电动力学 第2章 2-4

合集下载

郭硕鸿《电动力学》课后习题答案

郭硕鸿《电动力学》课后习题答案

电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇AA A A )()(221∇⋅-∇=⨯∇⨯A 解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 AA A A A A )()()(21∇⋅-⋅∇=⨯∇⨯ 即 AA A A )()(221∇⋅-∇=⨯∇⨯A 2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(AA ⨯∇=⨯∇ 证明:(1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x z uu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d d u uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e (2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d u u z u y u x u u A u A u A z y x z z y y x x d d )()d d d d d d (Ae e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++= (3)uA u A u A z u y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z y u A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。

电动力学内容简介

电动力学内容简介

电动力学内容简介The Summery of Contents in Electrodynamics电动力学:研究电磁场的基本属性、运动规律、与带电物质的相互作用。

1. 场:物理量在空间或一部分空间的分布。

通过对电磁场的研究加深对场的理解。

场是一种物质,有其特殊的运动规律和物质属性,但是又是一种特殊的物质它可以与其他物质共同占有一个空间(存在形式的特点)。

有关电磁场的概念是有法拉第提出的,麦克斯韦进一步完善。

一个很核心的问题:“物质能不能在它们不存在的地方发生相互作用” “实验证实超距作用的不正确”所以说场的引入可以说正是解释了这一问题。

电磁场作为电磁现象的共性所引入的2. 如何研究电磁场所对应的物理量()(),,,,,,,E x y z t B x y z t :从理论上和实验上证明了是必需的也是最基本的。

3. 电磁学和电动力学的区别:(学过了数学物理方法)就像中学中的电与磁的现象与电磁学的区别在于学了微积分一样。

电磁学:麦克斯韦方程组:只有积分的形式只是作为最后的结果并没有给出应用。

求解静电场的问题:库伦定理+积分、高斯定理、已知电势求电场电动力学:麦克斯韦方程组:不仅有积分形式而且还有位分形式,先结果再应用。

求解静电场的问题:分离变量法、镜像法、格林函数法4. 本书的主要结构:⎧⎧→⎨⎪⎪⎩→⎨⎧⎪→⎨⎪⎩⎩第二章静电场静第三章静磁场第一章电磁现象的普遍规律第四章电磁场的的传播动第五章电磁场的发射第六章相对论第一章 电磁现象的普遍规律Universal Law of Electromagnetic Phenomenon本章将从基本的电磁实验定律出发建立真空中的Maxwell’s equations 。

并从微观角度论证了存在介质时的Maxwell’s equations 的形式及其电磁性质的本构关系。

继而给出Maxwell’s equat ions 在边界上的形式,及其电磁场的能量和能流,最后讨论Maxwell’s equations 的自洽性和完备性。

郭硕鸿《电动力学》课后答案

郭硕鸿《电动力学》课后答案

郭硕鸿《电动力学》课后答案第 2 页电动力学答案第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇ A A A A )()(221∇⋅-∇=⨯∇⨯A 解:(1))()()(cc A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=cc c c B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:AA A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯ 即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u u f u f ∇=∇d d )( , u u u d d )(A A ⋅∇=⋅∇, uu u d d )(AA ⨯∇=⨯∇ 证明: (1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(zy x zuu f y u u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d du uf z u y u x u u f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e(2)z u A y u A x u A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zuu A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d du z u y u x u u A u A u A z y x z z y y x x dd)()d d d d d d (e e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=第 3 页(3)u A u A u A zu y u x u uu z y x zy x d /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e Azx y y z x x y z yu u A x u u A x u u A z u u A z uu A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=zx y y z x x y z yu A x u A x u A z u A z u A y u A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。

