指数(分数指数幂) PPT

合集下载

4.1.1n次方根与分数指数幂第一课时PPT课件(人教版)

4.1.1n次方根与分数指数幂第一课时PPT课件(人教版)
万年前就存在的吗?
探究新知
【1】 当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.


这时,a的n次方根用符号 表示.例如 = , − = −.

【2】 当n是偶数时,正数的n次方根有两个,这两个数互为相反数.正的n次方
根用 表示,负的n次方根用− 表示.两者也可以合并成±
和果实是什么
树的吗?
银杏,是全球最古老的树种.在200多万年前,第四纪冰川出
现,大部分地区的银杏毁于一旦,残留的遗体成为了印在石头
里的植物化石.在这场大灾难中,只有中国保存了一部分活的
银杏树,绵延至今,成了研究古代银杏的活教材.所以,人们把
它称为“世界第一活化石”.
复习引入
树干化石
树叶化石
你知道考古学家是根据什么推断出银杏于200多
3
)
变式训练
5.求下列各式的值
(1) 2
5
5
2
3

(2)3 2
结论:an开奇次方根,则有
(2) 3 3 ,
(3)2
2
(3) 2 2 ,
4
4
4
n
3
a n a.
.
(2) 2
4
结论:an开偶次方根,则有
n
.
(3)2 3
.
4
(2)4 2
a n | a | .
2
3
1
2
1
2
1
3
1
6
5
6
1
4
(1) (2a b )(6a b ) (3a b );
解析:
2
3

高中数学苏教版必修1课件 3.1.1 分数指数幂(共21张PPT)

高中数学苏教版必修1课件  3.1.1 分数指数幂(共21张PPT)

(m
1 4
)8
(n
3 8
)8
m2n3 .
【题型3】根式运算
利用分数指数幂进行根式运算时,先将根式化成有理指数幂,再根据分数指数 幂的运算性质进行运算.
(1) (3 25 125 ) 4 5
2
3
1
(53 52 ) 54
2
1
3
1
53 54 52 54
21
31
53 4 52 4
5
5
类比
9
7 a9 a7 .
总结:当根式的被开方数的指数不能被根指数整除 时,根式可以写成分数指数幂的形式.
(3)你能用方根的意义解释(2)的式子吗?
3
5 43 45;
5
3 75 73;
3
43的5次方根是 45 ;
5
75的3次方根是 73 ;
2
3 a2 a3;
2
a2的3次方根是 a 3 ;
9
7 a9 a7 .
512 54
12 55 54 5.
【1】计算下列各式(式中字母都是正数).
(1)
a
a
a
111
a2 a4 a8
a1 2
1 4
1 8
7
a8
8 a7 .
a2
(2)
.
a 3 a2
解:原式 =
a2
1
2 1 2
5
2 a 2 3 a 6 6 a5 .
a2 a3
注意:结果可以用根式表示,也可以用分数指数 幂表示.但同一结果中不能既有根式又有分数 指数幂,并且分母中不能含有负分数指数幂.
(52
)
1 2
52(

4.1.1n次方根与分数指数幂课件(人教版)

4.1.1n次方根与分数指数幂课件(人教版)
③负数没有偶次方根
④ 0的任何次方根都是0.记作:n 0 0.
学习目标
新课讲授
课堂总结
思考:为什么负数没有偶次方根?
因为在实数的定义里,两个数的偶次方根结果是非负数,即任意 实数的偶次方是非负数.
学习目标
新课讲授
课堂总结
式子 n a 叫做根式,这里n叫做根指数 ,a叫做被开方数.
根指数
被开方数
学习目标
新课讲授
课堂总结
①当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.
这时,a的n次方根用符号 n a 表示.例如 5 32 2, 5 32 2, 3 a6 a2.
②当n是偶数时,正数的n次方根有两个,这两个数互为相反数.正数a的正
的n次方根用符号 n a 表示,负的n次方根用符号n a表示.两者也可以合 并写成 n a (a 0) .例如 4 16 2, 4 16 2, 4 16 2.
(2)在对根式进行化简时,若被开方数中含有字母参数,则要注意字母参数的 取值范围,即确定 n an 中a的正负,再结合n的奇偶性给出正确结果.
学习目标
新课讲授
课堂总结
知识点2:分数指数幂
视察以下式子,试总结出规律(a>0):
10
210 (25 )2 25 2 2 ;
12
3 312 3 (34 )3 34 3 3 ;
学习目标
新课讲授
课堂总结
练一练
11
化简 (1 a)[(a 1)2(a)2 ]2.
1
解:由 (a)2 有意义,可知-a≥0,故a≤0,
11
所以 (1 a)[(a 1)2(a)2 ]2
1
11
(1 a)[(a 1)2]2[(a)2 ]2

