热力学第一定律汇总
热力学第一定律总结
298 K时,H2(g)的∆cHmө = -285.83 kJ·mol-1, H2S(g)和 SO2(g)的∆fHmө分别为-20.63 kJ·mol-1和-296.83 kJ·mol-1。 求下列反应在498 K时的∆rUmө。已知水在373 K时的摩 尔蒸发焓∆vapHm (H2O, 373 K) = 40.668 kJ·mol-1. 2H2S (g) + 3O2 (g) = 2SO2 (g) + 2H2O(g)
其中,T2的值由理想气体绝热方程式(pVγ=C)求得。
3、Q的计算 、 的计算
• Q = ∆U – W • 如恒容,Q = ∆U • 如恒压,Q = ∆H
1. 绝热密闭体系里,以下过程的ΔU不等于零的是: A) 非理想气体混合 B) 白磷自燃 C) 乙醚挥发 D) 以上均为0 2.“爆竹声中一岁除,春风送暖入屠苏”。我国 春节有放鞭炮的习俗。在爆竹爆炸的过程中,以 下热力学量的符号表示正确的是(忽略点火时火柴 传递给引线的少量热量) ( ) A) Q<0,W<0,ΔU<0 B) Q<0,W=0,ΔU<0 C) Q=0,W<0,ΔU<0 D) Q=0,W=0,ΔU=0
nN2CV, m(N2)(T-T1) + nCuCV,误二: ∆U =∆UN2 + ∆UCu = 0
nN2CV, m(N2)*(T-T1) + nCuCV, m(Cu)*(T-T2) = 0
正确解法:
∆U =∆UN2 + ∆UCu = ∆UN2 + ∆HCu = 0 nN2CV, m(N2)*(T-T1) + nCuCp, m(Cu)*(T-T2) = 0
• 求火焰最高温度: Qp = 0, ΔH = 0 求火焰最高温度: • 求爆炸最高温度、最高压力:QV = 0, W = 0 求爆炸最高温度、最高压力: =0
热力学第一定律总结
热力学第一定律总结热力学第一定律是热力学中非常重要的基本定律之一,通常也被称为能量守恒定律。
它规定了一个物体或系统的能量不会凭空消失或产生,而是在各种形式之间转化。
这个定律提供了热力学研究的基础,并与我们日常生活中的能量转换问题密切相关。
热力学第一定律的表达形式可以归纳为以下几种:1. ΔU = Q - W其中,ΔU表示系统内部能量的变化,Q表示系统吸收的热量,W表示系统对外界做功。
这个等式表示了能量守恒的关系,也可以理解为“能量的增加等于吸收的热量减去对外界做的功”。
2. ΔU = Q + W在有些文献中,也会将上述等式稍微改写为ΔU = Q + W。
这种表述形式更强调了热力学第一定律中能量转换的双向性,即系统既可以吸收热量又可以释放热量,既可以对外界做功又可以接受外界对其做功。
热力学第一定律的应用范围非常广泛,下面将从几个不同的角度对其进行探讨:1. 能量守恒热力学第一定律表明了系统内部能量的守恒性质,即系统能量的增加等于吸收的热量减去对外界做的功。
根据这个定律,我们可以研究能量在不同形式之间的转化和传递,例如热能转化为机械能、化学能转化为热能等等。
这对于能源利用和能量转换的优化具有重要意义。
2. 热机和循环过程热力学第一定律为研究热机和循环过程提供了理论基础。
热机是将热能转化为机械能的装置,例如蒸汽机、汽车发动机等。
根据热力学第一定律,我们可以分析和计算热机的效率,进而设计更加高效的热机。
循环过程是指在一定压力下物质的定量循环往复过程,例如卡诺循环。
热力学第一定律可以帮助我们深入了解不同循环过程中能量的转换规律。
3. 热传导和传热过程热力学第一定律也与传热过程密不可分。
传热是指物体之间由于温度差而发生的热量传递现象,包括热传导、对流传热和辐射传热。
根据热力学第一定律,我们可以分析和计算热传导过程中的能量损失或增益,为保温设计和能量利用提供依据。
总之,热力学第一定律是热力学研究的基本定律,表明能量在不同形式之间的转换和传递是有一定规律的。
热力学第一定律的内容及公式
热力学第一定律的内容及公式热力学第一定律是物理学家在研究热力学时发现的一个基本定律,又称一阶热力学,它主要是指热力学里的“能量守恒定律”,也就是所谓的“热力学第一定律”。
热力学里有两个重要概念,一个是“热量”,一个是“动能”,它们都是热量的形式,而热力学第一定律宣称:“系统在每一次进行的任何物理或化学变化中,热量的总量是保持不变的”,也就是说:“热量守恒定律”,或“热力学第一定律”。
其公式如下:ΔU = Q - W (热量守恒定律)其中,ΔU:系统内部能量的变化量,U”代表“内能”;Q:进入系统的热量量,Q”代表“热量”;W:系统外的动摩擦的功,“W”代表功。
热力学第一定律的推导是基于“能量守恒原理”,也就是基于“能量守恒定律”,即“能量在发生物理和化学变化的过程中是守恒的”,其具体原理可以这样理解:在任何物理或化学变化的过程中,能量只会由一种形式转化为另一种形式,而不会消失或增多,因此可以将它作为守恒量。
这就是“能量守恒定律”所说的“能量不会消失,而只能由一种形式转化为另一种形式”。
热力学第一定律的实际应用非常广泛,它不仅被广泛应用于电力,热动力学,机械学,天然气等,而且它也是热动力机制的基础,比如火的燃烧,爆炸,发动机的工作,热能的转化等等,都离不开热力学第一定律的应用。
热力学第一定律的推导实际上是由能量守恒定律的原理推出来的,其中,Q一般表示进入系统的热量,W表示系统外的动摩擦功,ΔU表示系统内部能量的变化量,因此,Q-W=ΔU,也就是说,热量守恒定律是指热量的总量在发生变化的过程中是保持不变的。
热力学第一定律也有其局限性,它不适用于非平衡态的物理过程,也不适用于外部力的作用下的重力运动,而是适用于系统在收敛过程中的热运动,这也是其它热力学定律如热力学第二定律等作用于平衡态中才能发挥最好作用的原因。
总之,热力学第一定律是由能量守恒定律推导出来的,其公式为Q-W=ΔU,它简单而实用,极大地推动了某些物理过程的进程,发挥了极其重要的作用,并且它也有自己的局限性,不适用于非平衡态的物理过程以及外部力的作用下的重力运动。
物理化学知识点总结(热力学第一定律)
