8折,售价为10 * 0.8 = 8元。

3. 运动员比赛成绩对比小明和小红是两名小学生,他们参加了一次跳远比赛。

小明跳远3.5米,小红跳远比小明还远0.2米。

请问小红跳远了多少米?解答:小红跳远了3.5 + 0.2 = 3.7米。

4. 袋子里的水果一个袋子里有10个苹果和5个橘子,如果小明随机从袋子里取出一个水果,取到苹果的概率是多少?解答:袋子里总共有10 + 5 = 15个水果,其中苹果有10个,所以小明取到苹果的概率是10 / 15 = 2 / 3。

5. 零食分配班级里有30名学生,老师要将20包零食分给这些学生,每人分到几包零食?解答:每人分到的零食包数是20 / 30 = 2 / 3包。

6. 兔子的繁殖问题一对兔子,每个月可以生一对小兔子,并且小兔子出生后的第三个月才能繁殖。

如果开始时只有一对兔子,请问经过6个月后有多少对兔子?解答:第一个月只有一对兔子,第二个月还是一对兔子,第三个月有两对兔子,第四个月有三对兔子,第五个月有五对兔子,第六个月有八对兔子。

所以经过6个月后有8对兔子。

7. 造纸问题某工厂每天生产60吨纸张。

如果每吨纸张需耗费2棵树,那么每天需要砍伐多少棵树?解答:每天需要砍伐60 * 2 = 120棵树。

8. 车速问题小明骑自行车从A地出发,以每小时15公里的速度向B地骑行,骑行1小时后,他发现还剩6公里就到B地了。

请问他离B地还有多远?解答:小明每小时骑行15公里,骑行1小时后已经骑行了15 * 1 = 15公里。

剩下的路程是6公里,所以他离B地还有15 - 6 = 9公里。

9. 比例问题小明家的花园长40米,宽是长度的一半。

列方程解应用题的常见十大类题型

列方程解应用题的常见十大类题型

怎样找等量关系?10种类型方程解应用题根据常见的数量关系/计算公式找等量关系。

每份数×份数=总数工作效率×工作时间=工作总量单价×数量=总价速度×时间=路程单产量×数量=总产量速度和x相遇时间=路程和长方形的周长=(长+宽)×2长方形面积=长×宽正方形周长=边长×4正方形面积=边长×边长问什么就设什么。

(一)比多比少问题Χ+a=b↓多几个(或少几个)李阿姨买了36元的苹果,比买梨子多花了14元,请问李阿姨买了多少元的梨子?解:设李阿姨买了Χ元的梨子Χ+14=36Χ=36-14Χ=22答:............李阿姨买苹果和梨子一共花了58元,苹果比梨子多花了14元,请问李阿姨各买了多少元的苹果和梨子?解:设李阿姨买了Χ元的梨子,则买了Χ+14元的苹果。

Χ+Χ+14=582Χ+14=582Χ=58-142Χ=44Χ=22答:...........(二)几倍问题存在倍数关系,一般设较小的数为Χa.Χ=b↓↓↓倍数小数大数秋游时,学校租了一大一小的两辆车,大车可以载63人,是小车可载人数的3倍。

小车能载多少人?解:设小车能载Χ人。

3Χ=63Χ=63÷3个数各是是多少,我们通常称为和倍问题。

几倍量+1倍量=总数和aΧ+x=c↓↓↓倍数一倍量(标准量)总数和两个数的和是369,第二个数是第一个数的2倍,请问这两个数分别是多少?解:设第一个数是Χ,则第二个数是2Χ。

Χ+2Χ=369个数各是是多少,我们通常称为差倍问题。

几倍量-1倍量=两数之差aΧ-x=c↓↓↓倍数一倍量(标准量)相差的量妈妈今年的年龄是小乐年龄的3倍,妈妈比小乐大26岁,请问妈妈和小乐今年各是多少岁?解:设小乐今年Χ少岁,则妈妈今年3Χ岁。

