人教A版数学必修一高中数学综合测试卷(一)
高中数学人教A版必修第一册全册测试卷(含答案)
……○…………学校:_________装…………○…………订绝密★启用前2021-2022学年度XXX 学校测试卷高中数学试卷考试范围:必修第一册;考试时间:120分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知全集{}1,2,3,4,5U =,{}1,3A =,则UA =( )A .∅B .{}1,3C .{}2,4,5D .{}1,2,3,4,52.已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是( )A .2B .3C .4D .53.定义在R 上的函数f (x )=2|x -m |-1为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则( ) A .a <b <c B .a <c <b C .c <a <bD .c <b <a4.设全集U =R ,{}220A x x x =-<,{}10B x x =->,则如图阴影部分表示的集合为( )A .{}1x x ≥B .{}1x x ≤C .{}01x x <≤D .{}12x x ≤<5.直线y a =与函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的图象的相邻两个交点的距离为2π,若()f x 在()(),0m m m ->上是增函数,则m 的取值范围是( ) A .(0,]4πB .(0,]2πC .3(0,]4π D .3(0,]2π6.设全集U =R ,(2){|ln(2)},{|21}x x A x N y x B x -=∈=-=≤,A B =( ) A .{|1}x x ≥B .{|12}x x ≤<C .{}1D .{}0,17.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( )A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞8.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( ) A .1 B .2C .3D .12二、多选题9.已知0<a <b <1<c ,则下列不等式不成立的是( ) A .ac <bc B .cb <ca C .log log a b c c >D .sin a >sin b10.已知0a >,0b >,且222a b +=,则下列不等式中一定成立的是( ) A .1≥ab B .2a b +≤ C .lg lg 0a b +≤D .112a b+≤11.已知(0,)θπ∈,1sin cos 5θθ+=,则下列结论正确的是( ) A .,2πθπ⎛⎫∈ ⎪⎝⎭B .3cos 5θ=-C .3tan 4θ=-D .7sin cos 5θθ-=12.将函数3tan 3y x π⎛⎫=+ ⎪⎝⎭的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再把得到的图象向右平移3π个单位长度,得到函数()y g x =的图象,下列结论正确的是( )A .函数()y g x =的图象关于点,06π⎛⎫⎪⎝⎭对称B .函数()y g x =的图象最小正周期为πC .函数()y g x =的图象在0,4⎡⎤⎢⎥⎣⎦π上单调递增…………外……………内…………○…………装D .函数()y g x =的图象关于直线512x π=对称 第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题13.22(lg 2)(lg5)lg 4lg5++⋅=________.14.已知命题0:p x ∃∈R ,2000x ax a ++<是假命题,则实数a 的取值范围是________.(用区间表示)15.关于函数()12log 1f x x =-,有以下四个命题:①函数()f x 在区间(),1-∞上是单调增函数;①函数()f x 的图象关于直线1x =对称;①函数()f x 的定义域为()1,+∞;①函数()f x 的值域为R .其中所有正确命题的序号是________.16.设区间[]()1221,x x x x >的长度为21x x -,当函数2x y =的定义域为[,]a b 时,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的和为____________.四、解答题17.(1)计算:2310227-⎛⎫+ ⎪⎝⎭+23log 2-34log 9-525log 9; (2)已知角α的终边经过点M (1,-2),求()5sin()cos()22cos ππααπα+-+的值. 18.已知函数2()2sin cos (0)f x x x x ωωωω=+>的最小正周期为π. (1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值. 19.如图,在平面直角坐标系xOy 中,角θ的终边与单位圆交于点P .(1)若点P 的横坐标为35,求cos2sin cos θθθ-⋅的值.(2)若将OP 绕点O 逆时针旋转4π,得到角α(即4παθ=+),若1tan 2α=,求tan θ的值.20.(1)求关于x 的一元二次不等式260x x --<的解集;(2)若一元二次不等式20x bx c ++≥的解集为{}21x x x ≥≤-或,求不等式210cx bx ++≥的解集.21.设函数()sin()sin()62f x x x ππωω=-+-,其中03ω<<.已知()06f π=.(①)求ω;(①)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的最小值.22.已知函数()1ln 1kx f x x -=+为奇函数. (1)求实数k 的值;(2)判断并证明函数()f x 的单调性;(3)若存在(),1,αβ∈+∞,使得函数()f x 在区间[],αβ上的值域为ln ,ln 22m m m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,求实数m 的取值范围.参考答案:1.C 【解析】 【分析】根据补集的定义可得结果. 【详解】因为全集{}1,2,3,4,5U =,{}1,3A =,所以根据补集的定义得{}2,4,5UA =,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 2.B 【解析】 【分析】根据题意把函数()3y f x x =-的零点问题即()30y f x x =-=的解,转化为函数()y f x =和3y x =的图像交点问题,由题可得()f x 关于1x =对称,由()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,可得()f x 的周期为4,根据函数图像,即可得解. 【详解】由()()2f x f x +=-可得()f x 关于1x =对称, 由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-, 所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,○…………线…………○…___○…………内…………○…………装…………○由图像可得共有3个交点,故共有3个零点, 故选:B. 3.C 【解析】 【分析】根据函数是偶函数求得参数m ,再结合对数运算求得,,a b c ,即可比较大小. 【详解】①函数f (x )为偶函数,则()()2121x mx mf x f x ---=-=-=-,故m =0,①f (x )=2|x |-1.①a =f (log 0.53)=f (-log 23)=2log 32-1=2, b =f (log 25)=2log 52-1=4, c =f (0)=20-1=0. ①c <a <b . 故选:C . 【点睛】本题考查利用函数奇偶性求参数值,涉及对数运算,属基础题. 4.D 【解析】解出集合A 、B ,然后利用图中阴影部分所表示的集合的含义得出结果. 【详解】{}{}22002A x x x x x =-<=<<,{}{}101B x x x x =->=<.图中阴影部分所表示的集合为{x x A ∈且}{}12x B x x ∉=≤<. 故选:D. 【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题. 5.B 【解析】先由已知求得函数的周期,得到ω,再整体代入正切函数的单调区间,求得函数()f x 的单调区间,可得选项. 【详解】因为直线y a =与函数()f x 的图象的相邻两个交点的距离为一个周期,所以12Tπω==,()1tan 24f x x π⎛⎫=+ ⎪⎝⎭,由12242k x k πππππ-<+<+,得322()22k x k k ππππ-<<+∈Z ,所以()f x 在3,22ππ⎛⎫- ⎪⎝⎭上是增函数,由3(,),22m m ππ⎛⎫-⊆-⎪⎝⎭,得02m π<≤. 故选:B. 【点睛】本题考查正切函数的周期性,单调性,属于基础题. 6.D 【解析】 【分析】由题分别算出集合,A B 包含的范围,再取交集即可. 【详解】由{|ln(2)}A x N y x =∈=-得20,2x x -><,又x ∈N 所以0,1x =. 又(2){|21}x x B x -=≤,其中(2)0212(2)0x x x x -≤=⇒-≤ 所以02x ≤≤,故{}{0,1},|02A B x x ==≤≤ ,所以{}0,1A B =. 故选D. 【点睛】本题主要考查集合的基本运算,注意看清集合是自变量还是因变量的范围. 7.D 【解析】 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案. 【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k > 综上,k 的取值范围为(,0)(22,)-∞+∞. 故选:D.…装…………○…………订…………○…………线…………○…___姓名:___________班级:___________考号:___________订…………○…………线…………○……………………○…………内…………○…………装…………○【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题. 8.A 【解析】根据函数||2x y =的图像,可知,a b 的长度最小时,此时函数单调,区间长度是1,区间长度最大时,1,1a b =-=,区间长度是2,从而得出答案. 【详解】若函数2xy =单调,则,a b 的长度最小,若函数单调递增,0,1a b ==,此时区间长度是1,若函数单调递减,……○…………线…_________……○…………内…………○…则1,0a b =-=,此时区间长度是1,所以区间,a b 的长度的最小值是1, 若函数在区间,a b 不单调,值域又是[]1,2,则区间的最大值1,1a b =-=, 此时区间长度是()112--=,则区间,a b 的长度的最大值和最小值的差是211-=.故选:A. 【点睛】本题考查的知识点是区间的概念,函数的定义域和值域,对数函数的单调性,属于基础题型. 9.BD 【解析】 【分析】利用函数的单调性判断即可. 【详解】 对于A ,c y x =在0,1上是增函数,01a b <<<,cc a b ,故不等式成立,故A 不符合题意; 对于B ,1c >,x y c 在0,1上是增函数,01a b <<<,a b c c ,故不等式不成立,故B 符合题意;对于C ,01a b <<<,根据对数函数的性质在同一坐标系下画出log a y x =和log b y x =的图象,可以根据图象判断,当1c >时,log log a b c c >,故不等式成立,故C 不符合题意;………○…………线…………○…:___________…………○…………内…………○…………装…………○对于D ,sin y x =在0,1上是增函数,∴当01a b <<<时,sin sin a b <,故不等式不成立,故D 符合题意. 故选:BD. 【点睛】本题考查指数式、对数式、正弦值的大小判断,利用函数的单调性判断是解决问题的关键,属于基础题. 10.BC 【解析】 【分析】对于AD ,举例判断,对于BC ,利用基本不等式判断 【详解】解:对于A ,令2a b ==222a b +=,则12ab ==<,所以A 错误,对于B ,因为22222()22224a b a b ab ab a b +=++=+≤++=,所以2a b +≤,当且仅当1a b ==时取等号,所以B 正确,对于C ,因为22lg lg lg lg lg102a b a b ab ++=≤==,当且仅当1a b ==时取等号,所以C 正确,对于D ,令a b ==222a b +=,则11 1.4140.81652a b +=≈+>,所以D 错误, 故选:BC 11.ABD 【解析】 【分析】 对1sin cos 5θθ+=两边平方,利用同角关系化简可得2sin cos θθ,在根据θ范围,确定sin 0θ>,cos 0θ<;根据()2sin cos 12sin cos θθθθ-=-,求出sin cos θθ-的值,将其与1sin cos 5θθ+=联立,求出sin ,cos θθ,再根据三角函数同角的基本关系,结合各选项,即可得到结果. 【详解】1sin cos 5θθ+=①,()221sin cos 5θθ⎛⎫∴+= ⎪⎝⎭,即221sin 2sin cos cos 25θθθθ++=,242sin cos 25θθ∴=-, (0,)θπ∈,sin 0θ∴>,cos 0θ<,,2πθπ⎛⎫∴∈ ⎪⎝⎭,故A 正确;()249sin cos 12sin cos 25θθθθ∴-=-=, 7sin cos 5θθ∴-=①,故D 正确;①加①得4sin 5θ=,①减①得3cos 5θ=-,故B 正确;4sin 45tan 3cos 35θθθ∴===--,故C 错误.故选:ABD . 【点睛】关键点睛:本题主要考查了三角函数同角的基本关系的应用,解题的关键是正确利用平方关系进行化简. 12.AC先根据函数图像的变换求得()g x 的解析式,再求其函数性质即可. 【详解】由题可知,()3tan 23tan 2333g x x x πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为06g π⎛⎫= ⎪⎝⎭,故A 正确;因为()g x 的周期为2T π=,故B 错误;因为0,4x π⎡⎤∈⎢⎥⎣⎦,故可得2,,33622x πππππ⎡⎤⎛⎫-∈-⊆- ⎪⎢⎥⎣⎦⎝⎭,故C 正确;因为正切函数不是轴对称函数,故D 错误. 故选:AC. 【点睛】本题考查函数图像的变换以及正切型函数的性质,属综合基础题. 13.1; 【解析】根据对数的运算法则计算可得. 【详解】解:22(lg 2)(lg5)lg 4lg5++⋅ 222(lg 2)(lg 5)lg 2lg 5=++⋅ 22(lg 2)(lg 5)2lg 2lg 5=++⋅()2lg 2lg5=+ ()2lg 25=⨯⎡⎤⎣⎦21=1=故答案为:1 【点睛】本题考查对数的运算,属于基础题. 14.[0,4]先得到命题x ∀∈R ,20x ax a ++≥是真命题,根据一元二次不等式恒成立,列出不等式求解,即可得出结果. 【详解】因为命题0:p x ∃∈R ,2000x ax a ++<是假命题, 所以命题x ∀∈R ,20x ax a ++≥是真命题, 即不等式20x ax a ++≥对任意x ∈R 恒成立, 所以只需240a a ∆=-≤,解得04a ≤≤, 即实数a 的取值范围是[0,4]. 故答案为:[0,4]. 15.①①① 【解析】 【分析】利用函数的单调性判断①的正误;利用函数的对称性判断①的正误;求出函数的定义域判断①的正误;由函数的值域判断①的正误. 【详解】函数()12log 1f x x =-在区间(1,)+∞上单调递减,在区间(,1)-∞上单调递增,所以①正确;函数()12log 1f x x =-,函数的图象关于直线1x =对称,所以①正确;函数()12log 1f x x =-的定义域是{}|1x x ≠,所以①不正确;函数()12log 1f x x =-,函数的值域是实数集,所以①正确.故答案为:①①①. 【点睛】本题考查对数型函数的定义域、值域与最值和单调区间,考查对基础知识、基本技能的理解和掌握,属于常考题. 16.2 【解析】 【分析】根据函数2x y =的单调性,可求出其值域,再结合其值域为[1,2],可确定,a b ,从而可求出区间[,]a b 的长度的最大值与最小值. 【详解】因为函数2x y =的定义域为[,]a b ,而函数2x y =在[,]a b 上是单调增函数; 所以函数2x y =的值域为[2,2]a b ,由已知函数2x y =的值域为[1,2],所以2122a b ⎧=⎨=⎩,解得01a b =⎧⎨=⎩,所以函数()f x 的定义域为[0,1],所以区间[0,1]的长度的最大值和最小值均为1, 所以区间[0,1]的长度的最大值与最小值的和为2. 故答案为:2 【点睛】方法点睛:破解新型定义题的方法是:紧扣新定义的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利解决. 17.(1)-716;(2.【解析】 【分析】(1)直接利用分数指数幂的运算和对数的运算求解即可;(2)由三角函数的定义可求得sin α,再对()5sin()cos()22cos ππααπα+-+利用诱导公式化简可得结果 【详解】(1)原式=6427⎛⎫ ⎪⎝⎭-23+2log 32-2log 323-55log 3=34⎛⎫ ⎪⎝⎭2+2-3=-716.(2)①角α的终边经过点M (1,-2), ①sin α,①()5sin()cos()22cos ππααπα+-+ =cos sin cos ααα-=-sin α【点睛】此题考查对数的运算,考查了三角函数的定义,考查了诱导公式的应用,考查计算能力,属于基础题18.(1)5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)5912π. 【解析】 【分析】(1)先利用三角函数恒等变换公式将函数化简得()2sin 23f x x πω⎛⎫=- ⎪⎝⎭,再由最小正周期为π,可求得1ω=,从而可得函数的解析式,然后由222,232k x k k Z πππππ-≤-≤+∈可求出函数的增区间;(2)由三角函数图像变换求出()y g x =的解析式,令()0g x =,求出其零点712x k ππ=+或11(Z)12x k k ππ=+∈,再由()y g x =在[0,](0)b b >上至少含有10个零点,可求出b 的最小值【详解】解:(1))2()2sin cos 2sin 1f x x x x ωωω=-sin 222sin 23x x x πωωω⎛⎫==- ⎪⎝⎭.由最小正周期为π,得1ω=,所以()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由222,232k x k k Z πππππ-≤-≤+∈,整理得5,1212k x k k Z ππππ-≤≤+∈,所以函数()f x 的单调递增区间是5,,Z 1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,可得到2sin 21y x =+的图像,所以()2sin 21g x x =+.令()0g x =,得712x k ππ=+或11(Z)12x k k ππ=+∈, 所以在[0,]π上恰好有两个零点,若()y g x =在[]0,b 上至少有10个零点,则b 不小于第10个零点的横坐标即可, 所以b 的最小值为115941212πππ+=. 19.(1)15(2)13-【解析】 【分析】(1)由三角函数的定义知,3cos 5θ=-,4sin 5θ=,又2cos22cos 1θθ=-,代入即可得到答案;(2)利用公式()tan tan tan 1tan tan αβαβαβ--=+⋅计算即可.【详解】(1)P 在单位圆上,且点P 的横坐标为35,则3cos 5θ=-,4sin 5θ=,2cos 2sin cos 2cos 1sin cos θθθθθθ∴-⋅=--⋅93412125555⎛⎫=⨯---⨯= ⎪⎝⎭.(2)由题知4παθ=+,则4πθα=-则1tan tan1142tan tan 1431tan tan 142παπθαπα--⎛⎫=-===- ⎪⎝⎭+⋅+. 【点睛】本题考查二倍角公式以及两角差的正切公式的应用,涉及到三角函数的定义,是一道容易题.20.(1){}23x x -<<;(2)112x x ⎧⎫-≤≤⎨⎬⎩⎭.【解析】 【分析】(1)直接解不含参数的一元二次不等式即可;(2)由题意可知2和1-是方程20x bx c ++=的两个实数根,结合韦达定理求出,b c 的值,进而解不含参数的一元二次不等式即可. 【详解】解:(1)因为260x x --<,则(3)(2)0x x -+<,即23x -<<, 故260x x --<的解集为{}23x x -<<;(2)不等式的解集为20x bx c ++≥的解集{}21x x x ≥≤-或,∴2和1-是方程20x bx c ++=的两个实数根,即1212bc -+=-⎧⎨-⨯=⎩,解得,1b =-,2c =-,则不等式210cx bx ++≥等价于2210x x --+≥, 即2210x x +-≤,因此()()2110x x -+≤,解得112x ≤≤-, 故所求不等式的解集为112x x ⎧⎫-≤≤⎨⎬⎩⎭.21.(①) 2ω=. (①) 32-.【解析】 【详解】试题分析:(①)利用两角和与差的三角函数化简得到()y f x =)3x πω=-由题设知(06f π=及03ω<<可得.(①)由(①)得())3f x x π-从而()))4312g x x x πππ=+-=-. 根据3[,44x ππ∈-得到2[,]1233x πππ-∈-,进一步求最小值.试题解析:(①)因为()sin()sin(62f x x x ππωω=-+-,所以1()cos cos 2f x x x x ωωω=-- 3cos 2x x ωω- 1sin )2x x ωω)3x πω-由题设知(06f π=,所以63k ωπππ-=,k Z ∈.故62k ω=+,k Z ∈,又03ω<<, 所以2ω=.(①)由(①)得())3f x x π-所以()))4312g x x x πππ=+-=-.因为3[,44x ππ∈-, 所以2[,]1233x πππ-∈-,当123x ππ-=-,即4x π=-时,()g x 取得最小值32-. 【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽视设定角的范围.难度不大,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.22.(1)1;(2)增函数,证明见解析;(3)209m << 【解析】(1)根据函数奇函数的定义和条件()()0f x f x +-=,求出k 的值之后再验证是否满足函数的定义域关于原点对称即可;(2)根据函数的单调性和对数函数的单调性即可证明;(3)假设存在,αβ,使得函数()f x 在区间[],αβ上的值域为,22m m ln m ln m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由()f x 在()1,+∞上递增,程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,可得m的不等式组,解不等式即可得到实数m 的取值范围,即可得到判断存在性. 【详解】(1)因为函数()1ln1kx f x x -=+为奇函数,所以()()0f x f x +-=, 即()()()()22211111ln ln ln ln 011111kx kx kx kx k x x x x x x -------+===+-++-+-对定义域内任意x 恒成立,所以21k =,即1k =±,显然1k ≠-,又当1k =时,1()ln 1x f x x -=+的定义域关于原点对称. 所以1k =为满足题意的值.(2)结论:()f x 在(),1-∞,()1,+∞上均为增函数. 证明:由(1)知()1ln1x f x x -=+,其定义域为()(),11,-∞-+∞,任取12,(1,)x x ∈+∞,不妨设12x x <,则 ()()()()()()11212222111111ln 111ln 1lnx x x x f x f x x x x x --+=+--=++--, 因为()()()()()121212111120x x x x x x -+-+-=-<,又()()12110x x +->, 所以()()()()1212110111x x x x -+<<+-,所以()()()()()()12121211ln 011x x f x f x x x -+-=<+-, 即()()12f x f x <,所以()f x 在()1,+∞上为增函数. 同理,()f x 在(),1-∞上为增函数. (3)由(2)知()f x 在()1,+∞上为增函数,又因为函数()f x 在[],αβ上的值域为11ln ,ln 22m m αβ⎡⎤⎛⎫⎛⎫-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以0m >,且1ln ln ,121ln ln 12m m m m αααβββ⎧-⎛⎫=- ⎪⎪+⎝⎭⎪⎨-⎛⎫⎪=- ⎪⎪+⎝⎭⎩,所以1,12112m m m m αααβββ-⎧=-⎪+⎪⎨-⎪=-+⎪⎩,即,αβ是方程112x mmx x -=-+的两实根, 问题等价于方程211022m m mx x ⎛⎫--+-= ⎪⎝⎭在()1,+∞上有两个不等实根,令()21122m m h x mx x ⎛⎫=--+- ⎪⎝⎭,对称轴1124x m =- 则()201112414102210m m m m m h m >⎧⎪⎪->⎪⎨⎛⎫⎛⎫⎪∆=---> ⎪ ⎪⎪⎝⎭⎝⎭⎪=>⎩, 即0205229m m m m >⎧⎪⎪<<⎨⎪⎪><⎩或,解得209m <<. 【点睛】本题主要考查函数奇偶性和单调性的应用以及函数和方程的转化以及一元二次方程在给定答案第17页,共17页 区间上解的问题,根据函数奇偶性和单调性的定义函数性质是解决本题的关键,考查学生分析问题与解决问题的能力,是难题.。
综合试卷一-【新教材】人教A版(2019)高中数学必修第一册
