化归与转化思想
转化与化归思想、分类讨论思想
一、转化与化归思想
[思想概述] 转化化归思想的基本内涵是:人们在解决数学问题时,常 常将待解决的数学问题A,通过某种转化手段,归结为另一 问题B,而问题B是相对较容易解决的或已经有固定解决模
式的问题,且通过问题B的解决可以得到原问题A的解.用
框图可直观地表示为:
[规律方法] (1)根据问题的特点转化命题,使原问题转化为与之
相关,易于解决的新问题,是我们解决数学问题的常用思 路. (2)本题把立体几何问题转化为平面几何问题,三维降为二 维,难度降低,易于解答的数学问题分解(或分割)
成若干个基础性问题,通过对基础性问题的解答来实现解决原 问题的思想策略.对问题实行分类与整合,分类标准等于增加 一个已知条件,实现了有效增设,将大问题(或综合性问题)分 解为小问题(或基础性问题),优化解题思路,降低问题难度.
分类讨论的常见类型:
(1)由数学概念引起的分类讨论:有的概念本身就是分类的,如 绝对值、直线斜率、指数函数、对数函数等.
(2)由性质、定理、公式的限制引起的分类讨论:有的定理、
公式、性质是分类给出的,在不同的条件下结论不一致,如 等比数列的前n项和公式、函数的单调性等. (3)由数学运算和字母参数变化引起分类;如偶次方根非负, 对数的底数与真数的限制,方程(不等式)的运算与根的大小比
难以入手,因此对参数θ取特殊值,进行推理求解.
(2)当问题难以入手时,可以先对特殊情况或简单情形进行 观察、分析,发现问题中特殊的数量或关系结构或部分元 素,然后推广到一般情形,并加以证明.
类型二
换元及常量与变量的转化
【例 2】 已知 f(x)为定义在实数集 R 上的奇函数,且 f(x)在[0,+ π ∞)上是增函数.当 0≤θ≤2时,是否存在这样的实数 m,使 f(cos 2θ-3)+f(4m-2mcos θ)>f(0)对所有的
转化与化归思想在中学数学中的应用
转化与化归思想在中学数学中的应用转化思想和化归思想是中学数学中非常重要的两个思想,它们在解决问题和证明定理过程中起着至关重要的作用。
本文将分别探讨转化思想和化归思想在中学数学中的应用。
一、转化思想在中学数学中的应用转化思想是指通过变换问题的形式或等效变形,使问题转化为熟悉的或易于处理的问题。
它就像是把难题中的棘手一面剥离,使问题变得简单易懂,进而更好地解决问题。
在中学数学中,转化思想主要体现在以下几个方面:1.利用等量代换简化方程式在代数运算中,我们会遇到很多组长方程式,而这些方程式中经常出现相同的项。
这时候,我们可以采用等量代换的方法,将其化简,使问题更容易解决。
例如,我们可以利用x+y=1这个式子,将x^3+y^3转化为(x+y)^3-3xy(x+y),从而简化计算过程。
2.利用等式变形证明定理在证明数学定理时,通过大量变量之间的等式变形,可以大大简化证明过程。
例如,在证明勾股定理中,我们可以把原方程式a^2+b^2=c^2转化为a^2+b^2-c^2=0,继续变形成(a+c)(a-c)+(b+c)(b-c)=0,再变形成其它等式,最终证明了定理。
3.利用变量的代数变换简化问题有些问题需要建立函数关系式,但是常见的函数关系式过于复杂,不容易解决。
这时候,我们可以尝试采用代数变换的方法,将其变成简单的函数关系式。
例如,在解决极值问题时,我们可以利用三角函数的性质进行变量的代数变换,将复杂的函数关系式变得简单清晰。
二、化归思想在中学数学中的应用化归思想是指将问题按一定规律,通过变形而归约成一个与原问题相关的子问题,然后逐步化简子问题,最终解决原问题。
通过化归,我们可以更容易地理解问题,从而更好地解决问题。
在中学数学中,化归思想主要体现在以下几个方面:1.将高阶次问题化归为低阶次问题有些问题是高阶次或高维的,很难直接解决。
这时候,我们可以采用化归的方法,将其化归为低阶次问题。
例如,在解决n阶递推数列时,我们可以将n阶递推数列化归为n-1阶递推数列,从而简化问题的处理。
二轮复习-----转化与化归思想---课件(27张)(全国通用)
x≤-1或x≥0
a∈[-1,1]恒成立,则x的取值范围为
.
解析 ∵f(x)在R上是增函数,
∴由f(1-ax-x2)≤f(2-a),
得1-ax-x2≤2-a,a∈[-1,1].
∴a(x-1)+x2+1≥0对a∈[-1,1]恒成立.
用、变形用)、角度的转化、函数的转化、通过正、余弦定理实现边
角关系的相互转化.
(2)换元法是将一个复杂的或陌生的函数、方程、不等式转化为简
单的或熟悉的函数、方程、不等式的一种重要的方法.
(3)在解决平面向量与三角函数、平面几何、解析几何等知识的交
汇题目时,常将平面向量语言与三角函数、平面几何、解析几何语言
解析 设 f(p)=(x-1)p+x2-4x+3,则当 x=1 时,f(p)=0.所以 x≠1.