电动力学作业第二章

电动力学作业第二章

第二章 习题1. 有导体存在时的唯一性定理是说: 若给出介质中自由电荷的分布,给定每个导体上的_______或每个导体上的______,以及(包围所有导体的)界面S 上sn s ∂∂ϕϕ或,则S 内静电场E被唯一确定. 2. 无导体存在时的静电学问题的唯一性定理为: 设空间区域V 可以分为若干小区域i V ,每个小区域i V 充满均匀介质i ε,若给出V 内自由电荷的分布,同时给出V 的界面S上的__ _ ___或_ __ ____,则V 内静电场E被唯一确定.3. 半径为0R 的接地导体球置于均匀外电场0E 中,导体球外为真空.试用分离变量法,求导体球外的电势、场强和导体球面上的自由电荷面密度σ.4. 半径为0R 的接地导体球置于均匀外电场0E中,球外真空, 试用分离变量法,求电势、导体面上的电荷面密度及场强.5. 半径为R 的空心带电球面,面电荷密度为θσσcos 0=f (0σ为常量),球外充满介电常数为ε的均匀介质,求球内外的电势、场强.6. 在两个互相垂直的接地导体平面所围成的直角空间内有一点电荷Q ,它到两个平面的距离为a 和b ,其坐标为)0,,(b a ,那么当用镜像法求空间的电势时,其镜像电荷的数目为______,这时所围成的直角空间内任意点),,(z y x 的电势为______.7. 两个无穷大的接地导体平面分别组成一个450、600、900两面角,在两面角内与两导体平面等距离处置一点电荷Q ,则在这三种情形下,像电荷的个数分别为 ______,______,______.8. 一电量为q 的点电荷在两平行接地导体平面中间,离两板距离均为a ,则像电荷的个数为_______.9.有两个电量为q的点电荷A和B,相距2b,在它们的联线的中点放一半径为a的接地导体球(b>a),则每一个点电荷受力大小为_______.10.电荷分布为ρ,体积为V的带电体系在外电场(电势为eϕ)中的能量为_______.11.两个同心带电球面(内、外半径分别为a、b)均匀地带有相同的电荷Q,则这两个带电球面之间的相互作用能为_________;系统的总静电能为_________.12.半径为R的接地导体球外有一点电荷q,它离球心的距离为a,则他们的相互作用能为_______.。

电动力学 西南师范大学出版社 罗婉华 第二章作业答案

电动力学 西南师范大学出版社 罗婉华 第二章作业答案

习题二1.将一个位于真空中的带电导体球切成两半,求它们之间的排斥力.设球的半径为0R ,球的电势为0V .答案: .ˆ2200z eV F πε= 解:0004R q V πε=,0004V R q πε=,.000R V εσ=z z e V e R F ˆ2ˆ22002002πεπεσ=⋅=2.内外半径分别为a 和b 的无限长圆柱形电容器,单位长度荷电为f λ,板间填充电导率为σ的非磁性物质.⑴证明在介质中任何一点传导电流与位移电流严格抵消.因此内部无磁场.⑵求f λ随时间的衰减规律.⑶求与轴相距为r 的地方的能量耗散功率密度.⑷求长度为l 的一段介质总的能量耗散功率,并证明它等于这段的静电能减少率. ⑵;0tf eεσλλ-=⑶22⎪⎪⎭⎫⎝⎛r f πελσ; ⑷.ln222ab l f πελσ解:⑴r f e r D ˆ2πλ=,.ˆ2r f e rDE πελε==.ˆ2r f f e r E J πεσλσ== .ˆ21r fD e tr t D J ∂∂=∂∂=λπ对两式求散度,并且由f D ρ=⋅∇ ,0=∂∂+⋅∇tJ ff ρ得f f tλεσλ-=∂∂,所以0=∂∂+tD J f。

因为介质是非磁性的,即H Bμ=,故任意一点,任意时刻有000=⎪⎪⎭⎫⎝⎛∂∂+=⨯∇=⨯∇t D J H B fμμ ⑵由f f tλεσλ-=∂∂,解这个微分方程得()tf et εσλλ-=0⑶()222/r E E J p f f πελσσ==⋅=⑷长度为l 的一段介质耗散的功率为.ln 222222a bl rldr r f baf πελσππελσ=⎪⎪⎭⎫ ⎝⎛⎰能量密度()22/,21r tw D E w f πελσ-=∂∂⋅=长度为l 的一段介质内能量减少率为 .ln2222ab l rldr tw f baπελσπ⎰=∂∂-3.一很长的直圆筒,半径为R ,表面上带有一层均匀电荷,电荷量的面密度为σ.在外力矩的作用下,从0=t 时刻开始,以匀角加速度α绕它的几何轴转动,如图所示.⑴试求筒内的磁感应强度B;⑵试求筒内接近内表面处的电场强度E和玻印廷矢量S ;⑶试证明:进入这圆筒长为l 一段的S 的通量为⎪⎪⎭⎫ ⎝⎛2022B l R dt d μπ. 答案: ⑴ωσμR B 0=;⑵ωασμe eRr E r ˆˆ210⨯= ; r er R S ˆ212320ασμ-= .解:⑴单位面电流ωσσπR lT Rl i ==2ωσμμR ei B z 00ˆ== ⑵在圆筒的横截面内,以轴线为心,r 为半径作一圆,通过这圆面积的磁通量为 ωσμπR r S d B s02=⋅=Φ⎰由法拉第定律,得 .21210d td Rrdtd r E ωσμπ-=Φ-=因为t αω= 所以ασμrR E 021-=考虑到方向,则有z r e erR E ˆˆ210⨯=ασμ 在筒内接近表面处,z r e eR E ˆˆ2120⨯=ασμ 该处的能流密度为 ()()z z r R R R e R e eR H E S ˆˆˆ2120ωσασμ⨯⨯=⨯=r et R ˆ212320ασμ-= 负号表明,S 垂直于筒表面指向筒内。