(妈妈的年龄-乐乐的年龄=26岁)3Χ-Χ=26(五)倍多倍少问题存在倍数关系,一般设较小的数为ΧaΧ+b=c↓↓↓倍数多几个(或少几个)大数冬冬和佳佳收集邮票,冬冬收集了96枚邮票,比佳佳收集的3倍还多2枚,佳佳收集了多少枚邮票?解:设佳佳收集了Χ枚邮票?3Χ+2=96(六)行程问题基本行程问题:速度×时间=路程相遇问题:速度和×相遇时间=路程和甲乙两地相距471千米,客车和货车同时分别从两地同时出发,经过3小时相遇,已知客车每小时行52千米,货车每小时行多少千米?解:设货车每小时行Χ千米?3(Χ+52)=471(七)套装:桌椅、服装、甲乙的单价和×套数=总价学校阅览室新购进了40套桌椅,共用去8000元,已知每把椅子75元,每张桌子多少钱?解:设每张桌子Χ钱?(Χ+75)×=8000(八)购物问题1.甲的总价+乙的总价=总共用的钱2.付出的钱-用掉的钱=找回的钱用掉的钱+找回的钱=找回的钱张阿姨买了苹果和梨各2千克,共花费了10.4元,梨每千克2.8元,请问苹果每千克多少钱?解:设苹果每千克Χ元钱。

初一数学列方程解应用题归类含答案

初一数学列方程解应用题归类含答案

一元一次方程应用题一、行程问题行程问题的基本关系:路程=速度×时间,1.相遇问题:速度和×相遇时间=路程和甲、乙二人分别从A、B两地相向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问甲、乙二人经过多长时间能相遇?200x+300x=1000x=22.追赶问题:速度差×追赶时间=追赶距离1. 甲、乙二人分别从A、B两地同向而行,甲的速度是200米/分钟,乙的速度是300米/分钟,已知A、B两地相距1000米,问几分钟后乙能追上甲?200x+1000=300xx=102. 甲乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km,已知慢车先行1.5h,快车再开出,问快车开出多少小时后与慢车相遇?40x1.5+40x+80x=3003. 车上坡时每小时走28千米,下坡时每小时走35千米,去时,下坡比上坡路的2倍还少14千米,原路返回比去时多用12分钟,求去时上、下坡路程各多少千米?3.环行问题:环行问题的基本关系:同时同地同向而行,第一次相遇:快者路程-慢者路程=环行周长同时同地背向而行,第一次相遇:甲路程+乙路程=环形周长1.王丛和张兰绕环行跑道行走,跑道长400米,王丛的速度是200米/分钟,张兰的速度是300米/分钟,二人从同地同时同向而行,经过几分钟二人相遇?跑慢的路程+一圈=跑快的200X+400=300XX=42. 甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度4米/秒,乙跑几分钟后,甲可超过乙一圈?乙跑几圈后,甲可超过乙一圈?4X+400=6XX=200200x4=800800/400=2圈3 .有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为600/x分过完第二铁桥所需的时间为(600/x+1/12)/(2x-50)分.。

(完整版)初一数学列方程解应用题归类含答案

(完整版)初一数学列方程解应用题归类含答案

应用题提高练习训练一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=πr2h②长方体的体积 V=长×宽×高=abc1.把一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm.求所围成的长方形的长和宽各是多少?2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成.现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).5.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm、高是10cm的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.二、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如打8折出售,即按原标价的80%出售.1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%,问去年该品牌电脑每台售出价为多少元?2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少?3、某种商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品。

初一应用题经典题型

初一应用题经典题型

初一的应用题经典题型包括但不限于以下几种:
1. 追及问题:两个物体在同一时刻开始运动,一个在另一个前面,求后者追上前者的时间或者距离。

2. 相遇问题:两个物体从两个相对的点同时开始运动,最终在某一点相遇。

要求相遇的时间或者距离。

3. 比例问题:涉及到两个或多个数量之间的比例关系,如工程问题中的工作量与工作时间之间的比例。

4. 百分数问题:涉及到百分数的应用,例如增长率、折扣、利息等。

5. 平均数问题:求一组数的平均数,或者比较两组数的平均数。

6. 代数问题:涉及到代数方程的解,不等式的求解,函数的图象等。

7. 几何问题:涉及到几何图形的性质,如周长、面积、体积等。

8. 逻辑推理问题:通过已知信息进行逻辑推理,得出结论。

9. 最大/最小值问题:求某个量在给定条件下的最大值或最小值。

10. 方案选择问题:给定一组条件,要求选择最优的方案。

以上只是初一应用题的一些经典题型,实际上应用题的题型非常广泛,可以涉及各个学科的知识。

七年级一元一次方程应用题分类大全

七年级一元一次方程应用题分类大全

七年级一元一次方程应用题(一)1、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。

为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?2、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?4、工程问题:(1)甲每天生产某种零件80个,3天能生产个零件。

