第三章 固体材料中的扩散作业答案

第三章 固体材料中的扩散作业答案
第三章 固体材料中的扩散作业答案

第三章固体材料中的扩散

Chapter3 The Diffusion in Solid Materials

作业1:原版教材第143页第22题

22. Which type of diffusion do you think will be easier (have a lower activation energy)?

a. C in HCP Ti

b. N in BCC Ti

c. Ti in BCC Ti

Explain your choice.

Solution:

A and b are interstitial solid solutions, but c is a substitutional solid solution. So the mechanism of diffusion of a and b is interstitial diffusion, and the mechanism of diffusion of c is the vacancy exchange. We have known that the activation energy for vacancy-assisted diffusion Q v are higher than those for interstitional diffusion Q i. So c is the most difficult one comparing a and b, HCP Ti is a close-packed structure, much closer than BCC, so b is the answer. The diffusion of N in BCC Ti will be easier (have a lower activation energy).

作业2:原版教材第143页第19题

19. Consider the possibility of solid solutions with Au acting as the solvent.

a. Which elements (N, Ag, or Cs) is most likely to form an interstitial solid solution with Au?

b. Which elements (N, Ag, or Cs) is most likely to form a substitutional solid solution with Au? Solution:

a. N is most likely to form an interstitial solid solution with Au;

b. Ag is most likely to for a substitutional solid solution with Au.

作业3:原版教材第143页第23题

23.At one instant in time there is 0.19 atomic % Cu at the surface of Al and 0.18 atomic % Cu at a depth of 1.2mm below the surface. The diffusion coefficient of Cu in Al is

s m /104214-?

at the temperature of interest.

The lattice parameter of FCC Al is 4.049?. What is the flux of Cu atoms from the surface to the interior?

Solution:

已知:Cu 的原子量(atomic mass )63.55 (Density of solid(g/cm 3)) 8.93

Al 的原子量(atomic mass )26.98 (Density of solid(g/cm 3)) 2.70 换

算成重量百分数:

原子量

原子量原子量

Al at l Cu at Cu Cu at Cu wt Cu ?+??=

%A %%%

当Cu 故321231

/1096.681002.6.....%cm atoms Cu wt Mol Al FCC of density wt Cu c

?=????

? ???= 3212/1002.19cm atoms c ?=

()

()s

cm atoms mm

cm atoms s m x c c D J -?=?-?

?-=--=-2103212

1412/10988.12.1/1002.1996.68/104

另一种算法:

每个Al 晶胞有4个原子,晶胞体积为a 3,故Al 的原子密度为:

()

322383/10026.610049.444cm cm

a 个?=?=- 已知Cu 的原子百分数为0.18%和0.19%,即0.0018,0.0019 故3221

/10026.60019.0cm c 个??=

3222/10026.60018.0cm c 个??=

()

()

s

cm cm

cm s cm x c c D J ??=??-?

??-=--=-2103222

41412/100087.212.0/10026.60001.0/10104原子个

作业4:原版教材第143页第27题

27. Consider the diffusion of C into Fe. At approximately what temperature would a specimen of Fe have to be carburized for 2 hours to produce the same diffusion result as at 900℃ for 15 hours ? Solution:

()???

?

??--=Dt x erf c c c c s s 20 The same diffusion result means that other variables are the same and D 1t 1=D 2t 2 900℃

21521?=?D D T?

15

2

900=T D D We know that

RT

Q

D D -=exp

RT

Q D D -

=0ln ln

查表可知: D 0900℃ =s m /1020.025

-?

Q 900℃=mol J /10

843

?

D 0>912℃=s m /100.225

-?

Q>912℃=mol J /101403

?

R=8.314J/mol-K

D T =2

15900?

D

2ln 15ln ln ln 900-+=D D T

????

????--=?--1173

314.8108452.0ln 215314.81014050.2ln 3

3T T=1891.8k=1618.8℃

The same diffusion result means that other variables are the same and D 1t 1=D 2t 2 即:

0102exp(

)2

15

exp()Q

D RT Q

D RT -=- 121115

ln 2.0152

Q R T T ??-== ??? 查表可知:

Q 1=mol J /10

843

?

R=8.314J/mol-K

计算可得:

T 2=1453.73K=1180.73℃

作业5:

作业6:将含碳0.2%的碳钢零件置于1.2%碳势的渗

碳气氛中加热至930℃,经10小时保温后随炉冷却至室温,试分析在930℃和室温零件从表层到心部成分和组织的变化规律,并画出示意图。

解答:

过共析共析亚共析

作业7:一根足够长的共析钢棒在800℃强脱碳气氛中从一端脱碳一段时间后,试画出沿长度方向

碳浓度分布曲线及组织示意图。若将其缓慢冷

却至室温,画出室温下组织示意图。

解答:

1.

作业8:设有一个厚为0.1cm 的Si 图片,初始时有1千万个Si 原子中含有一个磷原子。经加工处理后,在表面的每1千万个Si 原子中含有400个磷原子。 Si 的晶体结构为金刚石结构,每个晶胞中含有8个原子,晶胞常数nm a 543.0=,试计算该硅圆片的线浓度梯度和体积梯度。 解答: 1) 计算P%: 内部:%00001.0%10010

11

7

=??=

i C

%004.0%10010

14007=??=s C

线浓度梯度cm X C /%0399.01

.0%004.0%00001.0-=-=??