电动力学习题解答2

电动力学习题解答2

第二章 静电场1. 一个半径为R 的电介质球,极化强度为2/r K r P =,电容率为ε。

(1)计算束缚电荷的体密度和面密度: (2)计算自由电荷体密度; (3)计算球外和球内的电势;(4)求该带电介质球产生的静电场总能量。

解:(1)P ⋅-∇=p ρ2222/)]/1()/1[()/(r K r r K r K -=∇⋅+⋅∇-=⋅∇-=r r r)(12P P n -⋅-=p σR K R r r /=⋅==P e (2))/(00εεεε-=+=P P E D 内200)/()/(r K f εεεεεερ-=-⋅∇=⋅∇=P D 内(3))/(/0εεε-==P D E 内内rr frKRr Ve e D E 200200)(4d εεεεπερε-===⎰外外 rKRr)(d 00εεεεϕ-=⋅=⎰∞r E 外外)(ln d d 00εεεεϕ+-=⋅+⋅=⎰⎰∞r R K RR rr E r E 外内内(4)⎰⎰⎰∞-+-=⋅=R R rrr R K r r r K V W 42200222022202d 4)(21d 4)(21d 21πεεεεπεεεE D 20))(1(2εεεεπε-+=K R2. 在均匀外电场中置入半径为0R 的导体球,试用分离变量法求下列两种情况的电势:(1)导体球上接有电池,使球与地保持电势差0Φ; (2)导体球上带总电荷Q 解:(1)该问题具有轴对称性,对称轴为通过球心沿外电场0E 方向的轴线,取该轴线为极轴,球心为原点建立球坐标系。

当0R R >时,电势ϕ满足拉普拉斯方程,通解为∑++=nn n nn n P R b R a )(cos )(1θϕ 因为无穷远处 0E E →,)(cos cos 10000θϕθϕϕRP E R E -=-→ 所以 00ϕ=a ,01E a -=,)2(,0≥=n a n当 0R R →时,0Φ→ϕ所以 0101000)(cos )(cos Φ=+-∑+n nn nP R b P R E θθϕ 即: 002010000/,/R E R b R b =Φ=+ϕ所以 )2(,0,),(3010000≥==-Φ=n b R E b R b n ϕ⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ(2)设球体待定电势为0Φ,同理可得⎩⎨⎧≤Φ>+-Φ+-=)()(/cos /)(cos 000230000000R R R R R R E R R R E θϕθϕϕ当 0R R →时,由题意,金属球带电量Qφθθθϕθεϕεd d sin )cos 2cos (d 200000000R E R E S nQ R R ⎰⎰+-Φ+=∂∂-== )(40000ϕπε-Φ=R所以 00004/)(R Q πεϕ=-Φ⎩⎨⎧≤+>++-=)(4/)(cos )/(4/cos 00002300000R R RQ R R R R E R Q R E πεϕθπεθϕϕ3. 均匀介质球的中心置一点电荷f Q ,球的电容率为ε,球外为真空,试用分离变量法求空间电势,把结果与使用高斯定理所得结果比较。

电动力学-第二章(习题)解析

电动力学-第二章(习题)解析
使其0 与具有Q确0 何定种电关势系时0,,试两求情这况两解种相情等况。电势,又问
解:因为球壳不接地,球外电势不为零。而球内电
势可利用叠加原理,由 Q 的电势,象电荷Q 的电
势和球壳电势组成,取无穷远处为电势0点,球内电
势的定解条件为
Q
而球外电势可直接由高 斯定理求出:
[( 2
0)
2
r
(1
0)
1
r
]
|R0
30 (1 2 1(1 2
2 2
) ) R03
pf
cos
p
3 0 (1 2 ) 2 1(1 2 2 )R03
pf
cos
5、空心导体球壳的内外半径为R1和R2, 球中心置一偶极子 ,球p 壳上带电Q, 求空间各点电势和电荷分布
解:该问题具有轴对称性,对称轴为 通过球心沿 p 方向的轴线。取此线为 轴线,球心为原点建立球坐标系。取 无穷远处为电势0点。
电势0点。介质球半径为 ,球外为真空,该问题具
有球对称性。设球内外势分别用
表示。
对球外,无电荷,拉普拉斯方程。对球内可以看成点电荷与介质 球的极化电荷各自产生电势的叠加
由于球对称
使用高斯定理 在球外由高斯定理有
0 D2 • d S Qf
S
2
r
Qf
4 0r2
r0
•dr
Qf
4 0r
,
在球内由介质中高斯定理有
E2
Qf
4 0r 2
r0
(r R0 )
D1 • d S Qf D1 E1
S
E1
Qf
4r 2
r0
1
2
|R0
R0 r
Qf