综合试卷一一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={(x,y)|2x﹣y=0},B={(x,y)|3x+y=0},则集合A∩B的子集个数为()A.0B.1C.2D.42.(5分)已知幂函数y=f(x)的图象过点,则下列结论正确的是()A.y=f(x)的定义域为[0,+∞)B.y=f(x)在其定义域上为减函数C.y=f(x)是偶函数D.y=f(x)是奇函数3.(5分)命题p:三角形是等边三角形;命题q:三角形是等腰三角形.则p是q()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)下列结论正确的是()A.若a>b>c>0,则B.若a>b>0,则b2<ab<a2C.若a>b>0,则ac2>bc2D.若a<b<0,则5.(5分)已知,则()A.b>a>c B.a>b>c C.b>c>a D.a>c>b6.(5分)设命题p:所有的矩形都是平行四边形,则¬p为()A.所有的矩形都不是平行四边形B.存在一个平行四边形不是矩形C.存在一个矩形不是平行四边形D.不是矩形的四边形不是平行四边形7.(5分)已知函数,若函数y=f(x)﹣k有三个零点,则实数k的取值范围为()A.(﹣2,﹣1]B.[﹣2,﹣1]C.[1,2]D.[1,2)8.(5分)已知函数f(x)的定义域为R,图象恒过(1,1)点,对任意x1<x2,都有则不等式的解集为()A.(0,+∞)B.(﹣∞,log23)C.(﹣∞,0)∪(0,log23)D.(0,log23)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(5分)下列结论正确的是()A.是第三象限角高一年级数学学科假期作业使用日期:寒假编辑:校对:审核:B .若圆心角为的扇形的弧长为π,则该扇形面积为C.若角α的终边过点P(﹣3,4),则D.若角α为锐角,则角2α为钝角10.(5分)已知函数其中a>0且a≠1,则下列结论正确的是()A.函数f(x)是奇函数B.函数f(x)在其定义域上有零点C.函数f(x)的图象过定点(0,1)D.当a>1时,函数f(x)在其定义域上为单调递增函数11.(5分)已知函数,则下列结论正确的是()A.函数f(x)的最小正周期为πB.函数f(x)在[0,π]上有三个零点C .当时,函数f(x)取得最大值D.为了得到函数f(x )的图象,只要把函数图象上所有点的横坐标变为原来的2倍(纵坐标不变)12.(5分)已知函数f(x)=x2﹣2x﹣3,则下列结论正确的是()A.函数f(x)的最小值为﹣4B.函数f(x)在(0,+∞)上单调递增C.函数f(|x|)为偶函数D.若方程f(|x﹣1|)=a在R上有4个不等实根x1,x2,x3,x4,则x1+x2+x3+x4=4三、填空题:本题共4小题,每小题5分,共20分.13.(5分)=.14.(5分)已知tan(α﹣)=2,则tanα=.15.(5分)已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x(x﹣1),则当x >0时,f(x)=.16.(5分)已知[x]表示不超过x的最大整数,如[﹣1.2]=﹣2,[1.5]=1,[3]=3.若f(x)=2x,g(x)=f(x﹣[x]),则=,函数g(x)的值域为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在①tanα=4,②7sin2α=2sinα,③cos这三个条件中任选一个,补充在下面问题中,并解决问题.已知,,cos(α+β)=﹣,,求cosβ.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知函数f(x)=x2+2(k﹣1)x+4.(1)若函数f(x)在区间[2,4]上具有单调性,求实数k的取值范围;(2)若f(x)>0对一切实数x都成立,求实数k的取值范围.19.(12分)已知函数f(x)=log a(3﹣x)+log a(x+3)(a>0,且a≠1).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由;(3)当a=3时,求函数f(x)的最大值.20.(12分)物联网(InternetofThings,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络.其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费y1(单位:万元),仓库到车站的距离x(单位:千米,x>0),其中y1与x+1成反比,每月库存货物费y2(单位:万元)与x成正比;若在距离车站9千米处建仓库,则y1和y2分别为2万元和7.2万元.这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?21.(12分)已知函数f(x)=a﹣(a∈R).(1)当a=时,求函数g(x)=的定义域;(2)判断函数f(x)的单调性,并用单调性的定义证明你的结论.22.(12分)已知函数f(x)=sin(x﹣)+cos(﹣x)+cos x+a的最大值为1.(1)求常数a的值;(2)求函数f(x)的单调递增区间;(3)求使f(x)<0成立的实数x的取值集合.期末综合一答案1.解:∵集合A={(x,y)|2x﹣y=0},B={(x,y)|3x+y=0},∴集合A∩B={(x,y)|}={(0,0)}.∴集合A∩B的子集个数为2.故选:C.2.解:设幂函数f(x)=xα,∵幂函数y=f(x )的图象过点,∴,∴,∴y=f(x)的定义域为(0,+∞),且在其定义域上是减函数,故选项A错误,选项B 正确,∵函数定义域为(0,+∞),不关于原点对称,所以不具有奇偶性,故选项C,D错误,故选:B.3.解:∵等边三角形一定是等腰三角形,反之不成立,∴p是q的充分不必要条件.故选:A.4.解:A.∵a>b>c>0,∴ab>0,∴,∴,∴,故A不正确;B.∵a>b>0,∴a(a﹣b)>0,b(a﹣b)>0,∴a2>ab>b2,故B正确;C.由a>b>0,取c=0,则ac2>bc2,故C错误;D.∵a<b<0,∴,故D错误.故选:B.5.解:∵a=tan=tan (+)==2+>2,b=cos=cos (+)=﹣sin<0,c=cos (﹣)=cos =<1,∴a>c>b.故选:D.6.解:因为全称命题的否定是特称命题,所以:命题p:所有的矩形都是平行四边形,则¬p为:存在一个矩形不是平行四边形.故选:C.7.选:A.8.解:由题意可得f(1)=1,对任意x1<x2,都有,则f(x1)﹣f(x2)<x2﹣x1即f(x1)+x1<f(x2)+x2,令g(x)=f(x)+x,则可得g(x)在R单调递增,且g(1)=2,由可得,g[log2(2x﹣1)]<g(1),故,解可得,0<x<log23.故选:D.9.解:对于A :是第而二象限角,所以A不正确;对于B :若圆心角为的扇形的弧长为π,则该扇形面积为:=.所以B正确;对于C:若角α的终边过点P(﹣3,4),则,所以C正确;对于D:若角α为锐角,则角2α为钝角,反例α=1°,则2α=2°是锐角,所以D不正确;故选:BC.10.解:函数其中a>0且a≠1,由于f(﹣x)=﹣f(x),且x∈R,所以函数为奇函数.当x =0时,f(0)=0,所以函数在其定义域上有零点,当当a>1时,函数中都为整函数,故在其定义域上为单调递增函数.故选:ABD.11.解:T ===π,故A正确;令f(x)=0,2x +=kπ,当x∈[0,π]时,x =,,故B不正确;当x =时,f(x )=取得最大值,故C正确;为了得到函数f(x )的图象,只要把函数图象上所有点的横坐标变为原来的倍(纵坐标不变),故D错误;故选:AC.12.解:二次函数f(x)在对称轴x=1处取得最小值,且最小值f(1)=﹣4,故选项A正确;二次函数f(x)的对称轴为x=1,其在(0,+∞)上有增有减,故选项B错误;由f(x)得,f(|x|)=|x|2﹣2|x|﹣3,显然f(|x|)为偶函数,故选项C正确;令h(x)=f(|x﹣1|)=|x﹣1|2﹣2|x﹣1|﹣3,方程f(|x﹣1|)=a 的零点转化为y=h(x)与y=a的交点,作出h(x)图象如右图所示:图象关于x=1 对称,当y=h(x)与y=a有四个交点时,两两分别关于x=1对称,所以x1+x2+x3+x4=4,故选项D正确.故选:ACD.13.解:原式=.故答案为:.14.解:∵tan(α﹣)=tan(α﹣)==2,则tanα=﹣3,故答案为:﹣3.15.解:∵f(x)是定义在R上的奇函数,且x≤0时,f(x)=x(x﹣1),设x>0,﹣x<0,则:f(﹣x)=﹣x(﹣x﹣1)=﹣f(x),∴f(x)=﹣x(x+1).故答案为:﹣x(x+1).16 .f(x)=2x,g(x)=f(x﹣[x]),g ()=f (﹣[])=f ()=f ()=2,由g(x)=2x﹣[x],[x]∈(x﹣1,x],x﹣[x]∈[0,1),所以g(x)∈[1,2),故答案为:;[1,2).四、解答题17.解:方案一:选条件①解法一:因为,所以.由平方关系sin2α+cos2α=1,解得或因为,所以.因为,由平方关系sin2(α+β)+cos2(α+β)=1,解得.因为,所以0<α+β<π,所以,所以cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα==.解法二:因为,所以点在角α的终边上,所以,.以下同解法一.方案二:选条件②因为7sin2α=2sinα,所以14sinαcosα=2sinα,因为,所以sinα≠0,所以.由平方关系sin2α+cos2α=1,解得.因为,所以.以下同方案一的解法一.方案三:选条件③因为,所以由平方关系sin2α+cos2α=1,得.因为,所以.以下同方案一的解法一.①18.解:(1)由函数f(x)=x2+2(k﹣1)x+4知,函数f(x)图象的对称轴为x=1﹣k.因为函数f(x)在区间[2,4]上具有单调性,所以1﹣k≤2或1﹣k≥4,解得k≤﹣3或k≥﹣1,所以实数k的取值范围为(﹣∞,﹣3]∪[﹣1,+∞).(2)解法一:若f(x)>0对一切实数x都成立,则△<0,所以4(k﹣1)2﹣16<0,化简得k2﹣2k﹣3<0,解得﹣1<k<3,所以实数k的取值范围为(﹣1,3).解法二:若f(x)>0对一切实数x都成立,则f(x)min >0,所以,化简得k2﹣2k﹣3<0,解得﹣1<k<3,所以实数k的为(﹣1,3).19.解:(1)要使函数有意义,则有,解得﹣3<x<3.所以函数f(x)的定义域为(﹣3,3).(2)函数f(x)为偶函数.理由如下:因为∀x∈(﹣3,3),都有﹣x∈(﹣3,3),且f(﹣x)=log a(3+x)+log a(﹣x+3)=log a(3﹣x)+log a(x+3)=f(x),所以f(x)为偶函数.(3)当a=3时,f(x)=log3(3﹣x)+log3(x+3)=log3[(3﹣x)(x+3)]=.令t=9﹣x2,且x∈(﹣3,3),易知,当x=0时t=9﹣x2取得最大值9,此时取得最大值log39=2,所以函数f(x)的最大值为2.20.解:设,其中x>0,当x=9时,,解得k=20,m=0.8,所以,y2=0.8x,设两项费用之和为z(单位:万元)则==7.2当且仅当,即x=4时,“=”成立,所以这家公司应该把仓库建在距离车站4千米处才能使两项费用之和最小,最小费用是7.2万元.21.解:(1)当时,函数,要使根式有意义,只需,所以,化简得3x≥3=31,解得x≥1,所以函数g(x)的定义域为[1,+∞);(2)函数f(x)在定义域R上为增函数.证明:在R上任取x1,x2,且x1<x2,则=,由x1<x2,可知,则,又因为,,所以f(x1)﹣f(x2)<0,即f (x1)<f(x2).所以f(x)在定义域R上为增函数.22.解:(1)∵====.(1)函数f(x)的最大值为2+a=1,所以a=﹣1.(2)对于函数f(x),由,解得,所以f(x)的单调递增区间为.(3)由(1)知.因为f(x)<0,即.∴,∴.所以,所以使f(x)<0成立的x的取值集合为.。
高中数学必修一练习题目( 带答案)
人教A 版·数学单元综合测试单元综合测试一(第一章)时间:120分钟 分值:150分1.集合{1,2,3}的所有真子集的个数为( ) A .3 B .6 C .7 D .82.下列五个写法,其中错误..写法的个数为( ) ①{0}∈{0,2,3};②Ø {0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=Ø A .1 B .2 C .3 D .4 C3.使根式x -1与x -2分别有意义的x 的允许值集合依次为M 、F ,则使根式x -1+x -2有意义的x 的允许值集合可表示为( ) A .M ∪F B .M ∩F C .∁M F D .∁F M4.已知M ={x |y =x 2-2},N ={y |y =x 2-2},则M ∩N 等于( ) A .N B .M C .R D .Ø5.函数y =x 2+2x +3(x ≥0)的值域为( ) A .R B .[0,+∞) C .[2,+∞) D .[3,+∞)6.等腰三角形的周长是20,底边长y 是一腰的长x 的函数,则y 等于( ) A .20-2x (0<x ≤10) B .20-2x (0<x <10) C .20-2x (5≤x ≤10) D .20-2x (5<x <10)7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h 和时间t 之间的关系是图1乙中的( )甲乙图18.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) ①y =f (|x |) ②y =f (-x ) ③y =xf (x ) ④y =f (x )+x A .①③ B .②③ C .①④ D .②④9.已知0≤x ≤32,则函数f (x )=x 2+x +1( )A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图211.若偶函数f (x )在区间(-∞,-1]上是增函数,则( )A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎡⎦⎤f (52)的值是( ) A .0 B.12 C .1 D.52第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________.15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.16.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}, (1)当x ∈N *时,求A 的子集的个数;(2)当x ∈R 且A ∩B =Ø时,求m 的取值范围.18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求a ,b 的值.19.(12分)已知函数f (x )=xax +b(a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.单元综合测试二(第二章)时间:120分钟 分值:150分1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5 D .62.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2 D .3 C3.如果log 12x >0成立,则x 应满足的条件是( )A .x >12 B.12<x <1C .x <1D .0<x <14.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数 B .减函数 C .有时是增函数有时是减函数 D .无法确定其单调5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( ) A .0.015克 B .(1-0.5%)3克C .0.925克 D.1000.125克6.函数y =log 2x 与y =log 12x 的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于y =x 对称7.函数y =lg(21-x-1)的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a cC .c a >c bD .log b c <log a c9.已知f (x )=log a (x +1)(a >0且a ≠1),若当x ∈(-1,0)时,f (x )<0,则f (x )是( ) A .增函数 B .减函数 C .常数函数 D .不单调的函数 10.设a =424,b =312,c =6,则a ,b ,c 的大小关系是( ) A .a >b >c B .b <c <a C .b >c >a D .a <b <c11.若方程a x =x +a 有两解,则a 的取值范围为( ) A .(1,+∞) B .(0,1)C .(0,+∞)D .Ø 12.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( )A .(110,1)B .(0,110)∪(1,+∞)C .(110,10) D .(0,1)∪(0,+∞)第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________. 14.方程log 2(x -1)=2-log 2(x +1)的解为________.15.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________.16.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值. 18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.22.(12分)设函数f (x )=log a (1-ax),其中0<a <1.(1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.单元综合测试三(第三章)时间:120分钟 分值:150分1.二次函数f (x )=2x 2+bx -3(b ∈R )的零点个数是( ) A .0 B .1 C .2 D .42.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .03.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零5.函数f (x )=e x -1x的零点所在的区间是( )A .(0,12)B .(12,1)C .(1,32)D .(32,2)6.方程log 12x =2x -1的实根个数是( )A .0B .1C .2D .无穷多个7.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =0.1x 2-11x +3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x 等于( )A .55台B .120台C .150台D .180台8.已知α是函数f (x )的一个零点,且x 1<α<x 2,则( ) A .f (x 1)f (x 2)>0 B .f (x 1)f (x 2)<0 C .f (x 1)f (x 2)≥0 D .以上答案都不对9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水( )A .10吨B .13吨C .11吨D .9吨10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图象为( )11.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( ) A .k =0 B .k >1 C .0≤k <1 D .k >1,或k =0A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0) 第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是__________.14.已知函数f (x )=ax 2-bx +1的零点为-12,13,则a =__________,b =__________.15.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l ,则这块场地面积y 与场地一边长x 的关系为________.图116.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c(1)(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:x 1 2 3 4 f (x ) 4.00 5.58 7.00 8.44(1)画出2000~(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?单元综合测试四(必修1综合检测)时间:120分钟 分值:150分题号1 2 3 4 5 6 7 8 9 10 11 12 答案1.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( ) A .{1,2,3} B .{1,2,4} C .{2,3,4} D .{1,2,3,4}2.如图1所示,U 表示全集,用A ,B 表示阴影部分正确的是( )图1A .A ∪B B .(∁U A )∪(∁U B )C .A ∩BD .(∁U A )∩(∁U B )3.若f (x )=1-2x ,g (1-2x )=1-x 2x 2(x ≠0),则g ⎝⎛⎭⎫12的值为( ) A .1 B .3 C .15 D .304.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,115.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7) B .(5,7) C .(-4,-3)∪(5,7) D .(-∞,-4)∪(5,+∞)6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( )A .单调递减无最小值B .单调递减有最大值C .单调递增无最大值D .单调递增有最大值7.方程(13)x =|log 3x |的解的个数是( )A .0B .1C .2D .3 8.下列各式中,正确的是( )A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)39.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图311.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m 的取值范围是( )A .(0,12) B .(-1,1)C .(-1,12)D .(-1,0)∪(1,12)12.(2009·山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.14.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.15.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)用定义证明:函数g (x )=kx(k <0,k 为常数)在(-∞,0)上为增函数.18.(12分)已知集合P ={x |2≤x ≤5},Q ={x |k +1≤x ≤2k -1},当P ∩Q =Ø时,求实数k 的取值范围.19.(12分)已知f (x )为一次函数,且满足4f (1-x )-2f (x -1)=3x +18,求函数f (x )在[-1,1]上的最大值,并比较f (2007)和f (2008)的大小.20.(12分)已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2.(1)求a,b的值;(2)若b<1,g(x)=f(x)-mx在[2,4]上单调,求m的取值范围.21.(12分)设函数y=f(x),且lg(lg y)=lg3x+lg(3-x).(1)求f(x)的解析式和定义域;(2)求f(x)的值域;(3)讨论f(x)的单调性.22.(12分)已知函数f(x)=lg(4-k·2x)(其中k为实数),(1)求函数f(x)的定义域;(2)若f(x)在(-∞,2]上有意义,试求实数k的取值范围.答案及详细解析单元测试一(第一章)时间:120分钟分值:150分1.集合{1,2,3}的所有真子集的个数为()A.3 B.6C.7 D.8解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.答案:C2.下列五个写法,其中错误..写法的个数为()①{0}∈{0,2,3};②Ø {0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=ØA.1 B.2C.3 D.4解析:②③正确.答案:C3.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值集合可表示为()A.M∪F B.M∩F C.∁M F D.∁F M解析:根式x-1+x-2有意义,必须x-1与x-2同时有意义才可.答案:B4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于()A.N B.M C.R D.Ø解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.答案:A5.函数y=x2+2x+3(x≥0)的值域为()A.R B.[0,+∞) C.[2,+∞) D.[3,+∞) 解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.答案:D6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于()A.20-2x(0<x≤10) B.20-2x(0<x<10)C.20-2x(5≤x≤10) D.20-2x(5<x<10)解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y=20-2x,x>5.答案:D7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的()甲乙图1解析:水面升高的速度由慢逐渐加快. 答案:B8.已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) ①y =f (|x |) ②y =f (-x ) ③y =xf (x ) ④y =f (x )+x A .①③ B .②③ C .①④ D .②④解析:因为y =f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ).①y =f (|x |)为偶函数;②y =f (-x )为奇函数;③令F (x )=xf (x ),所以F (-x )=(-x )f (-x )=(-x )·[-f (x )]=xf (x ).所以F (-x )=F (x ).所以y =xf (x )为偶函数;④令F (x )=f (x )+x ,所以F (-x )=f (-x )+(-x )=-f (x )-x =-[f (x )+x ].所以F (-x )=-F (x ).所以y =f (x )+x 为奇函数.答案:D9.已知0≤x ≤32,则函数f (x )=x 2+x +1( )A .有最小值-34,无最大值B .有最小值34,最大值1C .有最小值1,最大值194 D .无最小值和最大值解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.