热力学第一定律一、基本概念1.系统与环境敞开系统:与环境既有能量交换又有物质交换的系统。
封闭系统:与环境只有能量交换而无物质交换的系统。
(经典热力学主要研究的系统)孤立系统:不能以任何方式与环境发生相互作用的系统。
2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度T、压强p、体积V等。
根据状态函数的特点,我们把状态函数分成:广度性质和强度性质两大类。
广度性质:广度性质的值与系统中所含物质的量成正比,如体积、质量、熵、热容等,这种性质的函数具有加和性,是数学函数中的一次函数,即物质的量扩大a倍,则相应的广度函数便扩大a倍。
强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。
注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。
二、热力学第一定律热力学第一定律的数学表达式:对于一个微小的变化状态为:dU=公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。
它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。
或者说dU与过程无关而δQ和δW却与过程有关。
这里的W既包括体积功也包括非体积功。
以上两个式子便是热力学第一定律的数学表达式。
它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。
三、体积功的计算1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。
将一定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。
当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气体克服外力所做的功等于作用在活塞上推力F与活塞上移距离dl的乘积因为我们假设活塞没有质量和摩擦,所以此活塞实际上只代表系统与环境之间可以自由移动的界面。
物理热力学第一定律知识点归纳总结
学习必备欢迎下载物理热力学第一定律知识点归纳总结第二讲热力学第一定律§2.1 改变内能的两种方式热力学第一定律2. 1. 1、作功和传热作功可以改变物体的内能。
如果外界对系统作功W。
作功前后系统的内能分别为、,则有没有作功而使系统内能改变的过程称为热传递或称传热。
它是物体之间存在温度差而发生的转移内能的过程。
在热传递中被转移的内能数量称为热量,用Q 表示。
传递的热量与内能变化的关系是做功和传热都能改变系统的内能,但两者存在实质的差别。
作功总是和一定宏观位移或定向运动相联系。
是分子有规则运动能量向分子无规则运动能量的转化和传递;传热则是基于温度差而引起的分子无规则运动能量从高温物体向低温物体的传递过程。
2. 1. 2、气体体积功的计算1、准静态过程一个热力学系统的状态发生变化时,要经历一个过程,当系统由某一平衡态开始变化,状态的变化必然要破坏平衡,在过程进行中的任一间状态,系统一定不处于平衡态。
如当推动活塞压缩气缸中的气体时,气体的体积、温度、压强均要发生变化。
在压缩气体过程中的任一时刻,气缸中的气体各部分的压强和温度并不相同,在靠近活塞的气体压强要大一些,温度要高一些。
在热力学中,为了能利用系统处于平衡态的性质来研究过程的规律,我们引进准静态过程的概念。
如果在过程进行中的任一时刻系统的状态发生的实际过程非常缓慢地进行时,各时刻的状态也就非常接近平衡态,过程就成了准静态过程。
因此,准静态过程就是实际过程非常缓慢进行时的极限情况对于一定质量的气体,其准静态过程可用图、图、图上的一条曲线来表示。
注意,只有准静态过程才能这样表示。
2、功在热力学中,一般不考虑整体的机械运动。
热力学系统状态的变化,总是通过做功或热传递或两者兼施并用而完成的。
在力学中,功定义为力与位移这两个矢量的标积。
在热力学中,功的概念要广泛得多,除机械功外,主要的有:流体体积变化所作的功;表面张力的功;电流的功。
(1)机械功有些热力学问题中,应考虑流体的重力做功。
热力学第一定律基本概念和重点总结
热力学第一定律基本概念和重点总结1.能量的守恒性:热力学第一定律表明,能量是守恒的,即在一个封闭的系统中,能量的总量保持不变。
能量可以从一个物体或者系统转移到另一个物体或者系统,但总能量不会减少或者增加。
2.系统的内能:内能是指一个物体或者系统所具有的全部微观状态的总和。
内能包括物体的动能、势能和分子之间的相互作用能等。
根据热力学第一定律,一个封闭的系统内能的变化等于从系统中吸收的热量和对系统做功的总和。
3.热量的传递:热量是由一个物体传递给另一个物体的能量。
热量的传递方式可以是热传导、热辐射和对流传热。
热传导是指热量通过物体内部的分子传递,热辐射是指以电磁波的形式传输热量,而对流传热是指通过流体的传动使热量传递。
根据热力学第一定律,传递给系统的热量可以增加系统的内能。
4.对系统做功:对系统做功是指外界对系统施加的力使系统发生位移,并且力和位移的乘积。
根据热力学第一定律,系统对外界做功会减少系统的内能。
5.热机和热量机:热力学第一定律还涉及到热机和热量机的工作原理。
热机是指通过吸收热量和释放热量来进行功的装置,如蒸汽机。
热量机是指通过从高温热源吸热、向低温热源放热,转化热能为机械能的系统。
6.等价性原理:热力学第一定律也称为能量守恒定律,它表明能量在物质体系中的转化与传递。
热力学第一定律的另一个重点是等价性原理,它说明有功过程可以相互转换为无功过程。
例如,机械能可以转化为热能,热能也可以转化为机械能。
总结起来,热力学第一定律是热力学的基本定律之一,它表明能量在物质体系中的传递与转化。
重点概念包括能量的守恒性、系统的内能、热量的传递、对系统做功、热机和热量机的工作原理以及等价性原理。
了解和理解热力学第一定律对于理解能量转化与传递以及热力学过程具有重要意义。
高考物理:热力学三大定律总结!