18.分数指数幂ppt

18.分数指数幂ppt

• 为了解决上述问题,我们先来探讨分数指数
幂的意义。
根式
• 一般地:如果一个实数x满足xn=a(n>1,且nN*), 则x称为a的n次方根. • 例如: 8的3次方根为 2 ; -243的5次方根为 -3 。 当n为奇数时,正数的n次方根是一个正数,负数 的n次方根是一个负数, 即a的n次实数方根只 有一个,记为 n a 。
a a
n
m n
m
分数指数幂是根式的另一种表现 形式,两者可以进行互化。
正数的负分数指数幂
a 0, m, n N *, n 1
a
m n

1 a
m n

1
n
a
m
规定:0的正分数指数幂等于0。
0的负分数指数幂没有意义。
有理指数幂的运算性质 p 表示 说明:若 a>0 , p 是一个无理数,则 a 我们规定了分数指数幂的意义以后,指 一个确定的实数 . 上述有理指数幂的运算性 数的概念就从整数指数推广到有理数指 质,对于无理数指数幂都适用 . 即当指数的 数. 上述关于整数指数幂的运算性质,对 范围扩大到实数集 R后,幂的运算性质仍然 于有理指数幂也同样适用,即对任意有 是下述的 条. 理数r,s3 ,均有下面的性质:
说明
4
(2)4 ,
( 3 )2
( a ) a,
n n
n
a a a
n
n为奇数 n为偶数
分数指数幂
( 2 ) 210
5 2

2
10
2 2
5
10 2
(3 ) 3
4 3
12

3
3 34 3
12

分数指数幂与根式(课堂PPT)

分数指数幂与根式(课堂PPT)

4ab0
4a
13
(2)(m4 n8 )8
(m
1 4
)8
(n
3 8
)3
m3 n3
m2 n3
33
题型四
根式运算,先把每个根式用分数 指数幂表示;题目便转化为分数 指数幂的运算。 注意:结果可以用根式表示,也 可以用分数指数幂表示. 但同一 结果中不能既有根式又有分数指 数幂,并且分母中不能含有负分 数指数幂.
40 9
26
小结
注意三点:
1、分数指数幂的概念(与整数指数幂对比,有何 差异,注意不能随意约分).
2、分数指数幂的运算性质,进而推广到有理数指 数幂的运算性质。
3、根式运算时,先化为指数形式进行运算,原式 为根式的,再将结果化为根式。
27
题型一
将根式转化分数指数幂的形式。(a>0,b>0)
1当有多重根式是,要由里向外层层转化。 2对于有分母的,可以先把分母写成负指数幂。 3要熟悉运算性质。
25 32
x5 11
25 32 x 5 11
结论:当 n为奇数时,正数的 n次方根是一个正 数,负数的n 次方根是一个负数,这时,a的n次方根
只有一个,记为 x n a .
9
得出结论
22 4 32 9 24 16
x6 12
2 4 3 9
24 16
x 6 12
结论:当n为偶数时,正数的n次方根有两个,它们
互为相反数.正数a的正n次方根用符号 n a 表示;负的
n次方根用符号 n a 表示,它们可以合并写成 n a(a 0) 的形式.
负数没有偶次方根.
10
注意问题
特别注意:0的 n次方根等于0.