体积浓度梯度:()

3223

8cm 106.1cm 104307.5--?=?=晶胞

V

107

个Si

原子的体积:3167

cm 102V 8

10-?=?晶胞

此体积中的P 浓度:3

15316

cm /105cm /10

21C 个个?=?=

-i

3

1836

cm /102cm /102400C 个个?=?=-s 体积浓度梯度:cm cm /10995.11

.0102105C 31918

15??-=?-?=

??原子X

个磷原子

7

400

材料学基础-固体中的扩散 (Diffusion)

固体中的扩散 (Diffusion ) 在固体中的原子和分子不是静止的而是运动的,运动有两种方式: ● 在平衡位置附近的振动,称之为晶格振动 ● 原子的迁移 称之为扩散 本章主要讲述扩散的现象和规律 在固体中原子之所以能迁移是因为: ● 热激活 原子在平衡位置附近振动时的能量起伏 ● 晶格中的间隙 由于缺陷(晶体缺陷 空位、位错和界面)的存在,为原子的迁移创造了条件。 研究扩散可以从两个角度: ● 唯象 (Phenomenological Approach )从宏观的现象研究扩散 ● 原子结构 (Atomistic Approach ) 从微观的组织结构研究扩散过程的机理 研究扩散的意义在于许多物理冶金和化学冶金现象与扩散有关。如:相变、氧化、蠕变、烧结、内耗等 3.1 唯象理论 3.1.1现象 例:扩散偶 (图1) 可探测到Au *的扩散 3.1.2稳态扩散方程-Fick 第一定律 1、 稳态扩散的含义: 浓度不随时间改变, 即: 2、Fick 第一定律 图1 3、稳态扩散的实例-空心的薄壁圆筒渗碳 条件:圆筒内外碳浓度保持恒定,这样经过一定的时间后,系统达到稳定态,此时圆筒内各点的碳浓度恒定,则有: lt D q r d dC r d dC lt D q l r q dr dC D rlt q t A q J πππ2ln ln ) 2(2- =-==?= 由此可得: 为圆筒高度 为圆筒半径, ; 为通过圆筒侧面的碳量其中:= 对于稳态扩散,q/t 是常数,C 可测,l 与r 为已知值,故作C 与r 的关系曲线,求斜率则得D 。 要的物理量。为扩散系数, 一个重 量浓度);位体积的质量,又称质为原子的体积浓度(单 ;位面积的质量(位时间扩散物质流过单为原子流密度,表示单其中:)- (D C s m kg J dx dC D J )/132?-=0 =dt dC

材料物理期末考试题演示教学

材料物理期末考试题

电致伸缩:电介质在外电场的作用下,发生尺寸变化即产生应变现象,起应变大小与所加电压的平方成正比。 压电效应:在某些晶体特定的方向上加力,则在里的垂直方向上的平面上出现正负束缚电子。 电导率:当施加的电场产生电流时电流密度正比于电场强度,其比例常数即电导率。 磁滞现象:退磁时M的变化落后于H的变化的现象。 磁致伸缩:此题在磁场中磁化,形状和尺寸都会发生变化的现象。 磁弹性能:物体在磁化时伸长或收缩受到限制,则在物体内部形成应力,从而内部将产生弹性能,即磁弹性能。 磁化现象:物体在外加磁场H作用下,能够产生磁化的材料。比热容:单位质量物质上升1K所需要的能量(条件:无相变)物理含义:晶格热振动状态改变所需要吸收或放出的能量热稳定性,材料承受温度的急剧变化而不致破坏的能力。 热熔:物质温度升高1K所需要的能量。 热膨胀:固体材料受热以后晶格震动加剧而引起的容积膨胀。热传导:一块材料的温度不均匀或者两个温度不同的物体接触,热量会自动从高温区向低温区传播的现象。

1.为什么锗半导体材料最先得到应用,而现在的半导体材料却 大都采用硅半导体? 2.答:锗比较容易提纯,所以最初发明的半导体三极管是锗制 成的。但是,锗的禁带宽度(0.67 ev)大约是硅的禁带宽度(1.11 ev)的一半,所以硅的电阻率比锗大,而且在较宽的能带中能够更加有效的设置杂质能级,所以后来硅半导体逐渐取代了锗半导体。硅取代锗的另一个原因是硅的表面能够形成一层极薄的二氧化硅绝缘膜,从而能够制备MOS三极管。因此,现在的半导体材料大都采用硅半导体。 3.经典自由电子论、量子自由电子论和能带理论分析材料导电 性理论的主要特征是什么? 4.答:经典自由电子论:连续能量分布的价电子在均匀势场中 的运动;量子自由电子论:不连续能量分布的价电子在均匀势场中的运动;能带理论:不连续能量分布的价电子在周期性势场中的运动。 5.根据经典自由电子论,金属是由原子点阵组成的,价电子是 完全自由的,可以在整个金属中自有运动,就好像气体分子能够在一个容器内自由运动一样,故可以把价电子看出“电子气”。自由电子的运动遵从经典力学的运动规律,遵守气体分子运动论。在电场的作用下,自由电子将沿电场的反方向运动,从而在金属中形成电流。 6.量子自由电子论认为,金属离子形成的势场各处都是均匀