电动力学第二章自由空间中的电磁波

电动力学第二章自由空间中的电磁波

1
例: 半径为 R,带电量为 q(q>0)的均匀带电球体的球心位于原点,设球体的 介电常数为,求球内各点电场强度的散度。
2
3
4
静电场时变电场
5
6
7
求场点 x 的散度和旋度,可得静电场的两个基本微分方程:
8
9
时变电磁场的 Maxwell 方程组
安培定律和位移电流
r E
r B
t
r B
0
t
12
13
r
n r pi
nr
q li
P r
i
V
i
V
P——电极化强度矢量
nq l d S np d S P d S
S P d S p o s i t i v e c h a r g e s o u t s i d e V PdV S P d S
P P
14
JP
P
t
0
JP
y,
z)
2u x2
2u y 2
2u z 2
22
2u(,, z)
1
(
u )
1 2
2u 2
2u z 2
● 导电媒质中有源的非齐次广义波动方程
r
r
ur
r 2E
E
2E
1
J
t
t2
t
r 2H
r H t
r 2H t 2
ur J
●不导电媒质中有源的非齐次波动方程
r 2E
r 2E t 2
1
Constitutive equations of simple (isotropic) media
Dx xx
Dy

电动力学-第二章-2-3拉普拉斯方程

电动力学-第二章-2-3拉普拉斯方程
θ=0,φ=V,任何r成立 A0C0 V , B0 0,C 0 0
r→0, φ有限
B B0 0
θ=2π-α,φ=V,任何r成立 D0 0, sin 2 0
n
n
2
n 1,2,
V Anrn sin n n1
条件不全,无 法确定An
尖劈附近,r→0
V A1r1 sin1
Er
r
1A1r11 sin1
E
1 r
1A1r11 cos1
0En
0E 0 E
0
2
01 A1r11
α很小,ν1≈1/2,E和σ∝1/r1/2
n
n
2
n 1,2,
r 2
)
r
1
r 2 sin
(sin
)
1
r 2 sin 2
2 2
0
其通解为 (r, ,) R(r)Y ( ,)
Bn(1)
a
n
cos n
E0a cos
Dn(2) a n
n1
cos n
n1 nBn(1) a n1 cos n
0 E0 cos
0
(n)Dn(2) a (n1)
n 1
cos n
两边 为任意值, cos 前系数应相等( n 1,2, )
n 1
BB1(11)(1a)
E0
a
D(2) 1
a
1
0 E0 0 D1(2)a2
k2Z
0
Rr An Jn kr An Nn kr k 0 Rr Anr n Anr n k 0 Rr Aln r A k n 0
Bn cos n Bn sin n n 0
B B n 0

电动力学课程教学大纲

电动力学课程教学大纲

《电动力学》课程教学大纲(Electrodynamics )适用专业:物理学专业理论物理方向本科生课程学时:68学时课程学分:4学分一、课程的性质与任务本课程性质:本课程是物理学专业理论物理方向的专业基础课本课程教学目的和任务:通过本课程的学习,使学生系统地掌握电磁场的基本规律及其有关的应用,并了解狭义相对论建立的历史背景,掌握狭义相对论的基本原理、时空理论、电动力学的四维协变形式以及相对论力学的有关内容。

获得在本门课程领域内分析和处理一些基本问题的初步能力;为学习后续课程和独立解决实际问题打下必要的基础。

二、课程的内容与基本要求第0章矢量分析基础内容:1、绪言2、矢量分析基础要求:理解直角、圆柱、圆球坐标系中的单位矢量、长度元、面积元及体积元概念;掌握标量函数的梯度、矢量函数的散度和旋度概念及其基本运算。

第1章电磁现象的普遍规律内容:1、电荷和电场2、电流和磁场3、麦克斯韦方程组4、介质的电磁性质5、电磁场边值关系6、电磁场的能量和能流要求:掌握基本实验定律:库仑定律、毕奥-萨伐尔定律、电磁感应定律;熟练掌握麦克斯韦方程组,洛伦兹力公式;理解介质存在时电磁场和介质内部的电荷电流相互作用,掌握介质中的麦克斯韦方程组;掌握电磁场边值关系;理解场和电荷系统的能量守恒定律的一般形式,掌握电磁场能量密度和能流密度表示式。