4.1.1n次方根与分数指数幂课件(人教版)

4.1.1n次方根与分数指数幂课件(人教版)
6
1
3
(y<0);
无理数指数幂:
因为12 = 1 < 2,所以1 < 2;
因为1.12 = 1.21 < 2,所以1 < 1.1 < 2;
因为1.112 = 1.2321 < 2,所以1 < 1.1 < 1.11 < 2;

从而产生了一串逐渐向 2靠近的数:1, 1.1, 1.11, 1.111, ⋯
(3)你能用方根的意义解释(2)的式子吗?
5
3
3
5
4 4 ;
3
5
3
7 7 ;
5
2
3
3
a a ;
7
a a .
2
9
9
7
43的5次方根是
3
5
4 ;
75的3次方根是
a2的3次方根是
a9的7次方根是
5
3
7 ;
2
3
a ;
9
7
a .
结果表明:方根的结果与分数指数幂是相通的.
综上,我们得到正数的正分数指数幂的意义.
a b
b a, a b.
解题方法(根式求值)
(1)化简
时,首先明确根指数 n 是奇数还是偶数,然后依据根式
的性质进行化简;化简(
意义,则(
)n 时,关键是明确
是否有意义,只要
)n=a.
(2)在对根式进行化简时,若被开方数中含有字母参数,则要注
意字母参数的取值范围,即确定
中a的正负,再结合n的
奇偶性给出正确结果.

[跟踪训练一]
1. 化简:
n
(1) x-πn (x<π,n∈N*);

【数学课件】分数指数幂(1)

【数学课件】分数指数幂(1)
如果设每年平均增长p%,80年的国民生产总值记为1,则有(1+ p%)10=2在这里, 1+p%叫做底数,10是指数,2是幂.
如何求p呢?
数学建构:
1.平方根与立方根.
如果一个数的平方等于a,那么这个数是a的一个平方根, 也就是说,如果x2=a,那么x就是a的一个平方根. 如果一个数的立方等于a,那么这个数是a的立方根, 也就是说,如果x3=a,那么x就是a的立方根.
上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱
0的n次实数方根等于0
数学建构:
3.根式及其性质.
我们把 n a叫n次根式,n是根指数,a是被开方数.
a
数学应用:
数学应用:
例2.计算下列各式的值.
(1) 2 1 0 24 13 162 81 42 24 32
3
4
……
数学建构:
2.n次方根. 一般地,如果一个实数x的满足xn=a(n>0,nN*),那么称x为a的n次实数方根. 当n为奇数时,正数的n次实数方根是一个正数,负数的n次实数方根 是一个负数.这时,a的n次实数方根只有一个,记为n a . 当 n 为偶数时,正数 a 的 n 次实数方根是两个,它们互为相反数,正数 a 的正 n 次实数方根用符号n a表示,负的 n 次实数方根用符号-n a表示, 它们可以合并写成的形式±n a(a>0).

《分数指数幂》课件

《分数指数幂》课件
《分数指数幂》ppt课件
目录
• 分数指数幂的定义 • 分数指数幂的运算 • 分数指数幂的应用 • 分数指数幂的扩展知识 • 练习题与答案
01
分数指数幂的定义
分数指数幂的数学定义
分数指数幂的数学定义
对于任意实数a和正整数m、n,a的m/n次方定义为a的m次方根的n次方。即 ,如果b是a的m次方根,那么a^(m/n) = b^n。
3}{2}}$
分数的指数幂应用练习题
总结词
应用分数指数幂解决实际问题
练习题1
已知 $a^{frac{1}{2}} = frac{1}{2}$,求 $a$ 的值。
练习题2
已知 $left(frac{a}{b}right)^{-frac{1}{2}} = frac{1}{3}$,求 $a$ 和 $b$ 的值。
分数指数幂在解决化学问题中的应用
在解决化学问题时,分数指数幂也具有广泛的应用。例如,在计算化学键的强度、研究分子的性质和 行为以及解决化学反应的平衡问题时,使用分数指数幂可以简化问题的求解过程,提高解题效率。
04
分数指数幂的扩展知识
分数指数幂与整数指数幂的关系
分数指数幂是整数指数幂的扩展,当分数指数的分子大于分母时,相当于整数指 数幂的指数加1;当分子等于分母时,相当于整数指数幂的指数;当分子小于分 母时,相当于整数指数幂的指数减1。
ac{1}{2}}$
感谢您的观看
THANKS
运算规则一
乘法运算。当底数相同时,分 数指数幂相乘等于将指数相加 。即,a^(m/n) * a^(m/n) =
a^(m/n+m/n)。
举例
2^(2/3) * 2^(2/3) = 2^(4/3) 。
运算规则二