答案:C10.已知函数f (x )的定义域为[a ,b ],函数y =f (x )的图象如图2甲所示,则函数f (|x |)的图象是图2乙中的( )甲乙图2解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.答案:B11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( )A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1). 答案:D12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎣⎡⎦⎤f (52)的值是( ) A .0 B.12 C .1 D.52解析:令x =-12,则-12f (12)=12f (-12),又∵f (12)=f (-12),∴f (12)=0;令x =12,12f (32)=32f (12),得f (32)=0;令x =32,32f (52)=52f (32),得f (52)=0;而0·f (1)=f (0)=0,∴f ⎣⎡⎦⎤f (52)=f (0)=0,故选A.答案:A第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则∁U A ∩∁U B =________. 解析:∁U A ∩∁U B =∁U (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U . 答案:Ø14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则∁U (A ∩B )=________. 解析:A ∩B ={x |1≤x <2},∴∁R (A ∩B )={x |x <1或x ≥2}. 答案:{x |x <1或x ≥2}15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,求实数a 的取值范围为________.解析:函数f (x )的对称轴为x =1-a ,则由题知:1-a ≥3即a ≤-2. 答案:a ≤-216.若f (x )=(m -1)x 2+6mx +2是偶函数,则f (0)、f (1)、f (-2)从小到大的顺序是__________.解析:∵f (x )=(m -1)x 2+6mx +2是偶函数,∴m =0.∴f (x )=-x 2+2.∴f (0)=2,f (1)=1,f (-2)=-2,∴f (-2)<f (1)<f (0). 答案:f (-2)<f (1)<f (0)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)设A ={x |-2≤x ≤5},B ={x |m -1≤x ≤2m +1}, (1)当x ∈N *时,求A 的子集的个数;(2)当x ∈R 且A ∩B =Ø时,求m 的取值范围. 解:(1)∵x ∈N *且A ={x |-2≤x ≤5},∴A ={1,2,3,4,5}.故A 的子集个数为25=32个. (2)∵A ∩B =Ø,∴m -1>2m +1或2m +1<-2或m -1>5, ∴m <-2或m >6.18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且B ⊆A ,求a ,b 的值.解:(1)当B =A ={-1,1}时,易得a =0,b =-1; (2)当B 含有一个元素时,由Δ=0得a 2=b , 当B ={1}时,由1-2a +b =0,得a =1,b =1当B ={-1}时,由1+2a +b =0,得a =-1,b =1.19.(12分)已知函数f (x )=xax +b(a ,b 为常数,且a ≠0),满足f (2)=1,方程f (x )=x 有唯一实数解,求函数f (x )的解析式和f [f (-4)]的值.解:∵f (x )=xax +b且f (2)=1,∴2=2a +b .又∵方程f (x )=x 有唯一实数解.∴ax 2+(b -1)x =0(a ≠0)有唯一实数解.故(b -1)2-4a ×0=0,即b =1,又上式2a +b =2,可得:a =12,从而f (x )=x 12x +1=2xx +2,∴f (-4)=2×(-4)-4+2=4,f (4)=86=43,即f [f (-4)]=43.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a 的值.解:f (x )=4⎝⎛⎭⎫x -a22+2-2a . (1)当a2<0即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得:a =1- 2.(2)0≤a 2≤2即0≤a ≤4时,f (x )min =f ⎝⎛⎭⎫a 2=2-2a =3,解得:a =-12(舍去). (3)a2>2即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得:a =5+10, 综上可知:a 的值为1-2或5+10.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2. 于是y 1=8x +1000+(x50+2)×300=14x +1600,y 2=4x +1800+(x100+4)×300=7x +3000.令y 1-y 2<0得x <200.①当0<x <200时,y 1<y 2,此时应选用汽车;②当x =200时,y 1=y 2,此时选用汽车或火车均可; ③当x >200时,y 1>y 2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围.解:(1)f (1)=f (1)+f (1),∴f (1)=0,f (4)=f (2)+f (2)=1+1=2,f (8)=f (2)+f (4)=2+1=3.(2)∵f (x )+f (x -2)≤3,∴f [x (x -2)]≤f (8),又∵对于函数f (x )有x 2>x 1>0时f (x 2)>f (x 1),∴f (x )在(0,+∞)上为增函数.∴⎩⎪⎨⎪⎧x >0x -2>0x (x -2)≤8⇒2<x ≤4.∴x 的取值范围为(2,4].单元综合测试二(第二章)时间:120分钟 分值:150分1.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5 D .6解析:原式=lg25lg2·lg22lg3·lg9lg5=2lg5lg2·32lg2lg3·2lg3lg5=6.答案:D2.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则f (f (2))的值为( ) A .0 B .1 C .2 D .3解析:f (2)=log 3(22-1)=1,f (f (2))=2e 1-1=2e 0=2. 答案:C3.如果log 12x >0成立,则x 应满足的条件是( )A .x >12 B.12<x <1C .x <1D .0<x <1 解析:由对数函数的图象可得. 答案:D4.函数f (x )=log 3(2-x )在定义域区间上是( ) A .增函数 B .减函数 C .有时是增函数有时是减函数 D .无法确定其单调解析:由复合函数的单调性可以判断,内外两层单调性相同则为增函数,内外两层的单调性相反则为减函数.答案:B5.某种放射性元素,100年后只剩原来的一半,现有这种元素1克,3年后剩下( ) A .0.015克 B .(1-0.5%)3克C .0.925克 D.1000.125克解析:设该放射性元素满足y =a x (a >0且a ≠1),则有12=a 100得a =(12)1100.可得放射性元素满足y =[(12)1100]x =(12)x 100.当x =3时,y =(12)3100=100(12)3=1000.125.答案:D6.函数y =log 2x 与y =log 12x 的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于y =x 对称 解析:据图象和代入式判定都可以做出判断,故选B. 答案:B7.函数y =lg(21-x-1)的图象关于( )A .x 轴对称B .y 轴对称C .原点对称D .y =x 对称 解析:f (x )=lg(21-x -1)=lg 1+x 1-x ,f (-x )=lg 1-x 1+x =-f (x ),所以y =lg(21-x-1)关于原点对称,故选C.答案:C8.设a >b >c >1,则下列不等式中不正确的是( ) A .a c >b c B .log a b >log a c C .c a >c b D .log b c <log a c解析:y =x c在(0,+∞)上递增,因为a >b ,则a c >b c ;y =log a x 在(0,+∞)上递增,因为b >c ,则log a b >log a c ;y =c x 在(-∞,+∞)上递增,因为a >b ,则c a >c b .故选D.答案:D9.已知f (x )=log a (x +1)(a >0且a ≠1),若当x ∈(-1,0)时,f (x )<0,则f (x )是( ) A .增函数 B .减函数 C .常数函数 D .不单调的函数解析:由于x ∈(-1,0),则x +1∈(0,1),所以a >1.因而f (x )在(-1,+∞)上是增函数. 答案:A10.设a =424,b =312,c =6,则a ,b ,c 的大小关系是( ) A .a >b >c B .b <c <a C .b >c >a D .a <b <c 解析:a =424=12243,b =12124,c =6=1266.∵243<124<66, ∴12243<12124<1266,即a <b <c . 答案:D11.若方程a x =x +a 有两解,则a 的取值范围为( ) A .(1,+∞) B .(0,1) C .(0,+∞) D .Ø解析:分别作出当a >1与0<a <1时的图象. (1)当a >1时,图象如下图1,满足题意.图1 图2(2)当0<a <1时,图象如上图2,不满足题意. 答案:A 12.已知f (x )是偶函数,它在(0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( )A .(110,1)B .(0,110)∪(1,+∞)C .(110,10) D .(0,1)∪(0,+∞)解析:由于f (x )是偶函数且在(0,+∞)上是减函数,所以f (-1)=f (1),且f (x )在(-∞,0)上是增函数,应有⎩⎪⎨⎪⎧x >0,-1<lg x <1,解得110<x <10.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若函数f (x )=a x (a >0,且a ≠1)的反函数的图象过点(2,-1),则a =________.解析:由互为反函数关系知,f (x )过点(-1,2),代入得a -1=2⇒a =12.答案:1214.方程log 2(x -1)=2-log 2(x +1)的解为________.解析:log 2(x -1)=2-log 2(x +1)⇔log 2(x -1)=log 24x +1,即x -1=4x +1,解得x =±5(负值舍去),∴x = 5.答案: 515.设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2007)))=________.解析:f 1(f 2(f 3(2007)))=f 1(f 2(20072))=f 1((20072)-1)=[(20072)-1]12=2007-1.答案:1200716.设0≤x ≤2,则函数y =4x -12-3·2x +5的最大值是________,最小值是________.解析:设2x =t (1≤t ≤4),则y =12·4x -3·2x +5=12t 2-3t +5=12(t -3)2+12.当t =3时,y min =12;当t =1时,y max =12×4+12=52.答案:52 12三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知a =(2+3)-1,b =(2-3)-1,求(a +1)-2+(b +1)-2的值.解:(a +1)-2+(b +1)-2=(12+3+1)-2+(12-3+1)-2=(3+32+3)-2+(3-32-3)-2=16(7+432+3+7-432-3)=16[(7+43)(2-3)+(7-43)(2+3)]=16×4=23.18.(12分)已知关于x 的方程4x ·a -(8+2)·2x +42=0有一个根为2,求a 的值和方程其余的根.解:将x =2代入方程中, 得42·a -(8+2)·22+42=0,解得a =2. 当a =2时,原方程为 4x ·2-(8+2)2x +42=0, 将此方程变形化为2·(2x )2-(8+2)·2x +42=0. 令2x =y ,得2y 2-(8+2)y +42=0.解得y =4或y =22.当y =4时,即2x=4,解得x =2;当y =22时,2x =22,解得x =-12.综上,a =2,方程其余的根为-12.19.(12分)已知f (x )=2x -12x +1,证明:f (x )在区间(-∞,+∞)上是增函数.证明:设任意x 1,x 2∈(-∞,+∞)且x 1<x 2,则f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=(2x 1-1)(2x 2+1)-(2x 2-1)(2x 1+1)(2x 1+1)(2x 2+1)=2x 1-2x 2-(2x 2-2x 1)(2x 1+1)(2x 2+1)=2(2x 1-2x 2)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,即2x 1-2x 2<0.∴f (x 1)<f (x 2).∴f (x )在区间(-∞,+∞)上是增函数.20.(12分)已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解:f (x )是偶函数,且f (x )在[0,+∞)上递增,f (12)=0,∴f (x )在(-∞,0)上递减,f (-12)=0,则有log a x >12,或log a x <-12.(1)当a >1时,log a x >12,或log a x <-12,可得x >a ,或0<x <aa ;(2)当0<a <1时,log a x >12,或log a x <-12,可得0<x <a ,或x >aa.综上可知,当a >1时,f (log a x )>0的解集为(0,aa )∪(a ,+∞);当0<a <1时,f (log a x )>0的解集为(0,a )∪(aa,+∞).21.(12分)已知函数f (x )对一切实数x ,y 都满足f (x +y )=f (y )+(x +2y +1)x ,且f (1)=0, (1)求f (0)的值; (2)求f (x )的解析式;(3)当x ∈[0,12]时,f (x )+3<2x +a 恒成立,求a 的范围.解:(1)令x =1,y =0,则f (1)=f (0)+(1+1)×1,∴f (0)=f (1)-2=-2. (2)令y =0,则f (x )=f (0)+(x +1)x ,∴f (x )=x 2+x -2.(3)由f (x )+3<2x +a ,得a >x 2-x +1.设y =x 2-x +1,则y =x 2-x +1在(-∞,12]上是减函数,所以y =x 2-x +1在[0,12]上的范围为34≤y ≤1,从而可得a >1.22.(12分)设函数f (x )=log a (1-ax),其中0<a <1.(1)求证:f (x )是(a ,+∞)上的减函数; (2)解不等式f (x )>1.解:(1)证明:设任意x 1,x 2∈(a ,+∞)且x 1<x 2,则f (x 1)-f (x 2)=log a (1-a x 1)-log a (1-ax 2)=log a 1-a x 11-a x 2=log a 1-a x 2+a x 2-ax 11-a x 2=log a ⎣⎢⎡⎦⎥⎤1+a x 2-a x 11-a x 2=log a (1+ax 1-ax 2x 1x 2-ax 1)=log a [1+a (x 1-x 2)x 1(x 2-a )].∵x 1,x 2∈(a ,+∞)且x 1<x 2,∴x 1-x 2<0,0<a <x 1<x 2,x 2-a >0.∴a (x 1-x 2)x 1(x 2-a )<0,∴1+a (x 1-x 2)x 1(x 2-a )<1,又∵0<a <1,∴log a [1+a (x 1-x 2)x 1(x 2-a )]>0,∴f (x 1)>f (x 2),所以f (x )=log a (1-a x )在(a ,+∞)上为减函数.(2)因为0<a <1,所以f (x )>1⇔log a (1-ax )>log a a ⇔⎩⎨⎧1-ax >0,①1-ax<a .②解不等式①,得x >a 或x <0.解不等式②,得0<x <a 1-a .因为0<a <1,故x <a 1-a ,所以原不等式的解集为{x |a <x <a1-a}.单元综合测试三(第三章)时间:120分钟 分值:150分1.二次函数f (x )=2x 2+bx -3(b ∈R )的零点个数是( ) A .0 B .1 C .2 D .4解析:∵Δ=b 2+4×2×3=b 2+24>0,∴函数图象与x 轴有两个不同的交点,从而函数有2个零点. 答案:C2.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .0解析:令1+1x=0,得x =-1,即为函数零点.答案:B3.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )解析:把y =f (x )的图象向下平移1个单位后,只有C 图中图象与x 轴无交点. 答案:C4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部. 答案:C5.函数f (x )=e x -1x的零点所在的区间是( )A .(0,12)B .(12,1)C .(1,32)D .(32,2)解析:f (12)=e -2<0, f (1)=e -1>0,∵f (12)·f (1)<0,∴f (x )的零点在区间(12,1)内.答案:B6.方程log 12x =2x -1的实根个数是( )A .0B .1C .2D .无穷多个解析:方程log 12x =2x -1的实根个数只有一个,可以画出f (x )=log 12x 及g (x )=2x -1的图象,两曲线仅一个交点,故应选B.答案:B7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=0.1x2-11x+3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x等于() A.55台B.120台C.150台D.180台解析:设产量为x台,利润为S万元,则S=25x-y=25x-(0.1x2-11x+3000)=-0.1x2+36x-3000=-0.1(x-180)2+240,则当x=180时,生产者的利润取得最大值.答案:D8.已知α是函数f(x)的一个零点,且x1<α<x2,则()A.f(x1)f(x2)>0 B.f(x1)f(x2)<0C.f(x1)f(x2)≥0 D.以上答案都不对解析:定理的逆定理不成立,故f(x1)f(x2)的值不确定.答案:D9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水()A.10吨B.13吨C.11吨D.9吨解析:设该职工该月实际用水为x吨,易知x>8.则水费y=16+2×2(x-8)=4x-16=20,∴x=9.答案:D10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C与时间t(年)的函数关系图象为()答案:A11.函数f(x)=|x2-6x+8|-k只有两个零点,则()A.k=0 B.k>1C.0≤k<1 D.k>1,或k=0解析:令y1=|x2-6x+8|,y2=k,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:DA.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)解析:设f(x)=2x-x2,由表格观察出x=1.8时,2x>x2,即f(1.8)>0;在x=2.2时,2x<x2,即f(2.2)<0.综上知f(1.8)·f(2.2)<0,所以方程2x=x2的一个根位于区间(1.8,2.2)内.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x3-2x-5=0在区间(2,4)上的实数根时,取中点x1=3,则下一个有根区间是__________.解析:设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3).答案:(2,3)14.已知函数f (x )=ax 2-bx +1的零点为-12,13,则a =__________,b =__________.解析:由韦达定理得-12+13=b a ,且-12×13=1a.解得a =-6,b =1.答案:-6 115.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l ,则这块场地面积y 与场地一边长x 的关系为________.图1解析:由题意知场地的另一边长为l -2x ,则y =x (l -2x ),且l -2x >0,即0<x <l2.答案:y =x (l -2x )(0<x <l2)16.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)解析:设过滤n 次才能达到市场要求,则2%(1-13)n ≤0.1%即(23)n ≤0.12,∴n lg 23≤-1-lg2, ∴n ≥7.39,∴n =8. 答案:8三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.解:设二次函数f (x )=ax 2+bx +c (a ≠0).由题意知:c =3,-b2a=2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,∴(-b a )2-2c a =10,∴16-6a=10,∴a =1.代入-b2a=2中,得b =-4.∴f (x )=x 2-4x +3.18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 解:令f (x )=x 2+2x -5(x >0). ∵f (1)=-2,f (2)=3,∴函数f (x )的正零点在区间(1,2)内.取(1,2)中点x 1=1.5,f (1.5)>0.取(1,1.5)中点x 2=1.25,f (1.25)<0. 取(1.25,1.5)中点x 3=1.375,f (1.375)<0.取(1.375,1.5)中点x 4=1.4375,f (1.4375)<0.取(1.4375,1.5). ∵|1.5-1.4375|=0.0625<0.1,∴方程x 2+2x =5(x >0)的近似解为x =1.5(或1.4375). 19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.解:设所建矩形鱼池的长为x m ,则宽为800xm ,于是鱼池与路的占地面积为y =(x +2)(800x +4)=808+4x +1600x =808+4(x +400x )=808+4[(x -20x )2+40].当x =20x,即x =20时,y 取最小值为968 m 2.答:鱼池与路的占地最小面积是968 m 2.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.解:投入养殖加工生产业为60-x 万元.由题意可得,y =P +Q =x 3+10360-x ,由60-x ≥0得x ≤60,∴0≤x ≤60,即函数的定义域是[0,60].21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c(1)(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏)解:(1)将表格中相关数据代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧36a +6b +c =104100a +10b +c =160,400a +20b +c =370解得a =12,b =6,c =50.所以y =f (x )=12x 2+6x +50(x ≥0).(2)p =p (x )=-12x 2+14x -50(x ≥0).(3)令p (x )=0,即-12x 2+14x -50=0,解得x =14±46,即x 1=4.2,x 2=23.8,故4.2<x <23.8时,p (x )>0;x <4.2或x >23.8时,p (x )<0, 所以当产品数量为420件时,能扭亏为盈; 当产品数量为2380件时由盈变亏.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:(1)画出2000~(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:图2(1)散点图如图2:(2)设f (x )=ax +b .由已知得⎩⎪⎨⎪⎧a +b =43a +b =7,解得a =32,b =52,∴f (x )=32x +52.检验:f (2)=5.5,|5.58-5.5|=0.08<0.1; f (4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f (x )=32x +52能基本反映产量变化.(3)f (7)=32×7+52=13,由题意知,2006年的年产量约为13×70%=9.1(万件),即2006年的年产量应约为9.1万件.单元综合测试四(必修1综合检测)时间:120分钟 分值:150分题号1 2 3 4 5 6 7 8 9 10 11 12 答案1.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( ) A .{1,2,3} B .{1,2,4} C .{2,3,4} D .{1,2,3,4}解析:∵A ∩B ={1,2},∴(A ∩B )∪C ={1,2,3,4}. 答案:D2.如图1所示,U 表示全集,用A ,B 表示阴影部分正确的是( )图1A .A ∪B B .(∁U A )∪(∁U B )C .A ∩BD .(∁U A )∩(∁U B )解析:由集合之间的包含关系及补集的定义易得阴影部分为(∁U A )∩(∁U B ). 答案:D3.若f (x )=1-2x ,g (1-2x )=1-x 2x 2(x ≠0),则g ⎝⎛⎭⎫12的值为( ) A .1 B .3 C .15 D .30解析:g (1-2x )=1-x 2x 2,令12=1-2x ,则x =14,∴g ⎝⎛⎭⎫12=1-116116=15,故选C. 