材料物理性能期末复习题

期末复习题 一、填空(20) 1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。 2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。 3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。 4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈 介电常数一致,虚部表示了电介质中能量损耗的大小。 .当磁化强度M为负值时,固体表现为抗磁性。8.电子磁矩由电子的轨道磁矩和自旋磁矩组成。 9.无机非金属材料中的载流子主要是电子和离子。 10.广义虎克定律适用于各向异性的非均匀材料。 ?(1-m)2x。11.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I 12.对于中心穿透裂纹的大而薄的板,其几何形状因子。 13.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。 14.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。 15.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。16.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。 17.当温度不太高时,固体材料中的热导形式主要是声子热导。 18.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。 19.电滞回线的存在是判定晶体为铁电体的重要根据。 20.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。而物质的磁性主要由电子的自旋磁矩引起。 21. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。 22.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。 23.晶体发生塑性变形的方式主要有滑移和孪生。 24.铁电体是具有自发极化且在外电场作用下具有电滞回线的晶体。 25.自发磁化的本质是电子间的静电交换相互作用。 二、名词解释(20) 自发极化:极化并非由外电场所引起,而是由极性晶体内部结构特点所引起,使晶体中的每个晶胞内存在固有电偶极矩,这种极化机制为自发极化。 断裂能:是一种织构敏感参数,起着断裂过程的阻力作用,不仅取决于组分、结构,在很大程度上受到微观缺陷、显微结构的影响。包括热力学表面能、塑性形变能、微裂纹形成能、相变弹性 能等。

材料力学期末考试复习题及答案#(精选.)

材料力学期末考试复习题及答案 配高等教育出版社第五版 一、填空题: 1.受力后几何形状和尺寸均保持不变的物体称为刚体。 2.构件抵抗破坏的能力称为强度。 3.圆轴扭转时,横截面上各点的切应力与其到圆心的距离成正比。 4.梁上作用着均布载荷,该段梁上的弯矩图为二次抛物线。 5.偏心压缩为轴向压缩与弯曲的组合变形。 6.柔索的约束反力沿柔索轴线离开物体。 7.构件保持原有平衡状态的能力称为稳定性。 8.力对轴之矩在力与轴相交或平行情况下为零。 9.梁的中性层与横截面的交线称为中性轴。 10.图所示点的应力状态,其最大切应力是 100Mpa 。 11.物体在外力作用下产生两种效应分别是变形效应运动效应。 12.外力解除后可消失的变形,称为弹性变形。 13.力偶对任意点之矩都相等。 14.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则杆中最大正应力 为 5F/2A 。 15.梁上作用集中力处,其剪力图在该位置有突变。 16.光滑接触面约束的约束力沿接触面的公法线指向物体。 17.外力解除后不能消失的变形,称为塑性变形。 18.平面任意力系平衡方程的三矩式,只有满足三个矩心不共线的条件时,才能成为力系 平衡的充要条件。 19.图所示,梁最大拉应力的位置在 C 点处。

20.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是 2τ《=【σ】 。 21.物体相对于地球处于静止或匀速直线运动状态,称为平衡。 22.在截面突变的位置存在应力集中现象。 23.梁上作用集中力偶位置处,其弯矩图在该位置有突变。 24.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。 25.临界应力的欧拉公式只适用于细长杆。 26.只受两个力作用而处于平衡状态的构件,称为而力构件。 27.作用力与反作用力的关系是。 28.平面任意力系向一点简化的结果的三种情形是力,力偶,平衡。 29.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则截面C的位移为 7Fa/2EA 。 30.若一段梁上作用着均布载荷,则这段梁上的剪力图为斜直线。 二、计算题: 1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。 2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。试求:①画梁的剪力图、弯矩图。②按正应力强度条件校核梁的强度。

第三章 固体材料中的扩散作业答案

第三章固体材料中的扩散 Chapter3 The Diffusion in Solid Materials 作业1:原版教材第143页第22题 22. Which type of diffusion do you think will be easier (have a lower activation energy)? a. C in HCP Ti b. N in BCC Ti c. Ti in BCC Ti Explain your choice. Solution: A and b interstitial solid solutions, but c is a substitutional solid solution. So the mechanism of diffusion of a and b is interstitial diffusion, and the mechanism of diffusion of c is the vacancy exchange. We have known that the activation energy for vacancy-assisted diffusion Q v are higher than those for interstitional diffusion Q i. So c is the most difficult one comparing a and b, HCP Ti is a close-packed structure, much closer than BCC, so b is the answer. The diffusion of N in BCC Ti will be easier (have a lower activation energy).

《材料科学基础》总复习(完整版)

《材料科学基础》上半学期容重点 第一章固体材料的结构基础知识 键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念; 晶体的特性(5个); 晶体的结构特征(空间格子构造)、晶体的分类; 晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子; 第二章晶体结构与缺陷 晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体; 典型金属晶体结构; 离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例); 晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例); 第三章材料的相结构及相图 相的定义 相结构 合金的概念:

固溶体 置换固溶体 (1)晶体结构 无限互溶的必要条件—晶体结构相同 比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明) (2)原子尺寸:原子半径差及晶格畸变; (3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体 (一)间隙固溶体定义 (二)形成间隙固溶体的原子尺寸因素 (三)间隙固溶体的点阵畸变性 中间相 中间相的定义 中间相的基本类型: 正常价化合物:正常价化合物、正常价化合物表示方法 电子化合物:电子化合物、电子化合物种类 原子尺寸因素有关的化合物:间隙相、间隙化合物 二元系相图: 杠杆规则的作用和应用; 匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)

型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点; 三元相图: 三元相图成分表示方法; 了解三元相图中的直线法则、杠杆定律、重心定律的定义; 第四章材料的相变 相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类); 按结构分类:重构型相变和位移型相变的异同点; 马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、瓷马氏体相变性能的不同――作为题目) 有序-无序相变的定义 玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变; 按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变