第二章静电场内容:1、静电场的标势及其微分方程2、唯一性定理3、拉普拉斯方程分离变量法4、镜象法5、电多极矩要求:熟练掌握静电场的标势及其微分方程;理解唯一性定理;掌握拉普拉斯方程,会用分离变量法求解一些典型的静电场问题;掌握镜象法;掌握电势的多极展开, 会计算电多极矩。

第三章静磁场内容:1、矢势及其微分方程2、磁标势3、磁多极矩4、阿哈罗诺夫-玻姆效应5、超导体的电磁性质要求:熟练掌握磁场的矢势法,矢势的微分方程;掌握磁标势法,会解决一些典型的静磁场问题;理解矢势的多极展开;了解阿哈罗诺夫-玻姆效应;了解超导体的电磁性质。

电动力学第8讲2静电势的多极展开

电动力学第8讲2静电势的多极展开

第8讲静电势的多极展开第二章电磁场的标势、矢势和电磁辐射(2)§ 2.2 静电势的多极展开1.电势的多极展开在§2.1中我们导出了真空中给定电荷密度(x ) - 'U V '4 昭0r式中体积分遍及电荷分布区域,r为场点x和源点x'的距离。

在许多物理问题中,电荷只分布于一个小区域内,而需要求电场强度的地点x又距离电荷分布区域比较远,即在(2.2---1)式中,r远大于区域V的线度I。

在这种情况下,可以把(2.2---1)式表为1/r的展开式,由此得出电势©的各级近似值。

例如原子核的电荷分布于~10-15 m线度的范围内,而原子内电子到原子核的距离~10-10 m,因此原子核作用到电子上的电场可以用本节方法求得各级近似值。

在区域V内取一点o作为坐标原点,以£个R表示由原点到场点P的距离,有2 2 2R 二:.x y zr = x x' «(x —x2) +(y —『’)-Z ')x'点在区域V内变动。

由于区域线度远小于R,可以把x'各分量看作小参量,把x - x'的函数对x'展开。

设f (x - x')为x - x'的任一函数,在x点附近f (x - x')的展开式为P (x')激发的电势(2.2---1)(2.2---2)1 2=f (x )「X % f x( ) X C ' f )x () 2!1 / | x - x' | = 1 / r,有3 -f(x-x') = f(x)-\ X i1 * f(x) X x2! i,j f (x)...取 f (x - x')(2.2---2)(2.2---12)上式是电荷体系激发的势在远处的多级展开式。

电四极矩。

电四极矩也可以用并矢形式(附录Ip 称为体系的电偶极矩,张量D ij 称为体系的 • 6)写为D = v 3X iX j cX dV )而展开式(2.2---7)的第三项用并矢形式写为2.电多极矩 现在我们讨论展开式(2.2---7)各项的物理意义。

《电动力学第三版郭硕鸿》第1-5章练习题答案

《电动力学第三版郭硕鸿》第1-5章练习题答案
9. S
10. 变化磁场激发电场
11. 电场强度随时间的变化率

×
G E
=

G ∂B
12.
∂t
G ∇×H
=
G J+
G ∂D
13.
∂t
G 14. ∇ ⋅ D = ρ
G
15. ∇ ⋅ B = 0 16. 稳恒电流
G
G GG
17. f = ρ E + J × B (适用于电荷分布情况)
G
GG
18. e E + e v × B
0
Pn (cos
θ
)]
=
Q

b0
=
Q 4πε 0
, b1
=

E 0 R03 2
,bn
=
0(n

0 ,1)

ϕ
=
− E 0 R cos θ
+
Q 4πε 0 R

E 0 R03 2R 3
cos
θ
-8-
《电动力学》各章练习题参考答案(2014) __________________________________________________________________________________
(三)证明题: 1. 书上内容P112-113。 2.书上内容P115。 3. 书上内容P115。 4. 书上内容P122。 5. 书上内容P126。
(四)计算、推导题:
1.解: G
GGG
(1)k G ek =
= G k
k
−3ex
+ G
ey
+ G
ez

