调频发射机电路设计

合集下载

调频发射机电路

调频发射机电路

1W调频发射机电路[日期:2009-03-03 ] [来源:net 作者:佚名] [字体:大中小] (投递新闻)Veronica FM发射机容易制作,性能稳定,信号纯净, 不使用专业零件和IC, 并有辅助测试功能使您在没有专业设备的情况下轻易地进行调试。

它有两个版本, 1瓦和5瓦。

1瓦版本适用于3公里发射距离,所需的电源是12-16V 200mA;5瓦版本适用于8公里发射距离,所需的电源是12-16V 900mA。

本文介绍1瓦版本。

图1: 1W Veronica 线路图该发射器自带一个混音器,使您同时发射来自CD和话筒的音频信号。

晶体管T1是话筒放大器,可变电阻R1和R2调节音量大小(参见调试部分)。

在R8和C21之间是振荡器,是产生无线电射频信号的部件。

二极管D1是一个所谓的“变容管”,相当于一个可调电容,它由音频信号控制,改变振荡器的振荡频率,起到变频的作用。

C12,C13,和L1决定振荡器的频率。

这个振荡器实际上是由两个反相振荡器组成,每个运行在50MHz附近,当两个信号结合时,便成了一个100MHz的信号。

这种电路比单个100MHz振荡器稳定很多。

振荡器的信号由T4放大到1W。

在T4右边的电路包括天线阻抗匹配和低通滤波功能。

D2、D 3、T5组成的电路是辅助调试用的,它将射频输出的信号取样,控制发光二极管D5,输出高时,D5也明亮一些。

此电路本身不带立体声调制器,你若需要播放立体声节目,请参照这里制作立体声调制器。

电阻:R1+2 10k 可调R3 820k R4 4.7k R5-7 220 R19 220 R8 1.5k R9 15k R10+11 1k R1 2 33k R13+14 56 R15+16 68k R17 47 R18 270 R20 10k电容: 除特殊指定外,用瓷介或云母电容。

C1,2,7, 16,17,19, 24,29及31 1n C3-5及8 10u 电解C6,18及30 220u 电解C9,10及20 10n C11 22p* C12 47p* C13 22p 微调C14及15 15p* C21,25及26 65p 微调C2 2 100p C23 5.6p C27及28 1.8p*C11, 12, 14 和15 决定振荡频率,最好用高质量云母电容。

9018单管调频发射机电路

9018单管调频发射机电路

一、频率稳定的调频信号传输电路。

图1所示电路可以将音频信号以调频(FM)的方式传送到异地。

图中,VT1、R2、R3、C2、C3、L1、Cx组成谐振频率在88MHz~110MHz之间的电容三点式调频振荡电路。

话筒B将声音信号转换成电信号后经过耦合电容C1送入三极管VT1的基极。

此时,VT1的基极电压将随着音频信号的变化而变化,于是VT1的集电结电容也相应变化,引起振荡器的振荡频率随之变化,达到调频的目的。

VT1集电极负载L1、Cx、C3等调谐回路决定了高频振荡器的振荡频率(即发射频率),由于C3、L1的参数为固定值,所以电容Cx为振荡频率调整电容,调整电容Cx可以改变该发射器的发射频率,当Cx的电容量为12.5pF时,发射频率约为108MHz。

包含有声音信号的调频信号由VT1的集电极输出,并由发射天线向空中发射。

天线接在VT1的集电极,长度约为690mm时发射效果最佳。

L1的电感量为0.17μH,如果买不到成品电感,也可以自己绕制。

绕制电感的电感量与线圈骨架的直径、长度以及匝数有关,如图2所示。

图中,r表示骨架的半径(单位为mm),x表示线圈成型后的长度(单位为mm),n表示线圈的匝数,电感量为n2×r2/(228.6r+254x)(μH)。

据以上方法,电感L1用φ0.1mm的漆包线在直径为6.7mm的圆形木棒上绕5~6匝,然后脱胎并将线圈长度拉至6.4mm即可二、高保真调频音频信号传输电路在深夜看电视时通常都要降低音量以免影响他人休息,这就有可能听不清电视伴音。