(0) > 0,
f(p)在 0≤p≤4 上恒正,等价于
(4) > 0,
(-3)(-1) > 0,
即 2
解得 x>3 或 x<-1.
-1 > 0,
第一部分
四、转化与化归思想
思想方法•聚焦诠释
命题热点一
∴-4<2C-4 <
2].
高频考点•探究突破
预测演练•巩固提升
-10-
第一部分
四、转化与化归思想
思想方法•聚焦诠释
命题热点一
命题热点二
命题热点三
高频考点•探究突破
预测演练•巩固提升
-11-
命题热点四
题后反思在应用化归与转化的思想方法去解决数学问题时,没有
转化与化归思想
转化与化归思想转化与化归思想就是把那些待解决或难解决的问题,通过某种手段,使之转化为一类已解决或易解决的问题,最终使原问题获解.使用化归思想的原则是:化难为易、化生为熟、化繁为简、化未知为已知.转化与化归思想高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,它几乎可以渗透到所有的数学内容和解题过程中. 类型一 直接转化【典例1】 已知在数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.【答题模板】【解析】 ∵a n +1=2a n a n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12.又a 1=1,则1a 1=1,∴{1a n}是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12,∴a n =2n +1(n ∈N *).【对点练1】 求下列函数的值域:(1)y =sin x +cos x ;(2)y =sin 2x -cos x +1; (3)y =cos x2cos x +1;(4)y =1+sin x 3+cos x.【解析】 (1)∵y =sin x +cos x =2sin(x +π4),∴函数的值域为[-2,2]. (2)∵y =sin 2x -cos x +1=2-cos 2x -cos x =-(cos x +12)2+94,∴函数的值域为[0,94]. (3)由y =cos x 2cos x +1,得cos x =y1-2y .∵|cos x |≤1,∴解不等式|y 1-2y |≤1,得y ≤13或y ≥1.∴函数的值域为(-∞,13]∪[1,+∞).(4)由y =1+sin x3+cos x ,得sin x -y cos x =3y -1,即1+y 2·sin(x -φ)=3y -1.∴sin(x -φ)=3y -11+y 2.∵|sin(x -φ)|≤1,∴|3y -11+y 2|≤1.平方化简得y ·(4y -3)≤0.∴0≤y ≤34,即函数值域为[0,34].类型二 换元法【典例2】 求函数y =(4-3sin x )(4-3cos x )的最小值. 【答题模板】【解析】 y =16-12(sin x +cos x )+9sin x cos x ,令t =sin x +cos x ,则t ∈[-2,2]且sin x cos x =t 2-12.∴y =16-12t +9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72.【对点练2】 (2015·衡水调研)已知x +y =-1,且x ,y 都是负数,求xy +1xy 的最值. 【解析】 设x =-sin 2α(sin 2α≠0),y =-cos 2α(cos 2α≠0),则xy +1xy =sin 2αcos 2α+1sin 2αcos 2α=14sin 22α+4sin 22α=14(sin 22α+16sin 22α). ∵sin 22α+16sin 22α在sin 22α∈(0,1]上是减函数,∴sin 22α=1时,取得最小值,∴xy +1xy 的最小值为14(1+161)=174.【典例3】 若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是________. 【答题模板】 可采用换元法,令t =3x ,将问题转化为关于t 的方程有正解进行解决. 【解析】 设t =3x ,则原命题等价于关于t 的方程 t 2+(4+a )t +4=0有正解,分离变量a 得a +4=-(t +4t ),∵t >0,∴-(t +4t )≤-4.∴a ≤-8,即实数a 的取值范围是(-∞,-8]. 【对点练3】 设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 【解析】 令2x +y =t ,则y =t -2x .则4x 2+y 2+xy =1变形为6x 2-3tx +t 2-1=0. Δ=9t 2-4·6·(t 2-1)≥0,t 2≤85.∴-2105≤t ≤2105,即2x +y 的最大值是2105.类型三 数形结合法【典例4】 求函数f (x )=2-sin x2+cos x 的值域.【解析】 函数f (x )=2-sin x2+cos x ,可看作点(2,2),(-cos x ,sin x )两点连线的斜率.点(-cos x ,sin x )的轨迹为x 2+y 2=1.函数值域即为(2,2)与单位圆x 2+y 2=1上点连线斜率的范围,由图可知,过(2,2)且与单位圆相切的直线斜率存在,不妨设为k .∴切线方程为y -2=k (x -2),即kx -y -2k +2=0.∴满足|2-2k |1+k 2=1,解之得k =4±73.∴函数f (x )的值域为[4-73,4+73]. 【对点练4】 设f (x )=1+x 2,求证:对于任意实数a ,b ,a ≠b ,都有|f (a )-f (b )|<|a -b |.【解析】 设A (x 1,1),B (x 2,1),则|OA |=1+x 21,|OB |=1+x 22,|AB |=|x 1-x 2|.在△AOB 中,||OA |-|OB ||<|AB |,即有|1+x 21-1+x 22|<|x 1-x 2|,所以|f (x 1)-f (x 2)|<|x 1-x 2|,即|f (a )-f (b )|<|a -b |. 类型四 构造法【典例5】 在三棱锥P -ABC 中,PA =BC =234,PB =AC =10,PC =AB =241,则三棱锥P -ABC 的体积为________.【答题模板】 用常规方法利用三棱锥的体积公式求解体积时,无法求出三棱锥的高.但若换个角度来思考,注意到三棱锥的三对棱两两相等,我们可以构造一个特定的长方体,将问题转化为长方体中的某个问题.【解析】 如图所示,把三棱锥P -ABC 补成一个长方形AEBG -FPDC ,易知三棱锥P -ABC 的各棱分别是长方体的面对角线,不妨令PE =x ,EB =y ,EA =z ,则由已知有:⎩⎪⎨⎪⎧ x 2+y 2=100,x 2+z 2=136,y 2+z 2=164,解得⎩⎪⎨⎪⎧x =6,y =8,z =10.