指数幂运算课件(人教版)

指数幂运算课件(人教版)
高中数学
例 1. 求值: (2)2ξ3 × 33ξ1.5 × 6ξ12.
解:2ξ3 × 33ξ1.5 × 6ξ12 = 6 × 3 ×
1
3 × 12
=2 6 × 3 × 3 × 2 × 3 × =6×2 + ×3++ = 6 × 20 × 3
= 18.
高中数学
总结:
用分数指数幂的情势来表示根式 ,往往会简化根式运算.
36
6
6
125
高中数学
例 1. 求值: (2)2ξ3 × 33ξ1.5 × 6ξ12.
解 :提示 ,将根式化为幂ax 情势.
2ξ3 × 33ξ1.5 × 6ξ12 = 2 × 3 × 3 ×
1
3 × 12 .
= 3 × 2 ,12 = ሺ3 × 22 = 3 × 2
公式:a = nξam ,aT ∙ aS = aT +S , = aT −S .
能产生一列从
1 414,1 4142
于ξ 2的 方 向 1 4 1421, 1
ξ 的数x: 渐逼近 421 3,
高中数学
由此 , 我们 就能产生一列从 于ξ 2的 方 向逐渐逼 近ξ 的数x
1 4 , 1 41 ,1 414, 1 4142 1 4 1421, 1 414213,
: 而且 ,2 − 1.96 = 0.04 ,2 − 1.9881 = 0.0119,
T, S ∈ Q .
③ ሺab ሻT = aT ∙ bT ,
常见情势: = aT ∙ a−S = aT −S .
高中数学
例 1. 求值:
−1.5
(1) ቀ25 ቁ ;
36
解 :提示 ,将−1.5化为分数 ,将25化为幂ax 情势.

n次方根与分数指数幂ppt课件

n次方根与分数指数幂ppt课件
而已.
(2) 0的指数幂:0的正分数指数幂是0,0的负分数指数
幂没有意义.
(3) 指数概念在引入了分数指数幂概念后 ,指数概念就
实现了由整数指数幂向有理指数幂的扩充.
(4)在进行指数幂运算时,应化负指数为正指数,化根
式为分数指数幂,化小数为分数进行运算,这样便于进
行乘、除、乘方、开方运算,以达到化繁为简的目的.
③(ab)r=ar·
br(b>0)
④ar÷as=ar-s
r
(5)( ) =
(a>0,b>0,r∈R).
类比推广:实数指数幂
实数指数幂ax(a>0)
整数指数幂
分数指数幂
p
q
正数 a a a a (n个a相乘)
n
负数
0
a
n
1
n
a
a a

a
p
q

q
1
a
p
q

无理数指数幂
为什么负数没有偶
次方根?
构建数学
二、根式运算性质
若n 1且n N , 则 :
①( n a ) n a
注 : n为奇数时, a R; n为偶数时, a 0.
a, n为奇数

②n a n
| a |, n为偶数
2
2 ____
2
3
3
(3 )3 _____
(5)a a
2
12
12
2
( a a 1 ) 2 a 2 a 2 2 25, a 2 a 2 23.
12 2
1
2
1