如果有一个电路能够将电视伴音信号发射到周围空间,然后再用调频收音机接收就能很好地解决这个问题。

该电路如图1所示。

图1电路中,VT1及其外围电路组成振荡电路,振荡频率约为98MHz,R1、Cx为音频预加重电路,用来改善音频信号的频率响应,提高音质。

L1、L2均采用1mm的漆包线在5mm的骨架上绕10匝脱胎而成,将其长度拉长为11mm左右即可,如图2所示。

调频发射机电路设计

调频发射机电路设计

调频发射机电路设计
调频发射机电路设计是一项关键性的工程任务,它涉及到无线通讯系统中发射
机的设计和构建。

在调频(Frequency Modulation,FM)通信中,确保发射机电路
的正常运行和高质量的信号传输至关重要。

为了实现调频发射机的设计,首先需要确定合适的调频器件。

调频电路中最重
要的组件是电感、电容和晶体管。

电感和电容用于形成谐振电路,晶体管则负责信号放大与调制。

根据设计要求,选择适当的电感和电容值,并确保所选的晶体管具备足够的功率输出和频率响应。

在调频发射机电路的设计中,还需要考虑到整体电路的稳定性和抗干扰能力。

通过添加适当的滤波电路、功率放大器和限制器,可以有效提高电路的稳定性,并减少不必要的信号干扰。

另外,为了满足信号传输的要求,调频发射机电路还需要采用合适的调制技术。

调频通信系统常用的调制方式有直接频率调制和间接频率调制。

根据设计需求和系统性能要求,选择适当的调制方式,并确保调制电路的可靠性和精确性。

还有一点需要注意的是,调频发射机电路设计中必须遵循相应的通信法规和标准。

确保电路符合相关的无线电频率和功率规定,以及其他相关的技术标准,以保证系统的合法性和安全性。

总之,调频发射机电路设计是一项复杂而细致的工作。

通过合理选择电子元器件,设计滤波器和调制电路,并严格遵循通信法规和标准,可以实现高质量和高性能的调频发射机电路。

这将为无线通讯系统的稳定运行和高质量的信号传输提供坚实的基础。

无线调频发射机设计

无线调频发射机设计

目录1 绪论 (2)2总体设计框图 (2)2.1电路工作原理 (2)2.2元器件选择 (3)2.2.1三端稳压器7806的有关信息 (3)2.2.2 2SC3357三极管的有关信息 (3)2.3安装与调试 (4)3转印、腐蚀、焊接及调试 (4)3.1 转印腐蚀 (4)3.2焊接及调试 (4)3.3 焊接调试的注意事项: (4)3.4 整体调试中出现的问题 (5)4心得体会 (5)5设计总结 (6)5.1 经验总结 (6)5.2展望未来 (6)参考文献 (8)附录一 (9)附录二 (10)无线调频FM 发射器摘要 论文设计了一个FM 调频发射机,它由专用的高性能高频发射管D40,专用的88—108MHz 的调频发射皮天线(30cm ),配以必要的外围电路组成。

电路由音频信号处理、调频调制和功率放大发射三部分组成。

音频信号可以由麦克风或者音频线输入,经过音频信号处理电路的预加重、限幅、低通滤波和混合后,得到立体声复合信号。

复合信号经调频调制电路调制后,通过功率放大器放大,经发射电路,从天线发射出去。

关键词 调频发射,2SC3357三极管,专用调频发射天线1 绪论简单实用无线调频FM 发射器,电路取材容易,工作稳定可靠,发射距离远,安装调试方便,很适合广大城镇地区使用,也可用于通信、报警、防汛等。

工作频率为88—108MHz 。

2总体设计框图图 1 总体设计框图2.1电路工作原理无线调频FM 发射机的电路,如附录图1所示。

电路由稳压电路、音频放大电路和高频振荡电路三部分组成。

三极管V2为高性能高频发射专用管。

三极管V1等组成共射极音频放大器,在其输入端可连接话筒、音响等,也可以输入警报信号。

放大后的音频信号输送至由V2组成的高频振荡电路,警告频调制后的FM 信号,在经天线W 向天空中发射出去,有远方的FM 收音机接收,并释放出音频信号。

为了使电路工作稳定,电路中设臵了稳压电路,使整机工作电压保持在6V 。

通信电子线路课程设计--调频发射系统整机电路设计

通信电子线路课程设计--调频发射系统整机电路设计

通信电子线路课程设计--调频发射系统整机电路设计随着人类的文明不断进步,科学技术不断的发展,人们之间的交流越来越多,相互交换的信息也日益剧增,要传送的信息类型也是越来越多样化。

科技的进步也使得通信的技术得到了发展,特别是无线电波的使用,使我们的通信更加实时、高效。

科技的快速发展,将使人们的通信更方便快捷。

随着科技的发展和人民生活水平的提高,无线电发射机在生活中得到广泛应用,最普遍的有电台、对讲机等。

人们通过无线电发射机可以把需要传播出的信息发射出去,接收者可以通过特制的接收机接受信息,最普通的模式是:广播电台通过无线电发射机发射出广播,收听者通过收音机即可接收到电台广播。

调频发射机目前处于快速发展之中,在很多领域都有了很广泛的应用。

它可以用于演讲、教学、玩具、防盗监控等诸多领域。

关键字:高频电子线路,Multisim仿真,调频发射。

一、前言 (1)二、设计指标 (2)2.1题目 (2)2.2设计任务及主要技术指标和要求 (2)2.3内容和要求 (2)2.4主要技术指标 (2)三、系统总述 (3)3.1 调频基本概念 (3)3.2 工作原理 (3)3.3整体原理框图 (5)四、单元电路设计与仿真 (6)4.1压控振荡器调频电路 (6)4.2变容二极管直接调频电路 (8)4.3上混频电路 (10)4.4三极管倍频电路 (11)4.5丙类谐振功率放大电路 (12)五、整机电路设计 (13)六、高频实验平台整机联调 (14)七、设计总结 (16)八、参考文献 (17)一、前言频率的调制和解调是通信电子线路中非常重要且比较关键的一部分,调频电路在通信电子线路中运用非常广泛且作用很大,如何学好此部分对我们来说非常重要。

本课程设计的内容是学习基于Multisim的调频电路设计与仿真。

用Multisim仿真软件进行调频电路调频和解调,得到仿真结果。

从仿真结果中更好地理解频率的调制和解调。

由于一般的低频信号无法进行远距离传输,所以得经过调频搬到高频信号上传输,这个过程就是我们常说的调频。

关于调频发射机的电路设计

关于调频发射机的电路设计

关于调频发射机的电路设计在五花八门的无线电制作项目中,调频发射机一直受到众多爱好者的青睐,然而这方面的制作涉及到一些高频技术,使得不少初学者在制作调试中被诸如停振、干扰、跑频、失真等一系列故障搞得心烦意乱,乃至放弃。

本文以手边的“FT3S调频发射机套件电路为例,详细地向读者介绍FM发射机的装调经验及常见故障的排除方法,希望对读者略有帮助。

简易型无线话筒是无线发射机的一个典型,虽然以其“一装即成”的优点博得众多读者的欢心。

然而电路中。

引起的严重频率飘移将会令我们难以忍受。

图1电路采用的晶体振荡器有效地避免了“跑频”这一致命弱点;倍频放大器将工作频率设置在普通收音机可接收的频段上;同时多级高频放大器把射频功率提升到80mW水平以实现较远距离的发射。