所以V P -ABC =V AEBG -FPDC -V P -AEB -V C -ABG -V B -PDC -V A -FPC =V AEBG -FPDC -4V P -AEB =6×8×10-4×16×6×8×10=160.故所求三棱锥P -ABC 的体积为160.【对点练5】 已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【解析】先在一个正方体中找一个满足条件的正三棱锥,再利用正方体的性质解题.如图,满足题意的正三棱锥P -ABC 可以是正方体的一部分,其外接球的直径是正方体的体对角线,且面ABC 与体对角线的交点是体对角线的一个三等分点,所以球心到平面ABC 的距离等于体对角线长的16,故球心到截面ABC 的距离为16×23=33. 类型七 参数法【典例8】 已知直线l 过点A (2,3)且与x 轴,y 轴的正半轴分别交于M ,N 两点,则当|AM |·|AN |最小时,直线l 的方程为________. 【解析】 设∠AMO 为θ,则θ∈(0,π2), ∴|AM |=3sin θ,|AN |=2cos θ. ∴|AM |·|AN |=6sin θ·cos θ=12sin2θ≥12. 当且仅当sin2θ=1,即θ=π4时取“=”号.此时k l =-1,∴l 的方程为x +y -5=0. 【对点练8】 (2015·北京东城联考)已知点P (3,4)与圆C :(x -2)2+y 2=4,A ,B 是圆C 上两个动点,且|AB |=23,则OP →·(OA →+OB →)(O 为坐标原点)的取值范围是( ) A .[3,9] B .[1,11] C .[6,18] D .[2,22]【解析】 设AB 的中点为D ,则OA →+OB →=2OD →,因为|AB |=23,所以|CD |=1,故点D在圆(x -2)2+y 2=1上,所以点D 的坐标为(2+cos α,sin α),故OP →·(OA →+OB →)=2OP →·OD →=2(6+3cos α+4sin α)=2[6+5sin(α+φ)],而2≤2[6+5sin(α+φ)]≤22,则OP →·(OA →+OB →)的取值范围是[2,22].。
转换与化归思想
浅谈转换与化归思想转化思想就是数学中的一种基本却很重要的思想。
深究起来,转化两字中包含着截然不同的两种思想,即转换与化归。
这两者其实表达了不同的思想方法,可以说就是思维方式与操作方法的区别。
一、 转换思想(1)转换思想的内涵转换思想就是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。
要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。
(2)转换思想在同一学科中的应用转换思想可以就是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。
象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。
比如,函数、方程、不等式就是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其她模块的各类问题。
不等式恒成立问题可以转换到用函数图象解决,或者就是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。
再比如,数列问题用函数观点来解释,那更就是我们数学课堂中一再强调的问题了。
瞧这样一个问题:已知:11122=-+-a b b a ,求证:122=+b a 。
[分析] 这就是一个纯粹的代数证明问题,条件的变形就是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点令人望而生畏。
再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、122=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。
[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα化简得1cos cos sin sin =+αααα所以0sin ≥=αa ,0cos ≥=αb则 1cos sin 2222=+=+ααb a[小结] 本题的解决了就是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设与结论中都没有出现三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还就是比较棘手的。
数学思想之转化与化归总结
数学思想之转化与化归总结在数学中,转化与化归是一种常用的思想方法。
通过转化问题的表达形式或者化简问题的复杂度,我们可以更容易地理解和解决数学问题。
转化与化归涉及到问题的等价转化、代数化简、几何转化、枚举化归等多个方面。
下面将从这几个方面对转化与化归进行总结。
首先,等价转化是一种常见的数学思想之一。
它意味着将一个问题转化为与之等价的另一个问题,以求得更容易解决的问题。
等价转化包括将问题的形式转化为更简单或者更具有可操作性的形式,或者将问题与已知的问题进行对应。
一个经典的例子是将一个复杂的代数方程转化为一个简单的一次方程或者二次方程,从而解决原方程。
在某些情况下,等价转化也可以是不可逆的,这意味着我们只能从简单的问题得到复杂的问题,但是这种转化仍然能够帮助我们更好地理解问题的本质和特点。
其次,代数化简是转化与化归的另一个重要方面。
代数化简是指通过运用代数运算的性质和规则,将一个复杂的代数表达式或者方程化简为更简单的形式。
代数化简的方法包括合并同类项、因式分解、配方法、三角函数的恒等变换等。
代数化简不仅可以减少问题的复杂度,还可以揭示问题的规律和特点,从而更好地解决数学问题。
几何转化是将几何问题转化为代数问题或者相反,通过几何图形的变换和变形,我们可以使得问题的解决更加直观和简单。
几何转化常常涉及到使用待定系数法、相似三角形的性质、勾股定理等几何知识,从而求得问题的解。
几何转化不仅能够帮助我们更好地理解和解决几何问题,还能够提高我们的思维能力和几何直观。
最后,枚举化归是一种将一个复杂的问题化归为若干个简单的情况,通过对每个简单情况的分析和解决,来解决原问题的方法。
枚举化归可以通过列举具体的例子,或者考虑特殊情况来进行。
枚举化归的优点是能够将一个复杂的问题简化为多个简单的情况,从而更好地理解和解决问题。
然而,枚举化归的缺点是可能需要计算大量的情况,耗费时间和精力。
综上所述,转化与化归是数学中一种重要的思想方法。
专题四转化与化归思想
则a≥ x ,x∈(0, ]恒成立.