高考物理:热力学三大定律总结!热力学第一定律是能量守恒定律。
热力学第二定律有几种表述方式:克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克表述为不可能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。
以及熵增表述:孤立系统的熵永不减小。
热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零,或者绝对零度(T=0)不可达到。
第一定律热力学第一定律也就是能量守恒定律。
自从焦耳以无以辩驳的精确实验结果证明机械能、电能、内能之间的转化满足守恒关系之后,人们就认为能量守恒定律是自然界的一个普遍的基本规律。
内容一个热力学系统的内能U增量等于外界向它传递的热量Q与外界对它做功A的和。
(如果一个系统与环境孤立,那么它的内能将不会发生变化。
)符号规律热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△E=-W+Q时,通常有如下规定:①外界对系统做功,A>0,即W为正值。
②系统对外界做功,A<0,即W为负值。
③系统从外界吸收热量,Q>0,即Q为正值④系统从外界放出热量,Q<0,即Q为负值⑤系统内能增加,△U>0,即△U为正值⑥系统内能减少,△U<0,即△U为负值理解从三方面理解1.如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时系统内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=A2.如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时系统内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q3.在做功和热传递同时存在的过程中,系统内能的变化,则要由做功和所传递的热量共同决定。
在这种情况下,系统内能的增量△U就等于从外界吸收的热量Q和外界对系统做功A之和。
热力学第一定律知识点总结
热力学第一定律知识点总结热力学第一定律,也被称为能量守恒定律,是热力学中最基本也最重要的定律之一。
它描述了能量的守恒原理,即能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
本文将对热力学第一定律的几个核心知识点进行总结,帮助读者理解和应用这一重要定律。
1. 能量守恒定律热力学第一定律是基于能量守恒定律的原理,它表明能量在系统中的总量守恒。
能量可以以多种形式存在,包括热能、机械能、化学能等。
根据第一定律,能量从一个系统转移到另一个系统时,总能量保持不变。
2. 内能和热量内能是物质系统所具有的能量总量,包括分子间势能和分子内能量。
内能可以通过热量的传递进行改变。
热量是指能量由高温物体传递到低温物体的过程,它可以增加或减少系统的内能。
3. 等内能过程等内能过程是指系统的内能保持不变的过程。
在等内能过程中,系统可能发生其他形式的能量转化,比如从热能到机械能的转化。
根据热力学第一定律,等内能过程中输入和输出的能量必须相等。
4. 功和能量转化功是指力对物体施加的作用导致物体发生移动的过程中所做的能量转化。
功可以改变系统的内能,从而遵循热力学第一定律的原则。
例如,当气体在容器中膨胀时,外界对气体所做的功会增加气体的内能。
5. 热容和热容量热容是指物体吸收单位热量时温度的变化量。
热容量是指物体吸收或释放的热量与温度变化之间的关系。
热容和热容量可以用来量化系统对热量的响应以及系统内能的变化。
6. 等压和等体过程等压过程是指物体在恒定压力下发生的过程,例如,蒸汽锅炉中水的加热过程。
在等压过程中,系统的内能改变等于输入或输出的热量减去所做的功。
同样地,等体过程是指物体的体积保持不变的过程。
总结:热力学第一定律是热力学中的核心原理,它描述了能量的守恒以及能量在系统中的转化。
通过理解和应用热力学第一定律,我们能够分析和解释能量的转移过程,进而更好地理解和掌握热力学的基本概念和定律。
在实际应用中,热力学第一定律也为工程领域提供了重要的理论基础,例如在能源利用和转化、热机工作原理等方面发挥着关键作用。
第一章热力学第一定律章总结
第一章热力学第一定律本章主要公式及其使用条件一、热力学第一定律W Q U +∆= W Q dU δδ+=热力学中规定体系吸热为正值,体系放热为负值;体系对环境作功为负值,环境对体系作功为正值。
功分为体积功和非体积功。
二、体积功的计算体积功:在一定的环境压力下,体系的体积发生改变而与环境交换的能量。
体积功公式⎰⋅-=dV p W 外 1 气体向真空膨胀:W =0 2气体在恒压过程:)(12 21V V p dV p W V V --=-=⎰外外3理想气体等温可逆过程:2112ln lnp p nRT V V nRT W -=-= 4理想气体绝热可逆过程:)(12,T T nC W U m V -=∆=理想气体绝热可逆过程中的p ,V ,T 可利用下面两式计算求解1212,ln ln V V R T T C m V -=21,12,ln lnV V C p p C m p m V =三、热的计算热:体系与环境之间由于存在温度差而引起的能量传递形式。
1. 定容热与定压热及两者关系定容热:只做体积功的封闭体系发生定容变化时, U Q V ∆= 定压热:只做体积功的封闭体系定压下发生变化, Q p = ΔH定容反应热Q V 与定压反应热Q p 的关系:V p Q Q V p ∆+= nRT U H ∆+∆=∆n ∆为产物与反应物中气体物质的量之差。
或者∑+=RT g Q Q m V m p )(,,ν ∑+∆=∆RT g U Hm m)(ν式中∑)(g ν为进行1mol 反应进度时,化学反应式中气态物质计量系数的代数和。
2.热容 1.热容的定义式dTQ C δ=dT Q C VV δ=dT Q C pp δ=n CC VmV =,n C C p m p =, C V ,C p 是广度性质的状态函数,C V ,m ,C p,m 是强度性质的状态函数。
2.理想气体的热容对于理想气体 C p ,m - C V ,m =R 单原子理想气体 C V ,m = 23R ;C p ,m = 25R 双原子理想气体 C V ,m =25R ;C p ,m = 27R 多原子理想气体: C V ,m = 3R ;C p ,m = 4R通常温度下,理想气体的C V ,m 和C p,m 均可视为常数。
热力学第一定律精选全文完整版
可编辑修改精选全文完整版热力学第一定律科技名词定义中文名称:热力学第一定律英文名称:first law of thermodynamics其他名称:能量守恒和转换定律定义:热力系内物质的能量可以传递,其形式可以转换,在转换和传递过程中各种形式能源的总量保持不变。
概述热力学第一定律热力学第一定律:△U=Q+W。