元器件选用:所有部件型号参数见图1;1.微型色码高频电容为首选对象,并采用卧式安装以减小引线电感造成的影响;2.JT选用标称频率为49.860MHz的泛音式晶体,对于不同的输出功率要求,可根据实际情况选择用其它频点;3.L1、L2、L3为倍频及高频放大器谐振电感,建议选用Φ0.8mm镀银线在4.0mm骨架上绕制,匝数分别为5T、4T、5T;Vl、V2决定着高频级的噪声系数及增益,可选用β值在300左右的低噪管,如C945、C9014等;V3-V5要求β100-120间,fT>500MHz,C1975、C9018等均可择用。

V6要求β=100,fT>800MHz,Pc>500mW的高频中功率管,如C2581、D40、C2053,对输出功率要求不高时,还可将其省去。

TX可选用拉杆天线或1.5m软导线,当工作频率为100MHz时75cm长度为理想值。

制作调试:自制前应先集齐所有元件,并对其质量及参数进行细心的检测,再根据所需的体积设计一款合适的线路板。

总而言之,良好的元件质量、合适的印板布局是有效提高自制成功率的保证,主要调试步骤如下:一、将所有元件连同天线一并焊在印板上,对安装焊接工艺要求是:尽量缩短高频部分元件引线;电阻、电容尽可能卧式安装,并无虚焊、脱焊现象。

调频发射机电路设计

调频发射机电路设计

调频发射机电路设计首先是音频放大模块。

音频放大模块用于放大音频信号,使其达到适合调频发射机工作的电平。

一般采用放大器电路实现,常用的放大器有运放放大器和晶体管放大器。

运放放大器具有高输入阻抗、低输出阻抗、高增益和低噪声等特点,适合用于音频放大。

晶体管放大器具有宽带特性和较高的功率放大能力,适合用于调频发射机的音频放大部分。

接下来是频率调制模块。

频率调制模块将音频信号转换为无线电信号,一般采用频率调制技术,如调频(FM)和调幅(AM)等。

其中,调频技术是调频发射机最常用的调制方式。

调频技术通过改变载波信号的频率来携带音频信号,常用的调频电路包括震荡器和相移调制器等。

震荡器产生频率稳定的载波信号,相移调制器将音频信号转换为频率变化,从而实现调频。

接着是射频功率放大模块。

射频功率放大模块将调频信号放大到足够的功率,以便能够远距离传输。

射频功率放大器一般采用晶体管放大器或功率放大管实现。

晶体管放大器具有较高的功率放大能力和宽带特性,适合用于调频发射机的射频功率放大。

功率放大管功率更大,适用于大功率调频发射机。

最后是天线驱动模块。

天线驱动模块将射频信号传输到天线上,以便进行无线传输。

天线驱动模块一般采用驱动器电路实现,其中常用的驱动器电路包括匹配网络、功率放大器和驱动放大器等。

匹配网络用于匹配射频源和天线阻抗,以提高功率传输效率。

功率放大器和驱动放大器用于将低功率的射频信号放大至足够的功率,以满足天线传输的需求。

综上所述,调频发射机的电路设计主要包括音频放大、频率调制、射频功率放大和天线驱动等多个模块。

这些模块通过相应的电路设计,协同工作实现无线信号的传输。

在实际设计中,还需要考虑电路参数的调整与匹配,以及抗干扰和抗干扰等性能的优化,以确保调频发射机的正常工作与稳定传输。

小功率调频发射机设计报告

小功率调频发射机设计报告

专业:通信工程学号:AP0605413 姓名:李任荣一、前言这个学期我学习了高频电子线路,为了学以致用,做了一个小功率单管调频发射机。

在制作发射机的过程中,我对调频、调幅发射方面的知识又有了更深的理解!二、调频发射机电路原理图这个单管调频发射机电路的关键元件是发射三极管,可选用9018、8050、C1970等。

品名极性管脚功能参数9018 NPN EBC 高频放大30V 50MA 0.4W 1GHZ8050 NPN EBC 高频放大40V 1.5A 1W 100MHZC3355 NPN 21F 高频放大20V 0.1A 0.6W 6500MHZC1970 NPN 28 手机发射40V 0.6A PQ=1.3W/175MHZD40C NPN ECB 对讲机用40V 0.5A 40W 75MHZ(达林顿) 本电路采用易购且便宜的三极管8050,供电为3---6V的电池,其中L1、L2采用φ0.31mm的漆包线在φ3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5~25pF的瓷介或涤纶可调电容。

三、PCB图的设计四、调试本发射机的调试很简单,无需专用的仪器也能达到较好的效果,只需配合普通的FM收音机即可,打开电源开关,电源指示灯亮,调节线圈L1的电感和电容C3,来达到收发频率的一致,对着话筒说话,在收音机这端就可以听到说话的声音。

采用普通三极管8050,工作电流有60~80mA,用3V电池供电,我调试的发射距离大约50~70米,频率为78MHz,用我的收音机刚好能收到。

其实可以调节C3的电容量和L1,使本机工作频率落在88~108MHz范围,由于时间的关系,要复习考试,就没有再调试了。

最初尝试采用过9018,但工作电流更小,发射距离也更短,只有20到30米。

如果用功率稍大的三极管,发射距离会很理想,例如可以采用D40、D50、2N3866等,工作电流为60~80mA。

但以上三极管难以购到,一般需网购,且价格较高。

用Multisim设计调频发射机

用Multisim设计调频发射机

用Multisim设计调频发射机用Multisim设计调频发射机目录摘要一.设计要求 (2)二.设计的作用、目的 (3)三.设计的具体实现 (3)1.系统概述 (3)2.单元电路设计、仿真与分析 (4)2.1振荡级 (4)2.1.1调频波的产生...... 错误!未定义书签。