返回目录
模拟训练
【点评】 本题主要考查转化思想和分类整合思想,分类讨论实 质上也是一种转化思想. 解法1 采用的是分类讨论的方法, 将比较复杂问题通过分类转化 为一些较简单的问题进行求解, 而每一分类中又将恒成立的问题又转 化为最值问题.
1 (0,], 变为不等式一边为参数 , 另一边为含有x的代数式,a只要大 2 1 1 于或等于y= x ,x∈(0, ]的最大值就满足上式要求. x 2
消去x2得2 x12
2 1 x1 2 6m 1 0 , m m
返回目录
模拟训练
2 1 ∴x1∈R,∴Δ= 8 2 6m 1>0, m m 1 ∴(2m+1)(6m2-2m+1)<0,∴m< . 2 1 即当m< 时,抛物线上存在两点关于直线y=m(x-3)对称. 2
x12 满足 2 x1 x 1
2 x2 x1 x 2 m 3 , 2 2 2 x2 1 . x2 m
2 x12 x 2 m( x1 x 2 6), ∴ 1 x x . 1 2 m
行转化, 使问题逐次达到规范化、模式化,直至问题的解决.
返回目录
模拟训练
1. 函数f (x)=cos2x-2 3 sinxcosx的最小正周期是__________.
π 【解析】 ∵f(x) =cos2x-2 3 sinxcosx=cos2x- 3 sin2x=-2sin 2x ,
祝您高考成功!
作文成绩
语文作文课上, 老师布置了一篇500字的作文。
下课铃响了, 一学生发现自己只写了250字, 灵机一动,在
第二讲转化与化归思想
(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问 题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂 的 函数、方程、不等式问题转化为易于解决的基本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通 过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目 的. (5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问 题,结论适合原问题.
方法二:(看成不等式的解集)∵a,b为正数,
∴a+b≥2 ab,又ab=a+b+3,
∴ab≥2 ab+3.
即( ab)2-2 ab-3≥0,
解得 ab≥3或 ab≤-1(舍去),∴ab≥9. ∴ab的取值范围是[9,+∞). 方法三:若设ab=t,则a+b=t-3, ∴a,b可看成方程x2-(t-3)x+t=0的两个正根.
则当且仅当gg-1=1= x2+x2-x≥x+0,2≥0, 解之,得x≥0或x≤-1. 即实数x的取值范围是x≤-1或x≥0. 拓展提升——开阔思路 提炼方法 通过以上两种方法的比较可以看出,若按常规方法求解,问题 较麻烦;若将变量与参数变更关系,a为主元,转换思考的角度,使解 答变得容易.这种处理问题的思想即为转化与化归的思想.
转化与化归思想使用的根本目的,是为了能更加有效地解答我们所遇到 的问题.转化与化归,不是盲目地转化给出的条件,无论是哪种转化, 都是为了使问题更好地获解,以下几条原则我们在解题中常要遵循,可 对使用这一思想方法起到提示的作用. (1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知 的知识、经验来解决问题.