系统在过程中能量的变化关系英文翻译:the first law of thermodynamics简单解释在热力学中,系统发生变化时,设与环境之间交换的热为Q(吸热为正,放热为负),与环境交换的功为W(对外做功为负,外界对物体做功为正),可得热力学能(亦称内能)的变化为ΔU = Q+ W或ΔU=Q-W物理中普遍使用第一种,而化学中通常是说系统对外做功,故会用后一种。
定义自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。
英文翻译:The first explicit statement of the first law of thermodynamics, byRudolf Clausiusin 1850, referred to cyclic thermodynamic processes "In all cases in which work is produced by the agency of heat, a quantity of heat is consumed which is proportional to the work done; and conversely,by the expenditure of an equal quantity of work an equal quantity of heat is produced."基本内容能量是永恒的,不会被制造出来,也不会被消灭。
物理化学笔记公式
热力学第一定律功:δW =δW e +δW f(1) 膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。
(2) 非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。
如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。
热 Q :体系吸热为正,放热为负。
热力学第一定律: △U =Q +W =Q —W e =Q —p 外dV (δW f =0) 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。
热容 C =δQ/dT(1) 等压热容:C p =δQ p /dT = (∂H/∂T )p (2) 等容热容:C v =δQ v /dT = (∂U/∂T )v理想气体ΔU,ΔH 的计算: 对理想气体的简单状态变化过程:定温过程:Δ U =0; Δ H =0变温过程:对理想气体, 状态变化时 dH=dU+d(PV) 若理想气体的摩尔热容没有给出,常温下有:理想气体绝热可逆过程方程式:标准态:气体的标准态:在任一温度T 、标准压力 P 下的纯理想气体状态;液体(或固体)的标准态:在任一温度T 、标准压力下的纯液体或纯固体状态。
标准态不规定温度,每个温度都有一个标准态。
摩尔反应焓:单位反应进度(ξ=1mol)的反应焓变Δr H m 。
标准摩尔生成焓:一定温度下由热力学稳定单质生成化学计量数 νB=1的物质B 的标准摩尔反应焓,称为物质B 在该温度下的标准摩尔生成焓。
用 表示 (没有规定温度,一般298.15 K 时的数据有表可查)标准摩尔燃烧焓:一定温度下, 1mol 物质 B 与氧气进行完全燃烧反应,生成规定的燃烧产物时的标准摩尔反应焓,称为B 在该温度下的标准摩尔燃烧焓。
用 表示.单位:J mol-1为可逆过程中体积功的基本计算公式,只能适用于可逆过程。
计算可逆过程的体积功时,须先求出体系的 p~V 关系式,然后代入积分。
⎰-=21d V V V p W 2112ln ln p pnRT V V nRT W -=-=适用于理想气体定温可逆过程。
热学中的热力学第一定律与第二定律知识点总结
热学中的热力学第一定律与第二定律知识点总结热学是物理学中的一个重要分支,它研究的是热量的传递与能量的转化规律。
在热学中,热力学是一个核心概念,其中第一定律和第二定律是热力学的基本原理。
本文将对热学中的热力学第一定律和第二定律的知识点进行总结。
一、热力学第一定律热力学第一定律,也称作能量守恒定律,是热学中最基本的定律之一。
它表明在一个封闭系统中,能量的增加等于系统对外界做功与接受热量的总和。
1. 系统能量的变化根据热力学第一定律,系统的能量变化可以表示为:△U = Q - W其中,△U表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外界做的功。
系统内能的变化等于系统吸收的热量减去系统对外界做的功。
2. 热力学过程中的能量转化在热力学过程中,能量可以以热量的形式传递或以功的形式进行转化。
根据热力学第一定律,系统对外界所做的功等于系统由外界吸收的热量减去系统内能的增加。
3. 等温过程和绝热过程等温过程是指系统和外界保持恒温的过程,这时系统内能的增加等于系统吸收的热量。
绝热过程是指系统与外界不进行任何热量的交换,这时系统对外界所做的功等于系统内能的增加。
二、热力学第二定律热力学第二定律是热学中另一个重要的定律,它表明热量自然地从高温物体转移到低温物体,而不会自发地由低温物体转移到高温物体。
1. 热量传递的方向根据热力学第二定律,热量只能由高温物体传递到低温物体,不会自发地由低温物体传递到高温物体。
这是因为热量自然地流动,而自然地流动的方式是从高温到低温。
2. 热力学过程的不可逆性根据热力学第二定律,热力学过程具有一定的不可逆性,即热量不可能完全转化为功而不产生其他形式的能量损失。
这是因为热量传递的过程中会有一定的熵增加,从而导致能量转化的不可逆性。
3. 热力学第二定律的表述热力学第二定律有多种不同的表述方式,其中最常见的是克劳修斯表述和开尔文表述。
克劳修斯表述强调了不可逆性的存在,开尔文表述则强调了热量流动的方向性。
热力学第一定律
P2V2
ln
V2 V1
7
又 ∵ 等温过程有
V2 P1 V1 P2
有
AT
P1V1 M
ln P1 P2 RT
ln
P2V2 P1
ln
P1 P2
M mol
P2
(3)强调QT=AT
即在等温过程中,系统的热交换不能直接计算,但可用等 温过程中的功值AT来间接计算。
8
※三种过程中气体做的功
等体过程
(1)特征:dT=0, ∴dE=0 热一律为 QT=AT
在等温过程中,理想气体所吸收 的热量全部转化为对外界做功,系 统内能保持不变。
(2)等温过程的功
PI
P1
P2
o
V1
II
V2 V
∵T=C(常数),
P RT 1
V
dAT PdV
AT
V2 RTdV RT ln V2
V V1
V1
P1V1
ln
V2 V1
T1)
M M mol R(T2 T1)
5
C p
C V
R i2R 2
──此即迈耶公式
(3)比热容比:
定义
Cp
Cv
i 2
RR iR
i2 i
2
对理想气体刚性分子有:
单原子分子:
双原子分子:
5 3 7 5
1.67 1.4
*: 经典理论的缺陷
多原子分子:
8 6
1.33
6
3、等温过程
1
符号规定
Q
吸热为正, 放热为负.
系统对外做功为正, A 外界对系统做功为负.