答案:C4.设函数f (x )=⎩⎨⎧(x +1)2(x <1),4-x -1(x ≥1),则使得f (-1)+f (m -1)=1成立的m 的值为( )A .10B .0,-2C .0,-2,10D .1,-1,11解析:因为x <1时,f (x )=(x +1)2,所以f (-1)=0.当m -1<1,即m <2时,f (m -1)=m 2=1,m =±1.当m -1≥1,即m ≥2时,f (m -1)=4-m -2=1,所以m =11.答案:D5.若x =6是不等式log a (x 2-2x -15)>log a (x +13)的一个解,则该不等式的解集为( ) A .(-4,7) B .(5,7) C .(-4,-3)∪(5,7) D .(-∞,-4)∪(5,+∞)解析:将x =6代入不等式,得log a 9>log a 19,所以a ∈(0,1).则⎩⎪⎨⎪⎧x 2-2x -15>0,x +13>0,x 2-2x -15<x +13.解得x ∈(-4,-3)∪(5,7).答案:C6.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( )A .单调递减无最小值B .单调递减有最大值C .单调递增无最大值D .单调递增有最大值解析:2x+1在(-∞,+∞)上递增,且2x +1>0,∴12x +1在(-∞,+∞)上递减且无最小值. 答案:A7.方程(13)x =|log 3x |的解的个数是( )A .0B .1C .2D .3 解析:图2在平面坐标系中,画出函数y 1=(13)x 和y 2=|log 3x |的图象,如图2所示,可知方程有两个解.答案:C8.下列各式中,正确的是( )A .(-43)23<(-54)23B .(-45)13<(-56)13C .(12)12>(13)12D .(-32)3>(-43)3解析:函数y =x 23在(-∞,0)上是减函数,而-43<-54,∴(-43)23>(-54)23,故A 错;函数y =x 13在(-∞,+∞)上是增函数,而-45>-56,∴(-45)13>(-56)13,故B 错,同理D错.答案:C9.生物学指出:生态系统在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级,在H 1→H 2→H 3这个食物链中,若能使H 3获得10 kJ 的能量,则需H 1提供的能量为( )A .105 kJB .104 kJC .103 kJD .102 kJ解析:H 1⎝⎛⎭⎫1102=10,∴H 1=103. 答案:C10.如图3(1)所示,阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的图象是如图3(2)所示的( )图3解析:当h =H2时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S随之减小,故排除A ,B ,D.答案:C11.函数f (x )在(-1,1)上是奇函数,且在(-1,1)上是减函数,若f (1-m )+f (-m )<0,则m的取值范围是( )A .(0,12) B .(-1,1)C .(-1,12)D .(-1,0)∪(1,12)解析:f (1-m )<-f (-m ),∵f (x )在(-1,1)上是奇函数,∴f (1-m )<f (m ),∴1>1-m >m >-1,解得0<m <12,即m ∈(0,12).答案:A12.(2009·山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧ log 2(1-x ),f (x -1)-f (x -2),x ≤0x >0,则f (2009)的值为( )A .-1B .0C .1D .2解析:由题意可得:x >0时,f (x )=f (x -1)-f (x -2),从而f (x -1)=f (x -2)-f (x -3). 两式相加得f (x )=-f (x -3),f (x -6)=f [(x -3)-3]=-f (x -3)=f (x ), ∴f (2009)=f (2003)=f (1997)=…=f (5)=f (-1)=log 22=1. 答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.log 2716log 34的值是________.解析:log 2716log 34=23log 34log 34=23.答案:2314.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值范围为__________.解析:kx 2+4kx +3恒不为零.若k =0,符合题意,k ≠0,Δ<0,也符合题意.所以0≤k <34.答案:⎩⎨⎧⎭⎬⎫k ⎪⎪0≤k <34 15.已知全集U ={x |x ∈R },集合A ={x |x ≤1或x ≥3},集合B ={x |k <x <k +1,k ∈R },且(∁U A )∩B =Ø,则实数k 的取值范围是________.解析:∁U A ={x |1<x <3},又(∁U A )∩B =Ø, ∴k +1≤1或k ≥3, ∴k ≤0或k ≥3.答案:(-∞,0]∪[3,+∞)16.麋鹿是国家一级保护动物,位于江苏省中部黄海之滨的江苏大丰麋鹿国家级自然保护区成立于1986年,第一年(即1986年)只有麋鹿100头,由于科学的人工培育,这种当初快要灭绝的动物只数y (只)与时间x (年)的关系可近似地由关系式y =a log 2(x +1)给出,则到2016年时,预测麋鹿的只数约为________.解析:当x =1时,y =a log 22=a =100,∴y =100log 2(x +1), ∵2016-1986+1=31,即2016年为第31年, ∴y =100log 2(31+1)=500, ∴2016年麋鹿的只数约为500. 答案:500三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)。
人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前
第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。
人教版A版高中数学必修第一册 第三章综合测试01试题试卷含答案 答案在前
第三章综合测试答案解析一、 1.【答案】D【解析】当y 取一个正值时,有两个x 与它对应,故D 错. 2.【答案】A【解析】21=2f x x - ),21=222f ⨯∴+-),即3=0f (). 3.【答案】D【解析】f x ()在122⎡⎤--⎢⎥⎣⎦,上为减函数,min111==2=11222f x f ∴---⨯--(()()). 4.【答案】B【解析】所以当3=2a -最大值为92.故选B .5.【答案】D【解析】=1y x +是非奇非偶函数,3=y x -是奇函数和减函数,1=y x在整个定义域上不是增函数,故选D .6.【答案】C【解析】33===f x a x b x ax bx f x --+--+- ()()()()(),x ∈R ,f x ∴()为奇函数,3=3=3f f ∴---()().7.【答案】C【解析】0=10=1f -(),((0))=(1)=11=2f f f +. 8.【答案】B【解析】f x ()为偶函数,=0m ∴,2=3f x x ∴-+(),其图象开口向下,对称轴为y 轴,f x ∴()在25(,)上是减函数. 9.【答案】D【解析】设0x ∈-∞(,),则0x -∈+∞(,),=28F x f x g x ∴--+-+()()()≤且存在00x ∈+∞(,)使0=8F x ().又f x (),g x ()都是奇函数,[]=6f x g x f x g x ∴-+--+()()()()≤,即6f x g x +-()()≥, =24F x f x g x ∴++-()()()≥,且存在00x ∈-∞,(),使0=4F x -().F x ∴()在0-∞(,)上有最小值4-. 10.【答案】B【解析】因为偶函数的定义域关于原点对称,所以22=0a a -+-,解得=2a .又偶函数不含奇次项,所以2=0a b -,即=1b ,所以2=21f x x +().于是22=1=35a b f f +()().11.【答案】C【解析】当=0c 时,=f x x x bx +(),此时=f x f x --()(),故f x ()为奇函数,故①正确.当=0b ,0c >时,=f x x x c +(),若0x ≥,则2=f x x c +(),此时=0f x ()无解,若0x <,则2=f x x c -+(),此时=0f x ()有一解=x ,故②正确.作出=y f x ()的图象,如图.结合图象知③正确,④不正确.12.【答案】A【解析】当x 为整数时,=1f x (),当12x ∈(,)时,112f x ∈()(,);当23x ∈(,)时,213f x ∈()(,),…, 当1x k k ∈+(,)时,11k f x k ∈+()(,),且112k k +≥,所以函数[]=1x f x x x ()(≥)的值域为112⎤⎥⎦(.故选A . 二、13.【答案】1|3x x ⎧⎫⎨⎬⎩⎭>【解析】设=a f x x (),则==2af ,=3a ∴.3=f x x ∴(),在R 上为增函数.3210321321f x f x f x -+⇔--⇔--()>()>()>,解得13x >,∴原不等式的解集为1|3x x ⎧⎫⎨⎬⎩⎭>.14.【答案】2a ≤【解析】若2a ∈-∞(,),则2=2f (),不合题意,[]2a ∴∈+∞,,2a ∴≤. 15.【答案】95162⎡-⎢⎣,)【解析】方程23=2x x k -可以看作是k 关于x 的二次函数23=2k x x -,配方得239=416k x --(),其图象的对称轴方程为3=4x ,则函数k 在区间314⎤-⎥⎦(,上是单调递减的,在区间314⎡-⎢⎣,)上是单调递增的(如图).由函数的单调性得函数k 在区间11-(,)上的值域为314f f ⎡-⎢⎣(),()). 233339==442416f -⨯- ()(),2351=11=22f ---⨯-()()(),∴实数k 在的取值范围是95162⎡-⎢⎣,). 16.【答案】1a -≤【解析】因为=y f x ()是定义在R 上的奇函数, 所以当=0x 时,=0f x ().当0x >时,0x -<,所以2=97a f x x x---+().因为=y f x ()是定义在R 上的奇函数, 所以当0x >时,2=97a f x x x+-().因为1f x a +()≥对一切0x ≥成立, 所以当=0x 时,01a +≥成立, 所以1a -≤.当0x >时,2971a x a x +-+≥成立,只需要297a x x+-的最小值大于或等于1a +,因为2977=67a x a x +--≥,所以671a a -+≥,解得85a ≥或87a -≤.综上,1a -≤. 三、17.【答案】证明:设12a x x b <<<. g x ()在a b (,)上是增函数, 12g x g x ∴()<(),且12a g x g x b <()<()<,(5分) 又f x ()在a b (,)上是增函数, 12(())(())f g x f g x ∴<,(())f g x ∴在a b (,)上也是增函数.(10分) 18.【答案】(1)当10x -≤≤时,设解析式为=0y kx b k +(≠),代入10-(,),01(,)的坐标, 得=0=1k b b -+⎧⎨⎩,,解得=1=.1k b ⎧⎨⎩,=1y x ∴+.(2分)当0x >时,设解析式为2=21y a x --(),图象过点40(,),20=421a ∴--(),解得1=4a . 21=214f x x ∴--()().(4分)2110=12104.x x f x x x +-⎧⎪∴⎨--⎪⎩,≤≤,()(),>(6分) (2)当10x -≤≤时,[]01y ∈,. 当0x >时,[1y ∈-+∞,). f x ∴()的值域为[][[011=1-+∞-+∞ ,,),).(12分) 19.【答案】(1) 函数21=x f x ax b++()是奇函数,且1=2f (), 22211==111==2x x f x ax b ax b f a b ⎧++--⎪⎪-+-∴⎨+⎪⎪+⎩()(),(2分)解得=1=0a b ⎧⎨⎩,,21=x f x x+∴().(5分) (2)=0xF x x f x ()(>)(), 222==11x x F x x x x∴++(),0x >,2222222111===111111x x x F x F x x x x x ∴+++++++()(),11114035=122018=2017=2320181112S F F F F F F ∴++++++++⨯+()()()……()()().(12分) 20.【答案】因为f x ()满足4=f x f x --()(), 所以8=4=f x f x f x ---()()(), 则25=1f f --()(),80=0f f ()(),11=3f f ()().(3分) 因为f x ()在R 上是奇函数,所以0=0f (),25=1=1f f f ---()()(), 则80=0=0f f ()(),由4=f x f x --()(),得11=3=3=14=1f f f f f ----()()()()(),又因为f x ()在区间[]02,上是增函数, 所以10=0f f ()>(),所以10f -()<, 所以258011f f f -()<()<().(12分) 21.【答案】(1)设投资x 万元,A 产品的利润为f x ()万元,B 产品的利润为g x ()万元,依题意可设1=f x k x (),=g x k ()由题图①得1=0.2f (),即11=0.2=5k .(3分)由题图②得4=1.6g (),即2.6k ,解得24=5k .故1=05f x x x ()(≥),0g x x ()≥).(6分) (2)设B 产品投入x 万元,则A 产品投入10x -()万元,设企业利润为y 万元.由(1)得1=10=20105y f x g x x x -+-+()()(≤≤).(8分)21114=2=2555y x -+--+ (),0,∴,即=4x 时,max 14==2.85y .因此当A 产品投入6万元,B 产品投入4万元时,该公司获得最大利润,为2.8万元.(12分)22.【答案】(1)241234===2822x x y f x x x x --++-++()111.设=2u x +1,[]0,1x ∈,13u ≤≤, 则4=8y u u+-,[]1,3u ∈.(3分) 由已知性质得,当12u ≤≤,即102x ≤≤时,f x ()单调递减,所以f x ()的单调递减区间为10,2⎡⎤⎢⎥⎣⎦; 当23u ≤≤,即112x ≤≤时,f x ()单调递增,所以f x ()的单调递增区间为1,12⎡⎤⎢⎥⎣⎦. 由0=3f -(),1=42f -(),111=3f -(),得f x ()的值域为[]4,3--.(7分) (2)=2g x x a --()为减函数,故当[]0,1x ∈时,[]12,2g x a a ∈---().(9分) 由题意得f x ()的值域是g x ()的值域的子集, 所以124,23,a a ---⎧⎨--⎩≤≥解得3=2a .(12分)第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知变量x ,y 满足=y x ,则下列说法错误的是( ) A .x ,y 之间有依赖关系 B .x ,y 之间有函数关系 C .y 是x 的函数D .x 是y 的函数2.若函数21=2f x x +-)则3f ()等于( ) A .0B .1C .2D .33.函数1=2f x x x -()在区间122⎡⎤--⎢⎥⎣⎦,上的最小值为( ) A .1B .72C .72-D .1-4.函数63y a -≤≤)的最大值为( )A .9B .92C .3 D5.下列函数中,既是奇函数又是增函数的为( ) A .=1y x +B .3=y x -C .1=y xD .=y x x6.已知函数3=0f x ax bx a +()(≠)满足3=3f -(),则3f ()等于( )A .2B .2-C .3-D .37.设10=1=010x x f x x x x +⎧⎪-⎨⎪-⎩,>,(),,,<,则0f f (())等于( )A .1B .0C .2D .1-8.已知函数2=123f x m x mx -++()()为偶函数,则f x ()在区间25(,)上是( ) A .增函数B .减函数C .有增有减D .增减性不确定9.若f x ()和g x ()都是奇函数,且=2F x f x g x ++()()()在0+∞(,)上有最大值8,则F x ()在0-∞(,)上有( ) A .最小值8- B .最小值2- C .最小值6-D .最小值4-10.若函数2=21f x ax a b x a +-+-()()是定义在0022a a --(,)(,) 上的偶函数,则225a b f +()等于( ) A .1B .3C .52D .7211.设函数=f x x x bx c ++(),给出下列四个命题: ①当=0c 时,=y f x ()是奇函数;②当=0b ,0c >时,方程=0f x ()只有一个实根; ③=y f x ()的图象关于点0c (,)对称; ④方程=0f x ()至多有两个实根. 其中正确的命题是( ) A .①④B .①③C .①②③D .①②④12.定义:[]x 表示不超过x 的最大整数.如:[]1.3=2--.则函数[]=1x f x x x()(≥)的值域为( )A .1,12⎤⎥⎦(B .2,13⎤⎥⎦(C .3,14⎤⎥⎦(D .4,15⎤⎥⎦( 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知幂函数f x ()的图象过点),则不等式3210f x -+()>的解集是________. 14.设2=.x x a f x x x a ∈-∞⎧⎨∈+∞⎩,(,),(),(,)若2=4f (),则实数a 的取值范围为________. 15.若方程23=2x x k -在11-(,)上有实根,则实数k 的取值范围为________. 16.设a 为实常数,=()y f x 是定义在R 上的奇函数,当0x <时,2()=97af x x x++.若()1f x a +≥对一切0x ≥成立,则实数a 的取值范围为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知f x (),g x ()在a b (,)上是增函数,且a g x b <()<,求证:(())f g x 在a b (,)上也是增函数.18.(本小题满分12分)如图,定义在[1-+∞,)上的函数f x ()的图象由一条线段及抛物线的一部分组成.(1)求f x ()的解析式;(2)写出f x ()的值域.19.(本小题满分12分)已知函数21=x f x ax b++()是奇函数,且1=2f (). (1)求f x ()的表达式;(2)设=0x Fx x f x ()(>)(),记111=122018232018S F F F F F F +++++++()()()(()(……),求S 的值.20.(本小题满分12分)已知定义在R 上的奇函数f x ()满足4=f x f x --()(),且在区间[]02,上是增函数,试比较80f (),11f (),25f -()的大小.21.(本小题满分12分)某公司计划投资A 、B 两种金融产品,根据市场调查与预测,A 产品的利润与投资量成正比例,其关系如图①,B 产品的利润与投资量的算术平方根成正比例,其关系如图②(利润与投资量的单位:万元).① ②(1)分别将A 、B 两产品的利润表示为投资量的函数关系式.(2)该公司已有10万元资金,并全部投入A 、B 两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?22.(本小题满分12分)已知函数=ty x x+有如下性质:如果常数0t >,那么该函数在(上是减函数,在+∞)上是增函数. (1)已知24123=2x x f x x --+()1,[]01x ∈,,利用上述性质,求函数f x ()的单调区间和值域;(2)对于(1)中的函数f x ()和函数=2g x x a --(),若对任意[]101x ∈,,总存在[]201x ∈,,使得21=gx f x ()()成立,求实数a 的值.。
人教A版高中数学必修第一册全册测试卷(含答案)
人教A版高中数学必修第一册全册测试卷(含答案)一、单选题
1.“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2.已知集合,则()
A.B.
C.D.
3.若集合,0,1,,则
A.B.C.D.
4.已知正数x,y满足:,则x+y的最小值为( )
A .B.C.6D.
5.函数,其中,记在区间,上的最小值为(a),则函数(a)的最大值为()
A.B.0C.1D.2
6.二次函数的图象如图所示,反比例函数与正比例函数在同一坐标系中的大致图象可能是()
A.B.
C.D.
7.设函数,则函数的定义域为()A.B.C.D.
8.函数的定义域为()A.B.C.D.
9.函数的图象大致为()
A.B.C.D.
10.设,则的大小关系是()A.B.C.D.
11.“”是“直线和直线互相垂直”的()A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件。
高中数学(人教a版)必修一:第1-3章-全册综合质量评估试卷(含答案) (2)
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
综合质量评估第一至第三章(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4,5,6},A={1,2,3},B={2,3,4},则ð(A∪UB)=( )A.{2,3}B.{5,6}C.{1,4,5,6}D.{1,2,3,4}2.下列函数中,在(0,1)上为单调递减的偶函数的是( )A.y=B.y=x4C.y=x-2D.y=-3.由下表给出函数y=f(x),则f(f(1))等于( )A.1B.2C.4D.54.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则a的取值范围是( )A.a≤2或a≥3B.2≤a≤3C.a≤2D.a≥35.(2012·安徽高考)(log29)·(log34)=( )A. B. C.2 D.46.(2012·天津高考)已知a=21.2,b=()-0.8,c=2log52,则a,b,c的大小关系为( )A.c<b<aB.c<a<bC.b<a<cD.b<c<a7.判断下列各组中的两个函数是同一函数的为( )(1)f(x)=,g(t)=t-3(t≠-3).(2)f(x)=,g(x)=.(3)f(x)=x,g(x)=.(4)f(x)=x,g(x)=.A.(1)(4)B.(2)(3)C.(1)(3)D.(3)(4)8.函数f(x)=1+log2x与g(x)=2-x+1在同一坐标系下的图象大致是( )9.若f(x)=,则f(x)的定义域为( )A.(-,0)B.(-,0]C.(,+∞)D.(0,+∞)10.(2012·广东高考)下列函数中,在区间(0,+∞)上为增函数的是( )A.y=ln(x+2)B.y=-C.y=()xD.y=x+11.给出下列四个等式:f(x+y)=f(x)+f(y),f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),f(xy)=f(x)f(y),下列函数中不满足以上四个等式中的任何一个等式的是( )A.f(x)=3xB.f(x)=x+x-1C.f(x)=log2xD.f(x)=kx(k≠0)12.某市房价(均价)经过6年时间从1200元/m2增加到了4800元/m2,则这6年间平均每年的增长率是( )A.-1B.+1C.50%D.600元二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.若函数f(x+1)=x2-1,则f(2)= .14.计算(的结果是.15.已知函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为.16.给出下列四个判断:①若f(x)=x2-2ax在[1,+∞)上是增函数,则a=1;②函数f(x)=2x-x2只有两个零点;③函数y=2|x|的最小值是1;④在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称.其中正确的序号是.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)设集合A={x|0<x-a<3},B={x|x≤0或x≥3},分别求满足下列条件的实数a的取值范围:(1)A∩B= .(2)A∪B=B.18.(12分)(2012·冀州高一检测)计算下列各式的值:(1)(2-(-9.6)0-(+()-2.(2)log 3+lg 25+lg 4+.19.(12分)已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.(1)求f(x)的解析式.(2)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的范围. 20.(12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时,两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资额的函数关系.(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?21.(12分)定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为f(x)=-22x+a2x(a∈R).(1)求f(x)在[-1,0]上的解析式.(2)求f(x)在[0,1]上的最大值h(a).22.(12分)(能力挑战题)设f(x)=ax2+x-a,g(x)=2ax+5-3a.(1)若f(x)在[0,1]上的最大值为,求a的值.(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x1)=g(x0)成立,求a的取值范围.答案解析1.【解析】选B.因为A∪B={1,2,3,4},所以ð(A∪B)={5,6}.U2. 【解析】选C.y=x-2为偶函数,且在(0,1)上单调递减.3.【解析】选B.f(f(1))=f(4)=2.4.【解析】选A.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则其对称轴x=a≥3或x=a≤2.【误区警示】本题易出现选C或选D的错误,原因为没有想到在区间[2,3]上既可以单调递增也可以单调递减.5.【解题指南】先利用换底公式将各个对数化为同底的对数,再根据对数的运算性质求值.【解析】选D.log29×log34=×=×=4.6.【解析】选 A.b=()-0.8=20.8<a=21.2,c=2log52=log54<log55=1<b=20.8,所以c<b<a.