七年级经典应用题十六类

七年级经典应用题十六类

七年级经典应用题可以分为以下十六类:
1.和差倍分问题:利用和差、和倍、差倍或分数关系,求解未知量的问题。

2.行程问题:涉及速度、时间和距离的关系,如相遇、追及等问题。

3.工程问题:通过工作效率、工作时间和工作总量之间的关系,求解工程完成的时间
或效率等问题。

4.利润和折扣问题:涉及商品的进价、售价、利润率和折扣等概念,求解相关的问题。

5.浓度问题:通过溶质、溶剂和溶液之间的关系,求解浓度或质量分数等问题。

6.配套问题:涉及按比例分配或组合的问题,如零件配套、服装配套等。

7.分配问题:通过比例关系或平均分配原则,求解分配量或分配比例等问题。

8.增长率问题:涉及增长率、增长量、原量和现量等概念,求解相关的问题。

9.方程问题:通过列方程或方程组,求解未知量的问题。

10.不等式问题:通过列不等式或不等式组,求解未知量的取值范围或最值等问题。

11.函数问题:通过函数的性质、图像和解析式等,求解与函数相关的问题。

12.三角形问题:涉及三角形的边、角、面积和相似性等概念,求解相关的问题。

13.平行四边形和梯形问题:通过平行四边形的性质、判定和面积公式等,求解相关的
问题;通过梯形的性质、判定和面积公式等,求解相关的问题。

14.圆的问题:涉及圆的性质、判定和面积公式等,求解相关的问题。

15.统计与概率问题:通过数据的收集与整理、概率初步知识与事件的概率等,求解相
关的问题。

16.综合应用问题:将多个知识点融合在一起,求解复杂的应用题。

以上十六类应用题是七年级数学中常见的经典题型,需要学生掌握相应的解题方法和技巧。

初一数学应用题

初一数学应用题

初一数学应用题1.比例应用题:(1)小明去超市买牛奶,买了2瓶牛奶,共花费16元。

如果他再买4瓶牛奶,需要花费多少元?(2)某工厂生产1.2万个产品,需要使用10吨原材料。

如果要生产3.6万个产品,需要使用多少吨原材料?(3)某学校有400名学生,其中男生和女生的比例为2:3。

女生有多少人?2.空间几何应用题:(1)有一条长为20cm的直线段,在该直线段上取3个点,要求它们两两之间的距离都相等,这个距离是多少?(2)某地市政府要在一片草坪上建造一个圆形花坛,该草坪长40m,宽20m。

如果要建造一个直径为6m的圆形花坛,需要从草坪上割去多少面积?(3)一个圆形沙坑的直径为10m,深度为3m,每立方米的沙子的重量为1.5吨,这个沙坑里有多少吨沙?3.函数应用题:(1)一枚铜币直径是2.5cm,它的表面积是多少?(2)一张矩形桌子长2.4m,宽1.2m,它的表面积是多少?(3)一辆汽车行驶了200km,每小时的平均速度是80km/h,这辆汽车行驶了多长时间?4.相关问题应用题:(1)甲、乙两人从A地出发,相向而行,甲每小时走10km,乙每小时走15km。

如果A地离他们的相遇点有60km,他们相遇需要多长时间?(2)从A到B有60km,从B到C有40km,从C到D有80km,从D到E有100km。

如果一辆汽车从A出发,依次到达B、C、D、E,沿途行驶速度为每小时40km、60km、30km、50km,到达E需要多长时间?(3)一条小溪宽20m,A、B两点在河岸上相距40m。