4、转化与化归思想
4 转化与化归思想主线—基础—方法—应用—例题—注意—总结知识清单:知识1 转化与化归思想概述知识2 转化与化归的原则知识1 转化与化归思想概述所谓化归思想就是通过转化,使所要解决的问题由难变易或变为已经解决的问题,以有利于解决的一种数学思想。
化归思想常常以变换题目的结构形状、变更问题、从反面探究结论等方式出现,前面所介绍的函数思想、方程思想、数形结合、分类讨论等都是重要的化归方法。
知识2 转化与化归的原则(1)目标简化原则将复杂的问题向简单的问题转化。
(2)和谐统一性原则即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当。
(3)具体化原则即化归方向应由抽象到具体。
(4)低层次原则即将高维空间问题化归成低维空间问题。
(5)正难则反原则即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
方法清单:方法1 直接转化法方法2 换元转化法方法3 数形结合法转化方法4 构造法转化方法5 坐标法转化方法6 补集法转化方法7 空间与平面间的转化方法8 几何条件转化为向量关系的方法方法9 变更主元的转化法方法10一般式转化为标准式方法1 直接转化法把原问题转化为基本定理、基本公式或基本图形问题。
例1函数y=1+a x(0<a<1)的反函数的图象大致是()方法2 换元转化法运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题。
例2 设20≤≤x ,求函数523421+⋅-=-x x y 的最大值和最小值。
方法3 数形结合法转化研究原问题中数量关系(解析式)与空间形式(图形)的关系,通过互相变化获得转化途径。
例3 已知1,0,0=+≥≥b a b a ,求证225)2()2(22≥+++b a 方法4 构造法转化 “构造”一个合适的数学模型,把问题变为易于解决的问题。
2023年新高考数学大一轮复习专题八思想方法第4讲转化与化归思想(含答案)
新高考数学大一轮复习专题:第4讲 转化与化归思想 思想概述 转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.方法一 特殊与一般的转化一般问题特殊化,使问题处理变得直接、简单,也可以通过一般问题的特殊情形找到一般思路;特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果;对于某些选择题、填空题,可以把题中变化的量用特殊值代替,得到问题答案.例1 (1)(2020·青岛模拟)“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆,若椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12,则椭圆C 的蒙日圆的方程为( ) A .x 2+y 2=9B .x 2+y 2=7 C .x 2+y 2=5D .x 2+y 2=4 答案 B 解析 因为椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12, 所以1a +1=12,解得a =3, 所以椭圆C 的方程为x 24+y 23=1, 所以椭圆的上顶点A (0,3),右顶点B (2,0),所以经过A ,B 两点的切线方程分别为y =3,x =2,所以两条切线的交点坐标为(2,3),又过A ,B 的切线互相垂直,由题意知交点必在一个与椭圆C 同心的圆上,可得圆的半径r =22+32=7,所以椭圆C 的蒙日圆方程为x 2+y 2=7.(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C 1+cos A cos C等于( )A.45B.15C.35D.25 思路分析 求cos A +cos C 1+cos A cos C→考虑正三角形ABC 的情况 答案 A 解析 令a =b =c ,则△ABC 为等边三角形,且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C=12+121+12×12=45. 一般问题特殊化,使问题处理变得直接、简单,特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.方法二 命题的等价转化将题目已知条件或结论进行转化,使深奥的问题浅显化、繁杂的问题简单化,让题目得以解决.一般包括数与形的转化、正与反的转化、常量与变量的转化、图形形体及位置的转化.例2 (1)由命题“存在x 0∈R ,使01ex --m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的值是( )A .(-∞,1)B .(-∞,2)C .1D .2 思路分析 命题:存在x 0∈R ,使01ex --m ≤0是假命题→任意x ∈R ,e |x -1|-m >0是真命题→m <e |x -1|恒成立→求m 的范围→求a答案 C解析 由命题“存在x 0∈R ,使01ex --m ≤0”是假命题,可知它的否定形式“任意x ∈R ,e |x -1|-m >0”是真命题,可得m 的取值范围是(-∞,1),而(-∞,a )与(-∞,1)为同一区间,故a =1.(2)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是________.思路分析 g x 在t ,3上总不为单调函数→先看g x 在t ,3上单调的条件→补集法求m 的取值范围答案 ⎝ ⎛⎭⎪⎫-373,-5 解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立, 所以m +4≥2t-3t 恒成立,则m +4≥-1, 即m ≥-5;由②得m +4≤2x-3x 在x ∈(t,3)上恒成立, 则m +4≤23-9,即m ≤-373. 所以使函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5. 根据命题的等价性对题目条件进行明晰化是解题常见思路;对复杂问题可采用正难则反策略,也称为“补集法”;含两个变量的问题可以变换主元.