2.1.2振荡电路的选择2.1.3 参数的计算2.2缓冲级 (6)2.2.1 元器件的选择及参数的确定错误!未定义书签。

2.3 功率输出级 (10)2.3.1 元器件的选择和参数的确定错误!未定义书签。

2.4调频发射机总原理电路图 (10)三四.Multisim的相关介绍五.心得体会及建议 (12)六.附录 (12)七.参考文献 (14)调频发射机的设计报告摘要随着科技的发展和人民生活水平的提高,调频发射机也在快速发展,并且在生活中得到广泛应用,它可以用于演讲、教学、玩具、防盗监控等诸多领域。

在生活中,人们通过无线电发射机可以把需要传播出的信息发射出去,接收者可以通过特制的接收机接受信息,最普通的模式是:广播电台通过无线电发射机发射出广播,收听者通过收音机即可接收到电台广播。

本设计为一简单功能的调频发射机,通过该发射机可以把声音转换为无线电信号发射出去,该信号频率可调,通过普通收音机接收,只要在频率适合时即可收到发射器发送出的无线电信号,并通过扬声器转换出声音。

通过这次实验我们可以更好地巩固和加深对小功率调频发射机工作原理和非线性电子线路的进一步理解。

学会基本的实验技能,提高运用理论知识解决实际问题的能力。

一.设计要求设计一个调频发射机,通过该发射机可以把声音转换为无线电信号发射出去,该信号频率可调,通过普通收音机接收,只要在频率适合时即可收到发射机发送出的无线电信号。

(1).确定电路形式,选择各级电路的静态工作点;(2).输入信号能够通过电路进行稳定,调频等;(3).输出为足够大的高频功率,使其能够发射;(4).根据上述要求选定设计方案,画出该系统的系统框图,写出详细的设计过程并利用Multisim软件画出一套完整的设计电路图;(5).列出所有的元件清单并写出参考书目。

调频发射机设计.

调频发射机设计.

惠州学院HUIZHOU UNIVERSITY高频电子线路课程设计设计题目调频发射机系别专业班级姓名学号一、设计题目:调频发射机的设计 二、设计的技术指标与要求:1工作电压:Vcc =+12V ; (天线)负载电阻:R L =51欧; 3发射功率:Po ≥500mW ; 4工作中心频率:f 0=5MHz ; 5最大频偏:kHz f m 10=∆; 6总效率:%50≥Aη;7频率稳定度:小时/10/400-≤∆f f ; 8调制灵敏度S F ≥30KH Z /V ;三、设计目的:设计一个采用直接调频方式实现的工作电压为12V 、输出功率在500mW 以上、工作频率为5MHz 的无线调频发射机,可用于语音信号的无线传输、对讲机中的发射电路等。

四、设计框图与分析:(一)总设计方框图与调幅电路相比,调幅系统由于高频振荡输出振幅不变, 因而具有较强的抗干扰能力与效率.所以在无线通信、广播电视、遥控测量等方面有广泛的应用。

(二)实用发射电路方框图 ( 实际功率激励输入功率为 1.56mW)变容二极管直接调频电路 调制信号 调频信号 载波信号 图3-1 变容二极管直接调频电路组成方框图拟定整机方框图的一般原则是,在满足技术指标要求的前提下,应力求电路简单、性能稳定可靠。

单元电路级数尽可能少,以减少级间的相互感应、干扰和自激。

由于本题要求的发射功率P o 不大,工作中心频率f 0也不高,因此晶体管的参量影响及电路的分布参数的影响不会很大,整机电路可以设计得简单些,设组成框图如图3-2所示,各组成部分的作用是:(1)LC 调频振荡器:产生频率f 0=5MHz 的高频振荡信号,变容二极管线性调频,最大频偏kHz f m 10=∆,整个发射机的频率稳定度由该级决定。

(2)缓冲隔离级:将振荡级与功放级隔离,以减小功放级对振荡级的影响。

因为功放级输出信号较大,当其工作状态发生变化时(如谐振阻抗变化),会影响振荡器的频率稳定度,使波形产生失真或减小振荡器的输出电压。

调频发射机电路设计资料

调频发射机电路设计资料

调频发射机电路设计资料一、调频发射机电路设计的基本原理:晶体振荡器常用于产生高稳定性的参考频率。

频率乘法器则可以将其乘以所需的倍数,以获得所需的射频信号频率。

滤波器用于消除锯齿波形,以及对射频信号进行滤波,以保证信号质量。

二、调频发射机电路设计的步骤:1.确定射频信号频率范围:根据应用需求,确定射频信号的频率范围。

常见的FM广播频率范围是88-108MHz。

2.设计VCO电路:根据射频信号频率范围,设计合适的VCO电路。

VCO电路一般采用压控型振荡器,通过改变其电压来改变频率输出。

可以使用压控电容二极管或压控电感等元件来实现电压对频率的控制。

3.频率乘法器设计:根据需要提高射频信号输出频率,设计合适的频率乘法器电路。

常用的频率乘法器电路包括倍频器、三重频器等。

4.射频滤波器设计:为了保证射频信号质量,需要设计合适的射频滤波器。

射频滤波器可以通过使用LC电路、微带线滤波器等来实现。

滤波器的设计需要考虑频率范围和带宽等因素。

5.功率放大器设计:为了提高输出功率,可以在射频信号输出之前添加功率放大器。

功率放大器一般采用晶体管、功率放大模块等。

放大器设计需要考虑输出功率和频率响应等因素。

6.其他辅助电路设计:在调频发射机电路中,还需要包含其他辅助电路,如音频输入电路、频率稳定电路、限幅器电路、调制电路等。

三、调频发射机电路设计的应用:在广播电台中,调频发射机电路用于将音频信号转化为对应的射频信号,并发送到天线中进行传输。

在无线电对讲机中,调频发射机电路用于将话音信号转化为无线射频信号,并发送到其他对讲机中进行通信。

在无线数传系统中,调频发射机电路用于将数字信号转化为对应的射频信号,并发送到接收端进行数据传输。

总之,调频发射机电路设计是无线通信领域的重要组成部分,它的设计需要考虑频率稳定性、信号品质、功率输出、射频滤波等因素,以满足不同应用的需求。

调频发射机电路设计资料

调频发射机电路设计资料

调频发射机电路设计资料淮海工学院课程设计报告书课程名称:通信电子线路课程设计题目:调频发射机设计系(院):通信工程系学期:2013-2014-1专业班级:姓名:学号:评语:成绩:签名:日期:调频发射机电路设计一绪论1.1 摘要调频信号的基本特点是它的瞬时频率按调制信号规律变化,因而,一种最容易的实现方法是用调制信号直接控制振荡器的振荡频率,使其不失真地反映调制信号的变化规律。