一只鸟从A 点出发,先向河心飞行30m,然后沿河流方向飞行,最后在B点上岸。

如果这(3)一条小溪宽20m,A、B两点在河岸上相距40m。

一只鸟从A点出发,先向河心飞行30m,然后沿河流方向飞行,最后在B点上岸。

如果这只鸟飞行的速度是每秒10m,那么这只鸟从A点出发到B 点上岸所需要的时间是多少?5.概率应用题:(1)一枚骰子被投掷4次,每次所得点数相加。

初一数学应用题归类试题

初一数学应用题归类试题

正方体的表面积与体积计算
给定正方体的棱长,计算其表面积和体积。
圆锥的表面积与体积计算
给定圆锥的底面半径和高,计算其表面积和 体积。
04
概率与统计应用题
事件概率计算应用题
等可能事件概率计算
通过列举法或计算法,求出等可能事件发生的概率。
互斥事件概率计算
利用互斥事件的概率加法公式,求出至少有一个事件发生的概率。
规范书写步骤
在解题过程中,要规范书写计算步骤,清晰明了地展示解题思路。
确保计算准确性
在计算过程中,要注意运算的准确性和精度,避免因计算错误导 致解题失败。
合理利用计算器
在解题过程中,可以合理利用计算器进行辅助计算,提高计算效 率。
检查环节:验证答案合理性,避免低级错误
验证答案合理性
在得出答案后,要对答案进行合理性验证,检查答案是否符合题目 的要求和实际情况。
独立事件概率计算
根据独立事件的概率乘法公式,求出两个或多个独立事件同时发生 的概率。
数据收集与整理应用题
数据收集方法
通过调查、实验等方式收 集数据,并对数据进行分 类和整理。
数据表示方法
利用表格、条形图、折线 图等方式表示数据,使数 据更加直观和易于理解。
数据特征分析
通过分析数据的集中趋势、 离散程度等特征,对数据 进行初步分析和判断。
解题技巧
在解题过程中,学生需要首先将实际问题抽象成数学模型,然后运用数学知识和方法进行 求解,最后将结果回归到实际问题中进行验证。
例子
一家工厂生产某种产品,每件产品的成本是10元,售价是15元。工厂每天可以生产100件 产品,但是每天的销售量是不确定的。请你帮助工厂制定一个合理的生产计划,使得工厂 每天能够获得最大的利润。

初一数学应用题归类

初一数学应用题归类

初一数学应用题归类一.连续等差式应用题关键:如何设未知数1)有中间项,设中间项为x,其他依次递增或递减。

2)没有中间项,设第一个为x,其他依次增减。

3)未知数有对称关系的,通常设中间项为x。

例. 如果三个连续整数之和为33,那么这三个整数各为多少?相关联接:如果三个连续奇数之和为21,那么其中最小的奇数时多少?二.日历中的应用题关键:1。

认识日历2.数列相邻三个数之间差73.横列相邻三个数之间差14.日历中的得数为整数5.日历中几乘几方框是什么意思例:日历上,爷爷的生日那天的上下左右4个日期的和为80,你能说出爷爷的生日是几号吗?相关联接:1.从日历中取一个3乘3的方框,已知它的一条对角线经过的3个方格内的日期之和为33,你知道正中间一个方格内的日期吗?2.你能在日历中圈出一个数列上相邻的3个数,使得它们的和为54吗?为什么三.蕴藏等量关系式应用题关键:利用体积或周长相等建立等量关系例:1.要锻造一个直径为10厘米,高为8厘米的圆柱形毛坯,应截取直径为8厘米的圆钢多长?2.一个长方形的周长为36cm,若长减少4cm,宽增加2cm,长方形就变成了正方形,原长方形的长为多少?相关联接:1.把一段铁丝围成长方形,可以使他的长比宽多2厘米,如果围成正方形,边长刚好为5厘米,求所围成的长方形的长和宽各为多少厘米?2.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。

现有长为3 5米的竹篱笆,小王打算用它围成一个养鸡场,其中长比宽多5米,小赵也打算用它围成一个养鸡场,其中长比宽多2米。

你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?四.销售问题应用关键:1。

题目中有利润,利润率,亏损率等量关系式为利润=售价- 进价利润率=售价- 进价/进价—亏损率=售价- 进价/进价2.其他情况看情况来定例:1某商场有一种电视机,每台的原价为2500元,现以八折销售,如果想使降价前后的销售额都为10万元,那么销售额应增加多少?2.新华书店一天内销售两种书籍,甲种书籍共卖得1560元。

初一数学上册复习专用:15个常考应用题

初一数学上册复习专用:15个常考应用题

初一数学上册复习专用:15个常考应用题
利息税=利息×税率(20%)
(3)利润=×100%
注意利率有日利率、月利率和年利率:
年利率=月利率×12=日利率×365.
9.溶液配制问题
溶液质量=溶质质量+溶剂质量
溶质质量=溶液中所含溶质的质量分数.
常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意.
10.年龄问题
大小两个年龄差不会变;主要等量关系:抓住年龄增长,一年一岁,人人平等.
11.时钟问题
⑴将时钟的时针、分针、秒针的尖端看作一个点来研究
⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。