材料力学期末考试复习题与答案

二、计算题: 1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。 2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。已知I z=60125000mm4,y C=157.5mm,材料许用压 应力[σc]=160MPa,许用拉应力[σt]=40MPa。试求:①画梁的剪力图、弯矩图。②按正应力强度条件校核梁的强度。 3.传动轴如图所示。已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa。 试求:①力偶M的大小;②作AB轴各基本变形的内力图。③用第三强度理论设计轴AB的直径d。 4.图示外伸梁由铸铁制成,截面形状如图示。已知I z=4500cm4,y1=7.14cm,y2=12.86cm,材料许用压应力[σc]=120MPa,许用拉应力[σt]=35MPa,a=1m。试求:①画梁的剪力图、弯矩图。②按正应力强度条件确定梁截荷P。 5.如图6所示,钢制直角拐轴,已知铅垂力F1,水平力F2,实心轴AB的直径d,长度l,拐臂的长度a。 试求:①作AB轴各基本变形的内力图。②计算AB轴危险点的第三强度理论相当应力。

6.图所示结构,载荷P=50KkN,AB杆的直径d=40mm,长度l=1000mm,两端铰支。已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=2.0,[σ]=140MPa。试校核AB杆是否安全。 7.铸铁梁如图5,单位为mm,已知I z=10180cm4,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa, 试求:①画梁的剪力图、弯矩图。②按正应力强度条件确定梁截荷P。 8.图所示直径d=100mm的圆轴受轴向力F=700kN与力偶M=6kN·m的作用。已知M=200GPa,μ=0.3,[σ]=140MPa。试求:①作图示圆轴表面点的应力状态图。②求圆轴表面点图示方向的正应变。③按第四强度理论校核圆轴强度。 9.图所示结构中,q=20kN/m,柱的截面为圆形d=80mm,材料为Q235钢。已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=3.0,[σ]=140MPa。试校核柱BC是否安全。

材料科学基础之金属学原理扩散习题及答案

《材料结构》习题:固体中原子及分子的运动 1. 已知Zn在Cu中扩散时D0= 2.1×10-5m2/s,Q=171×103J/mol。试求815℃时Zn在Cu中的扩散系数。 2. 已知C在γ铁中扩散时D0=2.0×10-5m2/s,Q=140×103J/mol; γ铁中Fe自扩散时 D0=1.8×10-5m2/s,Q=270×103J/mol。试分别求出927℃时奥氏体铁中Fe的自扩散系数和碳的扩散系数。若已知1%Cr可使碳在奥氏体铁中的扩散激活能增加为Q=143×103J/mol,试求其扩散系数的变化和对比分析以上计算结果。 3. 若将铁棒置于一端渗碳的介质中,其表面碳浓度达到相应温度下奥氏体的平衡浓度C S。试求 (1)结合铁-碳相图,试分别示意绘出930℃和800℃经不同保温时间(t1

习题4答案: 1.解:根据扩散激活能公式得 3-5132017110exp() 2.110exp 1.2610m /s 8.314(815273)-???=-=??-=? ??+?? Cu Zn Q D D RT 2.解:根据扩散激活能公式得 3γ-5172027010exp() 1.810exp 3.1810m /s 8.314(927273)-???=-=??-=? ??+??Fe Q D D RT 3γ-5112014010exp() 2.010exp 1.6110m /s 8.314(927273)-???=-=??-=? ??+??C Q D D RT 已知1%Cr 可使碳在奥氏体铁中的扩散激活能增加为Q =143×103J/mol , 所以,3γ-51120143.310exp() 2.010exp 1.1610m /s 8.314(927273)-???'=-=??-=? ??+??C Q D D RT 由此可见,1%Cr 使碳在奥氏体铁中的扩散系数下降,因为Cr 是形成碳化物的元素,与碳的亲和力较大,具有降低碳原子的活度和阻碍碳原子的扩散的作用。 3.(1)参见204页。 (2)若渗碳温度低于727℃,不能达到渗碳目的。因为在727℃以下,铁为α相,而C 在α-Fe 中的溶解度非常小(最高为在727℃时为0.0218%)。 4.解:(1)在870℃下, 3γ-5122014010exp() 2.010exp 8.010m /s 8.314(870273)-???=-=??-=? ??+??C Q D D RT 在930℃下, 3γ-5112014010exp() 2.010exp 1.6710m /s 8.314(930273)-???=-=??-=? ??+??C Q D D RT (2)低碳钢渗碳的扩散方程解为 0()erf =--S S C C C C 所以,渗层厚度∝x = 所以,1122112 1 1.67101020.9h 8.010--??===?D t t D 。 (3 )根据低碳钢渗碳的扩散方程解0()erf S S C C C C =--得,

材料力学期末试卷10(带答案)