4.1.1n次方根与分数指数幂课件(人教版)

4.1.1n次方根与分数指数幂课件(人教版)

A.a
-
2 5
)
5
B.a 2
2
C.a 5
答案:A
3
3.化简 25 2 的结果是( )
A.5 答案:D
B.15
C .25
4.计算:π0+2-2×214
1 2
=________.
答案:11 8
5
D.-a 2
D.125
题型分析 举一反三
题型一 根式的化简(求值)
例1 求下列各式的值
(1) 3 (8)3
(2) (10)2
2.根式
(1)定义:式子
n
a
叫做根式,这里 n 叫做
根指数 ,a
叫做 被开方数 .
(2)性质:(n>1,且 n∈N*)
①(n a)n=
a.
②n an=
a ,n 为奇数, |a|,n 为偶数.
[点睛] (n a)n 中当 n 为奇数时,a∈R;n 为偶数时,a≥0,
而n an中 a∈R.
3.分数指数幂的意义
(3) 4 (3 )4
(4) (a b)2
解: (1) 3 (8)3 =-8 (2) (10)2 =|-10|=10
(3) 4 (3 )4 = 3
(4) (a b)2 = a b
解题方法(根式求值)
(1)化简 时,首先明确根指数 n 是奇数还是偶数,然后依据根式 的性质进行化简;化简( )n 时,关键是明确 是否有意义,只要 有 意义,则( )n=a.
正分数

指数幂
规定:a
m n
=n
am(a>0,m,n∈N*,且
n>1)

m
1
1

负分数
规定:a n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

没有意义,为什么?
练 习 :用 根 式 的 形 式 表 示 下 列 各 式
1
(1) a 2
3
-3
-2
(2) a4 (3) a5 (4) a3
二、分数指数
m
定义:a n n a m (a 0, m, n N * ,且n 1)
注意:(1)分数指数幂是根式的另一种表示; (2)根式与分式指数幂可以互化.
(2)(a 2 2 a 2 ) (a 2 a 2 )
3、已知x x1 3,求下列各式的值
1
1
(1)x 2 x 2
1
1
(2)x 2 x 2
4、化简 (3 6 a9)4(6 3 a9)4的结果是(C)
A .a 16 B8 a .C a 4.D a 2.
5、2-(2k+1)-2-(2k-1)+2-2k等于( C ) A.2-2k B. 2-(2k-1) C. -2-(2k+1) D.2
1
例2.利用分数指数幂的形式表示 下列各式(式中a>0)
a2a, a33a2, aa.
例3.计算下列各式(式中字母都是正数)
21
11
15
(1 ) (2 a 3 b 2)(-6 a 2 b 3) (-3 a 6 b 6);
(2)
(m14n-83)8;
(3) (325- 125)45;
m
规定:(1)a n
1
m
(a
0, m, n
N * ,且n
1)
an
(2)0的正分数指数幂等于0;0的负分数指 数幂没意义.
幂的运算法则的推广: 原整数指数幂的运算法则可推广到有理数。
(1)ar as ars
(2)(ar )s ars
(r, s Z)
(3)(ab)r arbr
(1)ar as ars
1
6、(| x | 1) 2有意义,则x 的取值范围是