各物理量的单位统一用国际单位制。
热力学第一定律总结
热一定律总结一、 通用公式ΔU = Q + W绝热: Q = 0,ΔU = W 恒容W ’=0:W = 0,ΔU = Q V恒压W ’=0:W =-p ΔV =-ΔpV ,ΔU = Q -ΔpV ΔH = Q p 恒容+绝热W ’=0 :ΔU = 0 恒压+绝热W ’=0 :ΔH = 0焓的定义式:H = U + pV ΔH = ΔU + ΔpV典型例题:思考题第3题,第4题;二、 理想气体的单纯pVT 变化恒温:ΔU = ΔH = 0变温: 或或如恒容,ΔU = Q ,否则不一定相等;如恒压,ΔH = Q ,否则不一定相等;C p , m – C V , m = R双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2典型例题:思考题第2,3,4题书、三、 凝聚态物质的ΔU 和ΔH 只和温度有关或 典型例题:书四、可逆相变一定温度T 和对应的p 下的相变,是恒压过程ΔU ≈ ΔH –ΔnRTΔn :气体摩尔数的变化量;如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH ;ΔU = n C V, m d T T 2T1 ∫ ΔH = n C p, md T T2 T1∫ ΔU = nC V, m T 2-T 1 ΔH = nC p, m T 2-T 1ΔU ≈ ΔH = n C p, m d TT 2T 1∫ΔU ≈ ΔH = nC p, m T 2-T 1ΔH = Q p = n Δ H m α βkPa 及其对应温度下的相变可以查表; 其它温度下的相变要设计状态函数不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算;或典型例题:作业题第3题 五、化学反应焓的计算其他温度:状态函数法ΔU 和ΔH 的关系:ΔU = ΔH –ΔnRT Δn :气体摩尔数的变化量;典型例题:思考题第2题典型例题:见本总结“十、状态函数法;典型例题第3题” 六、体积功的计算通式:δW = -p amb ·d V恒外压:W = -p amb ·V 2-V 1Δ H m T = ΔH 1 +Δ H m T 0 + ΔH 3α ββα Δ H m TαβΔH 1ΔH 3Δ H m T 0α β可逆相变K:ΔH = nC p, m T 2-T 1ΔH = n C p, m d T T 2T1∫恒温可逆可逆说明p amb = p :W = nRT ·ln p 2/p 1 = -nRT ·ln V 2/V 1 绝热可逆:pV γ= 常数γ = C p , m /C V , m ; 利用此式求出末态温度T 2,则W =ΔU = nC V , m T 2 – T 1或:W = p 2V 2 – p 1V 1/ γ–1典型例题: 书,作业第1题 七、p -V 图斜率大小:绝热可逆线 > 恒温线 典型例题:如图,A→B 和A→C 均为理想气体变化过程,若 B 、C 在同一条绝热线上,那么U AB 与U AC 的关系是: A U AB > U AC ; B U AB < U AC ; C U AB =U AC ; D 无法比较两者大小;八、可逆过程可逆膨胀,系统对环境做最大功因为膨胀意味着p amb ≤ p ,可逆时p amb 取到最大值p ;可逆压缩,环境对系统做最小功; 典型例题:1 mol 理想气体等温313 K 膨胀过程中从热源吸热600 J,所做的功仅是变到相同终态时最大功的1/10,则气体膨胀至终态时,体积是原来的___倍;九、求火焰最高温度: Q p = 0, ΔH = 0求爆炸最高温度、最高压力:Q V = 0, W = 0 ΔU = 0 典型例题:见本总结“十、状态函数法;典型例题第3题” 十、状态函数法重要设计途径计算系统由始态到终态,状态函数的变化量; 典型例题:1、 将及Θ的水汽100 dm 3,可逆恒温压缩到10 dm 3,试计算此过程的W,Q 和ΔU ;2、 1mol 理想气体由2atm 、10L 时恒容升温,使压力到20 atm;再恒压压缩至体积为1L;求整个过程的W 、Q 、ΔU 和ΔH ;3、 298K 时,1 mol H 2g 在10 mol O 2g 中燃烧H 2g + 10O 2g = H 2Og + g恒容过程恒压过程p 恒温过程绝热可逆过程p V已知水蒸气的生成热Δr H m H2O, g = kJ·mol-1, C p,m H2 = C p,m O2 = J·K-1·mol-1,C p,m H2O = J·K-1·mol-1.a)求298 K时燃烧反应的Δc U m;b)求498 K时燃烧反应的Δc H m;c)若反应起始温度为298 K,求在一个密封氧弹中绝热爆炸的最高温度;十、了解节流膨胀的过程并了解节流膨胀是绝热、恒焓过程典型例题:1、理想气体经过节流膨胀后,热力学能____升高,降低,不变2、非理想气体的节流膨胀过程中,下列哪一种描述是正确的:A Q = 0,H = 0,p < 0 ;B Q = 0,H < 0,p < 0 ;C Q > 0,H = 0,p < 0 ;D Q < 0,H = 0,p < 0 ;十一、其他重要概念如系统与环境,状态函数,平衡态,生成焓,燃烧焓,可逆过程等,无法一一列举典型例题:1、书2、体系内热力学能变化为零的过程有:A 等温等压下的可逆相变过程B 理想气体的绝热膨胀过程C 不同理想气体在等温等压下的混合过程D 恒容绝热体系的任何过程十二、本章重要英语单词system 系统surroundings 环境state function 状态函数equilibrium 平衡态open/closed/isolated system 开放/封闭/隔离系统work 功heat 热energy 能量expansion/non-expansion work 体积功/非体积功free expansion 自由膨胀vacuum 真空thermodynamic energy/internal energy 热力学/内能perpetual motion machine 永动机The First Law of Thermodynamics热力学第一定律heat supplied at constant volume/pressure 恒容热/恒压热adiabatic 绝热的diathermic 导热的exothermic/endothermic 放热的/吸热的isothermal 等温的isobaric 等压的heat capacity 热容heat capacity at constant volume/pressure 定容热容/定压热容enthalpy 焓condensed matter 凝聚态物质phase change 相变sublimation 升华vaporization 蒸发fusion 熔化reaction/formation/combustion enthalpy反应焓/生成焓/燃烧焓extent of reaction 反应进度Kirchhoff’s Law 基希霍夫公式reversible process 可逆过程Joule-Thomson expansion 焦耳-汤姆逊膨胀/节流膨胀isenthalpic 恒焓的。