三明学院 《材料力学》期末考试卷10 (考试时间:120分钟) 使用班级: 学生数: 任课教师: 考试类型 闭卷 一.填空题(每题3,共30分) 1. 构件所受的外力可以是各式各样的,有时是很复杂的。材料力学根据构件的典型受力情况及截面上的内力分量可分为 拉伸或压缩 、 剪切 、 扭转 、 弯曲 四种基本变形。 2. 现代工程中常用的固体材料种类繁多,物理力学性能各异。所以,在研究受力后物体(构 件)内部的力学响应时,除非有特别提示,一般将材料看成由 连续性 、 均匀性 、 各向同性 的介质组成。 3. 为保证工程结构或机械的正常工作,构件应满足三个要求,即 强度 、 刚度 、 稳定性 。 4. 为了求解静不定问题,必须研究构件的 变形 ,从而寻找出 变形协调方程 。 5. 矩形截面梁的弯曲剪力为FS ,横截面积为A ,则梁上的最大切应力为 A F s = σ 。 6. 用主应力表示的广义胡克定律是 ()[]32111 σσμσε+-= E ; ()[]331211σσμσε+-= E ; ()[] 2133 1σσμσε+-=E 。 7. 压杆稳定问题中,欧拉公式成立的条件是: ) E (P σπλλλ211 :=≥其中 。 8. 轴向拉压变形中,横向应变与轴向应变的关系是 μεε=' 。 9. 图示外伸梁受均布载荷作用,欲使C B A M M M -==,则要求a l /的比值为 22/=a l ;欲使0=C M ,则要求比值为2/=a l 。 10. 图示矩形截面纯弯梁受弯矩M 作用,梁发生弹性变形,横截面上图示阴影面积上承担的弯矩为 7M/8 。 二.选择题(每题3分,共15分) 1.平面弯曲梁的横截面上,最大正应力出现在( D ) A .中性轴; B .左边缘; C .右边缘; D .离中性轴最远处 。 2.第一强度理论适用于( A ) A .脆性材料; B .塑性材料; C .变形固体; D .刚体。 3.在计算螺栓的挤压应力时,在公式 bs bs bs A F = σ中, bs A 是( B ) A .半圆柱面的面积; B .过直径的纵截面的面积; C .圆柱面的面积;

材料力学期末复习题库

第一章 一、选择题 1、均匀性假设认为,材料内部各点的是相同的。 A:应力 B:应变 C:位移 D:力学性质 2、各向同性认为,材料沿各个方向具有相同的。 A:力学性质 B:外力 C:变形 D:位移 3、在下列四种材料中,不可以应用各向同性假设。 A:铸钢 B:玻璃 C:松木 D:铸铁 4、根据小变形条件,可以认为: A:构件不变形 B:构件不破坏 C:构件仅发生弹性变形 D:构件的变形远小于原始尺寸 5、外力包括: A:集中力和均布力 B:静载荷和动载荷 C:所有作用在物体外部的力 D:载荷与支反力 6、在下列说法中,正确的是。 A:内力随外力的增大而增大; B:内力与外力无关; C:内力的单位是N或KN; D:内力沿杆轴是不变的; 7、静定杆件的内力与其所在的截面的有关。 A:形状;B:大小;C:材料;D:位置 8、在任意截面的任意点处,正应力σ与切应力τ的夹角α=。 A:α=90O; B:α=45O; C:α=0O;D:α为任意角。 9、图示中的杆件在力偶M的作用下,BC段上。 A:有变形、无位移; B:有位移、无变形; C:既有位移、又有变形;D:既无变形、也无位移; 10、用截面法求内力时,是对建立平衡方程而求解的。 A:截面左段 B:截面右段 C:左段或右段 D:整个杆件 11、构件的强度是指,刚度是指,稳定性是指。 A:在外力作用下抵抗变形的能力; B:在外力作用下保持其原有平衡态的能力; C:在外力的作用下构件抵抗破坏的能力; 答案:1、D 2、A 3、C 4、D 5、D 6、A 7、D 8、A 9、B 10、C 11、C、B、A 二、填空 1、在材料力学中,对变形固体作了,,三个基本假设,并且是在,范围内研究的。 答案:均匀、连续、各向同性;线弹性、小变形 2、材料力学课程主要研究内容是:。 答案:构件的强度、刚度、稳定性;

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

材料物理期末考题1

一、选择题: 1、材料的硬度取决于(c) A、显微结构 B、裂纹 C、化学组成和物质结构 D、杂质 2、下列不属于激光工作物质的是(a) A、CaWO3:Nd3+ B、Y3A l5O12:Nd3+ C、Y3A l5O12:Ce3+ D、La2O2S:Nd3+ 3、下列关于磁性材料的说法中,不正确的是(d) A、所有材料都有抗磁性,因为它很弱,只有当其它类型的磁性完全消失的时候才能被观察 B、抗磁体和顺磁体对于磁性材料应用来说都视为无磁性 C、材料是否真有铁磁性取决于原子是否具有由未成对电子以及原子在晶格中的排列方式 D、亚铁磁性在宏观性能上与铁磁性类似,区别在于亚铁磁性材料的饱和磁化强度比铁磁性的高。 4、下列元素中常用作稀土发光材料激活剂的是(a) A、Eu3+ B、Y3+ C、Lu3+ D、La3+ 5、下列哪种材料不能用作吸声材料(d) A、涂料 B、泡沫材料 C、陶瓷 D、金属 6、一硅酸铝玻璃的性能为α=4.6*10-6/K σf=7*10-6N/m2E=4.7*10-6N/m2μ=0.5 其第一热冲击断裂因子R1为(c) A、234.6K B、242.8K C、162K D、183K 7、光信号在玻璃光纤中传输时存在传输损耗,下列哪种情况不属于传输损耗(d) A、光纤材料的本证损耗 B、光纤材料的杂质吸收 C、光纤材料的结构缺陷 D、光纤材料的长度 8、当不同壁面反射而达到听者的声音所经过的路程大于直达声(c)米,则到达的反射将形成回声。 A、12 B、15 C、17 D、20 9、下面举例的磁性中属于强磁性的是(b) A、顺磁性 B、亚铁磁性 C、反铁磁性 D、抗磁性 10、下列属于抗磁性材料的是(d) A、Fe B、Ni C、Dy D、Zn 二、填空题 1、压电功能材料一般利用压电材料的压电功能、热释电功能、电致伸缩功能或光电功能 2、半导体材料的导电率取决于材料中的载流子浓度和电子迁移率 3、自发磁化的物理本质是电子间的静电交换相互作用,材料具有铁磁性的充分必要条件为:(1)必要条件材料原子中具有未充满的电子壳层,即原子磁矩和(2)充分条件交换积分 A>0 4、V族杂质在硅锗中电离,故放出电子产生导电导子形成正电中心,称为施主,释放电子的过程称为施主电离。依靠导带电子导电的半导体称为n型半导体 5、混响是指声源在房间内停止发声后,残余声能仍在房间内往复发射而保留一段时间 6、荧光材料由基质和激活离子组成,前者的主要作用是为后者提供一个合适的晶格场。 7、电子电导的特征是具有霍尔效应 8、应变用来表征材料受力时内部各质点之间的相对位移,对于各向同性材料,有三种基本的应变类型,分别是拉伸应变、剪切应变和压缩应变 9、裂纹有三种扩展方式:张开型、错开型和撕开型 三、判断题 1、金属材料其价电子数越高,则参与导电的电子数越多,电阻率越低。(F)