通常将这种直接调变振荡器频率的方法称为直接调频法。

采用这种方法时,被控的振荡器可以是产生正弦波的LC 振荡器和晶体振荡器,也可以是产生非正弦的张弛振荡器。

前者产生调频正弦波,后者产生调频非正弦波(例如调频方波,调频三角波),如果需要,通过滤波等方法将调频非正弦波变换为调频正弦波。

本电路采用LC 振荡器。

1.2 主要性能要求1 (天线)负载电阻:R L =75欧;2发射功率:Po ≥80mW ;3工作中心频率:f 0=6.5MHz ;4最大频偏:kHz f m 75=?;5总效率:%50>A η。

1.3 概述设计一个完整的小功率直接调频发射机系统,直接调频发射系统框图主要由调频振荡器、缓冲隔离器、倍频器、高频功率放大器、调制信号发生器等电路组成。

原理图如图1。

图1 直接调频发射机组成框图二电路原理2.1 LC 振荡电路工作原理电容三点式振荡电路又称考毕兹(Colpitts )电路,基本结构入图2左图所示。

图中Cc 为耦合电容,Cb 为旁路电容,电阻Rb1,Rb2和Re 构成分压式偏置,为电路提供直流偏置,Rl 为输出负载电阻。

电路的交流通路如图3右图所示,如果移去管子,电容C1,C2和电感L 为并联谐振回路,构成电路的选频网络。

对于一个振荡器,当其负载阻抗及反馈系数已经确定的情况,静态工作点的位置对振荡器的起振以及稳定平衡状态(振幅大小,波形好坏)有着直接的影响。

要想起振,首先三极管应该工作在静态工作点。

电路应选择合适的静态工作点的位置。

9018单管调频发射机电路

9018单管调频发射机电路

9018单管调频发射机电路1)高频三极管V1和电容C3、C5、C6组成一个电容三点式的振荡器2)C4、L组成一个谐振器:谐振频率就是调频话筒的发射频率,根据图中元件的参数发射频率可以在88~108MHZ之间,正好覆盖调频收音机的接收频率,通过调整L的数值(拉伸或者压缩线圈L)可以方便地改变发射频率,避开调频电台。

发射信号通过C4耦合到天线上再发射出去。

3)R4是V1的基极偏置电阻,给三极管提供一定的基极电流,使V1工作在放大区。

4)R5是直流反馈电阻,起到稳定三极管工作点的作用。

5)话筒MIC采集外界的声音信号。

6)电阻R3为MIC提供一定的直流偏压,R3的阻值越大,话筒采集声音的灵敏度越弱,电阻越小话筒的灵敏度越高。

7)话筒采集到的交流声音信号通过C2耦合和R2匹配后送到三极管的基极。

8)电路中D1和D2两个二极管反向并联,主要起一个双向限幅的功能,二极管的导通电压只有0.7V,如果信号电压超过0.7V就会被二极管导通分流,这样可以确保声音信号的幅度可以限制在正负0.7V之间,过强的声音信号会使三极管过调制,产生声音失真甚至无法正常工作。

9)CK是外部信号输出插座,可以将电视机耳机插座或者随身听耳机插座等外部声音信号源通过专用的连接线引入调频发射机,外部声音信号通过R1衰减和D1、D2限幅后送到三极管基极进行频率调制。

10)电路中发光二极管D3用来指示工作状态,当调频话筒得电工作时就会点亮,R6是发光二极管的限流电阻。

C8、C9是电源滤波电容,因为大电容一般采用卷绕工艺制作的,所以等效电感比较大,并联一个小电容C8可以使电源的高频内阻。

11)电路中K1和K2是一个开关,它有三个不同的位置,拨到最左边时断开电源,最右边是K1、K2接通做调频话筒使用,中间位置是K1接通,K2断开,做无线转发器使用,因为做无线转发器使用是话筒不起作用,但是话筒会消耗一定的静态电流,所以断开K2可以降低耗电、延长电池的寿命。

小信号调频发射器电路设计

小信号调频发射器电路设计

小功率FM发射机电路的设计小功率FM发射机电路设计作者姓名:XXXXX专业名称:通信工程指导教师:XXXX- I -摘要1933年,世界上第一台发射机诞生。

美国发明家阿姆斯特朗发明了短波(FM)收音机。

1939年,FM发射机的发明者阿姆斯特朗在美国建立了第一个FM广播的发射站。

同年,调幅收音机开始在美国出售。

从此FM发射机技术开始迅速发展。

在各行各业中得到应用,尤其是小功率FM发射机的应用更为广泛。

.论文是关于小功率调频发射机电路的设计。

通常小功率发射机采用直接调频方式,其中调频振荡级主要是产生频率稳定,中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变,缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时对前后级起有一定的隔离作用,为避免末级功放的工作状态变化而直接影响振荡级的频率稳定度。