热力学第一定律公式总结
热力学第一定律公式总结热力学第一定律公式的总结热力学第一定律是能量守恒定律,它是热力学中最基本的定律之一。
它表明能量在物理系统中的转化和传递是受到一定的限制的。
根据热力学第一定律,能量在一个封闭系统中不能被创造或者消失,只能从一种形式转化为另一种形式。
这个定律可以总结为一个简单的公式:ΔU = Q - W其中,ΔU表示系统内部能量的变化,Q表示系统吸收的热量,W 表示系统对外做功。
这个公式可以理解为系统的内部能量的变化等于系统吸收的热量减去系统对外做的功。
根据这个公式,我们可以进一步理解热力学第一定律的含义和应用。
热力学第一定律表明能量的转化和传递在系统中是受到一定限制的。
能量不能从无到有地产生,也不能消失,只能从一种形式转化为另一种形式。
这意味着能量的总量是恒定的,只是在不同的形式之间进行转换。
比如,当我们吃食物时,身体会将食物中的化学能转化为机械能和热能。
这个过程中,食物中的化学能并没有消失,而是转化为了身体的内部能量。
热力学第一定律还表明了能量的转化是通过热量和功两种方式进行的。
热量是能量的一种形式,是由温度差引起的能量传递。
当系统吸收热量时,热量会增加系统的内部能量。
而功是由力对物体的位移所做的功,是能量的另一种形式。
当系统对外做功时,系统的内部能量会减少。
热力学第一定律指出了热量和功之间的关系,通过这个关系可以计算出系统的内部能量的变化。
热力学第一定律广泛应用于各个领域。
在工程领域中,热力学第一定律被用于热机和制冷系统的分析和设计。
热力学第一定律也被用于分析化学反应中的能量变化。
在生物学中,热力学第一定律被用于研究生物体内能量转化的原理。
总之,热力学第一定律是热力学研究中不可或缺的基本定律。
热力学第一定律公式ΔU = Q - W总结了能量在物理系统中的转化和传递是受到一定限制的。
根据这个公式,能量的转化和传递遵循能量守恒的原则,能量不能被创造或者消失,只能从一种形式转化为另一种形式。
热力学第一定律的应用广泛,涉及到工程、化学、生物等多个领域。
热力学第一第二定律复习
热力学第二定律 一、重要概念 卡诺循环,热机效率,热力学第二定律,克劳修斯不等式 熵,规定熵,标准熵,标准摩尔反应熵,亥姆霍兹函数 ,吉布斯函数 二、主要公式与定义式 1. 可逆热机效率:η = -W / Q1 =(Q1+Q2)/ Q1 = 1 - T2 / T1 (T2 , T1 分别为低温,高温热源) 2.卡诺定理:任何循环的热温熵小于或等于0
(3) 对于凝聚相,状态函数通常近似认为只与温度有关, 而与压力或体积无关,即 d U≈d H= n Cp,m d T
(5) 相变过程 可逆相变:在温度T对应的饱和蒸气压下的相变,如水 在常压下的0℃ 结冰或冰溶解,100 ℃ 时的汽化或凝结等 过程。 由温度T1下的相变焓计算另一温度下的相变焓T T2 q q D Hm (T2)= D Hm (T1)+ D C dT
三、ΔS、ΔA、ΔG的计算 1.ΔS的计算(重点) 特例:恒温过程: ΔS = nRln(V2/V1) 恒容过程: ΔS =nCV,mln(T2/T1) 恒压过程: ΔS =nCp,mln(T2/T1) (2) 相变过程:可逆相变 ΔS =Δ H/T ; 非可逆相变 需设计路径计算 (3) 标准摩尔反应熵的计算 Δ rSmθ = ∑ vB Smθ (B,T) 2.Δ G的计算 (1) 平衡相变或反应达到平衡:Δ G=0 (2) 恒温过程:ΔG=Δ H-TΔS (3) 非恒温过程:Δ G=Δ H- ΔT S =Δ H -(T 2S2-T1S1) 注:题目若要计算Δ G,一般是恒温过程;若不是恒温, 题目必然会给出绝对熵。
(1) Δ S(隔离)>0,自发(不可逆); Δ S(隔离)=0,平衡(可逆)。 (2)恒T、恒p、W ’=0过程(最常用): dG<0,自发(不可逆);dG=0,平衡(可逆)。 (3) 恒T、恒V、W ’=0过程: dA<0,自发(不可逆); dA=0,平衡(可逆)。
第二章 热力学第一定律 概念及公式总结
2.10.3 化学反应的热效应:
反应物
等压 r H I 0
Qp H
H
、 QV U H
T1 、 p1 、v2 、
T1 、 p1 、 v1
H 3
由于 H 是状态函数,所以
r H1 r H2 r H3
pV 2 n RT1 或 r H rU n RT
nR
k 1 1 1 1 = W 1 V2 V1
nR T2 T 1
1
= W CV T2 T1 (适
(1)
用于理想气体) 2.8.4Carnot
P
A
Tc Th
以上四个过程构成一个可逆循环,系统又回到了始态:
U 0 、 Q W 、 Q Qh QC Qc 0 、
W W1 W2 W3 W4 = W1 W3 ( W2 与 W4 对消)= nRTh ln
v v1 nRTc ln 3 v2 v4
V1 】 V2
Q2 0 、 W2 U 2 nCv ,m dT
Th TC
过程(3) :等温可逆压缩
v U3 0 、 QC W3 、 W3 v3 pdv nRTc ln
4
V3 、 w3 v4
0 、 QC 0
过程(4) :绝热可逆压缩
W4 U 4 nCV ,m dT 、 Q4 0 、
1 1 1 1 在等温下当体积变化时 U a 、 H a pVm V V V V m ,1 m ,2 m ,1 m ,2
实际气体的
U U 和 的都不等于零, H 也不等于零 V T p T
热力学第一定律总结
热力学第一定律总结热力学第一定律,也被称为能量守恒定律,是热力学的基础原理之一。
它描述了能量守恒的原理以及能量在热力学系统中的转化。
在研究能量流动和转化过程中,热力学第一定律起着重要的作用。
下面我们将就热力学第一定律进行一些总结和探讨。
1. 能量守恒的基本原理热力学第一定律表明了能量的守恒原理,即能量既不能被创造,也不能被毁灭,只能从一种形式转化为另一种形式。
在一个孤立系统中,能量的总量是恒定的。
这意味着能量可以在不同的形式之间转化,但总能量量不变。
2. 热力学系统的能量转化热力学第一定律描述了能量在热力学系统中的转化。
在一个封闭系统中,能量可以以各种形式存在,其中包括内能、机械能、热能等。
热力学第一定律指出了能量的转化关系,即能量的增加或减少必然意味着其他形式能量的增加或减少。