(-,-1)(1,+)
3xy 2 6
7、若10x=2,10y=3,则10 2 3 。
8、a,b R,下列各式总能成立的是( B )
A.(6 a 6 b )6 a b B.8 (a 2 b2 )8 a 2 b2
C. 4 a 4 4 b4 a b D.10 (a b)10 a b
指数(分数指数幂)
温故而知新
1.根式的运算性质:
a 1)(n a)n
2)n
an
a,n为 奇 数 a , n为 偶 数
温故而知新
2.整数指数幂的概念
ana a a a(nN*)
n个 a
零的零次幂没有意义
a0 1(a0)
零的负整数次幂没有意义
an
1 an(a0,nN*)
温故而知新
3.整数指数幂的运算性质:
1.根式的意义 小 结
当 n为 奇 数 时 ,nan a 2 .当 分 n数 为 指 偶 数 数 时 幂 , 的 na意 n 义 a aa,,aa 00
a 3 a2
三、无理数指数幂
一般地,无理数指数幂 a ( >0,是
无理数)是一个确定的实数. 有理数指数幂的
运算性质同样适用于无理数指数幂.
巩固练习
1、已知 x 3 1 a ,求 a 2 2ax 3 x 6 的值
2、计算下列各式
1
1
1
1
(1)
a
2 1
b2
1
a2 1
b2
1
a2 b2 a2 b2
3 a12 a4 1
12
a3
b b2
5
4 c5 c4
即:当根式有意义时,根式都可以用正分数的指数幂表示
2 于是规定正数的正分数指数幂的意义是:
m
an na ma 0 ,m ,n N * ,且 n 1
3、正数的负分数指数幂的意义是:
am n1 m a0,m ,nN*,且 n1
an 4、0的正分数指数幂等于0,0的负分数指数幂
例3、用分数指数幂的形式表示下列各式(其中a>0):
(1) a 3
a (2) a 2 3 a 2 (3)
3
aa
例4、计算下列各式(式中字母都是正数)
21
11
1
(1)(2a 3b2 )(6a 2b3 ) (3a6b6
1 3
(2)(m4 n 8 )8
例5、计算下列各式
(1)( 3 25 - 125 ) 4 25 (2) a2 (a 0)
2,正数的正分数指数幂的意义是:
m
a n na m a 0 ,m ,n N * ,且 n 1
3、正数的负分数指数幂的意义是:
am n1 m a0,m ,nN*,且 n1
an 4、0的正分数指数幂等于0,0的负分
数指数幂没有意义。 5,整数指数幂的运算性质对有理指数幂 仍然适用。(1)aras=ar+s(a>0,r,s∈Q);
这就是正数的分数指数幂的意义。
m
an
规定:
1
m
an
(a0,m,n
均为正整数)。
规定: 0的正分数指数幂为0,0的负分数指数幂没有意义。
化简试一试:
(1) 6 81 ; (2) 6 (2)2 ; (3)15 32 ; (4) 4 x8 ; (5) 6 a2b4 ;
例1、求值
2
83 ,
100-12 ,
aman amn(m,nZ)
(am)n amn(m,nZ)
(ab)n anbn(nZ)
10
5 a 10 a2 a5 a 0
12
3 a 12 a4 a3 a 0
2
1
5
3a 2 a 3 a 0 ;b b 2 b 0 ;4 c 5 c 4 c 0 ;
二、分数指数幂: 1、根式有意义,就能写成分数指数幂的 形式,如:
(2)(ar)s=ars(a>0,r,s∈Q);
(3)(ab)r=arbr(a>0,b>0, r,∈Q).
大家学习辛苦了,还是要坚持
继续保持安静
分数指数幂:
1 问题探究:当根式有意义时,根式能否写成分数指数幂 的形式?,如:(设a>0,b>0,c>0)
5 a10 a2
10
a5
2
3 a2 a3
a2
(4)
.
a 3 a2
讨论: 5 2 的结果?
一般地,无理数指数幂a (a 0,是无理数) 是一个确定的实数. 有理数指数幂的运算性质同样适用于无理 数指数幂.
*若2mn 6,22mn 12,则22nm

*已知a2x 3,求ax ax 的值。
例2、求值
2
1
83 ; 2 52 ;
1 5; 1 6 4 3 2 8 1
(2)(ar)s ars (a0,b0,r,sQ)
(3)(ab)r arbr
性质:(整数指数幂的运算性质对于有理指数 幂也同样适用)
aras ars (a0,r,sQ) (ar)s ars (a0,r,sQ) (ab)r aras (a0,b0,r Q )
m
规定:一般地,an n am (a0,m,n 均为正整数)。
相关文档
最新文档