方法三 函数、方程、不等式之间的转化函数与方程、不等式紧密联系,通过研究函数y =f (x )的图象性质可以确定方程f (x )=0,不等式f (x )>0和f (x )<0的解集.例3 (2020·全国Ⅱ)若2x -2y <3-x -3-y ,则( )A .ln(y -x +1)>0B .ln(y -x +1)<0C .ln|x -y |>0D .ln|x -y |<0 答案 A解析 ∵2x -2y <3-x -3-y ,∴2x -3-x <2y -3-y. ∵y =2x -3-x =2x -⎝ ⎛⎭⎪⎫13x 在R 上单调递增, ∴x <y ,∴y -x +1>1,∴ln(y -x +1)>ln1=0.例4 已知函数f (x )=eln x ,g (x )=1ef (x )-(x +1).(e =2.718……) (1)求函数g (x )的极大值;(2)求证:1+12+13+ (1)>ln(n +1)(n ∈N *). 思路分析 g x 的极值→ln x <x -1→赋值叠加证明结论(1)解 ∵g (x )=1e f (x )-(x +1)=ln x -(x +1), ∴g ′(x )=1x-1(x >0). 令g ′(x )>0,解得0<x <1;令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1).取t =1n(n ∈N *)时, 则1n >ln ⎝ ⎛⎭⎪⎫1+1n =ln ⎝ ⎛⎭⎪⎫n +1n , ∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝ ⎛⎭⎪⎫n +1n , ∴叠加得1+12+13+…+1n >ln ⎝ ⎛⎭⎪⎫2×32×43×…×n +1n =ln(n +1).即1+12+13+ (1)>ln(n +1)(n ∈N *). 借助函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值值域问题,从而求出参变量的范围.。
化归与转化思想在高考数学解题中的运用
GUAN GDONG JIAO YU GAO ZHONG2021年第2化归与转化思想在高考数学解题中的运用■甘肃省秦安县第二中学罗文军yxo化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图像、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法.1.化归与转化的思想方法:解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的.2.化归与转化应遵循的基本原则:(1)熟悉化原则;(2)简单化原则;(3)和谐化原则;(4)直观化原则;(5)正难则反原则3.化归与转化的途径:(1)从问题的反面思考;(2)局部向整体的转化;(3)未知向已知转化;(4)固定向重组的转化;(5)抽象向具体转化;(6)个别向一般的转化;(7)数向形的转化;(8)定量向定性的转化;(9)主元向辅元的转化.以下结合一些经典试题,谈谈化归与转化思想在高三解题中的运用.题型一:化归与转化思想简单化原则的体现化归与转化思想简单化原则在解题中的体现主要有:(1)将比较代数式的大小的问题,运用同构法,通过构造函数,化归为利用函数的单调性根据自变量的大小比较函数值的大小或者根据函数值的大小比较自变量的大小;(2)将概率与统计问题化归为集合间的基本关系与基本运算问题.例1.若2a +log 2a =4b +2log 4b ,则()A.a >2b B.a <2b C.a >b 2 D.a <b 2【解析】由指数幂的运算性质和对数的运算性质可得,2a +log 2a =4b +2log 4b =22b +log 2b ,又因为22b +log 2b <22b +log 22b =22b +1+log 2b ,所以2a +log 2a <22b +log 22b .令f(x)=2x +log 2x,由指数函数和对数函数性质以及函数单调性的性质可得f(x)在(0,+∞)上单调递增,由f(a )<f(2a ),可得a <2b .【评析】本题考查了指数幂和对数的运算,函数的单调性的性质,构造函数后,把问题化归与转化为根据函数单调性,由函数值的大小比较自变量的大小,体现了化归与转化思想的简单化原则.例2.设命题p ∶4x-3≤1,命题q ∶x 2-(2a+1)x +a (a +1)≤0.若劭p 是劭q 的必要不充分条件,则实数a 的取值范围是__________.【解析】由4x-3≤1,得12≤x ≤1,记A ={x │12≤x ≤1};由x 2-(2a+1)x+a (a+1)≤0,可得a ≤x ≤a +1,记B ={x │a ≤x ≤a +1}.因为劭p 是劭q 的必要不充分条件,所以q 是p 的必要不充分条件,所以p 是q 的充分不必要条件,所以A 芴B ,所以a ≤12,a+1≥11,解得0≤a ≤12,所以实数a 的取值范围是[0,12].【评注】本题的解答中,先把两个命题中的不等式的解集分别用集合A 和集合B 表示,再由劭p 是劭q 是的必要不充分条件转化为p 是q 的充分不必要条件,再转化为集合A 为集合B 的真子集,解得a 的范围.题型二:化归与转化思想直观化原则的体现化归与转化思想直观化原则在解题中的体现主要有:(1)画出函数图像后,利用函数图像研究函数的性质,进而直观的解决与函数有关的问题;(2)立体几何问题中,将立体问题平面化,画出轴截面或者中截面,利用平面几何问题破解题目.例3.设a ,b ∈R ,则|“a >b ”是“a a >b b ”的()A.充要不必要条件B.必要不充分条件C.充要条件D.既不充要也不必要条件【解析】构造函数f(x)=x x =x2,x≥0-x 2,x<1函数图像如图1,由图像可知f(x)=x x 在R 上单调递增.当a >b 时,f(a )>f(b ),即a a >b b ,a >b 圯a a >b b .当f(a )>f(b ),即a a >b b 时,a >b ,a a >b b 圯a >b ,所以a >b 圳a a >b b ,“a >b ”是“a a >b b ”的充要条件,故选C.【评注】本题是一道比较复杂的充分必要条件问题,通过观察题目,通过类比和联想,运用化归与转化思想,构造函数f(x)=x x 后,画出这个函数的图像,运用图像法判断这个函数在其定义域R 上为单调递增函数,把a 和b 看成这个函数的两个自变量,a a 和b b 分别看成这个函数的函数值f(a )29数学有数和f(b),由增函数的性质可以得出,a>b圳a a>b b,所以a>b是a a>b b的充分必要条件,体现了化归与转化思想的简单化和直观化原则.