常用数据:①时针的速度是0.5°/分;②分针的速度是6°/分;
③秒针的速度是6°/秒。

12.配套问题
这类问题的关键是找对配套的两类物体的数量关系
13.比例分配问题
各部分之和=总量
比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式.
14.比赛积分问题
注意比赛的积分规则,胜、负、平各场得分之和=总分
15.方案选择问题
根据具体问题,选取不同的解决方案。

七年级上册数学解一元一次方程应用题的十六种常见题型

七年级上册数学解一元一次方程应用题的十六种常见题型

列一元一次方程解应用题(设未知数,找等量关系列方程)一.利润率问题:利润=进价(成本价)×利润率利润=售价-进价利润率=(利润÷进价)×100%进价(成本价)﹢利润=售价1. 某商品进价为 500 元,按标价的 9 折销售,利润率为 15.2%,求商品的标价为多少元?2. 工艺商场按标价销售某种工艺品时,每件可获利 45 元;按标价的八五折销售该工艺品 8 件与将标价降低 35 元销售该工艺品 12 件所获利润相等.该工艺品每件的进价、标价分别是多少元?3. 一家商店将某种服装按进价提高 40%后标价,又以 8 折优惠卖出,结果每件仍获利 15 元,这种服装每件的进价是多少?4. 某商品的进价是 2000 元,标价为 3000 元,商店要求以利润不低于 5%的售价打折出售,售货员最低可以打几折出售此商品?5、某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?6、某商店在同一时间内以每件60元的价格卖出2件衣服,其中一件盈利25%,另一件亏损25%,则卖这2件衣服是盈利还是亏损了,还是不盈不亏?二. 储蓄问题:利息=本金×利率×期数本息和=本金+利息利息税=利息×税率年利率=月利率×12=日利率×3651. 某同学把 250 元钱存入银行,整存整取,存期为半年。

半年后共得本息和 252.7 元,求银行半年期的年利率是多少?(不计利息税)2.某储蓄所去年储户存款为4600万元,今年与去年相比,定期存款增加20%,而活期存款减少25%,但总存款增加15%,问今年定期,活期存款各是多少?三. 相遇问题(相向而行):这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。

对应公式:路程=速度×时间快者路程+慢者路程=总路程(慢者速度+快者速度)×相遇时间=相遇路程1. 甲、乙两车从相距 264 千米的 A、B 两地同时出发相向而行,甲速是乙速的 1.2 倍,4 小时相遇,求乙速?2. 甲、乙两站相距 600 千米,慢车从甲地出发,每小时行 40 千米,快车从乙地出发,每小时行60 千米,若慢车先行 50 分钟,快车再开出,又行一段时间后遇到慢车,求快车开出多少小时两车相遇?3. A、B 两地相距 75 千米,一辆汽车以 50 千米/时的速度从 A 地出发,另一辆汽车以 40 千米/时速度从 B 地出发,两车同时出发,相向而行,经过几小时两车相距 30 千米?四. 追及问题(同向而行):这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。