材料科学基础知识总结

第十一章固态相变与材料处理 第一节固态相变总论 一.固态相变的特点与分类 固态相变时至少存在以下变化之一:晶体结构的变化;化学成分的变化;有序度的变化,如合金的有序化转变,即点阵中原子的配位发生变化 相变的驱动力是新相和母相间的自由能之差驱动力靠过冷度来获得 阻力: 新相晶核形成时引起的界面能和体积应变能,固态相变也符合最小自由能原理。1)固态相变的特点 1.固态相变阻力大 2.原子迁移率低 3.非均匀形核 4.新相有特定形状 5.相界面结构关系 6.存在一定的位向关系和惯习面 2)固态相变的分类 1. 按热力学分类 一级相变:有体积变化,有相变潜热(放热或吸热),大多数相变属于一级相变; 二级相变:二级相变时仅有材料的压缩系数、比热容、热膨胀系数变化。如磁性转变、有序转化。 2. 按动力学分类:依据原子运动特征分 扩散型相变:相变时有原子长距离扩散(超过原子间距),导致成分变化,大多数相变属于扩散型; 无扩散型相变:没有原子扩散,相变前后没有成分变化;(如马氏体相变) 3. 按相变方式分类: 形核-长大型相变:新相与母相间有界面,大多数相变为此类; 无核相变:新旧相之间无明显界面,如调幅分解。 二. 相变的热力学 1)相变时自由能的变化 假设在均匀母相α中形成一个半径为r的球形新相β,则系统总自由能变化量为:ΔG ΔG= Gβ-Gα Gα代表原始相(即母相)的Gibbs自由能 Gβ代表生成相(即新相)的Gibbs自由能 固态相变时形成半径为r的球形晶胚所引起系统自由能的变化(ΔG)为: △G=-(4π/3)r3(△GV+△GE)+4πr2γαβ ΔGν----形成单位体积晶核时的自由能变化,常为负值; ΔGE----形成单位体积晶核时所产生的应变能; γ----晶核与基体之间交界面的单位面积界面能 化学自由能使系统的总自由能降低,是相变的驱动力;而界面能和应变能是相变的阻力。相变发生的条件是系统的总自由能的下降,即△G<0 2)相变时临界形核条件

2008材料物理考题A

课程号: 0302053 《材料物理A 》期末考试试卷(A ) 考试形式:闭卷考试 考试时间:120分钟 班号 学号 姓名 得分 题号 一 二 三 四 总分 得分 一、填空题(每小题3分,共30分) 1.根据断裂前发生塑性形变的情况,大体上可把材料的断裂方式分为 断裂和 断裂,其中 断裂具有很大的危险性! 2.影响无机热导率的因素有温度, 、 、 等。 3.光的 使物体呈现出不同的颜色,光的 使人们能看到自身不发光物体的存在。 4.采用 实验可以确定材料是电子导电,采用 实验可以确定材料是离子导电。 5.离子晶体中的电导主要是离子电导,离子电导分为: 和 两大类,其中 高温时显著。 6.铁电陶瓷只有经过极化处理才能显示压电效应,影响极化的三个因素包括 , , 。 7.物质的磁性主要由 引起。铁磁性来源于原子未被抵消 的 和 。 8.不受外力的情况下,如(图1)所示给出了两种材料内部原子间的结合力与其距离之间的关系,其中 21αα<,根据图中所给条件,试判别这两种材料的杨氏模量1E 2E 的关系(填大于、小于或等于)。 图1

9.离子晶体在弱电场的作用下,离子的迁移率 与无关,与 和有关。 10.掺杂半导体中影响电子电导率的主要因素是、和。 二、简答题(每小题5分,共40分) 1.简述铁电体、压电体、热电体、介电体的关系。 2.简述半导体的分类。 本征半导体,其载流子 3.简述热应力产生的原因(举例说明)。 4.简述提高无机材料透光性的措施有哪些? 5.本征离子电导的导电离子(载流子)主要由什么缺陷提供?其载流子浓度: n=N exp(E/2kT)中E的物理意义是什么?