电动力学-复习-第二章-电磁场的基本规律

电动力学-复习-第二章-电磁场的基本规律

*
电场力服从叠加原理
真空中的N个点电荷 (分别位于 ) 对点电荷 (位于 )的作用力为
q
q1
q2
q3
q4
q5
q6
q7
*
2. 电场强度
空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力,即
多层同心球壳
*
无限大平面电荷:如无限大的均匀带电平面、平板圆柱壳等。
(a)
(b)
*
例2.2.3 求真空中均匀带电球体的场强分布。已知球体半径为a ,电 荷密度为 0 。
解:(1)球外某点的场强
(2)求球体内一点的场强
( r ≥ a )
• 宏观分析时,电荷常是数以亿计的电子电荷e的组合,故可不考虑其量子化的事实,而认为电荷量q可任意连续取值。
2.1.1 电荷与电荷密度
*
1. 电荷体密度
单位:C/m3 (库仑/米3 )
根据电荷密度的定义,如果已知某空间区域V中的电荷体密度,则区域V中的总电量q为
电荷连续分布于体积V内,用电荷体密度来描述其分布
如果已知某空间曲线上的电荷线密度,则该曲线上的总电量q 为
单位: C/m (库仑/米)
*
对于总电量为 q 的电荷集中在很小区域 V 的情况,当不分析和计算该电荷所在的小区域中的电场,而仅需要分析和计算电场的区域又距离电荷区很远,即场点距源点的距离远大于电荷所在的源区的线度时,小体积 V 中的电荷可看作位于该区域中心、电量为 q 的点电荷。
第二章 电磁场的基本规律
*
2.1 电荷守恒定律 2.2 真空中静电场的基本规律 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 2.5 电磁感应定律和位移电流 2.6 麦克斯韦方程组 2.7 电磁场的边界条件

电动力学课程教学大纲(物理学教育专业)

电动力学课程教学大纲(物理学教育专业)

《电动力学》课程教学大纲(物理学教育专业)Electrodynamics(课程编号0431104)(学分 4 ,学时68)第一部份课程的性质与目的要求电动力学是高等师范院校本科物理学教育专业理论物理课程之一,是一般物理电磁学的后继课。

通过本课程的学习,不仅使学生对电磁现象的熟悉在电磁学唯象理论的基础上更深切一步,认清电磁场的本质,了解相对论的时空观,而且要学习理论物理学处置问题的方式,提高在本课程领域分析、解决实际问题的能力。

要求:学好先行课《电磁学》、《矢量分析》、《数学物理方式》。

第二部份课程内容和学时分派本大纲采纳从电磁现象的体会定律总结出麦克斯韦方程组,然后别离处置电磁场各类问题的体系,以维持电磁场理论的完整性。

要紧教学经典电动力学和狭义相对论。

共安排68学时,其中教学58学时,习题课10学时,打*号内容能够不讲。

考虑到先行课程《矢量分析与场论》并未开设,因此安排第0章(4学时)作为预备知识,教学矢量分析与场论的基础知识。

第0章预备知识矢量分析与场论基础(4学时)一、教学内容:矢量代数梯度、散度和旋度关于散度和旋度的一些定理∇算符运算公式曲线正交坐标系二、教学要求:(1) 明白得矢量场的大体概念;(2)把握∇算符(矢量微分算符)与函数的运算;3、教学重点、难点:重点:∇算符(矢量微分算符)的运算难点:梯度、散度和旋度的明白得第一章电磁现象的普遍规律(10+2学时)一、教学内容:电荷和电场库仑定律,高斯定理,电场的散度和旋度电流和磁场电荷守恒定律,毕奥-萨伐尔定律,磁场的散度和旋度,磁场旋度和散度公式的证明麦克斯韦方程组电磁感应定律,位移电流,麦克斯韦方程组和洛仑兹力公式介质的电磁性质介质的概念,介质的极化和磁化,介质中的麦克斯韦方程组电磁场的边值关系法向分量的跃变,切向分量的跃变电磁场的能量电磁能量守恒定律的一样形式,能量密度和能流密度表示式,电磁能量的传输二、教学要求:(1)明白得描述宏观电磁场的物理量,描述宏观电磁场的麦克斯韦方程组;(2)把握真空、介质中的麦克斯韦方程组及其麦克斯韦方程组知足的边界条件;还要把握电磁场的能量、动量表达式,和能量、动量守恒定律;(3)了解描述电磁场能量密度和麦克斯韦应力张量等概念。

电动力学课程教学大纲

电动力学课程教学大纲

电动力学课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:电动力学所属专业:理学专业课程性质:基础课学分:4(二)课程简介、目标与任务;电动力学是宏观电磁现象的经典理论,是研究电磁场的基本属性、运动规律以及它与带电物质之间相互作用的一门重要基础理论课。

电动力学是物理学科的一门重要基础理论课,是物理学的“四大力学”之一。

基本目标:1. 掌握处理电磁问题的一般理论和方法2. 学会狭义相对论的理论和方法学习目的与要求:1. 通过学习电磁运动的基本规律,加深对电磁场基本性质的理解;2. 通过学习狭义相对论理论了解相对论的时空观及有关的基本理论;3. 获得在本门课程领域内分析和处理一些基本问题的初步能力;4. 为学习后续课程和独力解决实际问题打下必要的基础。