【变式备选】已知三个数a=60.7,b=0.70.8,c=0.80.7,则三个数的大小关系是( )A.a>c>bB.b>c>aC.c>b>aD.a>b>c【解析】选A.a=60.7>1,b=0.70.8<1,c=0.80.7<1,又0.70.8<0.70.7<0.80.7,所以a>c>b.7.【解析】选A.f(x)=与g(t)=t-3(t≠-3)定义域、值域及对应关系均相同,是同一函数;g(x)==x与f(x)=x定义域,值域及对应关系均相同,是同一函数;故(1)(4)正确.8.【解析】选C.f(x)=1+log2x过点(1,1),g(x)=2-x+1也过点(1,1).9.【解析】选A.要使函数f(x)=的解析式有意义,自变量x需满足:lo(2x+1)>0,2x+1>0,即0<2x+1<1,解得-<x<0,故选A.【变式备选】函数f(x)=的值域是( )A.RB.[1,+∞)C.[-8,1]D.[-9,1]【解析】选C.0≤x≤3时,2x-x2∈[-3,1];-2≤x<0时,x2+6x∈[-8,0),故函数值域为[-8,1].10.【解题指南】本小题考查函数的图象及性质,要逐一进行判断.对于复合函数的单调性的判断要根据内外函数单调性“同则增,异则减”的原则进行判断.【解析】选A.对选项A,因为内外函数在(0,+∞)上都是增函数,根据复合函数的单调性,此函数在(0,+∞)上是增函数,故正确;对选项B,内函数在(0,+∞)上是增函数,外函数在(0,+∞)上是减函数,根据复合函数的单调性,此函数在(0,+∞)上是减函数,故不正确;对选项C,指数函数y=a x(0<a<1)在R上是减函数,故不正确;对选项D,函数y=x+在(0,1)上是减函数,在[1,+∞)上是增函数,故不正确.11.【解析】选B.f(x)=3x满足f(x+y)=f(x)f(y);f(x)=log2x满足f(xy)= f(x)+f(y);f(x)=kx(k≠0)满足f(x+y)=f(x)+f(y);故选B.12.【解析】选A.设这6年间平均每年的增长率是x,则1200(1+x)6=4800,解得1+x==,即x=-1.13.【解析】f(2)=f(1+1)=12-1=0.答案:014.【解析】(=(=(=2.答案:215.【解析】∵f(x)在[0,1]上为单调函数,∴最值在区间的两个端点处取得,∴f(0)+f(1)=a,即a0+log a(0+1)+a1+log a(1+1)=a,解得a=.答案:16.【解析】若f(x)=x2-2ax在[1,+∞)上是增函数,其对称轴x=a≤1,故①不正确;函数f(x)=2x-x2有三个零点,所以②不正确;③函数y=2|x|的最小值是1正确;④在同一坐标系中,函数y=2x与y=2-x的图象关于y 轴对称正确.答案:③④17.【解析】∵A={x|0<x-a<3},∴A={x|a<x<a+3}.(1)当A∩B=∅时,有解得a=0.(2)当A∪B=B时,有A⊆B,所以a≥3或a+3≤0,解得a≥3或a≤-3.18.【解析】(1)原式=(-1-(+()-2=(-1-()2+()2=-1=.(2)原式=log3+lg(25×4)+2=log3+lg 102+2=-+2+2=.19.【解析】(1)设f(x)=ax2+bx+c(a≠0),由题意可知:a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x;c=1.整理得:2ax+a+b=2x,∴∴f(x)=x2-x+1.(2)当x∈[-1,1]时,f(x)>2x+m恒成立,即x2-3x+1>m恒成立; 令g(x)=x2-3x+1=(x-)2-,x∈[-1,1],则g(x)min=g(1)=-1,∴m<-1.20.【解析】(1)设f(x)=k 1x,g(x)=k2,所以f(1)==k1,g(1)==k2,即f(x)=x(x≥0),g(x)=(x≥0).(2)设投资债券类产品x万元,则股票类投资为(20-x)万元. 依题意得:y=f(x)+g(20-x)=+(0≤x≤20),令t=(0≤t≤2),则y=+t=-(t-2)2+3,所以当t=2,即x=16万元时,收益最大,y max=3万元.21.【解析】(1)设x∈[-1,0],则-x∈[0,1],f(-x)=-2-2x+a2-x,又∵函数f(x)为偶函数,∴f(x)=f(-x),∴f(x)=-2-2x+a2-x,x∈[-1,0].(2)∵f(x)=-22x+a2x,x∈[0,1],令t=2x,t∈[1,2].∴g(t)=at-t2=-(t-)2+.当≤1,即a≤2时,h(a)=g(1)=a-1;当1<<2,即2<a<4时,h(a)=g()=;当≥2,即a≥4时,h(a)=g(2)=2a-4.综上所述,h(a)=22.【解析】(1)①当a=0时,不合题意.②当a>0时,对称轴x=-<0,所以x=1时取得最大值1,不合题意.③当a≤-时,0<-≤1,所以x=-时取得最大值-a-=.得:a=-1或a=-(舍去).④当-<a<0时,->1,所以x=1时取得最大值1,不合题意.综上所述,a=-1.(2)依题意a>0时,f(x)∈[-a,1],g(x)∈[5-3a,5-a],所以解得,a∈[,4],a=0时不符题意舍去.a<0时,g(x)∈[5-a,5-3a],f(x)开口向下,最小值为f(0)或f(1),而f(0)=-a<5-a,f(1)=1<5-a不符题意舍去,所以a∈[,4].关闭Word文档返回原板块。
【新教材】人教A版(2019)高中数学必修第一章测试卷
第一章 集合与常用逻辑用语考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={0,1,2},B ={2,3},则集合A ∪B =( B ) A .{1,2,3} B .{0,1,2,3} C .{2}D .{0,1,3}[解析] 依题意得A ∪B ={0,1,2,3},故选B . 2.命题“∀x >0,x 2-2x +1>0”的否定是( A ) A .∃x >0,x 2-2x +1≤0 B .∀x >0,x 2-2x +1≤0 C .∃x ≤0,x 2-2x +1≤0 D .∀x ≤0,x 2-2x +1≤0[解析] 含有量词的命题的否定,一改量词将“∀”改为“∃”,二否结论将“>”改为“≤”,条件不变,故选A .3.设a ∈R ,则a >3是|a |>3的( D ) A .既不充分也不必要条件 B .必要不充分条件 C .充要条件D .充分不必要条件[解析] 由“a >3”能推出“|a |>3”,充分性成立;反之由|a |>3无法推出a >3,必要性不成立.故选D .4.已知M ={x |y =x 2+1},N ={y |y =x 2+1},则M ∩N =( A ) A .{x |x ≥1} B .∅ C .{x |x <1}D .R[解析] 因为M ={x |y =x 2+1}=R ,N ={y |y =x 2+1}=|y |y ≥1|,所以M ∩N ={x |x ≥1},故选A .5.已知m ,n ∈R ,则“mn -1=0”是“m -n =0”成立的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 由m n -1=0得mn =1,得m =n ,m -n =0,即充分性成立;当m =n =0时,满足m -n =0,但m n -1=0无意义,即必要性不成立,即“mn -1=0”是“m -n =0”成立的充分不必要条件,故选A .6.集合{y ∈N |y =-x 2+6,x ∈N }的真子集的个数是( C ) A .9 B .8 C .7D .6[解析] x =0时,y =6;x =1时,y =5;x =2时,y =2;x =3时,y =-3.所以{y ∈N |y =-x 2+6,x ∈N }={2,5,6}共3个元素,其真子集的个数为23-1=7个,故选C .7.命题“∀n ∈N ,f (n )∈N 且f (n )>n ”的否定形式是( C ) A .∀n ∈N ,f (n )∉N 且f (n )≤n B .∀n ∈N ,f (n )∉N 且f (n )>n C .∃n ∈N ,f (n )∉N 或f (n )≤n D .∃n ∈N ,f (n )∉N 或f (n )>n[解析] 命题“∀n ∈N ,f (n )∈N 且f (n )>n ”的否定形式是∃n ∈N ,f (n )∉N 或f (n )≤n ,故选C .8.已知全集U =R ,M ={x |x <-1},N ={x |x (x +2)<0},则图中阴影部分表示的集合是( A )A .{x |-1≤x <0}B .{x |-1<x <0}C .{x |-2<x <-1}D .{x |x <-1}[解析] 题图中阴影部分为N ∩(∁U M ), 因为M ={x |x <-1}, 所以∁U M ={x |x ≥-1},又N ={x |x (x +2)<0}={x |-2<x <0}, 所以N ∩(∁U M )={x |-1≤x <0}.故选A .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列命题中,是全称量词命题的有( BC ) A .至少有一个x 使x 2+2x +1=0成立 B .对任意的x 都有x 2+2x +1=0成立 C .对任意的x 都有x 2+2x +1=0不成立 D .存在x 使x 2+2x +1=0成立[解析] A 和D 中用的是存在量词“至少有一个”“存在”,属存在量词命题,B 和C 用的是全称量词“任意的”,属全称量词命题,所以B 、C 是全称量词命题.故选BC .10.下列命题中真命题的是( AB ) A .“a >b >0”是“a 2>b 2”的充分条件 B .“a >b ”是“3a >3b ”的充要条件 C .“a >b ”是“|a |>|b |”的充分条件 D .“a >b ”是“ac 2≤bc 2”的必要条件[解析] 当a >b >0时a 2>b 2,A 正确;B 正确;对于C ,当a =1,b =-2时,满足a >b ,但|a |<|b |,故C 不正确;对于D ,“a >b ”与“ac 2≤bc 2”没有关系,不能相互推出,因此不正确.故选AB .11.定义集合运算:A ⊗B ={z |z =(x +y )×(x -y ),x ∈A ,y ∈B },设A ={2,3},B ={1,2},则( BD )A .当x =2,y =2,z =1B .x 可取两个值,y 可取两个值,z =(x +y )×(x -y )有4个式子C .A ⊗B 中有4个元素D .A ⊗B 的真子集有7个[解析] 当x =2,y =2时,z =(2+2)×(2-2)=0,A 错误;由于A ={2,3},B ={1,2},则z 有(2+1)×(2-1)=1,(2+2)×(2-2)=0,(3+1)×(3-1)=2,(3+2)×(3-2)=1四个式子,B 正确;由集合中元素的互异性,得集合A ⊗B 有3个元素,C 错误;集合A ⊗B 的真子集个数为23-1=7,D 正确.故选BD .12.在下列命题中,真命题有( BC ) A .∃x ∈R ,x 2+x +3=0 B .∀x ∈Q ,13x 2+12x +1是有理数C .∃x ,y ∈Z ,使3x -2y =10D .∀x ∈R ,x 2>|x |[解析] A 中,x 2+x +3=(x +12)2+114>0,故A 是假命题;B 中,x ∈Q ,13x 2+12x +1一定是有理数,故B 是真命题;C 中,x =4,y =1时,3x -2y =10成立,故C 是真命题;对于D ,当x =0时,左边=右边=0,故D 为假命题;故真命题有BC .三、填空题(本大题共4小题,每小题5分,共20分.)13.已知集合A ={1,a 2},B ={a ,-1},若A ∪B ={-1,a,1},则a =__0__.[解析] 由题意可知⎩⎪⎨⎪⎧a 2=a ≠1,a ≠-1,解得a =0.14.已知集合A ={1,2,3},B ={x |-3x +a =0},若A ∩B ≠∅,则a 的值为__3或6或9__. [解析] 由题意可知B ={x |x =a 3}.若A ∩B ≠∅,则a 3=1或a 3=2或a3=3,得a =3或6或9.15.某校开展小组合作学习模式,高二某班某组王小一同学给组内王小二同学出题如下:若命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,求m 范围.王小二略加思索,反手给了王小一一道题:若命题“∀x ∈R ,x 2+2x +m >0”是真命题,求m 范围.你认为,两位同学题中m 的范围是否一致?__是__(填“是”或“否”).[解析] 因为命题“∃x ∈R ,x 2+2x +m ≤0”的否定是“∀x ∈R ,x 2+2x +m >0”,而命题“∃x ∈R ,x 2+2x +m ≤0”是假命题,则其否定“∀x ∈R ,x 2+2x +m >0”为真命题,所以两位同学题中m 的范围是一致的.16.在下列所示电路图中,下列说法正确的是__(1)(2)(3)__(填序号).(1)如图①所示,开关A 闭合是灯泡B 亮的充分不必要条件; (2)如图②所示,开关A 闭合是灯泡B 亮的必要不充分条件; (3)如图③所示,开关A 闭合是灯泡B 亮的充要条件;(4)如图④所示,开关A 闭合是灯泡B 亮的必要不充分条件.[解析] (1)A 闭合,B 亮;而B 亮时,A 不一定闭合,故A 是B 的充分不必要条件,因此正确;(2)A 闭合,B 不一定亮;而B 亮,A 必须闭合,故A 是B 的必要不充分条件,因此正确;(3)A 闭合,B 亮;而B 亮,A 必闭合,所以A 是B 的充要条件,因此正确;(4)A 闭合,B 不一定亮;而B 亮,A 不一定闭合,所以A 是B 的既不充分也不必要条件,因此错误.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)若集合M ={x |x 2+x -6=0},N ={x |(x -2)(x -a )=0},且N ⊆M ,求实数a 的值.[解析] 由x 2+x -6=0得x =2或x =-3,因此M ={2,-3}. ①当a =2时,N ={2},此时N ⊆M ; ②当a =-3时,N ={2,-3},此时N =M ;③当a ≠2且a ≠-3时,得N ={2,a },此时,N M .故所求实数a 的值为2或-3. 18.(本小题满分12分)判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除; (2)末位是0的实数能被2整除; (3)∃x >1,x 2-2>0;(4)存在实数没有算术平方根; (5)奇数的平方还是奇数.[解析] (1)命题中含有存在量词“至少有一个”,因此是存在量词命题,真命题. (2)命题中省略了全称量词“所有”,是全称量词命题,真命题. (3)命题中含有存在量词“∃”,是存在量词命题,真命题. (4)命题“存在实数没有算术平方根”,是存在量词命题,真命题. (5)命题中省略了全称量词“所有”,是全称量词命题,真命题.19.(本小题满分12分)设集合A ={x |-1<x <4},B ={x |-5<x <32},C ={x |1-2a <x <2a }.(1)若C =∅,求实数a 的取值范围;(2)若C ≠∅且C ⊆(A ∩B ),求实数a 的取值范围. [解析] (1)因为C ={x |1-2a <x <2a }=∅,所以1-2a ≥2a ,所以a ≤14,即实数a 的取值范围是{a |a ≤14}.(2)因为C ={x |1-2a <x <2a }≠∅, 所以1-2a <2a ,即a >14.因为A ={x |-1<x <4},B ={x |-5<x <32},所以A ∩B ={x |-1<x <32},因为C ⊆(A ∩B ),所以⎩⎨⎧1-2a ≥-1,2a ≤32,a >14,解得14<a ≤34,即实数a 的取值范围是{a |14<a ≤34}.20.(本小题满分12分)已知全集U =R ,集合A ={x |4x -1>x +2},B ={x |-1<x <2m -3}.(1)当m =4时,求(∁U A )∩B ;(2)若A ∩B 恰好包含了两个整数,写出这两个整数构成的集合的所有子集. [解析] (1)因为全集U =R ,集合A ={x |4x -1>x +2}={x |x >1}, 当m =4时,∁U A ={x |x ≤1},集合B ={x |-1<x <5}, 所以(∁U A )∩B ={x |-1<x ≤1}. (2)因为A ={x |4x -1>x +2}={x |x >1}, B ={x |-1<x <2m -3}.A ∩B 恰好包含了两个整数,则这两个整数是2,3, 则集合{2,3}的所有子集为:∅,{2},{3},{2,3}.21.(本小题满分12分)若集合A ={x |x >-2},B ={x |bx >1},其中b 为实数且b ≠0,试写出:(1)A ∪B =R 的一个充要条件; (2)A ∪B =R 的一个必要不充分条件; (3)A ∪B =R 的一个充分不必要条件.[解析] 若b >0,则集合B ={x |x >1b },若b <0,则集合B ={x |x <1b}.(1)若A ∪B =R ,则必有⎩⎪⎨⎪⎧b <0,1b >-2,即⎩⎪⎨⎪⎧b <0,b <-12,所以b <-12. 故A ∪B =R 的一个充要条件是b <-12.(2)由(1)知A ∪B =R 充要条件是b <-12.所以A ∪B =R 的一个必要不充分条件可以是b <0. (3)由(1)知A ∪B =R 充要条件是b <-12.所以A ∪B =R 的一个充分不必要条件可以是b <-1.22.(本小题满分12分)(1)已知p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0),若p 是q 的必要不充分条件,求实数m 的取值范围;(2)已知p :A ={x |-1≤x ≤5},q :B ={x |-m <x <2m -1},若p 是q 的充分条件,求实数m 的取值范围.[解析] (1)p :-2≤x ≤10,q :1-m ≤x ≤1+m (m >0). 因为p 是q 的必要不充分条件, 所以q 是p 的充分不必要条件, 即{x |1-m ≤x ≤1+m }{x |-2≤x ≤10},故有⎩⎪⎨⎪⎧ 1-m ≥-2,1+m <10或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的取值范围为{m |0<m ≤3}. (2)因为p 是q 的充分条件,所以A ⊆B , 如图:则⎩⎪⎨⎪⎧-m <-1,2m -1>5,解得m >3.。
2021_2022学年新教材高中数学第三章函数的概念与性质综合测试含解析新人教A版必修第一册
第三章综合测试考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=1+x +1x 的定义域是( C )A .[-1,+∞)B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R[解析]要使函数有定义,则⎩⎨⎧1+x ≥0x ≠0,解得x ≥-1且x ≠0,故选C .2.下列函数中,与函数y =x (x ≥0)有相同图象的一个是( B ) A .y =x 2 B .y =(x )2 C .y =3x 3D .y =x 2x[解析]A 、C 、D 选项中函数的定义域与题目中的定义域不同,故不是同一个函数. 3.(2021·某某某某高一期中测试)已知函数y =f (x )的部分x 与y 的对应关系如下表:则f [f (4)]A .-1 B .-2 C .-3D .3[解析]由图表可知,f (4)=-3,∴f [f (4)]=f (-3)=3.4.已知幂函数f (x )=x α的图象过点(2,12),则函数g (x )=(x -2)f (x )在区间[12,1]上的最小值是( C )A .-1B .-2C .-3D .-4[解析]由已知得2α=12,解得α=-1,∴g (x )=x -2x =1-2x 在区间[12,1]上单调递增,则g (x )min =g (12)=-3,故选C .5.已知函数f (x )为偶函数,且在区间(-∞,0]上单调递增,若f (-3)=-2,则不等式f (x )≥-2的解集为( B )A .[-3,0]B .[-3,3]C .[-3,+∞)D .(-∞,-3]∪[3,+∞)[解析]f (x )为偶函数,且在(-∞,0]上单调递增,则f (x )在(0,+∞)上单调递减,且f (3)=-2,所以f (x )≥-2的解集为[-3,3].6.(2021·全国高考甲卷文科)设f (x )是定义域为R 的奇函数,且f (1+x )=f (-x ).若f (-13)=13,则f (53)=( C ) A .-53B .-13C .13D .53[解析]由题意可得:f (53)=f (1+23)=f (-23)=-f (23),而f (23)=f (1-13)=f (13)=-f (-13),故f (53)=13.故选C .7.已知函数f (x )是定义域为R 的偶函数,且对任意x 1,x 2∈(-∞,0],当x 1≠x 2时总有f (x 1)-f (x 2)x 1-x 2>0,则满足f (1-2x )-f (-13)>0的x 的X 围是( A )A .(13,23)B .[13,23)C .(12,23)D .[12,23)[解析]由题意可知,f (x )在(-∞,0]上为增函数,又f (x )为偶函数,故f (x )在(0,+∞)上为减函数,由f (1-2x )>f (-13)可得-13<1-2x <13,解得13<x <23.故选A .8.函数f (x )的定义域为[-1,1],图象如图(1)所示,函数g (x )的定义域为[-2,2],图象如图(2)所示,方程f [g (x )]=0有m 个实数根,方程g [f (x )]=0有n 个实数根,则m +n =( C )A .6B .8C .10D .12[解析]f [g (x )]=0,令t =g (x ),则t 1=-1,t 2=0,t 3=1,令g (x )=-1,x 有2个根;令g (x )=0,x 有3个根,令g (x )=1,x 有2个根,∴f [g (x )]=0共有7个根.g [f (x )]=0,令f (x )=t ,g (t )=0,则t =0,即f (x )=0,x 有3个值,所以m +n =10.故选C .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.关于函数f (x )=-x 2+2x +3的结论正确的是( CD ) A .定义域、值域分别是[-1,3],[0,+∞) B .单调增区间是(-∞,1]C .定义域、值域分别是[-1,3],[0,2]D .单调增区间是[-1,1][解析]要使函数有定义,则-x 2+2x +3≥0,即(x -3)(x +1)≤0,-1≤x ≤3.所以函数的定义域为[-1,3],值域为[0,2],在[-1,1]上单调增,故选CD .10.函数f (x )是定义在R 上的奇函数,下列命题中是正确命题的是( ABD ) A .f (0)=0B .若f (x )在[0,+∞)上有最小值-1,则f (x )在(-∞,0]上有最大值1C .若f (x )在[1,+∞)上为增函数,则f (x )在(-∞,-1]上为减函数D .若x >0时,f (x )=x 2-2x ,则x <0时,f (x )=-x 2-2x[解析]奇函数在对称的区间上单调性相反,故C 错误,其余都正确.11.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x )(若f (x )≥g (x ))f (x )(若f (x )<g (x )),则F (x )( BC )A .最小值-1B .最大值为7-27C .无最小值D .无最大值[解析]作出F (x )的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选BC .12.已知函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0.若a ,b ∈R ,且f (a )+f (b )的值为负值,则下列结论可能成立的有( BC )A .a +b >0,ab <0B .a +b <0,ab >0C .a +b <0,ab <0D .以上都可能[解析]由函数f (x )为幂函数可知m 2-m -1=1,解得m =-1或mm =-1时,f (x )=1x 3;当m =2时,f (x )=x 3.由题意知函数f (x )在(0,+∞)上为增函数,因此f (x )=x 3,在R 上单调递增,且满足f (-x )=-f (x ).结合f (-x )=-f (x )以及f (a )+f (b )<0可知f (a )<-f (b )=f (-b ),所以a <-b ,即b <-a ,所以a +ba =0时,b <0,ab =0;当a >0时,b <0,ab <0;当a <0时,ab >0(b <0)或ab <0(0<b <-a ),故BC 都有可能成立.故选BC .三、填空题(本大题共4小题,每小题5分,共20分.)13.(2021·某某黄陵中学高一期末测试)函数f (x )=4-2x +1x +1的定义域是{x |x ≤2且x ≠-1}.[解析]由题意得⎩⎪⎨⎪⎧4-2x ≥0x +1≠0,解得x ≤2且x ≠-1,∴函数f (x )的定义域为{x |x ≤2且x ≠-1}.14.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f (-43)+f (43)等于4.[解析]∵f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,∴f (-43)=f (-43+1)=f (-13)=f (-13+1)=f (23)=23×2=43,f (43)=2×43=83,∴f (-43)+f (43)=43+83=4.15.已知幂函数f (x )=x α的图象经过点(9,3),则f (12)2f (1x -1)的定义域为(0,1].[解析]幂函数f (x )的图象经过点(9,3),所以3=9α,所以α=12,所以幂函数f (x )=x ,故f (12)=22,故1x-1≥0,解得0<x ≤1. 16.符号[x ]表示不超过x 的最大整数,如[3.14]=3,[-1.6]=-2,定义函数:f (x )=x -[x ],则下列说法正确的是①②③.①f (-0.8)=0.2;②当1≤x <2时,f (x )=x -1;③函数f (x )的定义域为R ,值域为[0,1); ④函数f (x )是增函数,奇函数.[解析]①f (-0.8)=-0.8-[-0.8]=-0.8+1=0.2,正确. ②当1≤x <2时,f (x )=x -[x ]=x B 正确.③函数f (x )的定义域为R ,f (x )=x -[x ]表示x 的小数部分,所以值域为[0,1),正确. ④x =0.5时,f (0.5)=0.5,x =1.5时,f (1.5)=0.5,所以f (x )不是增函数;且f (-1.5)=f (1.5),所以f (x )也不是奇函数.故填①②③.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=ax +b ,且f (1)=2,f (2)=-1. (1)求f (m +1)的值;(2)判断函数f (x )的单调性,并用定义证明.[解析](1)由f (1)=2,f (2)=-1,得a +b =2,2a +b =-1,即a =-3,b =5, 故f (x )=-3x +5,f (m +1)=-3(m +1)+5=-3m +2.(2)f (x )在R 上是减函数.