一元一次方程实际应用题——十大类型分类练习

一元一次方程实际应用题——十大类型分类练习

一元一次方程实际应用题——十大类型分类练习一.行程问题1.XXX参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,XXX以6米/秒的速度跑了多少米?2.XXX和哥哥在离家2千米的同一所学校上学,哥哥以4千米/时的速度步行去学校,XXX因找不到书籍耽误了15分钟,而后骑自行车以12千米/时的速度去追哥哥.(1)到校前XXX能追上哥哥吗?(2)如果XXX追上哥哥,此时离学校有多远?3.A、B两地相距450千米,甲,乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过多少小时两车相距50千米?4.(隧道问题)一列火车匀速行驶,经过一条长300米的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度.5.汽船在静水中的速度为20千米/时,水流速度为2千米/时,船由A地到B地比原路返回多用1.5小时,求A、B 间的距离.6.一条环形公路长42千米,甲、乙两人在公路上骑自行车,速度分别是21千米/时、14千米/时.(1)如果两人同时同地反方向出发,那么经过几小时两人首次相遇;(2)如果两人同时同地同向出发,那么经过几小时两人首次相遇;(3)如果从同一地点同向进步,乙动身1小时后甲动身,那么甲经过几小时后追上乙.7.(错车问题)在上、下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?8.(爬坡问题)少先队从夏令营到学校,先下山再走平路,一队员骑自行车以每小时12千米的速度下山,以每小时9千米的速度走平路,到学校共用了55分钟,回来时,通过平路的速度不变,但以每小时6千米的速度上山,回到营地共花去了70分钟的时间,问夏令营到学校多少千米?二.工程问题1.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?2.修一条公路,第一次修建了它的后,规划部门又决定延长3千米,现在未建成部分的长度是设计之初总长度的,问设计之初这段公路的总长度是多少千米?3.一项工程,由甲队独做需12个月竣工,由乙队独做需15个月竣工.现决意由两队协作,且为了加快进度,甲、乙两队都将进步事情效率.若甲队的事情效率进步40%,乙队的事情效率进步25%,则两队协作,几个月可以竣工?三.销售问题1.一件衣服让利二折出售卖160元,原价多少元?2.元旦节时代,百货阛阓为了促销,每件夹克按成本价进步50%后标价,后因季节关系按标价的8折出售,每件仍红利20元,这批夹克每件的成本价是多少元?3.现有甲、乙两个磁器店出售茶壶和茶杯,茶壶每只价格为20元,茶杯每只价格为5元,已知甲店制定的优待办法是买一只茶壶送一只茶杯,乙店按总价的92%付款.黉舍办公室需求购买茶壶4只,茶杯若干只(不少于4只).当购买多少只茶杯时,两店的优待办法付款一样多?四.积分问题1.在一次数学测试中,老师出了25道选择题,每个题都有四个选项,有且只有一个选项是正确的.老师的评分标准是:答对一道题给4分,不答或答错一题倒扣1分,问:某位同学得了90分,这位同学答对了几道题?2.在某年全军足球甲级A组的前11场比赛中,某队坚持继续不败,共积23分.按比赛划定规矩,胜一场得3分,平一场得1分,那么该队共胜了多少场?3.在学完“有理数的运算”后,实验中学七年级各班各选出5逻辑学生构成一个代表队,在数学方教师的构造下进行一次知识竞赛.竞赛划定规矩是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分.(1)如果二班代表队最后得分142分,那么二班代表队回答对了多少道题?(2)一班代表队的最后得分能为145分吗?请简要说明来由?五.数字问题1.某两位数,数字之和为8,将这个两位数的数字位置对换,获得的新两位数比原两位数小18,求原来的两位数。

七年级上数学应用题70道

七年级上数学应用题70道

七年级上数学应用题(1)小王、小李同住一楼中,两人从家去上班,小王先走20分钟后小李才出发。

已知小李的速度是小王速度的3倍,则小李出发后多少时间能追上小王?(2)甲每分钟行80米,乙每分钟行50米,在下午1:30时,两人在同地背向而行了6分钟,甲又调转方向追乙,则甲在什么时间追上乙?(3)某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。

问这种鞋的标价是多少元?优惠价是多少?(4)小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%)?(5)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?(6)某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?(7)一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?(8)甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?(9)某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的。

问每个仓库各有多少粮食?(10)一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数。

(11)如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?(12)已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?(13)甲乙两人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

七年级数学应用题分类及公式详解 (包含上下册)

七年级数学应用题分类及公式详解 (包含上下册)

七年级数学应用题分类及公式详解(包含上下册)列方程解应用题的一般步骤我们首先来解析一下解应用题的步骤有哪些?1.审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系),解读题目的实质,也是考察学生的阅读理解的能力;2.设出未知数:根据提问,巧设未知数;3.列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程,可以利用自由表格的形式来梳理信息;4.解方程:解所列的方程,求出未知数的值.5、检验答案:做完了之后不知道自己做的答案是否正确,可以带入原方程检验一下,也要注意是否符合应用题的实际情况。

2一元一次方程类型1:相遇追及问题行程问题三大基础公式:路程=速度×时间;速度=路程÷时间;时间=路程÷速度。

相遇问题:它的特点是相向而行,可以画线段图帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

追及问题:它的特点是同向而行,可以画线段图帮助理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程。

航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行。

类型2:火车过桥问题火车过桥问题中,你一定要注意到火车的自身长度,即:总路程=火车车身长度+桥长=火车速度×过桥时间。

类型3:销售利润问题(1)利润=售价-成本(进价);(2)利润率=(售价-进价)/进价×100%或利润率=(售价-成本)/成本×100%(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率。