第6章气体在固体中的溶解与扩散

气体在固体中的溶解和扩散

气体在固体中的溶解和扩散 ?气体分子的溶解与渗透 ?溶解 由两种或两种以上物质所组成的均匀体系叫做“溶体”。溶体中含量较多的成分称为“溶剂”,其余称为“溶质”。溶剂可以是液体,也可以是气体、固体;溶质可以是固体,也可以是气体、液体。 ?渗透和渗透率 由于在真空容器器壁两侧的气体总是存在压力差,即使固体壁面材料上存在的微孔小到足以阻止正常气体通过,但任何固体材料总是或多或少地渗透一些气体。气体从密度大的一侧向密度小的一侧渗入、扩散、通过、和逸出固体阻挡层的过程成为渗透。这种情况下气体的稳态流率称为渗透率。 ?气体溶质溶解于固体溶剂中的情况 从微观的角度来看,气体溶解于固体的过程可分为五个步骤: ①吸附 在高压侧,气体分子吸附在固体表面上; ②离解 吸附的气体分子有时在固体表面上离解为原子态; ③溶解 气体在固体表层达到与环境气压相对应的溶解浓度; ④扩散 由于表层浓度比较高,在浓度梯度的作用下气体分子

(或原子)向固体深部扩散,直到浓度均匀为止; ⑤脱附 溶质气体扩散到器壁的另一面重新结合成分子后释放(或气体扩散到器壁的另一面后解吸和释出;

气体在固体中的溶解和扩散 ?扩散速度与溶解度 溶解和渗透速度一般由扩散速度所决定,而最终固体材料可溶解的气体量则取决于溶解度。 ?扩散速度——研究溶解(或解溶)的动力学参量 表示溶解(或解溶)没有达到平衡时的进行速度,研究扩散可以知道固体材料吸收或放出气体 的速度。与渗透气体及壁面材料的种类和性质有密切关系; ?溶解度——研究溶解的静力学参量 在一定温度、一定气压下,固体能溶解气体的饱和浓度,称为该温度及气压下的“溶解度”。溶 解度表示材料内溶解达到动态平衡时所溶解的气体量,研究溶解度可以知道各种固体材料在一 定条件下能溶解多少气体; ?影响溶解度的因素 从宏观来看,溶解度与气体一固体组合的性质、气体压强、温度有关。 ?气体在固体中的溶解度——近似有理想溶体的性质 ①如果溶解时各物质成分能以任何比例互溶,体积有可加性,没有热效应发生,则形 成的溶体称为“理想溶体” ②当溶质浓度很小时,许多实际溶体表现得很像理想溶体。气体在固体中的溶解度一般

《材料科学基础》第四章 固体中的扩散

第四章固体中的扩散 物质传输的方式: 1、对流--由内部压力或密度差引起的 2、扩散--由原子性运动引起的 固体中物质传输的方式是扩散 扩散:物质中的原子或分子由于热运动而进行的迁移过程 本章主要内容: 扩散的宏观规律:扩散物质的浓度分布与时间的关系 扩散的微观机制:扩散过程中原子或分子迁移的机制 一、扩散现象 原子除在其点阵的平衡位置作不断的振动外,某些具有高能量的单个原子可以通过无规则的跳动而脱离其周围的约束,在一定条件下,按大量原子运动的统计规律,有可能形成原子定向迁移的扩散流。

将两根含有不同溶质浓度的固溶体合金棒对焊起来,形成扩散偶,扩散偶沿长度方向存在浓度梯度时,将其加热并长时间保温,溶质原子必然从左端向右端 迁移→扩散。沿长度方向浓度梯时逐渐减少,最后整个园棒溶质原 子浓度趋于一致 二、扩散第一定律(Fick第一定律) Fick在1855年指出:在单位时间内通过垂直于扩散方向某一单位截面积的扩散物质流量 (扩散通量)与该处的浓度梯度成正比。 数学表达式(扩散第一方程) 式中 J:扩散通量:物质流通过单位截面积的速度,常用量钢kg·m-2·s-1

D:扩散系数,反映扩散能力,m2/S :扩散物质沿x轴方向的浓度梯度 负号:扩散方向与浓度梯度方向相反 可见:1), 就会有扩散 2)扩散方向通常与浓度方向相反,但并非完全如此。 适用:扩散第一定律没有考虑时间因素对扩散的影响,即J和dc/dx不随时间变化。故Fick 第一定律仅适用于dc/dt=0时稳态扩散。 实际中的扩散大多数属于非稳态扩散。 三、扩散第二定律(Fick第二定律) 扩散第二定律的数学表达式 表示浓度-位置-时间的相互关系推导: 在具有一定溶质浓度梯度时固溶体合金棒中(截面积为A)沿扩散方向的X 轴垂截取一个微体积元A·dx,J 1,J 2 分别表示流入和流出该微体积元的扩散通 量,根据扩散物质的质量平衡关系,流经微体积的质量变化为: 流入的物质量—流出的物质量=积存的物质量 物质量用单位时间扩散物质的流动速度表示,则流入速率为 ,流出速率为