证明:任取x 1<x 2(x 1,x 2∈R ),则f (x 2)-f (x 1)=(-3x 2+5)-(-3x 1+5)=3x 1-3x 2=3(x 1-x 2),因为x 1<x 2,所以f (x 2)-f (x 1)<0,即函数f (x )在R 上单调递减.18.(本小题满分12分)已知f (x )在R 上是单调递减的一次函数,且f [f (x )]=9x -2. (1)求f (x );(2)求函数y =f (x )+x 2-x 在x ∈[-1,a ]上的最大值.[解析](1)由题意可设f (x )=kx +b (k <0),由于f [f (x )]=9x -2,则k 2x +kb +b =9x -2,故⎩⎪⎨⎪⎧k 2=9,kb +b =-2,解得⎩⎪⎨⎪⎧k =-3,b =1,故f (x )=-3x +1. (2)由(1)知,函数y =-3x +1+x 2-x =x 2-4x +1=(x -2)2-3, 故函数y =x 2-4x +1的图象开口向上,对称轴为x =2, 当-1<a ≤5时,y 的最大值是f (-1)=6, 当a >5时,y 的最大值是f (a )=a 2-4a +1,综上,y max =⎩⎪⎨⎪⎧6(-1<a ≤5),a 2-4a +1(a >5).19.(本小题满分12分)某商品在近30天内每件的销售价格P (元)和时间t (天)的函数关系为P =⎩⎪⎨⎪⎧t +20,0<t <25,-t +100,25≤t ≤30(t ∈N *).设商品的日销售量Q (件)与时间t (天)的函数关系为Q =40-t (0<t ≤30,t ∈N *),求这种商品的日销售金额的最大值,并指出日销售金额最大时是第几天.[解析]设日销售金额为y 元,则y =PQ ,所以y =⎩⎪⎨⎪⎧-t 2+20t +800(0<t <25,t ∈N *),t 2-140t +4 000(25≤t ≤30,t ∈N *).当0<t <25且t ∈N *时,y =-(t -10)2+900, 所以当t =10时,y max =900.①当25≤t ≤30且t ∈N *时,y =(t -70)2-900, 所以当t =25时,y max =1 125.②结合①②得y max =1 125.因此这种商品日销售金额的最大值为1 125元,且在第25天日销售金额最大.20.(本小题满分12分)函数f (x )=x +a x 2+bx +1是定义在[-1,1]上的奇函数.(1)确定函数f (x )的解析式; (2)用定义证明f (x )的单调性; (3)解不等式f (t -1)+f (t )<0.[解析](1)因为f (x )是定义在[-1,1]上的奇函数,所以f (0)=0,f (x )=-f (-x ),即x +a x 2+bx +1=--x +ax 2-bx +1,所以a =0,b =0,所以f (x )=xx 2+1.(2)取-1≤x 1<x 2≤1,则x 1x 2<1,f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1)<0,所以f (x )在[-1,1]上单调递增.(3)因为f (t -1)+f (t )<0,所以f (t -1)<f (-t ). 因为f (x )在[-1,1]上单调递增, 所以-1≤t -1<-t ≤1,解得0≤t <12.所以不等式的解集为{t |0≤t <12}.21.(本小题满分12分)如果函数y =f (x )(x ∈D )满足: ①f (x )在D 上是单调函数;②存在闭区间[a ,b ]⊆D ,使f (x )在区间[a ,b ]上的值域也是[a ,b ]. 那么就称函数y =f (x )为闭函数.试判断函数y =x 2+2x 在[-1,+∞)内是否为闭函数.如果是闭函数,那么求出符合条件的区间[a ,b ];如果不是闭函数,请说明理由.[解析]设x 1,x 2是[-1,+∞)内的任意两个不相等的实数,且-1≤x 1<x 2,则有f (x 2)-f (x 1)=(x 22+2x 2)-(x 21+2x 1)=(x 22-x 21)+2(x 2-x 1)=(x 2-x 1)(x 1+x 2+2). ∵-1≤x 1<x 2,∴x 2-x 1>0,x 1+x 2+2>0. ∴(x 2-x 1)(x 1+x 2+2)>0. ∴f (x 2)>f (x 1).∴函数y =x 2+2x 在[-1,+∞)内是增函数. 假设存在符合条件的区间[a ,b ],则有⎩⎪⎨⎪⎧f (a )=a f (b )=b ,即⎩⎪⎨⎪⎧a 2+2a =ab 2+2b =b.解得⎩⎪⎨⎪⎧a =0b =0或⎩⎪⎨⎪⎧a =0b =-1或⎩⎪⎨⎪⎧a =-1b =0或⎩⎪⎨⎪⎧a =-1b =-1.又∵-1≤a <b ,∴⎩⎪⎨⎪⎧a =-1b =0.∴函数y =x 2+2x 在[-1,+∞)内是闭函数,符合条件的区间是[-1,0].22.(本小题满分12分)已知函数y =x +tx 有如下性质:如果常数t >0,那么该函数在(0,t )上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域;(2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,某某数a 的值.[解析](1)y =f (x )=4x 2-12x -32x +1=2x +1+42x +1-8,设u =2x +1,x ∈[0,1],∴1≤u ≤3,则y =u +4u -8,u ∈[1,3].由已知性质得,当1≤u ≤2,即0≤x ≤12时,f (x )单调递减,所以单调减区间为[0,12];当2≤u ≤3,即12≤x ≤1时,f (x )单调递增,所以单调增区间为[12,1];由f (0)=-3,f (12)=-4,f (1)=-113,得f (x )的值域为[-4,-3].(2)g (x )=-x -2a 为减函数,故g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意知,f (x )的值域是g (x )的值域的子集,∴⎩⎪⎨⎪⎧-1-2a ≤-4,-2a ≥-3,∴a =32.。
2021-2022学年高中数学 1 空间向量与立体几何章末综合测评新人教A版选择性必修第一册
2021-2022学年高中数学1 空间向量与立体几何章末综合测评新人教A版选择性必修第一册年级:姓名:章末综合测评(一) 空间向量与立体几何(满分:150分 时间:120分钟)一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a =(-3,2,5),b =(1,5,-1),则a ·(a +3b )=( ) A .(0,34,10) B .(-3,19,7) C .44D .23C [a +3b =(-3,2,5)+3(1,5,-1)=(0,17,2),则a ·(a +3b )=(-3,2,5)·(0,17,2)=0+34+10=44.]2.设l 1的方向向量为a =(1,2,-2),l 2的方向向量为b =(-2,3,m ),若l 1⊥l 2,则m 等于( )A .1B .2C .12D .3B [若l 1⊥l 2,则a ⊥b ,∴a ·b =0, ∴1×(-2)+2×3+(-2m )=0,解得m =2.]3.在空间四边形ABCD 中,若向量AB →=(-3,5,2),CD →=(-7,-1,-4),点E ,F 分别为线段BC ,AD 的中点,则EF →的坐标为( )A .(2,3,3)B .(-2,-3,-3)C .(5,-2,1)D .(-5,2,-1)B [取AC 中点M ,连接ME ,MF (图略),则ME →=12AB →=⎝ ⎛⎭⎪⎫-32,52,1,MF →=12CD →=⎝ ⎛⎭⎪⎫-72,-12,-2,所以EF →=MF →-ME →=(-2,-3,-3),故选B .]4.如图所示,在平行六面体ABCD A 1B 1C 1D 1中,点E 为上底面对角线A 1C 1的中点,若BE →=AA 1→+xAB →+yAD →,则( )A .x =-12,y =12B .x =12,y =-12C .x =-12,y =-12D .x =12,y =12A [BE →=BA →+AA 1→+A 1E →=-AB →+AA 1→+12(A 1B 1→+A 1D 1→)=-AB →+AA 1→+12AB →+12AD →=-12AB →+AA 1→+12AD →,∴x =-12,y =12.]5.已知A (2,-5,1),B (2,-4,2),C (1,-4,1),则AB →与AC →的夹角为( ) A .30° B .60° C .45°D .90°B [由题意得AB →=(0,1,1),AC →=(-1,1,0),cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=12×2=12,所以AB →与AC →的夹角为60°.] 6.已知二面角αl β的大小为π3,m ,n 为异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( )A .π6B .π3C .π2D .2π3B [设m ,n 的方向向量分别为m ,n .由m ⊥α,n ⊥β知m ,n 分别是平面α,β的法向量.∵|cos〈m ,n 〉|=cos π3=12,∴〈m ,n 〉=π3或2π3.但由于两异面直线所成的角的范围为⎝⎛⎦⎥⎤0,π2,故异面直线m ,n 所成的角为π3.]7.如图,在棱长为a 的正方体ABCD A 1B 1C 1D 1中,P 为A 1D 1的中点,Q 为A 1B 1上任意一点,E ,F 为CD 上两个动点,且EF 的长为定值,则点Q 到平面PEF 的距离( )A .等于55a B .和EF 的长度有关 C .等于23a D .和点Q 的位置有关A [取B 1C 1的中点G ,连接PG ,CG ,DP ,则PG ∥CD ,所以点Q 到平面PEF 的距离即点Q 到平面PGCD 的距离,与EF 的长度无关,B 错.又A 1B 1∥平面PGCD ,所以点A 1到平面PGCD 的距离即点Q 到平面PGCD 的距离,即点Q 到平面PEF 的距离,与点Q 的位置无关,D 错.如图,以点D 为原点,建立空间直角坐标系,则C (0,a ,0),D (0,0,0),A 1(a ,0,a ),P ⎝ ⎛⎭⎪⎫a 2,0,a ,∴DC →=(0,a ,0),DA 1→=(a ,0,a ),DP →=⎝ ⎛⎭⎪⎫a 2,0,a , 设n =(x ,y ,z )是平面PGCD 的法向量, 则由⎩⎪⎨⎪⎧n ·DP →=0,n ·DC →=0,得⎩⎪⎨⎪⎧a2x +az =0,ay =0,令z =1,则x =-2,y =0,所以n =(-2,0,1)是平面PGCD 的一个法向量. 设点Q 到平面PEF 的距离为d ,则d =⎪⎪⎪⎪⎪⎪DA 1→·n |n |=⎪⎪⎪⎪⎪⎪-2a +a 5=5a 5,A 对,C 错.故选A .]8.如图所示,ABCD A 1B 1C 1D 1是棱长为6的正方体,E ,F 分别是棱AB ,BC 上的动点,且AE =BF .当A 1,E ,F ,C 1四点共面时,平面A 1DE 与平面C 1DF 所成夹角的余弦值为( )A .22 B .12C .15D .265B [以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,易知当E (6,3,0),F (3,6,0)时,A 1,E ,F ,C 1共面,设平面A 1DE 的法向量为n 1=(a ,b ,c ),依题意得⎩⎪⎨⎪⎧DE →·n 1=6a +3b =0,DA 1→·n 1=6a +6c =0,可取n 1=(-1,2,1),同理可得平面C 1DF 的一个法向量为n 2=(2,-1,1), 故平面A 1DE 与平面C 1DF 的夹角的余弦值为|n 1·n 2||n 1||n 2|=12.故选B .]二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分)9.已知正方体ABCD A 1B 1C 1D 1的中心为O ,则下列结论中正确的有( ) A .OA →+OD →与OB 1→+OC 1→是一对相反向量 B .OB →-OC →与OA 1→-OD 1→是一对相反向量C .OA →+OB →+OC →+OD →与OA 1→+OB 1→+OC 1→+OD 1→是一对相反向量 D .OA 1→-OA →与OC →-OC 1→是一对相反向量ACD [∵O 为正方体的中心,∴OA →=-OC 1→,OD →=-OB 1→,故OA →+OD →=-(OB 1→+OC 1→),同理可得OB →+OC →=-(OA 1→+OD 1→),故OA →+OB →+OC →+OD →=-(OA 1→+OB 1→+OC 1→+OD 1→),∴AC 正确;∵OB →-OC →=CB →,OA 1→-OD 1→=D 1A 1→,∴OB →-OC →与OA 1→-OD 1→是两个相等的向量,∴B 不正确;∵OA 1→-OA →=AA 1→,OC →-OC 1→=C 1C →=-AA 1→,∴OA 1→-OA →=-(OC →-OC 1→),∴D 正确.]10.在以下选项中,不正确的命题有( ) A .|a |-|b |=|a +b |是a ,b 共线的充要条件 B .若a ∥b ,则存在唯一的实数λ,使a =λbC .对空间任意一点O 和不共线的三点A ,B ,C ,若OP →=2OA →-2OB →-OC →,则P ,A ,B ,C 四点共面D .若{a ,b ,c }为空间的一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底ABC [A .|a |-|b |=|a +b |⇒a 与b 共线,但a 与b 共线时|a |-|b |=|a +b |不一定成立,故不正确;B .b 需为非零向量,故不正确;C .因为2-2-1≠1,由共面向量定理知,不正确;D .由基底的定义知正确.]11.下列说法正确的是( )A .直线l 的方向向量a =(1,-1,2),直线m 的方向向量b =⎝ ⎛⎭⎪⎫2,1,-12,则l与m 垂直B .直线l 的方向向量a =(0,1,-1),平面α的法向量n =(1,-1,-1),则l ⊥αC .平面α,β的法向量分别为n 1=(0,1,3),n 2=(1,0,2),则α∥βD .平面α经过三点A (1,0,-1),B (0,1,0),C (-1,2,0),向量n =(1,u ,t )是平面α的法向量,则u +t =1AD [对于A ,∵a =(1,-1,2),b =⎝⎛⎭⎪⎫2,1,-12,∴a ·b =1×2+(-1)×1+2×⎝ ⎛⎭⎪⎫-12=0,∴a ⊥b ,∴直线l 与m 垂直,A 正确.对于B ,∵a =(0,1,-1),n =(1,-1,-1),∴a ·n =0×1+1×(-1)+(-1)×(-1)=0,∴a ⊥n ,∴l ∥α或l ⊂α,B 错误.对于C ,∵n 1=(0,1,3),n 2=(1,0,2),∴n 1与n 2不共线,∴α∥β不成立,C 错误.对于D ,由于A (1,0,-1),B (0,1,0),C (-1,2,0),则AB →=(-1,1,1),BC →=(-1,1,0),又向量n =(1,u ,t )是平面α的法向量,∴⎩⎪⎨⎪⎧n ·AB →=0,n ·BC →=0,即⎩⎨⎧-1+u +t =0,-1+u =0,则u +t =1,D 正确.]12.如图(1)是一副直角三角板的示意图.现将两三角板拼成直二面角,得到四面体ABCD ,如图(2)所示,则下列结论中正确的是( )A .BD →·AC →=0B .平面BCD 的法向量与平面ACD 的法向量垂直C .异面直线BC 与AD 所成的角为60° D .直线DC 与平面ABC 所成的角为30°AD [以B 为坐标原点,分别以BD →,BC →的方向为x 轴,y 轴的正方向建立空间直角坐标系,如图所示.设BD =2,则B (0,0,0),D (2,0,0),C (0,23,0),A (0,3,3),∴BD →=(2,0,0),AC →=(0,3,-3),BC →=(0,23,0),AD →=(2,-3,-3),DC →=(-2,23,0).∴BD →·AC →=(2,0,0)·(0,3,-3)=0,A 正确;易得平面BCD 的一个法向量为n 1=(0,0,3),平面ACD 的一个法向量为n 2=(3,1,1),n 1·n 2≠0,B 错误;|cos 〈BC →,AD →〉|=⎪⎪⎪⎪⎪⎪⎪⎪BC →·AD →|BC →||AD →|=|0,23,0·2,-3,-3|23×10=310≠12,C 错误;易得平面ABC 的一个法向量为BD →=(2,0,0),设直线DC 与平面ABC 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪DC →·BD →|DC →|·|BD →|=44×2=12,故D 正确.]三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC ,BP →=(x -1,y ,-3),且BP →⊥平面ABC ,则BP →=________.⎝⎛⎭⎪⎫337,-157,-3 [∵AB →⊥BC →,∴AB →·BC →=0,∴3+5-2z =0,∴z =4. ∵BP →=(x -1,y ,-3),且BP →⊥平面ABC , ∴⎩⎪⎨⎪⎧BP →·AB →=0,BP →·BC →=0,即⎩⎨⎧x -1+5y +6=0,3x -3+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157.故BP →=⎝⎛⎭⎪⎫337,-157,-3.] 14.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 共面,则λ=________.657[易知a 与b 不共线,由共面向量定理可知,要使a ,b ,c 共面,则必存在实数x ,y ,使得c =x a +y b ,即⎩⎨⎧2x -y =7,-x +4y =5,3x -2y =λ,解得⎩⎪⎨⎪⎧x =337,y =177,λ=657.]15.已知A (0,0,-x ),B (1,2,2),C (x ,2,2)三点,点M 在平面ABC 内,O 是平面ABC 外一点,且OM →=xOA →+2xOB →+4OC →,则x =________,AB →与AC →的夹角为________.(本题第一空2分,第二空3分)-1π3[由A ,B ,C ,M 四点共面可知x +2x +4=1,∴x =-1. ∴A (0,0,1),C (-1,2,2),∴AB →=(1,2,1),AC →=(-1,2,1), ∴cos〈AB →,AC →〉=AB →·AC →|AB →||AC →|=12,即AB →与AC →的夹角为π3.]16.如图,等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D 的余弦值为33,M ,N 分别是AC ,BC 的中点,则EM ,AN 所成角的余弦值为________.16[如图所示,过点C 作CO ⊥平面ABDE ,垂足为O ,取AB 的中点F ,连接CF ,OF ,OA ,OB ,则∠CFO 为二面角C AB D 的平面角,所以cos∠CFO =33. 设AB =1,则CF =32,OF =12,OC =22,所以O 为正方形ABDE 的中心.如图建立空间直角坐标系,则E ⎝ ⎛⎭⎪⎫0,-22,0,A ⎝ ⎛⎭⎪⎫22,0,0,M ⎝ ⎛⎭⎪⎫24,0,24,N ⎝⎛⎭⎪⎫0,24,24,所以EM →=⎝ ⎛⎭⎪⎫24,22,24,AN →=⎝ ⎛⎭⎪⎫-22,24,24,所以cos 〈EM →,AN →〉=EM →·AN →|EM →||AN →|=16.]四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)若|c |=3,且c ∥BC →,求向量c ; (2)求向量a 与向量b 的夹角的余弦值;(3)若k a +b 与k a -2b 互相垂直,求实数k 的值. [解] (1)∵c ∥BC →,∴存在实数m ,使得c =mBC →=m (-2,-1,2)=(-2m ,-m ,2m ). ∵|c |=3, ∴-2m2+-m2+2m2=3|m |=3,∴m =±1.∴c =(-2,-1,2)或c=(2,1,-2).(2)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1.又∵|a |=12+12+02=2,|b |=-12+02+22=5,∴cos 〈a ,b 〉=a·b |a ||b |=-110=-1010, 即向量a 与向量b 的夹角的余弦值为-1010. (3)∵k a +b =(k -1,k ,2),k a -2b =(k +2,k ,-4),∴(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52.∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.18.(本小题满分12分)如图,在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.(1)求证:B 1D ⊥平面ABD ; (2)求证:平面EGF ∥平面ABD .[解] 如图,以B 为坐标原点,BA ,BC ,BB 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系Bxyz ,则B (0,0,0),D (0,2,2),B 1(0,0,4).(1)设BA =a ,则A (a ,0,0).所以BA →=(a ,0,0),BD →=(0,2,2),B 1D →=(0,2,-2). 所以B 1D →·BA →=0,B 1D →·BD →=0+4-4=0.所以B 1D ⊥BA ,B 1D ⊥BD . 又BA ∩BD =B , 所以B 1D ⊥平面ABD .(2)由题意及(1),知E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),所以EG →=⎝ ⎛⎭⎪⎫a2,1,1,EF→=(0,1,1).所以B 1D →·EG →=0+2-2=0,B 1D →·EF →=0+2-2=0. 所以B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E , 所以B 1D ⊥平面EGF . 由(1),知B 1D ⊥平面ABD , 故平面EGF ∥平面ABD .19.(本小题满分12分)如图,已知四边形ABCD 为矩形,四边形ABEF 为直角梯形,FA ⊥AB ,AD =AF =FE =1,AB =2,AD ⊥BE .(1)求证:BE ⊥DE ;(2)求点F 到平面CBE 的距离.[解] ∵四边形ABCD 为矩形,∴AD ⊥AB , 又AD ⊥BE ,AB ∩BE =B , ∴AD ⊥平面ABEF , 又AD ⊂平面ABCD , ∴平面ABCD ⊥平面ABEF .∵FA ⊥AB ,平面ABCD ∩平面ABEF =AB , ∴FA ⊥平面ABCD .∴FA ⊥AD . (1)证明:如图,建立空间直角坐标系,则B (0,2,0),C (1,2,0),D (1,0,0),E (0,1,1),F (0,0,1), ∴BE →=(0,-1,1),DE →=(-1,1,1), ∴BE →·DE →=0×(-1)+(-1)×1+1×1=0, ∴BE →⊥DE →,∴BE ⊥DE .(2)由(1)得BC →=(1,0,0),BE →=(0,-1,1),FE →=(0,1,0), 设n =(x ,y ,z )是平面CBE 的法向量,则由 ⎩⎪⎨⎪⎧n ·BC →=0,n ·BE →=0,得⎩⎨⎧x =0,-y +z =0,令y =1,得z =1,∴n =(0,1,1)是平面CBE 的一个法向量. 设点F 到平面CBE 的距离为d , 则d =⎪⎪⎪⎪⎪⎪FE →·n |n |=12=22.∴点F 到平面CBE 的距离为22. 20.(本小题满分12分)如图,在直三棱柱A 1B 1C 1ABC 中,AC ⊥AB ,AC =AB =4,AA 1=6,点E ,F 分别为CA 1,AB 的中点.(1)证明:EF ∥平面BCC 1B 1;(2)求B 1F 与平面AEF 所成角的正弦值.[解] (1)证明:如图,连接EC 1,BC 1,因为三棱柱A 1B 1C 1ABC 为直三棱柱,所以E 为AC 1的中点.又因为F 为AB 的中点,所以EF ∥BC 1.又EF ⊄平面BCC 1B 1,BC 1⊂平面BCC 1B 1,所以EF ∥平面BCC 1B 1.(2)以A 1为原点,A 1C 1,A 1B 1,A 1A 所在直线分别为x 、y 、z 轴,建立如图所示的空间直角坐标系A 1xyz ,则A (0,0,6),B 1(0,4,0),E (2,0,3),F (0,2,6), 所以B 1F →=(0,-2,6),AE →=(2,0,-3),AF →=(0,2,0), 设平面AEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=2x -3z =0,n ·AF →=2y =0,令x =3,得n =(3,0,2),记B 1F 与平面AEF 所成角为θ,则sin θ=|cos 〈B 1F →,n 〉|=|B 1F →·n ||B 1F →|·|n |=313065.21.(本小题满分12分)如图所示的几何体中,BE ⊥BC ,EA ⊥AC ,BC =2,AC =22,∠ACB =45°,AD ∥BC ,BC =2AD .(1)求证:AE ⊥平面ABCD ;(2)若∠ABE =60°,点F 在EC 上,且满足EF =2FC ,求平面FAD 与平面ADC 的夹角的余弦值.[解] (1)证明:在△ABC 中,BC =2,AC =22,∠ACB =45°,由余弦定理可得AB 2=BC 2+AC 2-2×BC ×AC ×cos 45°=4,所以AB =2(负值舍去),因为AC 2=AB 2+BC 2,所以△ABC 是直角三角形,AB ⊥BC . 又BE ⊥BC ,AB ∩BE =B , 所以BC ⊥平面ABE .因为AE ⊂平面ABE ,所以BC ⊥AE , 因为EA ⊥AC ,AC ∩BC =C , 所以AE ⊥平面ABCD .(2)由题易得EB =2AB =4,由(1)知,BC ⊥平面ABE ,所以平面BEC ⊥平面ABE ,如图,以B 为原点,过点B 且垂直于平面BEC 的直线为z 轴,BE ,BC 所在直线分别为x ,y 轴,建立空间直角坐标系Bxyz ,则C (0,2,0),E (4,0,0),A (1,0,3),D (1,1,3),因为EF =2FC ,所以F ⎝ ⎛⎭⎪⎫43,43,0,易知AD →=(0,1,0),AF →=⎝ ⎛⎭⎪⎫13,43,-3,设平面FAD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AD →·n =0,AF →·n =0,即⎩⎪⎨⎪⎧y =0,13x +43y -3z =0,令z =3,则x =9,所以n =(9,0,3).由(1)知EA ⊥平面ABCD ,所以EA →=(-3,0,3)为平面ABCD 的一个法向量. 设平面FAD 与平面ADC 的夹角为α, 则cos α=|EA →·n ||EA →|·|n |=2423×221=277,所以平面FAD 与平面ADC 的夹角的余弦值为277.22.(本小题满分12分)如图,在四棱锥P ABCD 中,底面ABCD 是边长为2的菱形,∠DAB =60°,∠ADP =90°,平面ADP ⊥平面ABCD ,F 为棱PD 的中点.(1)在棱AB 上是否存在一点E ,使得AF ∥平面PCE ?并说明理由;(2)当二面角D FC B 的余弦值为14时,求直线PB 与平面ABCD 所成的角.[解] (1)在棱AB 上存在点E ,使得AF ∥平面PCE ,且E 为棱AB 的中点. 理由如下:如图,取PC 的中点Q ,连接EQ ,FQ , 由题意得,FQ ∥DC 且FQ =12CD ,因为AE ∥CD 且AE =12CD ,所以AE ∥FQ 且AE =FQ .所以四边形AEQF 为平行四边形. 所以AF ∥EQ .又EQ ⊂平面PCE ,AF ⊄平面PCE ,所以AF ∥平面PCE .(2)连接BD ,DE .由题意知△ABD 为正三角形,所以ED ⊥AB ,即ED ⊥CD , 又∠ADP =90°,所以PD ⊥AD ,且平面ADP ⊥平面ABCD ,平面ADP ∩平面ABCD =AD ,所以PD ⊥平面ABCD ,故以D 为坐标原点建立如图所示的空间直角坐标系,设FD =a ,则由题意知F (0,0,a ),C (0,2,0),B (3,1,0),则FC →=(0,2,-a ),CB →=(3,-1,0), 设平面FBC 的法向量为m =(x ,y ,z ). 则⎩⎪⎨⎪⎧m ·FC →=2y -az =0,m ·CB →=3x -y =0,令x =1,则y =3,z =23a,所以m =⎝⎛⎭⎪⎫1,3,23a ,易知平面DFC 的一个法向量n =(1,0,0), 因为二面角D FC B 的余弦值为14,所以|cos 〈m ,n 〉|=|m·n ||m ||n |=14,即14+12a2=14,解得a =1(负值舍去). 因为PD ⊥平面ABCD ,所以PB 在平面ABCD 内的射影为BD , 所以∠PBD 为直线PB 与平面ABCD 所成的角, 由题意知在Rt△PBD 中,tan∠PBD =PD BD =2FDBD=1,所以∠PBD =45°,所以直线PB 与平面ABCD 所成的角为45°.。