注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。

打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价百分之八十出售)类型4:分段计费问题关于分段计费问题,可以利用表格的形式将题目表述出来,一定要注意计算的数值的范围,不要重复计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十类分段计算的问题分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。

解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。

应用最广泛的问题是,网费,电费、水费、打的费、上税费等。

例题1、某地上网有两种收费方式,用户可以任意选择其一:A.计时制:1.5元/时;B.包月制:45元/月;此外,每种上网方式都要加收通信费1元/时。

(1)某用户平均每月的上网时间为20小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(2)某用户平均每月的上网时间为30小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(3)某用户平均每月的上网时间为40小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(4)某用户发现他家10月份的上网费,按方案A与方案B的缴费一样;求他家10月份的上网时间?(5)根据用户上网时间的不同,请你为用户选择省钱收费方式(选择方案A或选择方案B)?练习:昆明市出租车计价规则如下:行程不超过3千米,收起步价8元;超过3公里的部分每公里加收1.8元。

(1)、若乘坐出租车2.5公里,则应缴元车费;(2)、若乘坐出租车8公里,则应缴元车费;(3)、小明从学校坐出租车到家,共付出租车车费为26 元,求学校到小明家的路程?例2、电话计费问题下表有两种移动电话计费方式:月使用费固定收,主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费(1)一个月内用移动电话主叫为t min(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费.(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.例3:某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付出264元,请问张强第一次、第二次分别购买香蕉多少千克?例4. 依法纳税是每个公民的义务,《中华人民共和国个人所得税法》规定,有收入的公民依照下表中的规定的税率交纳个人所得税。

1999年规定,上表中“全月应纳税所得额”是从收入中减去800元后的余额,例如:某人月收入1020元,减去800元,应纳税所得额应是220元,应交个人所得税是:元。

王老师每月收入是相同的,且1999年第四季度交钠个人所得税99元,问王老师每月收入是多少元?分析:如果某人月收入不超过1300元(=800+500),那么每月交纳个人所得税不超过25元(=500×5%),如果月收入超过1300元,但不超过2800元(=800+2000)。

那么每月交纳个人所得税在25元到175元。

,如果月收入超过2800元,那么每月交纳个人所得税在175元以上。

因为王老师每月交个人所得税为99÷3=33元,则他的月收入在1300元至2800元之间。

利用月交纳个人所得税33元的等量关系可列方程求解。

解:设王老师的月收入为x元,根据题意,得:解之得:经检验,符合题意答:王老师的月收入为1380元。

说明:在解题前先完成一个判断,即分类讨论,估计王老师月收入落在哪个范围内,然后才便于列出方程。

巩固训练1、某城市出租车起步价为10元(3公里以内),以后每千米2元(不足一千米按一千米算),某人乘出租车花费19元,那么他大概行驶了多远?2、参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是多少钱?住院医疗费(元)报销率(%)不超过500元的部分0超过500~1000元的部分60超过1000~3000元的部分80……3用水量单价不超过6m32元/ m3超过6m3不到10m34元m3超出10m38元m3(1)某用户4月用水12.5 m3,应收水费多少元?(2)如果该用户3、4月份共用水15 m3(4月比3月多),共交水费44元,则该用户3、4月份各用水多少m3?4、某月张先生缴纳个人所得税55元,求他这个月的工资是多少?542.73元.小明该月支付的平段、谷段电价每千瓦时各为多少元?如不使用分时电价结算,6月份小明家将支付多少元?6,甲,乙两班学生到集市上购买苹果,苹果价格如下表所示:甲班分两次共购买苹果70kg(第二次多于第一次),共付189元,•而乙班则一次购买苹果70kg.(1)乙班比甲班少付多少元?(2)甲班第一次,第二次分别购买苹果多少千克?,7.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表:某人住院治疗得到保险公司报销金额是1100•元,•那么此人住院的医疗费是______元.8.为了加强公民的节水意识,合理利用水资源,•某市采用价格调控手段达到节水的目的,该市自来水收费价格见价目表.注:水费按月结算.若某户居民1月份用水8m3,则应收水费:2×6+4×(8-6)=20元.(1)若该户居民2月份用水12.5m3,则应收水费_______元;(2)若该户居民3,4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?9.芜湖供电公司分时电价执行时段分为平,谷两个时段,•平段为:8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.•平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明家该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支出电费多少元?第十一类:积分问题例1某学校七年级8个班进行足球友谊赛,采用胜一场得3分,平一场得1分,负一场得0分的记分制。