3. 内能的变化和热量传递内能是热力学系统中能量的一种形式,它包括了系统的热能和势能。
根据热力学第一定律,内能的变化等于吸收的热量减去系统所做的功。
这表示内能的改变可以通过热量的传递和功的产生来实现。
例如,当一个物体吸收热量时,它的内能增加;而当一个物体做功时,它的内能减少。
4. 热力学第一定律的应用热力学第一定律在许多领域具有广泛的应用。
在工程和能源领域,热力学第一定律被用来研究热力设备(如锅炉、热交换器等)的能量转化效率。
它也被应用于研究化学反应中的能量转化,以及天体物理学中的恒星能量生成等。
热力学第一定律提供了一个基础原理,使得科学家和工程师能够更好地理解和优化能量转化过程。
5. 热力学第一定律的局限性尽管热力学第一定律在能量转化的研究中非常有用,但它并不适用于所有情况。
例如,在微观尺度的系统中,能量的转化可能会受到量子力学效应的影响,其中能量可以以离散的形式存在。
此外,在宇宙学中,热力学第一定律也不能解释整个宇宙的能量起源和宇宙膨胀的问题。
在这些情况下,需要更加深入和细致的研究来描述能量的行为和转化过程。
总结起来,热力学第一定律是热力学研究的基础之一,它描述了能量守恒的原理以及能量在热力学系统中的转化。
热力学第一定律知识点
热力学第一定律知识点热力学第一定律是热力学的基础定律之一,也被称为能量守恒定律。
它描述了能量在系统中的转化和守恒关系。
在本文中,我们将介绍热力学第一定律的基本概念、应用以及相关的几个重要知识点。
一、热力学第一定律的基本概念热力学第一定律是指,在一个封闭系统中,能量的变化等于系统对外做功加热量的和。
这个定律可以用以下的数学公式表示:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做的功。
二、热力学第一定律的应用热力学第一定律的应用非常广泛,以下是其中的几个主要方面。
1. 热力学循环热力学循环是指系统在经历一系列过程后,回到初始状态的过程。
这些过程中,系统吸收或释放热量,还可能对外做功。
根据热力学第一定律,热力学循环的总吸热量等于总放热量,总做功等于总吸热量减去总放热量。
2. 热力学过程中的能量转化热力学过程中,能量可以以不同的形式进行转化,包括内能的变化、吸收或释放的热量以及对外做的功。
热力学第一定律描述了能量在不同形式之间的转化以及转化前后的守恒关系。
3. 热力学第一定律的实验验证热力学第一定律是通过实验进行验证的。
实验中可以测量系统的内能变化、吸热量以及对外所做的功,以验证热力学第一定律的成立。
三、热力学第一定律的注意事项1. 引入准则热力学第一定律是基于能量守恒原理的,需要引入准则才能确保能量守恒成立。
例如,在计算吸热量时,需要考虑到化学反应的发生,以充分考虑系统的能量转化。
2. 内能的定义热力学第一定律中的内能指的是系统的总能量,包括系统的热能、机械能以及其他形式的能量。
在实际应用中,需要注意内能的定义和计算方法。
3. 对外所做的功热力学第一定律中的对外所做的功指的是系统对外界做的机械功。
需要注意区分系统对外界做功和外界对系统做功的情况,并进行正确的计算。
结语:热力学第一定律是热力学研究的基础,它描述了能量在系统中的转化和守恒关系。
通过理解和应用热力学第一定律,我们可以更好地理解和解释各种热力学现象,推动科学研究的发展。
《热力学第一定律》 知识清单
《热力学第一定律》知识清单一、热力学第一定律的基本概念热力学第一定律,也称为能量守恒定律,是热力学的基本定律之一。
它表明,在一个封闭系统中,能量既不会凭空产生,也不会凭空消失,只能从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而总的能量保持不变。
这个定律可以用一个简单的数学表达式来表示:ΔU = Q W 。
其中,ΔU 表示系统内能的变化,Q 表示系统吸收的热量,W 表示系统对外界所做的功。
内能是系统内部所具有的能量,包括分子的动能、分子间的势能以及分子内部的能量等。
热量是由于温度差而在系统与外界之间传递的能量。
功则是系统与外界之间通过力的作用而传递的能量。
二、热力学第一定律的历史发展热力学第一定律的发展有着漫长的历史。
在 19 世纪早期,许多科学家的工作为这一定律的形成奠定了基础。
焦耳通过一系列精心设计的实验,研究了各种形式的能量转换,如摩擦生热、电流的热效应等,为能量守恒的概念提供了坚实的实验依据。
迈尔则从哲学的角度思考了能量的本质,并提出了能量守恒的思想。
经过众多科学家的努力,热力学第一定律逐渐被确立,并成为了现代物理学的重要基石之一。
三、热力学第一定律的应用1、热机热机是将热能转化为机械能的装置,例如蒸汽机、内燃机等。
热力学第一定律在热机的研究中起着关键作用。
通过分析热机在工作过程中的能量转化和传递,可以评估热机的效率。
热机的效率定义为热机对外做的功与从高温热源吸收的热量之比。
由于在实际的热机中,总会有一部分能量以废热的形式散失到低温环境中,所以热机的效率永远小于 100%。
2、制冷机制冷机与热机相反,它是通过消耗外界的功,将热量从低温物体传递到高温物体。
在制冷机的工作过程中,同样遵循热力学第一定律。
3、化学反应在化学反应中,也涉及到能量的变化。
通过热力学第一定律,可以计算出反应过程中的能量吸收或释放。
例如,燃烧反应会释放出大量的热能,而某些吸热反应则需要从外界吸收能量才能进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5.1 准静态过程及其中所做的功
过程的发生必然伴随着状态的变化及平衡态的 破坏,如果过程进行的很快,系统将经历一系列的 非平衡状态,称为非静态过程。这种实际过程的非 平衡状态,给研究工作带来了困难:对非平衡态来 说,由于热力学参量没有确定的值,就无法再用热 力学参量来表示其状态,不便于进行准确的定量研 究。为了适应热力学研究的需要,根据物理学理想 模型的研究方法,引入“准静态过程”的概念,这 在热力学中具有重要的意义。
V1
V1
V2 V
RT lnV2
V1
§5.2 内能函数 热量
一、内能函数的微观解释
一个宏观静止的物体,从分子动理论的观点看, 是由无数的分子和原子所组成。 内能:全部粒子的能量的总和称为该物体的内能。
分子热运动的动能 Uk 内能 化学能、原子能、核能 一般热力学过程不考虑
分子间相互作用的势能 Up UUkUpU0
其中U 0 表征物体在绝对零度时的零点能。
1、分子的动能 分子的动能Ek包括所有分子的平动动能Ekt、转动
动能Ekr和振动动能Eks。由能量按自由度均分定理, 分子的每个自由度都具有相同的平均动能kT/2。
在整个过程中,系统一直处于非平衡态,直至过 程结束才达到平衡态,这样的过程称为非静态过程.