人教A版高中数学必修1全册练习题
人教A版高中数学必修1全册练习题高中数学必修1练习题集第一章、集合与函数概念1.1.1集合的含义与表示例1.用符号和填空。
⑴设集合A是正整数的集合,则0_______A,________A,______A;⑵设集合B是小于的所有实数的集合,则2______B,1+______B;⑶设A为所有亚洲国家组成的集合,则中国_____A,美国_____A,印度_____A,英国____A例2.判断下列说法是否正确,并说明理由。
⑴某个单位里的年轻人组成一个集合;⑵1,,,,这些数组成的集合有五个元素;⑶由a,b,c组成的集合与b,a,c组成的集合是同一个集合。
例3.用列举法表示下列集合:⑴小于10的所有自然数组成的集合A;⑵方程x=x的所有实根组成的集合B;⑶由1~20中的所有质数组成的集合C。
例4.用列举法和描述法表示方程组的解集。
典型例题精析题型一集合中元素的确定性例1.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;⑤的近似值得全体,其中能构成集合的组数是()A.2B.3C.4D.5题型二集合中元素的互异性与无序性例2.已知x{1,0,x},求实数x的值。
题型三元素与集合的关系问题1.判断某个元素是否在集合内例3.设集合A={x∣x=2k,kZ},B={x∣x=2k+1,kZ}。
若aA,bB,试判断a+b与A,B的关系。
2.求集合中的元素例4.数集A满足条件,若aA,则A,(a≠1),若A,求集合中的其他元素。
3.利用元素个数求参数取值问题例5.已知集合A={x∣ax+2x+1=0,aR},⑴若A中只有一个元素,求a的取值。
⑵若A中至多有一个元素,求a的取值范围。
题型四列举法表示集合例6.用列举法表示下列集合⑴A={x∣≤2,xZ};⑵B={x∣=0}⑶M={x+y=4,xN,yN}.题型五描述法表示集合例7.⑴已知集合M={xN∣Z},求M;⑵已知集合C={Z∣xN},求C.例8.用描述发表示图(图-8)中阴影部分(含边界)的点的坐标的集合。
高中数学人教A版高一必修单元测试第一章 集合与函数概念 含解析
m∈Z,知
m+1
是
10
的约数,故(m+1)=1,2,5,10.从而
m
的值为-11,-
6,-3,-2,0,1,4,9.
3
答案:{-11,-6,-3,-2,0,1,4,9}
2x 7, 2x 4, 13 解析:由集合相等的定义知, x y 4 或 x y 7.
x
解得
y
7,
2 1
或
x y
2, 5.
2
又 x,y 是整数,所以 x=2,y=5.
C.( )∩B
D.A∩B
10.给出下列函数表达式:① y
x3 1 1 x3 ;② y
a≠0);④ y
1 x2 x 2 2 ,其中奇函数的个数为(
)
x x
1 1
;③y=3x+a2(a∈R
且
A.1
B.2
C.3
D.0
二、填空题(每小题 4 分,共 16 分)
11.若函数 f(x+3)的定义域为[-5,-2],则 F(x)=f(x+1)+f(x-1)的定义域为________.
x 18.若 f(x)是定义在(0,+∞)上的增函数,且对一切 x,y>0,满足 f( y )=f(x)-f(y).
1 (1)求 f(1)的值;(2)若 f(6)=1,解不等式 f(x+3)-f( 3 )<2.
参考答案 1 解析:∵A={1,2,3},B={2,3,4},∴A∩B={2,3}. 又 U={1,2,3,4,5},∴ (A∩B)={1,4,5}. 答案:B
又∵f(x)是奇函数,∴f(-x)=-f(x)=-x(1-x).∴f(x)=x(1-x).∴f(x)=x(1-x),x<0,0,x=0,x(1+
x),x>0.
(人教版A版2017课标)高中数学必修第一册:第一章综合测试(附答案)
第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{|13}U x Z x =∈-≤≤,集合{|03}A x x =∈Z ≤≤,则u A =ð( )A .{1}-B .{1,0}-C .{1,0,1}--D .{|10}x x -≤<2.已知集合{|32},{| 4 1}A x x B x x x =-=-<<<或>,则A B =I ( )A .{}|43x x --<<B .1{|}3x x -<<C .{}|12x x <<D .|31{}x x x -<或>3.命题“2,210x x x ∀∈-+R ≥”的否定是( )A .2,210x x x ∃∈-+R ≤B .2,210x x x ∃∈-+R ≥C .2,210x x x ∃∈-+R <D .2,210x x x ∀∈-+R <4.设x ∈R ,则“3x <”是“1x -<<3”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.已知全集U =R ,{|1}M x x =<-,{|(2)0}N x x x =+<,则图中阴影部分表示的集合是( )A .{|10}A x x -≤<B .{|10}x x -<<C .{|21}x x --<<D .{|1}x x -<6.下列语句是存在量词命题的是( )A .整数n 是2和5的倍数B .存在整数n ,使n 能被11整除C .若370x -=,则73x = D .,()x M p x ∀∈7.已知{1,2,3},{2,4},A B ==定义集合,A B 间的运算*{|}A B x x A x B =∈∉且,则集合*A B 等于()A .{1,2,3}B .{2,4}C .{1,3}D .{2}8若命题“0x ∃∈R ,使得2003210x ax ++<”是假命题,则实数a 的取值范围是( )A .aB .a a ≤C .aD .a a <9.对于实数1,:01a a a α-+>,β:关于x 的方程210x ax -+=有实数根,则α是β成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.已知命题00:0,10p x x a ∃+-=>,若p 为假命题,则a 的取值范围是( )A .1a <B .1a ≤C .1a >D .1a ≥11.不等式组1,24x y x y +⎧⎨-⎩≥≤的解集为D ,下列命题中正确的是( ) A .(,),21x y D x y ∀∈+-≤B .(,),22x y D x y ∀∈+-≥C .(,),23x yD x y ∀∈+≤ D .(,),22x y D x y ∀∈+≥12.已知非空集合,A B 满足以下两个条件:(1){1,2,3,4,5,6},A B A B ==∅U I ;(2)若x A ∈,则1x B +∈.则有序集合对(,)A B 的个数为( )A .12B .13C .14D .15二、填空题(本大题共4小题,每小题5分,共20分.把答案写在题中的横线上)13.已知集合{|21,},{|2,}A x x k k B x x k k ==-∈==∈Z Z ,则A B =I ________.14某中学开展小组合作学习模式,高二某班某组同学甲给组内同学乙出题如下:若命题“2,20x x x m ∃∈++R ≤”是假命题,求m 的范围.同学乙略加思索,反手给了同学甲一道题:若命题“2,20x x x m ∀∈++R >”是真命题,求m 的范围.你认为,两位同学题中m 的范围是否一致?________(填“是”或“否”)15.设,a b 为正数,则“1a b ->”是“221a b ->”的________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)16.已知集合{}22,,{0,1,3}A a a B =+=,且A B ⊆,则实数a 的值是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.[10分]判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除.(2)末位是0的实数能被2整除.(3)21,20x x ∃>->18.[12分]设全集U =R ,已知集合{1,2}A =,{|03}B x x =≤≤,集合C 为不等式组10,360x x +⎧⎨-⎩≥≤的解集. (1)写出集合A 的所有子集;(2)求u B ð和B C U .19.[12分]已知集合{}2|30,A x x ax a =-+=∈R .(1)若1A ∈,求实数a 的值;(2)若集合{}2|20,B x x bx b b =-+=∈R ,且{3}A B =I ,求A B U .20.[12分]已知集合{|32}A x x =-<<,{|05}B x x =≤<,{|}x m C x =<,全集为R .(1)求()A B R I ð;(2)若()A B C ⊆U ,求实数m 的取值范围.21.[12分]已知20,::11,0100,x p q m x m m x +⎧-+⎨-⎩≥≤≤>≤,若p 是q 的必要条件,求实数m 的取值范围.22.[12分]已知:20,:40p x q ax -->>,其中a ∈R 且0a ≠.(1)若p 是q 的充分不必要条件,求实数a 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.第一章综合测试答案解析一、1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】A6.【答案】B7.【答案】C8.【答案】C9.【答案】B10.【答案】D11.【答案】B【解析】Q 不等式组1,24,x y x y +⎧⎨-⎩≥≤1,24,x y x y +⎧∴⎨-+-⎩≥≥ 1,201,x y x y y +⎧∴∴+⎨-⎩≥≥≥,即22x y +-≥成立. ∴若124x y x y +⎧⎨-⎩≥≤的解集为D 时,(,),22x y D x y ∀∈+-≥成立,故选B . 12.【答案】A【解析】由题意分类讨论,得若{}1A =,则{2,3,4,5,6}B =;若{}2A =,则B {1,3,4,5,6}=;若{}3A =,则B {1,2,4,5,6}=;若{}4A =,则{1,2,3,5,6}B =;若{}5A =,则{1,2,3,4,6}B =;若{1,3}A =,则{2,4,5,6}B =;若{1,4}A =,则{2,3,5,6}B =;若{1,5}A =,则{2,3,4,6}B =;若{2,4}A =,则{1,3,5,6}B =;若{2,5}A =,则{1,3,4,6}B =;若{3,5}A =,则{1,2,4,6}B =;若{1,3,5}A =,则{2,4,6}B =.综上可得,有序集合对(,)A B 的个数为12.故选A .二、13.【答案】∅14.【答案】是15.【答案】充分不必要【解析】1a b -Q >,即1a b +>.又,a b Q 为正数,2222(1)121a b b b b ∴+=+++>>,即221a b ->成立;反之,当1a b =时,满足221a b ->,但1a b ->不成立.∴“1a b ->”是“221a b ->”的充分不必要条件.16.【答案】1【解析】:①0a =,{0,2}A =与A B ⊆矛盾,舍去;②1a =,{1,3}A =,满足A B ⊆;③3a =,{3,11}A =与A B ⊆矛盾,舍去.1a ∴=.三、17.【答案】(1)命题中含有存在量词“至少有一个”,因此是存在量词命题,真命题.(2)命题中省略了全称量词“所有”,是全称量词命题,真命题.(3)命题中含有存在量词“∃”,是存在量词命题,真命题.18.【答案】(1)A 的所有子集为,{1},{2},{1,2}∅.(2){|12}C x x =-≤≤,{|0 3}u B x x x =<或>ð,{|13}B C x x ∴⋃=-≤≤.19.【答案】(1)1,130,4A a a ∈∴-+=∴=Q(2){3},3,3A B A B ⋂=∴∈∈Q9330,1830,a b b -+=⎧∴⎨-+=⎩解得4,9.a b =⎧⎨=⎩{}2|430{1,3}A x x x ∴=-+==,{}23|29903,2B x x x ⎧⎫=-+==⎨⎬⎩⎭. 31,,32A B ⎧⎫∴⋃=⎨⎬⎩⎭. 20.【答案】(1){|05}B x x x =R <或≥ð,(){}|30A B x x ∴⋂=-R <<ð(2){|35}A B x x ⋃=-<<,()A B C ⋃Q ≤,5m ∴…,∴实数m 的取值范围为{|5}m m ≥.21.【答案】20:100x p x +⎧⎨-⎩≥,≤,Q :[2,10]p x ∴∈-. 又:[1,1],0q x m m m ∈-+Q >,且p 是q 的必要条件.[1,1][2,10]m m ∴-+⊆-012110m m m ⎧⎪∴--⎨⎪+⎩>≥≤03m ∴<≤.∴实数m 的取值范围是03m <≤.22.【答案】(1)设:{|20}p A x x =->,即:{|2}p A x x =>,:{|40}q B x ax =->,因为p 是q 的充分不必要条件,则A B Ü, 即0,42,a a⎧⎪⎨⎪⎩><解得2a >.所以实数a 的取值范围为2a >. (2)由(1)及题意得B A Ü.①当0a >时,由B A Ü得42a>,即02a <<; ②当0a <时,显然不满足题意.综上可得,实数a 的取值范围为02a <<.。
高中数学必修一和必修二第一二章综合试题(人教A版含答案)
高一数学第二次月考模拟试题(必修一+二第一二章)时间:120分钟 分值:150分一、选择题(每小题5分,共60分)1.设集合A ={4,5,7,9},B ={3,4,7,8,9},全集U =A ∪B ,则集合∁U (A ∩B )中的元素共有( )A .3个B .4个C .5个D .6个 2.下列函数为奇函数的是( )A .y =x 2B .y =x 3C .y =2xD .y =log 2x 3.函数y =1x+log 2(x +3)的定义域是( )A .RB .(-3,+∞)C .(-∞,-3)D .(-3,0)∪(0,+∞) 4.梯形1111A B C D (如图)是一水平放置的平面图形ABCD 的直观图(斜二测),若11A D ∥/y 轴,11A B ∥/x 轴,1111223A B C D ==, 111A D =,则平面图形ABCD 的面积是( ) A.5 B.10 C.52 D.1025.已知圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120︒ B.150︒ C.180︒ D.240︒ 6.已知f (x 3-1)=x +1,则f (7)的值,为( )A.37-1B.37+1 C .3 D .2 7.已知log 23=a ,log 25=b ,则log 295等于( )A .a 2-b B .2a -b C.a 2b D.2ab8.函数y =x 2+x (-1≤x ≤3)的值域是( )A .[0,12]B .[-14,12]C .[-12,12]D .[34,12]9.下列四个图象中,表示函数f (x )=x -1x的图象的是( )A 1B 1C 1D 1O 110.函数y=-x2+8x-16在区间[3,5]上( )A.没有零点 B.有一个零点 C.有两个零点 D.有无数个零点11.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直. 其中真命题的个数是( )A.4 B.3 C.2 D.112.已知f(x)是定义在(0,+∞)上的增函数,若f(x)>f(2-x),则x的取值范围是( ) A.x>1 B.x<1 C.0<x<2 D.1<x<2二、填空题(每小题5分,共20分)13.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=__________.14.函数y=log23-4x的定义域为__________.15.据有关资料统计,通过环境整治,某湖泊污染区域S(km2)与时间t(年)可近似看作指数函数关系,已知近两年污染区域由0.16 km2降至0.04 km2,则污染区域降至0.01 km2还需要__________年.16.空间四边形ABCD中,P、R分别是AB、CD的中点,PR=3、AC= 4、BD=25那么AC与BD所成角的度数是_________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知集合A={x|1≤x<4},B={x|x-a<0},(1)当a=3时,求A∩B;(2)若A⊆B,求实数a的取值范围.18.(12分)(1)计算:(279)12+(lg5)0+(2764)-13;(2)解方程:log 3(6x-9)=3.19.(12分)判断函数f (x )=1a x-1+x 3+12的奇偶性.20. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB . (1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.21.(12分)已知正方体1111ABCD A B C D ,O 是底ABCD 对角线的交点.求证:(1)O C 1∥面11AB D ;D 1ODB AC 1B 1A 1C(2)1A C 面11AB D .22.( 12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1,(1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S(x)=xf(x)+g(12)在(0,+∞)上是增函数.高一数学期末考试模拟试题(答案)一、选择题(每小题5分,共60分)1.解析:U =A ∪B ={3,4,5,7,8,9},A ∩B ={4,7,9},∴∁U (A ∩B )={3,5,8},有3个元素,故选A.答案:A2.解析:A 为偶函数,C 、D 均为非奇非偶函数.答案:B 3.解析:要使函数有意义,自变量x 的取值须满足⎩⎪⎨⎪⎧x ≠0x +3>0,解得x >-3且x ≠0.答案:D4. 解析:梯形1111A B C D 上底长为2,下底长为3腰梯形11A D 长为1,腰11A D 与下底11C D 的夹角为45︒ ,所以梯形1111A B C D 的高为2,所以梯形1111A B C D 的面积为1+=224(23) ,根据S =4直观平面 可知,平面图形ABCD 的面积为5.答案:A 5.解析:由22r r 3r l πππ+=知道2l r =所以圆锥的侧面展开图扇形圆心角度数为13603601802r l ⨯︒=⨯︒=︒,故选C 答案:C 6.解析:令x 3-1=7,得x =2,∴f (7)=3.答案:C7.解析:log 295=log 29-log 25=2log 23-log 25=2a -b .答案:B8.解析:画出函数y =x 2+x (-1≤x ≤3)的图象,由图象得值域是[-14,12].答案:B9.解析:函数y =x ,y =-1x 在(0,+∞)上为增函数,所以函数f (x )=x -1x在(0,+∞)上为增函数,故满足条件的图象为A.答案:A10.解析:∵y =-x 2+8x -16=-(x -4)2,∴函数在[3,5]上只有一个零点4.答案:B 11.解析:因为①②④正确,故选B .12.解析:由题目的条件可得⎩⎪⎨⎪⎧x >02-x >0x >2-x,解得1<x <2,故答案应为D.答案:D二、填空题(每小题5分,共20分) 13.答案:{x |x <4}14.解析:根据对数函数的性质可得log 2(3-4x )≥0=log 21,解得3-4x ≥1,得x ≤12,所以定义域为(-∞,12].答案:(-∞,12]15.解析:设S =a t ,则由题意可得a 2=14,从而a =12,于是S =(12)t ,设从0.04 km 2降至0.01 km 2还需要t 年,则(12)t =14,即t =2.答案:2 16、解析:如图,取AD 中点Q ,连PQ ,RQ ,则5PQ =,2RQ =,而PR =3,所以222PQ RQ PR +=,所以PQR 为直角三角形,90PQR ∠=︒,即PQ 与RQ 成90︒的角,所以AC 与BD 所成角的度数是90︒.答案:90︒三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知集合A ={x |1≤x <4},B ={x |x -a <0}, (1)当a =3时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.解:(1)当a =3时,B ={x |x -3<0}={x |x <3},则有A ∩B ={x |1≤x <3}. (2)B ={x |x -a <0}={x |x <a },当A ⊆B 时,有a ≥4,即实数a 的取值范围是[4,+∞). 18.(12分)(1)计算:(279)12 +(lg5)0+(2764)-13 ;(2)解方程:log 3(6x-9)=3.解:(1)原式=(259)12 +(lg5)0+[(34)3]-13=53+1+43=4.(2)由方程log 3(6x-9)=3得6x-9=33=27,∴6x =36=62,∴x =2.经检验,x =2是原方程的解. 19.(12分)判断函数f (x )=1a x-1+x 3+12的奇偶性. 解:由a x-1≠0,得x ≠0,∴函数定义域为(-∞,0)∪(0,+∞), f (-x )=1a -x -1+(-x )3+12=a x1-a x -x 3+12=a x -1+11-a x-x 3+12=-1a x -1-x 3-12=-f (x ). ∴f (x )为奇函数.20.(12分) 如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .(1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABCD -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC . (2)解:如图,过E 在平面11DCC D 中作EO ⊥DC 于O .在长方体ABCD -1111D C B A 中,∵面ABCD⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -DB -C 的平面角.利用平面几何知识可得OF =51, (第20题)又OE =1,所以,tan ∠EFO =5. 21.(12分)已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)O C 1∥面11AB D ;(2 )1AC ⊥面11AB D . 证明:(1)连结11A C ,设11111AC B D O =连结1AO ,1111ABCD A B C D -是正方体11A ACC ∴是平行四边形11A C AC ∴且 11A C AC =又1,O O 分别是11,A C AC 的中点,11O C AO ∴且11O C AO =D 1ODBAC 1B 1A 1C11AOC O ∴是平行四边形 111,C O AO AO ∴⊂面11AB D ,1C O ⊄面11AB D ∴1C O 面11AB D(2)1CC ⊥面1111A B C D 11!CC B D ∴⊥又1111A C B D ⊥, 1111B D AC C ∴⊥面111AC B D ⊥即同理可证11A C AB ⊥, 又1111D B AB B =∴1A C ⊥面11AB D22.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=1, (1)求f (x ),g (x );(2)判断函数h (x )=f (x )+g (x )的奇偶性;(3)证明函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.解:(1)设f (x )=k 1x (k 1≠0),g (x )=k 2x(k 2≠0).∵f (1)=1,g (1)=1,∴k 1=1,k 2=1.∴f (x )=x ,g (x )=1x.(2)由(1)得h (x )=x +1x,则函数h (x )的定义域是(-∞,0)∪(0,+∞),h (-x )=-x +1-x =-(x +1x)=-h (x ),∴函数h (x )=f (x )+g (x )是奇函数. (3)证明:由(1)得S (x )=x 2+2.设x 1,x 2∈(0,+∞),且x 1<x 2,则S (x 1)-S (x 2)=(x 21+2)-(x 22+2)=x 21-x 22=(x 1-x 2)(x 1+x 2). ∵x 1,x 2∈(0,+∞),且x 1<x 2,∴x 1-x 2<0,x 1+x 2>0. ∴S (x 1)-S (x 2)<0.∴S (x 1)<S (x 2).∴函数S (x )=xf (x )+g (12)在(0,+∞)上是增函数.。
人教A版 新教材高中数学必修第一册 第一章 章末检测试卷(一)
二、多项选择题(本大题共 4 小题,每小题 5 分,共 20 分.全部选对的得 5 分,部分选对的
得 3 分,有选错的得 0 分)
9.已知 U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则( )
A.M∩N={4,6}
B.M∪N=U
C.(∁UN)∪M=M 答案 BCD
(2)∵B={x|x<1},∴∁RB={x|x≥1}. ∴A∩(∁RB)={x|1≤x≤2}. 15.已知集合 A={x|-1<x<2},B={x|-1<x<m+1},若 x∈A 是 x∈B 成立的一个充分不必
要条件,则实数 m 的取值范围是________.