功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

本设计采用DSP+锁相环技术,频率更加稳定,频率不会随环境变化而产生频飘。

关键词:小功率调频发射机直接调频调频振荡锁相环Abstract1933, the world's first transmitter was born. American inventors Armstrong invented the short-wave (FM) radio. 1939, the inventor of FM transmitters Armstrong of the United States established the first FM radio transmitters. The same year, the AM radio began sale in the United States. Since then FM transmitter technology has begun to develop rapidly. In all walks of life to be applied, particularly in low-power FM transmitters of more extensive. .The paper is about the low power frequency modulated transmitter electric circuit design. The usual low power transmitter selects the direct-frequency modulation method, frequency modulation vibrates the level mainly is has the frequency to be stable, the center frequency conforms to the target request sine wave signal, also its frequency receives the sur- tonic train signalling voltage regulation, the buffer mainly is vibrates the signal to the frequency modulation to carry on the enlargement, by provides the grid-driving power which the last stage needs, at the same time plays to the around level has the certain isolation role, for avoids the working mode active status change which the last stage merit puts but affecting the vibration level directly the frequency stability. The merit puts the level the duty guarantees the high efficiency output enough big high frequency power, and presents to the antenna carries on the launch.This design USES the DSP + phase locked loop technique, frequency more stable, frequency will not change with the environment and produce frequency wave.Keywords: Small power FM transmitter, Direct FM, FM oscillation, Phase locked loop technique目录摘要 (II)ABSTRACT (III)目录 (IV)前言 (1)1 调频发射系统 (2)1.1调频发射机的性能指标概念 (2)1.2调频发射机性能指标及设计要求 (3)1.3调频发射机基本原理方框图 (4)1.4发射机系统各部分波形图 (4)1.5调频发射机系统方框图各部分简介 (5)1.6调频发射机的工作原理 (6)2 锁相环路(PLL) (8)2.1锁相环路作用及原理 (8)2.2锁相环路的各组成部分及具体工作过程 (9)3 高频振荡电路的选取 (11)3.1高频振荡电路的设计要求及选取 (11)3.1.1 方案一:变压器反馈式LC正弦波振荡器 (11)3.1.2 方案二:石英晶体振荡器 (12)3.2振荡器的选择 (15)4 频率调制 (16)4.1频率调制的性能指标 (16)4.2频率调制方案选取 (16)4.2.1 方案一:变容二极管直接调频电路 (16)4.2.2 方案二:变容二极管间接调频电路 (18)4.3 所选变容二极管直接调频电路参数的估算 (19)5 高频功率放大器 (21)5.1高频功率放大器概述 (21)5.2谐振功率放大电路 (22)6 整机电路分析与调试 (23)6.1液晶显示控制电路 (23)6.2实验整机电路图及相关程序 (24)6.3整机主要元器件选用及简介 (25)总结 (29)致谢 (30)参考文献 (31)附录A (32)附录B (33)附录C (34)小功率FM发射机电路的设计前言自20世纪90年代以来,无线通信在全球范围内取得了突飞猛进的发展。

调频发射机高频电路部分的设计

调频发射机高频电路部分的设计

调频发射机高频电路部分的设计内蒙古自治区锡林郭勒 011200摘要:当今社会离不开信息通信,通信系统发挥着重要作用。

作为无线电技术应用的产物,调频发射机不受地理位置与自然环境影响,其性价比高,施工方便,收听灵便,稳定性高,广泛应用于人们生产生活等小范围移动通信中。

关键词:调频发射机;高频电路;设计随着时代的进步与科技的发展,客户对电子产品的需求不断增加,对强大的产品功能要求也越来越高,这与电子产品的高频电路密不可分,因高频电路可为电子产品提供更好的应用。

大多数高频电路用于通信领域,信号的传输与接收离不开高频电路。

通信技术在人们生活中被广泛使用,作为一种简单的通信工具,FM发射器能进行有效的移动通信,因其无需中继站或地面交换站的支持。

一、调频发射机的基本原理20世纪40年代,调频广播正式诞生,与传统调幅广播是一种相对的传播形式,两种广播传播形式存在着调制方式的不同。

其中,调幅广播信号发射幅度会随声音变化而变化,而调频广播发射幅度则处于持续不变状态。

我国调频广播采用频率为87~108MHz,传输形式为直线波传输,频率和波形得到相互补充,能有效确保调频广播传输较远距离,且由于我国广播受众群体大,所以在广播信号传输时,需借助调频发射机激励器将音频信号编码处理后放大,并经再放大、过滤、调制等操作后借助功放模块将传输中形成的复合型信号再次做放大处理,最后将信号传输出去,即调频发射机工作原理。

二、调频发射机特点1、可靠性高。

调频发射机由若干功放单元组成功放模块,同时采用晶体管开关电源经变压、整流、稳压至需要直流电压范围,为激励器、功率分配合成电路、检测控制系统及务功放单元工作所用,设备无论是使用还是维护都具有较强安全性。

而且调频发射机功放级采用热插拔技术,运行中当一个模块出现故障时,则会及时更换故障模块,不会对其他功放单元的正常运行带来影响,维修时间短,而且能保证安全播出,具有较高可靠性。

2、维护量少,稳定性强。

高频课程设计调频发射机

高频课程设计调频发射机

1.课程设计任务书1.1引言本文设计一个调频发射机,调频发射机由前级LC振荡电路,变容二极管调频,射级跟随器,甲放,和高频放大电路构成。

高频放大电路是调频发射基末级电路,其性能的优劣直接影响到发射机的好坏,稳定性和放大特性等指标。

因此本文设计对中频放大电路做了比较详细的介绍。

1.2 设计目的通过调频发射机电路的设计,使得建立无线电发射收机的整机概念,了解发射机整机各单元电路之间的关系及相互影响,从而能正确设计、计算发射的各个单元电路:包括LC振荡电路、变容二极管调频电路、射级跟随器电路、高频功放电路设计、元器件选择。

发射机是日常生活中常见的也是应用非常广泛的电子器件,研究本课题既可以了解小信号发射机电路,又可以提高对于Multisim和Protues的应用能力和运用书本知识的能力。