非平衡态则不能用一组确定的状态参量来表示, 所以也无法在状态图上表示出来.
例如:流体在管道中流动,流过阀门、多孔塞 等装置时遇到阻挡,在通过后,压强降低,这种过 程叫做节流过程。产生节流过程的阀门叫节流阀。 节流阀附近,管道截面迅速减小,流体经过时受到 强烈扰动,不能用确定的状态参量加以描述。这就 是非静态过程。
准静态过程就是过程无限缓慢地进行的极限, 是一种理想过程。而实际上只要过程进行的速度比 驰豫速度小就可以看成是准静态过程,要求过程进 行的足够慢,是相对于驰豫过程而言的。
例如:气体的压缩与膨胀(内燃机汽缸内的气体) 等。压强平衡速度一般为声速,即每秒几百米,而 汽缸内活塞的运动速度一般为10m/s,可以认为活 塞运动足够慢。
本章将介绍热力学的主要内容。运用宏观观点和 方法来研究在热力学过程中热现象的基本规律。
第5章 热力学第一定律
5.1 准静态过程及其中所做的功 5.2 内能函数 热量 5.3 热力学第一定律的表述 5.4 态函数焓和定压热容 5.5 热力学第一定律对理想气体的应用 5.6 焦耳-汤姆孙效应* 5.7 单相均匀系的态函数熵
注意:不同的物理量趋于平衡所需要的时间也不 一样,如压强比温度的平衡速度快。
如果外界作用引起系统状态改变所需要的时间
为t,凡是满足t >>t 这样条件的过程就可以认为
是准静态过程。
因为当恢复平衡的时间比破坏平衡的时间短得 多时,系统在每次遭受破坏以后能很快地恢复到平 衡态,所以在系统状态的变化过程中,每一时刻去 看系统时,它都处于平衡态。于是呈现一种准静态 过程。t 越大,每一状态就越接近平衡态。
元功虽然是无穷小量,但不是全微分。
“一个系统具有多少功”、“处于某一状态的系统有多少功” 毫无意义,而只能说“系统通过某一过程作了多少功”。
例: 摩尔理想气体从状态1状态2,设经历等温过
程,气体对外所作的功是多少?
解: 由理想气体状态方程
p
p RT
V
V2
V2
W PdV RT/VdV O V1
二、准静态过程中所做的功
热力学系统作功的装置——活塞
系统经历微 小准 静态过程—元过程 d W F d x F d x
dWpSdx pdV
p
F p,V
(pA,VA,TA)
S
dV
dx
dWpdV 元功表达式
准静态过程
W V2 pdV V1
(pB,VB,TB)
功的图示法:
O
结论:系统所做的功在数值上等于
4、功是过程量
沿闭合回路积分是否为零,可以区别 过程量和态函数。
p (pA,VA,TA) I
II
(pB,VB,TB)
O V1
dV V2 V
任意态函数: dU 0
d W p d V V V 1 2 ( I )p d V V V 1 2 ( I)p I d V W 1 W 2 0
为了区别全微分和无穷小量,在元功的微分符号上加横道表示
(2)系统对外界做功应该是反抗外力做功,因而功的表达式中 的压强本来应该是外界的压强,即: dWp外dV 对于准静态过程,每一状态都是平衡态,系统与外界的
压强是相等的;而对非静态过程,系统经历的都是非平衡态, 压强没有确定值,更谈不上与外界压强相等。
3、符号法则
系统膨胀,对外作功:W>0 系统压缩,外界对系统作功:W<0
第5章 热力学第一定律
如果没有外界影响,处于平衡态的 热力学系统 的状态参量将保持不变 。如果热力学系统与外界有 相互作用,比如:做功、传热等。系统的平衡性质 将遭到破坏,状态将会发生变化。当热力学系统的 状态随时间发生了变化,从一个状态转变到另一个 状态时,就说系统经历了一个过程,这个过程就叫 热力学过程,是由一系列的中间状态组成的。
由于在准静态过程中,系统所经历的每一个状态 都是平衡态,于是,热力学参量都具有完全确定的值, 可以用一组确定的状态参量来描写。
准静态过程曲线可用p−V图ຫໍສະໝຸດ p(pA,VA,TA)
描述,图上每一点表示系统的一
个平衡态,整个过程就可以用一
条平滑的过程曲线来表征 。 O
(pB,VB,TB) V
准静态过程是热力学理论中的重要过程。 为热力 学过程的研究工作提供了一个直观而方便的手段。
一、准静态过程
准静态过程——理想过程 热力学过程中,状态变化进行得非常缓慢,以
至于过程中每一中间状态都近似于平衡态。
如何界定过程进行的“快”、“慢”? 当系统受到外界作用,平衡态被破坏后,经过
一段时间,系统仍然可以建立平衡态,从平衡态被 破坏到建立下一个平衡态的过程,称为驰豫过程,
需要的时间称为驰豫时间,通常用t 来表示。
V1
dV V2 V
p−V 图上过程曲线以下的面积。
p−V 图也称为示功图
说明:
1、热力学系统作功的本质:
无规则的分子热运动与有规则的机械运动之间的能量转化
2、功的表达式只适用于准静态过程
(1)要进行积分求总功W,必须知道压强p与体积V的关系,只 有平衡态,P、V、T才具有确定的关系 ,而对非平衡态, P、V、T的函数关系不确定,无法完成积分。