材料物理期末考试题讲解学习

电致伸缩:电介质在外电场的作用下,发生尺寸变化即产生应变现象,起应变大小与所加电压的平方成正比。 压电效应:在某些晶体特定的方向上加力,则在里的垂直方向上的平面上出现正负束缚电子。 电导率:当施加的电场产生电流时电流密度正比于电场强度,其比例常数即电导率。 磁滞现象:退磁时M的变化落后于H的变化的现象。 磁致伸缩:此题在磁场中磁化,形状和尺寸都会发生变化的现象。 磁弹性能:物体在磁化时伸长或收缩受到限制,则在物体内部形成应力,从而内部将产生弹性能,即磁弹性能。 磁化现象:物体在外加磁场H作用下,能够产生磁化的材料。 比热容:单位质量物质上升1K所需要的能量(条件:无相变)物理含义:晶格热振动状态改变所需要吸收或放出的能量热稳定性,材料承受温度的急剧变化而不致破坏的能力。 热熔:物质温度升高1K所需要的能量。 热膨胀:固体材料受热以后晶格震动加剧而引起的容积膨胀。 热传导:一块材料的温度不均匀或者两个温度不同的物体接触,热量会自动从高温区向低温区传播的现象。

1. 2.为什么锗半导体材料最先得到应用,而现在的半导体材料却大都采用硅半导体? 答:锗比较容易提纯,所以最初发明的半导体三极管是锗制成的。但是,锗的禁带宽度(0.67 ev)大约是硅的禁带宽度(1.11 ev)的一半,所以硅的电阻率比锗大,而且在较宽的能带中能够更加有效的设置杂质能级,所以后来硅半导体逐渐取代了锗半导体。硅取代锗的另一个原因是硅的表面能够形成一层极薄的二氧化硅绝缘膜,从而能够制备MOS三极管。因此,现在的半导体材料大都采用硅半导体。 3.经典自由电子论、量子自由电子论和能带理论分析材料导电性理论的主要特征是什么? 答:经典自由电子论:连续能量分布的价电子在均匀势场中的运动;量子自由电子论:不连续能量分布的价电子在均匀势场中的运动;能带理论:不连续能量分布的价电子在周期性势场中的运动。 根据经典自由电子论,金属是由原子点阵组成的,价电子是完全自由的,可以在整个金属中自有运动,就好像气体分子能够在一个容器内自由运动一样,故可以把价电子看出“电子气”。 自由电子的运动遵从经典力学的运动规律,遵守气体分子运动论。在电场的作用下,自由电子将沿电场的反方向运动,从而在金属中形成电流。 量子自由电子论认为,金属离子形成的势场各处都是均匀的,价电子是共有化的,它们可以不属于某个原子,可以在整个金属内自有运动,电子之间没有相互作用。电子运动遵从量子力学原理,即电子能量是不连续的,只有出于高能级的电子才能够跃迁到低能级,在外电场的作用下,电子通过跃迁实现导电。 能带理论认为,原子在聚集时,能级变成了能带,在某些价带内部,只存在着部分被电子占据的能级,而在价带中能量较高的处于上方的能级很少有电子占据,在外场作用下,电子就能够发生跃迁,从而实现导电。 4. 5.简述施主半导体的电导率与温度的关系。 答:施主的富余价电子的杂质原子的电子能级低于半导体的导带。这个富余价电子并没有被施主束缚的很紧,只要有一个很小的能量Ed,就可以使这个电子进入导带。此时影响电导率的禁带不是E g,而是E d,施主的这个价电子进入导带后,不会在价带中产生空穴。随着温度的升高,越来越多的施主电子越过禁带Ed,进入导带,最后所有的施主电子都进入导带,此时称为施主耗尽。如果温度继续升高,电导率将维持一个常量,因为再没有更多的施主电子可用,而对于产生本征半导体的导电电子和空穴来说,此时的温度又太低,不足以使电子跃迁较大的

材料科学基础重点知识知识讲解

精品文档 第5章 纯金属的凝固 1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。 结晶过程:形核和长大过程交替重叠在一起进行 2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学看,没有过冷度结晶就没有趋动力。根据 T R k ?∝1可知当过冷度T ?=0时临界晶核半径R * 为无穷大,临界形 核功(2 1 T G ?∝?)也为无穷大,无法形核,所以液态金属不能结 晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间 3、均匀形核和非均匀形核 均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。 非均匀形核:液态金属原子依附于固态杂质颗粒上形核的方式。 临界晶核半径:ΔG 达到最大值时的晶核半径r *=-2γ/ΔGv 物理意义: r0,晶核不能自动形成。 r>rc 时, ΔGv 占优势,故ΔG<0,晶核可以自动形成,并可以稳定生长。 临界形核功:ΔGv *=16πγ3/3ΔGv 3 形核率:在单位时间单位体积母相中形成的晶核数目。受形核功因子和原子扩散机率因子控制。 4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。在凝固结晶前沿的过冷度随离界面距离的增加而减小。纯金属结晶平面生长。 负的温度梯度:过冷度随离界面距离的增加而增加。纯金属结晶树枝状生长。 5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。 粗糙界面即非小平面界面:固液两相间界面微观上看高低不平,存在很薄的过渡层,故从宏观上看界面反而平直,不出现曲折小平面的界面。 6、凝固理论的应用:细化晶粒、定向凝固技术、单晶体的制备、非晶态合晶的制备 7、晶粒细化的方法和原理 晶粒度:实际金属结晶后,获得由大量晶粒组成的多晶体的晶粒的大小 细晶强化:通过细化晶粒来提高材料强度的方法 细化晶粒的方法:增加过冷度:提高冷却速度和过冷能力;变质处理:往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法;振动与搅拌:使正在生长的枝晶破碎,提供能量促使自发晶核的形成。 机理:晶粒越细小,位错塞集群中位错个数n 越小,根据τ=n τ0应力集中越小,故材料的强度越高。 第6章 固体中的扩散

相关文档
最新文档