为了达到以上目的和要求,在教材内容和课程设置中应注意以下问题:1. 由于本课程是理论物理课程的一部份,因而在要注意与研究生课程的衔接,尽量使这二者有机结合。

介绍麦克斯韦方程组的相对论形式时,本课程主要介绍物理量和方程如何从三维过渡到四维空间的表述形式。

结合科研工作,我们将从更深知识层次的广义相对论、微分几何角度来阐述狭义相对论时空观和Maxwell方程组的四维张量表述。

2. 详细阐述如何把学过的数理方程知识用于解决实际物理问题,即求解一定边界条件下静电势和磁矢势所满足的偏微分方程,达到提高学生分析和解决问题的能力。

3. 在电动力学课程中,讨论了如何从经典物理过度到相对论物理,因此,在介绍这些内容时要从相对论时空观上加以阐述,以使学生真正掌握狭义相对论的物理精髓,达到培养学生抽象思维的目的。

4. 适当介绍一些与课程相关的科研前沿知识,如A-B效应,超导体的磁通量子化,超颖材料(隐身材料),高维时空中的电磁理论(库伦定律),电磁与引力的统一(Kaluza-Klein理论),额外维与膜世界理论等以开阔学生的眼界。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程:高等数学矢量分析、数学物理方法、电磁学关系:其中高等数学矢量分析和数学物理方法是电动力学的数学基础,电磁学是电动力学的物理基础,电动力学在电磁学的基础上系统阐述电磁场的基本理论,并进一步在狭义相对论框架下讲述电磁场的四维协变规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q ⎡1 1 1 1⎤ ϕ= − + ⎥ ⎢ − 4πε 0 ⎣ R R1 R2 R3 ⎦
3、线电荷对无限大导体平面的镜像
位于无限大接地导体平面附近的无限长直线电荷问题也可由镜像 法求解。设线电荷距导体平面为h,单位长度带电荷ρl ,则其像 电荷仍是无限长线电荷,其中像电荷的线密度为 ρl ’=- ρl ,像 电荷的位置为z’=-h 在z>0的上电Q,则还需要在球心放置一个点电荷Q。
3、球内点电荷的镜像
在半径为a的接地导体球壳内,有一点电荷q,它与球心相距为d (d<a),如图所示。求球内的电位分布和球面上总感应电荷。 解:与点电荷位于导体球外的情况做类似的 处理。这里像电荷q’应位于导体球壳 外 且在球心与点电荷q的连线的延长线上, 如图所示。设像电荷距球心为d,同样 有 球壳内任一点的电位则为
§2.4
镜像法(电象法)
在许多静电场问题中,电荷位于导体表面附近、或位于电介质 分界面附近。对这类问题,直接求解泊松方程(或拉普拉斯方 程)会遇到很大困难,这时可采用镜像法间接求解。 镜像法是一种间接求解方法,它是在所求解的场区域以外的空 间中某些适当的位置上设置适当的等效电荷(称为像电荷), 在保持场域边界面上所给定的边界条件下,用像电荷替代导体 面上或介质面上的复杂电荷分布,把求解边值问题转换为求解 无界空间的问题。 根据唯一性定理,只要由源电荷与像电荷共同产生的位函数既 满足场域内的泊松方程(或拉普拉斯方程),又满足边界上所 给定的边界条件,则这个位函数就是唯一正确的解。
在介质分界面z=0处,电位满足边界条件