例4.已知某个机械零件是由两个有公共底面的圆锥组成的,且这两个圆锥有公共点的母线互相垂直,把这个机械零件打磨成球形,该球的半径最大为1,设这两个圆锥的高分别为h1,h2,则h1+h2的最小值为________.【答案】22姨.【解析】由题意可知,打磨后所得半径最大的球是由这两个圆锥构成的组合体的内切球,内切球的半径R=1,如图为这个组合体的轴截面示意图,圆O为内切球的轴截面,E,F,G,H分别为切点,连接OA,OB,OC,OD,OE,OF,OG,OH,由题意可知AB⊥BC,AD⊥DC,AC=h1+h2,R=OE=OF=OG=OH=1,则S四边形ABCD=S△AOB+S△BOC+S△COD+S△AOD,即AB×BC=12R×AB+12R×BC+12R×CD+12R×AD=12R(2AB+2BC)=R(AB+BC),所以AB×BC=AB+BC.由基本不等式可得AB×BC=AB+BC≥2AB×BC姨,则AB×BC≥4,当且仅当AB=BC时等号成立.所以(h1+h2)2=AC2=AB2+BC2≥2AB×BC≥8,当且仅当AB=BC时等号成立,故h1+h2的最小值为22姨.【评注】本题的解答运用了化归与转化的思想,通过研究组合体和其内切球的轴截面,把空间立体几何问题化归为平面几何问题,做到了把问题直观化的原则.题型三:化归与转化思想熟悉化原则的体现化归与转化思想熟悉化原则在解题中的体现主要有:(1)不等式题目中,把含一个参数的不等式恒成立问题,通过分离变量,化归为求函数在给定区间上的最值问题;(2)立体几何题目中,利用长方体或者正方体模型,把一些三棱锥、四棱锥和三棱柱的外接球问题化归为熟悉的长方体或者正方体的外接球问题.例5.若对任意的x∈(0,+∞),ax-ln(2x)≥1恒成立,则实数a的最小值是_______【解析】由已知可得,对任意的x∈(0,+∞),a≥ln(2x)+1x恒成立,令g(x)=ln(2x)+1x,g′(x)=1x·x-ln(2x)x2=1-ln(2x)x2,令g′(x)=0,则1-ln(2x)=0,则x=e2,当0<x<e2时,g′(x)>0,g(x)单调递增;当x>e2时,g′(x)<0,g(x)单调递减,所以当x=e2时,g(x)取得最大值g(x)max=g(e2)=ln e+1e2=4e,所以a≥4e,所以a的最小值为4e.【评注】本题的解答运用了分离变量法,分离变量后,构造函数后,把a≥g(x)在(0,+∞)上恒成立等价转化为a≥[g(x)]max(x∈(0,+∞)),转化为求函数g(x)在(0,+∞)上的最大值问题,g(x)的最大值即为a的最小值,本题体现了化归与转化思想的熟悉化原则.例6.设数列{a n}的前n项为S n,a1=1,当n≥2时,a n=2a n S n-2S2n.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1姨对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.解:(1)因为当n≥2时,a n=2a n S n-2S2n,所以a n=2S2n2S n-1,n≥2,所以(S n-S n-1)(2S n-1)=2S2n,所以S n-S n-1=-2S n S n-1,所以1S n-1S n-1=2,n≥2,所以数列{1S n}是以1S1=1为首项,以2为公差的等差数列,所以1S n=1+2(n-1)=2n-1,所以S n=12n-1,所以,当n≥2时,a n=S n-S n-1=12n-1-12n-3=-2(2n-1)(2n-3),因为a1=S1=1,所以a n=1,n=1-2(2n-1)(2n-3).n≥≥2(2)设f(n)=(1+S1)(1+S2)…(1+S n)2n+1姨,则f(n+1)f(n)=2n+22n+1姨2n+3姨=4n2+8n+44n2+8n+3姨>1,所以f(n)在n∈N鄢上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,因为f(n)min=f(1)=23姨3,所以0<k≤23姨3.【评注】第(1)问运用了数列的前n项和S n与通项a n之间的关系a n=S n-S n-1(n≥2),把a n转化为S n-S n-1,再合并同类项后运用取倒数法,再根据等差数列的定义得出数列{1S n}的通项公式,再得出数列{a n}的通项公式;第(2)问分离变量后构造函数f(n),用作商法判断f(n)的单调性,把不等式f(n)≥k在n∈N鄢上恒成立等价转化为f(n)min≥k(n∈N鄢),两问都运用到了化归与转化思想.AEBFHDGOC302021年第2GUAN GDONG JIAO YU GAO ZHONG2021年第2题型四:化归与转化思想和谐化原则的体现化归与转化思想和谐化原则在解题中的体现主要有:(1)解三角形问题中利用正弦定理实现边角的互化;(2)在三角函数问题中,将形如y=a sin x+b cos x 的函数问题利用辅助角公式化归为形如y=A sin (棕x+渍)的函数问题;(3)解析几何中,将两直线垂直化归为斜率乘积为-1或者方向向量的数量积为0;(4)将形如滋=y -b x -a形式的最值问题,转化为动直线斜率的最值问题.例7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b -c =a ·cos C -c ·cos A .(1)求角A ;(2)若a =3,求b +2c 的最大值.【解析】(1)因为b -c =a ·cos C -c ·cos A ,由正弦定理可得,sin B -sin C =sin A cos C -sin C cos A ,所以sin B -sin C =sin (A -C )所以sin (A +C )-sin C =sin (A -C ),所以sin A cos C +cos A sin C -sin C =sin A cos C -cos A sin C ,所以cos A =12,因为0<A <仔,所以A =仔3.