某班足球队与其他7个班足球队各赛1场后,积16分,已知该班足球队负一场,那么该班共胜了几场比赛?分析:这个问题已知胜的场数加上负的场数,其他的就是平的场数解:设胜了X场,则平了﹙7-1-X﹚场,根据题意得3X+﹙7-1-X﹚=16解这个方程得X=5经检验符合题意答:该班共胜5场比赛1.一张试卷上只有20道选择题,做对一道题得4分,做借一道题倒扣1分,•某学生做了全部试卷共得70分,他做对了_______道.2.足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.•一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分.请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?3.某队在一次比赛中,22投14中,得28分,•除了3•个3•分球全中外,•他还投中了_____个2分球和______个罚球.4.小明在一场篮球比赛中,他一人得25分,如果他投2分球比3分球多5个,那么他投2分球个数为______.5.中国足球甲级联赛规定:每队胜一场得3分,平一场得1分,负一场得0分.•武汉黄鹤楼队前14场保持不败,共得34分,该队共平了()A.3场B.4场C.5场D.6场6.在全国男篮CBA联赛的前11轮比赛中,某队保持连续不败共积23分,按比赛规则,胜一场得3分,平一场得1分,负一场得0分,求该队在这11场比赛中共胜了多少场?7.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了多少道题?第十二类方案选择问题例1.小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009•千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,•已知小刚家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费);(2)小刚想在这两种灯中选购一盏:①当照明时间是多少时,使用两种灯的费用一样多?②试用特殊值推断:照明时间在什么范围内,选用白炽灯费用低?照明时间在什么范围内,选用节能灯费用低?(3)小刚想在这两种灯中选购两盏:假定照明时间是3000小时,•使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.这种题型总是分三种情况谈论,首先求出两种情况相等时的答案,再根据大于这个值和小于这个值两方面讨论(1)①设当照明时间为x小时使用两种灯费用一样,依题意得:49+0.0045x=18+0.02x,解得x=2000,答:当照明时间是2000小时时,两种灯的费用一样多;②当照明时间少于2000小时时,选用白炽灯费用低.当照明时间超过2000小时时,选用节能灯费用低;(2)分下列三种情况讨论:①如果选用两盏节能灯,则费用是98+0.0045×3000=111.5元;②如果选用两盏白炽灯,则费用是36+0.02×3000=96元;③如果选用一盏节能灯和一盏白炽灯,由(2)可知,当照明时间>2000小时时,用节能灯比白炽灯费用低,所以节能灯用足2800小时时,费用最低.费用是67+0.0045×2800+0.02×200=83.6元.综上所述,应各选用一盏灯,且节能灯使用2800小时,白炽灯使用200小时时,费用最低.例2 .某企业生产一种收音机,其成本24元,直接由厂家门市部销售,每台售价32元,门市部的销售需消耗费用每月2400元,如果委托商店销售,出厂价每台28元,销售多少台时两种销售方式所获得的利润相等?若销售量达每月2000台,问采用哪种销售方式,取得的利润较多?1)设每月销售x台时,所得利润相同,根据题意可得:(32-24)x-2400=(28-24)x,解得:x=600.答:每月销售600台时,所得利润相同;(2)当每月销售达2000台时,直接由厂家门市部出售的利润为:(32-24)×2000-2400=13600(元),委托商店销售的利润为:(28-24)×2000=8000(元).因此销售量达每月2000台,采用门市部的销售销售方式,取得的利润较多.2.某工厂现有甲种原料226 kg,乙种原料250 kg,计划利用这两种原料生产A、B两种的产品共40件,生产A、B两种产品用料情况如下表:(1(2)若甲种原料100元/千克,乙种原料120元/千克,那么哪种生产方案最省钱?依题意有:7x+3(40-x)≤2264x+10(40-x)≤250,解得:25≤x≤26.5,∵x为整数,∴x取25或26,该工厂的生产方案有:方案一:生产A产品25件,B产品15件;方案二:生产A产品26件,B产品14件;3、医院用甲、乙两种原料为手术后的病人配制营养品,每克甲种原料含0.5单位的蛋白质和1单位铁质,每克乙种原料含0.7单位的蛋白质和0.4单位铁质,已知病人每餐需要35单位的蛋白质和40单位铁质。

相关文档
最新文档