结:
(1)点电荷对导体平面的镜象 一个点电荷Q,若距无限大的电位为零的导体平面为d, 则其镜象电荷为在平面另一侧,距平面为d处的点电荷-Q。 (2)点电荷对导体球的镜象 一个点电荷Q,若离半径为a的接地导体球球心为d,则其 镜象电荷Q’位于球心及Q所在点的联线上,距球心为b, a 并且 a2 Q Q ' = − b= d d (3)点电荷对电介质平面的镜像 其中:q’位于点电荷的异侧, q’’位于点电荷的同侧。
球面上的感应电荷密度为
球面上的感应总电荷为
这一结果表明,像电荷并不都等于它所替代的感应电荷。
三、点电荷对电介质平面的镜像
设点电荷q位于电介质1中,距电介质1和电介质2的分界平面为d, 如图所示,电介质1和电介质2的介电常数分别为ε1和ε2 。 在点电荷q的电场作用下,电介质产生极化. 在介质分界面上形成极化电荷,空间中任一 点的电场由点电荷q与极化电荷共同产生。 在计算电介质1中的电位时,用像电荷q’来 替代极化电荷,并把整个空间看作充满均匀电 介质ε1,像电荷q’应位于点电荷q关于介质 分 界面的对称点上,如图所示。电介质1中任一 点的电位应为 ⎡ ⎤
二、导体球面的镜像
当一个点电荷位于导体球附近时,导体球面上会出现感应电荷。 球外任一点的电位由点电荷与感应电荷共同产生。这类问题也 可以用镜像法求解。 1、点电荷对接地导体球面的镜像
设点电荷q位于一个半径为a的接地导体球外,距球心为d。 由于对称性像电荷q’一定位于点电荷q与球心O的连线上。
设q’距球心为d’,则由q和q’产生的电位为 + +
表明:点电荷q关于导体平面的像电荷q’的大小为q’=-q, 像电荷q’的位置为z’=-h 。 根据电位分布可以求出导体平面上的感应电荷密度为
ρ s = ε 0 E z | z =0 = −ε 0
∂ϕ | z =0 = − ∂z hq 2π ( x + y + h )
2 2 2 3 2
导体平面上总的感应电荷为
一、导体平面的镜像
1、点电荷对接地无限大导体平面的镜像 设在接地无限大导体平面上方有一个点电荷q,与平面相距h, 求上半空间的电位分布。 在此问题中,z>0的上半空间内除点电荷q 所在点外,电位φ满足▽2φ=0;又由于导 体平面接地,因此在z=0处,φ=0。 对于右图所示电荷系统,所产生的电位为
q ⎡ 1 ⎢ − ϕ ( x, y , z ) = 4πε 0 ⎢ x 2 + y 2 + ( z − h) 2 ⎣ ⎤ ⎥ 2 2 2 x + y + ( z + h) ⎥ ⎦ 1
x 2 + ( z + h) 2 ρl ϕ= ln 2 2πε 0 x + ( z − h) 2 Z>0
类似于点电荷情形,对相交为直角的导体平面照样成立
不仅相交为直角的两块导体平面间的场可以用镜像法求解,而且 对于相交的任意两块半无限大导体平面,只要其交角为π/n , 都可用镜像法求解,其像电荷的个数为(2n-1)。
dxdy hq π rdrdθ hq q = ∫ ρ dS = − =− = −q = q' ∫∫ ∫∫ 2π 2π (x + y + h ) (r + h )
+∞ +∞ +∞ 2 i S s −∞ −∞ 2 2 2 3 2 0 0 2 2 3 2
2、点电荷对相交导体平面的镜像 如图为两块相交为90度的接地半无限大导体平面,在两导体平面 之间的区域中有一点电荷q,这种情况也可以应用镜像法。 为使OA面为等位面,应在点电荷q关于OA面的 对称位置1处放置一个像电荷 q1’=-q 为使OB面保持等位面,应在点电荷q关于OB面 的对称位置2处放置一个像电荷 q2’=-q,同时 还必须在像电荷关于OB面的对称位置3处放置 像电荷q3’=-q1’=q 由于q3’也恰好是q2’关于OA面的像电荷,所 以原电荷和三个像电荷共同产生的电位既满 足OA面上为零,也满足OB面上为零。 因此所求区域内任一点的电位为
a q ' = − q, d a2 d'= d
2、点电荷对不接地导体球面的镜像
若导体球不接地,且未带电荷,则球面是电位不为零的等位面。 由于净电荷为零.球面上除有感应负电荷q’外,还分布着感应正 电荷-q’。为保持球面是等位面,除像电荷q’外,还需在球心处 放上一个像电荷q’’=-q’ 球外任一点的电位则为
除点电荷q和-q所在点处外,上式满足 ▽2φ=0且在z=0处φ=0。
通过比较我们可以看出: 在z>0的上半空间,它们具有相同的电荷分布,且在z=0处电位都 满足φ=0。根据唯一性定理,下图的上半空间的电位分布与上图 的上半空间的电位分布相同,也就是说上图中的电位分布为
⎧ q ⎪ ϕ ( x, y, z ) = ⎨ 4πε 0 ⎪ ⎩0 ⎡ 1 1 − ⎢ 2 2 2 x 2 + y 2 +(z + h)2 ⎢ ⎣ x + y +(z − h) ⎤ ⎥ Z≥0 ⎥ ⎦ Z<0
φ1 =
q q' + ⎢ ⎥ z≥0 2 2 2 2 2 2 4πε1 ⎢ x + y + (z + d ) ⎦ ⎥ ⎣ x + y + (z − d ) 1
在计算电介质2中的电位时,用像电荷q’’替代极化电荷。并把整 个空间视为充满均匀电介质2,像电荷q’’应与点电荷q位于同一 点.如图所示。电介质2中的电位则为
采用镜像法时必须遵循以下三条原则: (1)像电荷必须位于所求解的场区域以外的空间中,以保证 待求场区域内场方程不变; (2)放置像电荷时移去其他媒质,将全空间充满待求场区域 的媒质; (3)像电荷的个数、位置及电荷量的大小由场区域边界上的 边界条件确定。
相关文档
最新文档