1.3 任务设计一个简易调频发射机(话筒),载频为4MHz,最大频偏为kHz75±,天线阻10-。

要求调试并测量主抗为75Ω,输出功率大于200mW,中心频率稳定度不低于3振级电路的性能,包括中心频率及其频率稳定度等。

1.4基本要求1.载频:4MHz2.最大频偏:kHz±,753.天线阻抗:75Ω,4.输出功率:>=200mW,10-5.中心频率稳定度:<=32总体方案2.1 方案选择直接调频发射机调频就是由高频振荡器产生的调频信号先由变容二极管调频,发射机的主要任务是完成有用的低频信号对高频载波的调制,高频部分包括主振荡器、缓冲放大、倍频器、中间放大、功放推动级与末级功放。

主振器的作用是产生频率稳定的载波。

为了提高频率稳定性,主振级采用石英晶体振荡器,并在它后面加上缓冲级,以削弱后级对主振器的影响。

2.2 工作原理调频发射机是由LC 振荡电路、缓冲级和高频功率放大电路构成。

由LC 振荡电路产生载波信号,送往缓冲级,然后由高频功率放大电路对信号进行放大,最后由天线发送出去。

2.3设计框图通常小功率发射机采用直接调频方式,它的组成框图如下所示。

调频发射机的设计和制作

调频发射机的设计和制作

调频发射机的设计和制作1.课程设计的目的(1)掌握小功率调频发射机整机电路的设计方法。

(2)学会如何将高频单元电路组合起来实现满足工程实际需要的整机电路。

(3)能够使用电路仿真软件进行电路调试。

2.设计方案论证2.1总体方案(1)调频发射机的整机电路的设计方法整机电路的设计计算顺序一般是从末级单元电路开始,向前逐级进行。

而电路的装调顺序一般从前级单元电路开始,想后级逐级进行。

电路的调试顺序先分级调整单元电路的静态工作点,测量其性能参数;然后在逐级进行联调,直到整机调试;最后进行整机技术指标测试。

由于功放运用的折线分析方法,其理论计算为近似值。

(2)高频电路由于受分布参数及各种耦合与干扰的影响,其稳定性比起低频电路来要差些,因此调试工作比较复杂,特别是整机调试,应前后级多次反复调整,直到满足技术指标要求。

⑶调频可以有两种实现的方法,一种是直接调频,就是用调制信号直接控制振荡器的频率使其按调制信号的规律呈线性变化。

另一种就是间接调频,先对调制信号进行积分,再对载波进行相位调制。

两种调频电路在性能上的一个重大差别是收到调频特性非线性限制的参数不同,间接调频电路提供的最大频偏较小,二直接调频可以得到比较大的频偏。

2.2各部分设计及原理分析2.2.1电路的基本原理通常小功率发射机采用直接调频方式,其组成框图如图1所示,电路原理图如图2所示。

图1 直接调频方式的组成框图沈阳大学图2 小型调频发射机参考电路其中高频振荡级主要是产生频率稳定、中心频率符合指标要求的正弦波信号,且其频率受到外加音频信号电压调变;缓冲级主要是对调频振荡信号进行放大,以提供末级所需的激励功率,同时还对前后级起有一定的隔离作用,为避免级功放的工作状态变化而直接影响振荡级的频率稳定度;,功放级的任务是确保高效率输出足够大的高频功率,并馈送到天线进行发射。

2.2.2选择各级电路形式和各级元器件参数的计算(1)频振荡级由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

淮海工学院课程设计报告书
课程名称:通信电子线路课程设计
题目:调频发射机设计
系(院):通信工程系
学期:2013-2014-1
专业班级:
姓名:
学号:
调频发射机电路设计
一 绪论
1.1 摘要
调频信号的基本特点是它的瞬时频率按调制信号规律变化,因而,一种最容易的实现方法是用调制信号直接控制振荡器的振荡频率,使其不失真地反映调制信号的变化规律。

通常将这种直接调变振荡器频率的方法称为直接调频法。

采用这种方法时,被控的振荡器可以是产生正弦波的LC 振荡器和晶体振荡器,也可以是产生非正弦的张弛振荡器。

前者产生调频正弦波,后者产生调频非正弦波(例如调频方波,调频三角波),如果需要,通过滤波等方法将调频非正弦波变换为调频正弦波。

本电路采用LC 振荡器。

1.2 主要性能要求
1 (天线)负载电阻:R L =75欧;
2发射功率:Po ≥80mW ;
3工作中心频率:f 0=6.5MHz ;
4最大频偏:kHz f m 75=∆;
5总效率:%50>A η。

1.3 概述
设计一个完整的小功率直接调频发射机系统,直接调频发射系统框图主要由调频振
荡器、缓冲隔离器、倍频器、高频功率放大器、调制信号发生器等电路组成。

原理 图如图1。

图1 直接调频发射机组成框图 二 电路原理
2.1 LC 振荡电路工作原理
电容三点式振荡电路又称考毕兹(Colpitts )电路,基本结构入图2左图所示。

图中Cc 为耦合电容,Cb 为旁路电容,电阻Rb1,Rb2和Re 构成分压式偏置,为电路提供直流偏置,Rl 为输出负载电阻。

电路的交流通路如图3右图所示,如果移去管子,电容C1,C2和电感L 为并联谐振回路,构成电路的选频网络。

对于一个振荡器,当其负载阻
抗及反馈系数已经确定的情况,静态工作点的位置对振荡器的起振以及稳定平衡状态(振幅大小,波形好坏)有着直接的影响。

要想起振,首先三极管应该工作在静态工作点。

电路应选择合适的静态工作点的位置。

图2 振荡电路
电容三端反馈振荡电路利用电容C1和C2作为分压器,该电路满足相位条件,选取合适时满足振幅起振条件,该电路就可振荡。

可得到振荡频率近似为
LC
f π21 = (2.1) 式中:C 是振荡回路的总电容。

该电路与电感三端反馈振荡电路相比,输出波比较好,波形更接近正弦波。

适当地加大电路电容,就可减弱不稳定因素对频率的影响,从而提高电路的稳定度。

LC 振荡电路图如下:
图3 LC 振荡电路图
仿真波形如下:
图4 调频仿真波形
频率如下;
图5 振荡频率
2.2变容二极管调频原理
变容二极管调频电路是一种常用的直接调频电路,广泛应用于移动通信和自动频率微调系统。