答案 {m|m>1}
解析 由 x∈A 是 x∈B 成立的一个充分不必要条件,
解 (1)由 x-1>0 得 x>1,即 B={x|x>1}. 所以 A∩B={x|1<x<2},A∪B={x|x>-1}. (2)集合 A-B 如图中的阴影部分所示.
由于 A-B={x|x∈A,且 x∉B}, 又 A={x|-1<x<2},B={x|x>1}, 所以 A-B={x|-1<x≤1}. 21.(12 分)已知非空集合 P={x|a+1≤x≤2a+1},Q={x|-2≤x≤5}. (1)若 a=3,求(∁RP)∩Q; (2)若“x∈P”是“x∈Q”的充分不必要条件,求实数 a 的取值范围. 解 因为 P 是非空集合,所以 2a+1≥a+1,即 a≥0. (1)当 a=3 时,P={x|4≤x≤7},∁RP={x|x<4 或 x>7}, Q={x|-2≤x≤5}, 所以(∁RP)∩Q={x|-2≤x<4}. (2)若“x∈P”是“x∈Q”的充分不必要条件,即 PQ,
人教版A版27课标高中数学必修第一册第一章综合测试试题试卷含答案
第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( ) A .A B =B .A B ⊆C .B A ⊆D .AB =∅∩ 2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x =的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )x1 2 3 ()f x 2 3 1 ()g x 1 3 2 ()()f g xA .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()0f x =定义域为M ,则M =R ( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x --成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( ) A .()01,B .(]01,C .()()1001-,∪,D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( ) A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ ;(2)若()U A B B =∩ ,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年.(1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C . 2.【答案】B【解析】 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,.3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1 .故选C .8.【答案】C【解析】 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x 是奇函数,()()11f f -=-. 又()g x 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-= ,.① ()()()()114114f g f g +-=∴+= ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤. 11.【答案】B【解析】(){}2min 26f x x x x x =-- ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B .12.【答案】D【解析】()4y f x =+ 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56 <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D .二、13.【答案】3-【解析】{}24A t =- ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意. 14.【答案】()()2131x x -+≥1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥.15.【答案】[]19,【解析】 函数y =的定义域为R ,()()2221101a x a x a ∴-+-++恒成立.当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f = ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称.又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭ ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x = ≤≤,{}|13U A x x x ∴=<或> , (){}|34U A B x x ∴=∩<< .(2)若()U A B B =∩ ,则U B A ⊆ . ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -= ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤, 1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x 在[]22-,上是单调函数, 222k -∴--或222k --,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=- ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =, 所以()()225210f x x x x x =-=-. (2)由(1)知()f x 的对称轴为52x =,当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤> (3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.。
集合与常用逻辑用语(综合测试卷)-2020-2021高中数学新教材(人教A版必修第一册)(解析版)
《集合与常用逻辑用语》综合测试卷一、单选题1.(2020·四川遂宁·高二期末(文))命题“2000,0x x ∃≤≥”的否定是( )A .20,0x x ∀≤<B .20,0x x ∀≤≥C .2000,0x x ∃>>D .2000,0x x ∃<<【答案】A 【解析】命题“2000,0x x ∃≤≥”的否定形式为:“20,0x x ∀≤<”.故选:A.2.(2019·浙江南湖·嘉兴一中高一月考)方程组20x y x y +=⎧⎨-=⎩的解构成的集合是( )A .{1}B .(1,1)C .{}(1,1)D .{}1,1【答案】C 【解析】 ∵2{0x y x y +=-=∴1{1x y ==∴方程组2{x y x y +=-=的解构成的集合是{(1,1)}故选:C .3.(2019·浙江湖州·高一期中)设集合()(){}110A x x x =-+=,则( ) A .A ∅∈ B .1A ∈C .{}1A -∈D .{}11A -∈, 【答案】B 【解析】集合()(){}{}1101,1A x x x =-+==-,A ∴∅⊆,所以选项A 错误,1A ∈,所以选项B 正确,{}1-⊆A,{}1,1=A -,所以选项C ,D 错误. 故选:B4.(2020·陕西碑林·西北工业大学附属中学高二月考(文))设集合{|3}{|02}A x x B x x x =<=,或,则A B ⋂=( )A .()0-∞,B .()23,C .()()023-∞⋃,, D .()3-∞, 【答案】C 【解析】集合{|3}{|02}A x x B x x x =<=,或,则()()023A B ⋂=-∞⋃,,. 故选:C .5.(2020·广西兴宁·南宁三中高一期末)设{1,0,1,2}U =-,集合2{|1,}A x x x U =<∈,则U C A =( )A .{0,1,2}B .{1,1,2}-C .{1,0,2}-D .{1,0,1}-【答案】B 【解析】由21x < 得: 11x -<< ,所以{}0A = ,因此{}1,1,2UA =- ,故答案为B6.(2019·浙江高三月考)已知全集{}0,1,2,3,4,5,6U =,集合{}0,1,3,5A =,{}2,3,6B =,则()UA B ⋃=( ) A .{}3 B .{}0,1,3,4 C .{}0,1,3,4,5 D .{}0,1,2,3,5,6【答案】C 【解析】全集{}0,1,2,3,4,5,6U =,集合{}2,3,6B =,则{}0,1,4,5UB =,又集合{}0,1,3,5A =,因此,(){}0,1,3,4,5UAB =.故选:C.7.(2019·浙江衢州·高二期中)已知全集U R =,集合{}{|13},2A x x B x x =<≤=,则()UA B ⋂=( )A .{|12}x x <≤B .{|12}x x ≤<C .{|12}x x ≤≤D .{|13}x x ≤≤【答案】A 【解析】由U R =及{}2B x x =可得{|2}UB x x =≤,所以()U A B ⋂= {|12}x x <≤,故选A.8.(2020·天山·新疆实验高二期末)已知R a ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件【答案】A 【解析】a ∈R ,则“a >1”⇒“11a<”, “11a<”⇒“a >1或a <0”,∴“a >1”是“11a<”的充分非必要条件. 故选A . 点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 9.(2020·全国高三专题练习(文))设x ∈R ,则“20x -≥”是“()211x -≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B 【解析】202-≥⇔≤x x ,2(1)102-≤⇔≤≤x x据此可知,20x -≥是2(1)1-≤x 的必要不充分条件. 故选:B10.(2020·湖北高一期末)设全集U =R ,已知集合{3A x x =<或}9x ≥,集合{}B x x a =≥.若()U C A B ≠∅,则a 的取值范围为( )A .3a >B .3a ≤C .9a <D .9a ≤【答案】C 【解析】∵{3A x x =<或}9x ≥,∴{}9|3U C A x x =≤<, 若()U C A B ≠∅,则9a <,故选:C . 二、多选题11.(2020·辽宁抚顺·高一期末)若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,【答案】AB 【解析】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞, 故选:AB12.(2019·儋州市八一中学高一期中)已知下列命题其中正确的有( ) A .“实数都大于0”的否定是“实数都小于或等于0”B .“三角形外角和为360度”是含有全称量词的真命题C .“至少存在一个实数x ,使得||0x ”是含有存在量词的真命题D .“能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题 【答案】BCD 【解析】对于A, “实数都大于0”的否定是“实数不都大于0”,故A 错误.对于B, “三角形外角和为360度”含有全称量词,且为真命题,所以B 正确;对于C, “至少存在一个实数x ,使得||0x ”含有存在量词,且为真命题,所以C 正确; 对于D, “能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题,所以D 正确. 综上可知,正确命题为BCD 故答案为: BCD13.(2020·江苏连云港·高二期末)已知p ,q 都是r 的充分条件,s 是r 的必要条件, q 是s 的必要条件,则( )A .p 是q 的既不充分也不必要条件B .p 是s 的充分条件C .r 是q 的必要不充分条件D .s 是q 的充要条件【答案】BD 【解析】因为,p r q r ⇒⇒,r s ⇒,s q ⇒,故p s ⇒,q s ⇒,故选:BD 。
【新教材】人教A版(2019)高中数学必修第一册测试卷
本册检测考试时间120分钟,满分150分.一'单项选择题(本大题共8小题,每小题5分,共40分.在每小题给岀的四个选项中,只有一项是符合题目要求的)21.已知集合A={L2), B={2,〒},若则实数《的值为(D )A.1或2 B・*C・1 D・22[解析I ••集合A={1,2}2・•・由集合元素的互异性及子集的概念可知〒二1 ,解彳导斤二2•故选D・2.下列关于命题"3xGR・使得F+x+l<0”的否泄说法正确的是(B )A・VxGR,均有.F+x+lvO,假命题B・V A ER.均有Q+X+120,真命题C・3A均有F+x+l^O,假命题D・R,均有.¥2+x4-1 =0>真命题[解析I根据存在呈词命题的否走是全称星词命题,対筛在量词改为全称呈词,然后1 3 否走结论,故该命题的否走为“也WR ,均有W十x + 1 M0”,因为%2十x十1二Cv十护十訐0恒成立,所以原命题的否定是真命题•3・sink cosl, tanl的大小关系为(A )A. tanl>sinl>cosl B・ sinl>tanl>coslC・ sinl>cosl>tanl D・ tanl>cosl>sinl兀胚<2 兀[解析]\*sinl>sin^= 2 / coslvcos^ 二吉-,tanl>tan^= 1 r.\tanl>sinl>cos 1.i [丄_______4. lg2 —lg§—曲2 —切迄+寸(_2)2的值为(A )A. — 1B. yC・3 D・一 5[解析]原式= lg2 + lg5-2-2 + 2 = lglO-2=l -2= - 1.故选 A ・5•设角a=35TI2sin(n+a )cos(7r—a)—cos(兀+a)1 + sin2a+sin(n—a)—cos2(n -F的值为(B.一sinaA.c.、2sin(兀十a)cos(n - a) - cos(n + a) 所以 .=.1 + siira + sin(7r - a) - cos■(兀 + a)2sinacosa + cosa 2sinacosa + cosa cosa1 十sin2a + sina - cos% 2sin2a 十sina35兀7Tcos( - —) COS- 二「二萌•故选D.sin( - sin-6.若关于x的方程•心)一2=0在(一P 0)内有解,则)=九)的图象可以是(D )【解析]因为关于x的方程沧)・2二0在(・8,0)内有解,所以函数y二心)与y二2的图象在(-8,0)内有交点,观察题中图象可知只有D中图象满足要求•7・泄义在R上的偶函数/U)在[0, +8)上单调递增,且肩)=0,贝IJ满足/(tog! x)>0的X的取值范用是(B )A. (0, +8)B・(0, |)U(2, +oo)c. (0, |)U(|, 2) D. (0, |)[解析]由题意知/U)=J( - X)二他I),所以./(llogi X I)>A|)•因为.心)在[0 ,十8)上单调递8增r所以llogi则>£ /又人>0・解得0<Y|或入>2・8 3 28.具有性质卅:)=一心)的函数,我们称为满足“倒负”变换.给岀下列函数:D0<v <l ♦B.①③D.①[解析]①用)二X In -- 二In—; ./U)1-X1+x1不满足二-人尤),满足“倒负”变换.1 +x21 "~*X 1 """F①尸山币:<§)y=7^2:③y其中满足“倒负”变换的是(CA.①②C.②③变换.③当0<y 1 时,+> 1 ,心)=.¥,.用)=-x=-.心);当Q1 时,0<+<1 ,.心)二-£ ,几弓二£ 二- f(X);当X二1 时,+二1 , f(x) = 0,用)二夬1)二0 二 + 二-A') r 满足“倒负”变换•综上,②③是符合要求的函数,故选C•二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中, 有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.将函数y=sin(A-|)的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向左平移竽个单位长度得g(x)的图象,则下列说法正确的是(ACD )A.g(x)是奇函数B.x=j是g(x)图象的一条对称轴C.g(x)的图象关于点(3兀,0)对称D.2吶=1【解析I将函数y二sin(.r -予的图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得y 二sin(f -为的图象,再向左平移弓个单位长度得曲)二_ n = s确的图象,所以A. B. C. D.A 正确;因为g (彳)H±1 ■所以B 错;因为g (3jr ) = sin n = 0 ,所以C 正确;又g (0)二0 ,所以 2?(0)= 1 ,所以D 正确•综上,ACD 正确.10. 已知0<a<b<\<c,则下列不等式不成立的是(BD ) A. a c<b (B."<出C ・ log fl c>log/x-D ・ sin a>sin b[解析]取 a = ^ , b = ^ , c = 2 ,则(扌)2<(*)2 , A 成立;2? >2 彳 朋不成立;log’2二log ] 2 二・ 1 ■・\logi 2>logj 2 f C 成立;*/0<6/</xl<z . .\sin t/<sin h t D 不成立.故选 BD . 2 "4 211. 将函数y=sin (2r+0)的图象沿x 轴向左平移頁个单位后,得到一个偶函数的图象,则 卩的一个可能取值为(AB )3 c 71A ・一卩B ・4C ・0D.—睿【解析|将函数y = sin (2r + °)的图象沿x 轴向左平移外单位,得到函数y = sin (2(x +殳)十卩]二sin (2v 十扌十卩),因为此时函数为偶函数,所以扌十卩二号十航,kWZ ,即+ kn , kE. Z,k = 0 时,(p = ^ , k= -1 时,0 二-竽.12.下列命题正确的是(CD )VxG (2, +8),都有 %2>2X=$'是函数“尸COS22" — Si22w 的最小正周期为7T”的充要条件命题 p : 3x<)R> /(x ())=ax3+xo+d = 0 是假命题,则“丘(一°°,—㊁)U (y + °°)已知% pg 则 *=矿是细皿=帥八的既不充分也不必要条件[解析]A 错,当 x 二 4 时,42= 24,故不等式不成立;B 错,y = cos 22<u- - sin 22t/.v = cos4t/x#当"二抽,y = cosZr ,当"二冷时, y = cos( - 2v) = cos2.v ,其最小正[解周期为兀,故说法不正确;C 正确,因为〃为假命题f 所以"为真命题,即不存在xoER , 使./Uo )二0 ,故J= 1 - 4"2<0 ,且“H0 '解得或</< - | ; D 正确,如果两个角为直角,那么它们的正切值不存在,反过来,如果两个角的正切值相等,那么它们可能相差 WeZ ), 故反之不成立・综上,CD 正确.三、填空题(本大题共4小题,每小题5分,共20分)2sin47°-V3sin 17° 丄门・ 2cos 17° =—2—•2sin( 17° + 30。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②若函数 的定义域是 ,则它的值域是 ;
③若函数 的值域是 ,则它的定义域是 ;
④若函数 的值域是 ,则它的定义域是 ;
其中不正确的命题的序号是(把你认为不正确的序号都填上)。
三.解答题
15.设集合 , ,若 ,求实数 的值组成的集合。
16.求函数 的定义域和值域。
C. D.
8.已知函数 ,则 的值是()
A. B.9C. D.
9.已知 ,且 ,则A的值是()
A. 15B. C. D. 225
10.设 ,在同一直角坐标系中,函数 与 的图象是()
二.填空题
11.方程 的解是。
12.函数 ( ,且 )在 上的最大值比最小值大 ,则 的值是。
13.某服装厂生产某种大衣,日销售量 (件)与货款P(元/件)之间的关系为P=160- ,生产 件的成本 元,则该厂日产量在时,日获利不少于1300元。
高中数学必修一综合测试卷(一)
班级姓名
4.Байду номын сангаас知函数 在 上是增函数,则实数 的取值
范围是()
A. B. C. D.
5. 是偶函数,则 , , 的大小关系为()
A. B.
C. D.
6.函数 在区间 内有零点,则()
A. B.
C. D. 的符号不定
7.设 为奇函数且在 内是减函数, ,且 的
解集为()
A. B.
17.设 ,若 ,试求:
(1) 的值;
(2) 的值;
(3)求值域。
18.二次函数 满足 ,且 ,
(1)求 的解析式;
(2)在区间 上 的图象恒在 图象的上方,试确定实数 的范围。
19.已知 ,若 满足 ,
(1)求实数 的值;(2)判断函数的单调性,并加以证明。