其优点是工作频率高,固有损耗小且线路简单,能获得较大的频偏,其缺点是中心频率稳定度较低。

较之中频调制和倍频方法,这种方法的电路简单、性能良好、
副波少、维修方便,是一种较先进的频率调制方案。

利用二极管的特性直接产生调频波,其原理电路如图4所示。

图6 变容二极管调频电路
变容二极管Cj 通过耦合电容C1并接在LCn 回路的两端,形成振荡回路总电容的一部分。

因而,振荡回路的总电容C 为:
j n C C C += (2.2) 振荡频率为:)
(2121
j n C C L LC f +==ππ (2.3) 加在二极管上的反向偏压为:
Q R V V =(直流反偏)Ω+V (调制电压)O V +(高频振荡,可忽略)
在微波发射机中,常用速调管振荡器作为载波振荡器,其振荡频率受控于加在管子反射极上的反射极电压。

因此,只需将调制信号加至反射极即可实现调频。

若载波是由多谐振荡器产生的方波,则可用调制信号控制积分电容的充放电电流,从而控制其振荡频率。

调频电路如下:
图7变容二极管直接调频的工作原理图
仿真波形如下:
图8 二极管调频波形
2.3缓冲隔离
缓冲隔离级将调频振荡器与功放级隔离,以减小后级对振荡器频率稳定度及振荡波形的影响。

是否选择该单元电路,主要根据电路对稳定性要求的高低。

一般情况下,需要选择该电路。

缓冲级通常采用射极跟随器电路。

缓冲隔离图:
图9 缓冲隔离图
仿真图如下:
图10缓冲隔离仿真图
2.4功率放大
功率放大是将调频振荡器产生的信号频率加倍,以达到发射机载波频率的要求,这样可以降低振荡器的工作频率,提高电路的频率稳定度。

如果振荡器的振荡频率可以满足发射机载波频率的要求,就可省去此电路。

高频功放电路使负载(天线)上获得设计要求的发射功率。

如果要求达到的发射功率比较大,那么在末级功放之前还要加功率推动级,以便为末级功放提供足够的激励功率。

如果要求的发射功率不大,且振荡级的输出功率能够满足末级功放的输入要求,那么功放推动级也可省去。

选择高频功率放大器时应考虑几个因素,如要使负载(天线)上获得令人满意的发射功率,而且整机效率较高,应选择丙类功率放大器。

末级功放的功率增益不能太高,否则电路性能不稳定,容易产生自激。

因此要根据发射机各部分的作用,适当地合理分配功率增益。

功率推动级为末级功放提供激励功率。

可以选择在弱过压工作状态下的丙类功放。

功率放大电路图:
图11 功率放大图功率放大仿真图:
图12 功率仿真图
2.5总电路图
图13 总电路图总的波形如下:
图14 总波形
三心得体会
通过学习高频电子线路这门课程,使我能综合运用电工技术,高频电子技术课程中的所学到的理论知识来完成设计和分析电路,熟悉了工程实践中高频电子电路的设计方法和规范,达到综合应用电子技术的目的。

学会了文件检索和查找数据手册的能力。

学会了应用protel软件的使用。

还学会了整理和总结设计文档报告。

学到很多东西,但就我个人感觉而言,学到的东西,对我后面一年的学习有重要的指导作用,不敢说以后,但在毕业前的这段时间内,这次学习对我的确很重要。

学到了如何务实,如何去学一门技术,同时也知道了如何学习,什么才是学习。

这次设计,使我由理论学习向实际生产的方向更近了一步。

让我对自己所学的专业有了更加清晰的理解,也对自己现在的专业技术水平有了更加明确的理解。

这次的设计中,我体验到了一名专业电子设计工程师设计产品的各个过程,让我对自己的未来的职业定位有了充分的心里准备。

总而言之,此次课程设计让我感到受益匪浅。

同时我认为我们的工作是一个团队的工作,团队需要个人,个人也离不开团队,必须发扬团结协作的精神。

某个元素的离群都可能导致整项工作的失败。

设计中只靠一个人知道的是远远不够的,我们要综合运用各项知识。

才能适应发展。

回顾起此次高频课程设计,至今我仍感慨颇多,在整整一星期的日子里,可以说得是苦多于甜,但是可以学到很多很多的的东西,同时不仅可以巩固了以前所学过的知识,而且学到了很多在书本上所没有学到过的知识。

通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而提高自己的实际动手能力和独立思考的能力。

在设计的过程中遇到问题,可以说得是困难重重,我毕竟不是专家级的,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,
通过对高频电路的学习,了解了现实社会中的某些东西的运用都是通过运行才实现的。

在此次课程设计过程中,我们解决了一些主要问题,以便能解决实际问题,也通过老师的指导顺利的完成了课程设计。

在以后的实验过程中,我会克服更多的困难,去学习,以便进行实践。

参考文献
[1] 王冠华, 王伊娜. Multisim 8电路设计及应用图[M].北京:国防工业出版社,2006 .
[2] 王冠华. Multisim10电路设计及应用[M].北京:国防工业出版社,2008.
[3] 陈晓文. 电子线路课程设计[M].北京:电子工业出版社,2004.
[4] 张肃文. 高频电子线路第三版[M].北京:高等教育出版社,2005.
课程设计报告书专用纸
附录
图15 PCB板
第10 页共10 页。

相关文档
最新文档