(2)由(1)可得,C =2仔3-B ,由正弦定理得,a sin A =b sin B =c sin C=2R ,所以3sin 仔3=b sin B =c sin (2仔3-B ),所以b =23姨sin B ,c =23姨sin (2仔3-B ),所以b +2c =23姨sin B +43姨sin (2仔3-B )=23姨(2sin B +3姨cos B )=221姨sin (B +渍),其中tan 渍=3姨2,渍∈(0,仔2),由B ∈(0,2仔3),存在B 使得B +渍=仔2,所以sin (B +渍)的最大值为1,所以b+2c 的最大值为221姨.【评注】第(1)问运用正弦定理实现边转化为角,再逆用两角差的正弦公式,运用内角和定理以及诱导公式,再运用两角和的正弦公式和两角差的正弦公式,得出cos A 的值,得出角A 的值;第(2)问运用了正弦定理将关于边的最值问题化为角的最值问题,运用三角形内角和定理以及诱导公式,再运用辅助角公式,化为三角函数在给定范围上的最值问题;两问都运用了化归与转化思想,体现了和谐化原则.例8.已知函数f (x)=x2x-1,则f (12019)+f (22019)+f (32019)+…+f (20182019)的值为_____.【解析】由于直接计算有困难,先探求一般的规律,因为f (x)=x2x-1,所以f (1-x)=1-x2(1-x)-1=1-x1-2x=x-12x-1,所以f (x)+f (1-x)=1,倒叙相加可得f (12019)+f (22019)+f (32019)+…+f (20182019)=1009.【评注】本题的解答中体现了特殊问题转化为一般化,运用了化归与转化思想,先通过探究在宏观上把握问题的一般规律,再将特殊问题破解.题型五:化归与转化思想的正难则反原则在解题中的体现化归与转化思想的正难则反原则在高中数学解题中的体现主要有:(1)间接证明方法中的反证法在解题中的运用;(2)概率问题中对立事件和互斥事件的概率公式的运用.例9.等差数列{a n }的前n 项和为S n ,a 1=1+2姨,S 3=9+32姨.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N 鄢),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解析】(1)设公差为d ,由已知得a1=2姨+1,3a1+3d =9+32姨姨,所以d =2,故a n =2n -1+2姨,S n =n (n +2姨).(2)证明:由(1)得b n =S n n=n +2姨.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2姨)2=(p +2姨)(r +2姨),所以(q 2-pr )+(2q -p-r )2姨=0.因为p ,q ,r ∈N 鄢,所以q 2-pr =0,2q-p-r =0姨,所以(p+r 2)2=pr ,(p-r )2=0,所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.【评注】本题的解答的第(2)问中运用了反证法,先反设假定要证的结论不成立,而设出结论的反面成立,将这个反设作为条件,运用等比数列的定义和通项公式,通过推理,得出p =r 与已知条件相矛盾,所以反设错误,所以要证明的结论成立,反证法归属于间接证明方法,第(2)问运用了化归与转化的思想.例10.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B 发生的概率为____.【答案】23.【解析】掷一个骰子的试验有6种可能结果,依题意P (A )=26=13,P (B )=46=23,所以P (B )=1-P (B )=1-23=13,显然A 与B 互斥,从而P (A+B )=P (A )+P (B )=13+13=23.【评注】先由古典概型概率公式求出事件A 和事件B 的概率,再由对立事件概率公式求出事件B 的对立事件B 的概率,再由互斥事件概率公式,把事件A+B 的概率化归为求P (A )和P (B )的和,运用了化归与转化思想.责任编辑徐国坚31。
转化与化归思想
转化与化归思想转化与化归的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想。
等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法。
转化与化归的基本类型:(1)正与反、一般与特殊的转化,即正难则反、特殊化原则。
(2)常量与变量的转化,即在处理多元问题时,选取其中的常量(或参数)当“主元”,其它的变量看作常量。
(3)数与形的转化,即利用对数量关系的讨论来研究图形性质,也可利用图形直观提供思路,直接的反应函数或方程中变量之间的关系。
(4)数学各分支之间的转化,如利用向量法解立体几何问题,用解析几何方法处理平面几何、代数、三角问题等。
(5)相等与不等之间的转化。
(6)实际问题与数学模型的转化。
[例1]对任意函数f(x),x∈d,可按图示构造一个数列发生器,其工作原理如下:①输入数据x0∈d,经数列发生器输出x1=f(x0);②若x1 d,则数列发生器结束工作;若x1∈d,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去。
现定义f(x)=(1)若输入x0= ,则由数列发生器产生数列{xn},请写出{xn}的所有项;(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值;(3)若输入x0时,产生的无穷数列{xn},满足对任意正整数n均有xn4,x3=f(x2)x1且1xn(n∈n*)综上所述,x1∈(1,2)由x1=f(x0),得x0∈(1,2)。
[例2]设动直线x=m与函数f(x)=x3,g(x)=lnx的图像分别交于点m,n,则mn的最小值为()a. (1+ln3)b. ln3c. (1-ln3)d.ln3-1解析:如图,mn=x3-lnx,令h(x)=x3-lnx,则h(x)=3x3- = ,令h(x)=0,解得x= ,当0 时,h(x)>0,h(x)单调递增;所以当x= 时,h(x)取最小值,即mn=h(x)=h 。
转化与化归思想(适合小学、初中)
转化与化归思想化归与转化的思想是指在解决数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种解题策略,一般情况,总是将未解决的问题化归转化为已解决的问题.化归与转化的思想方法是数学中最基本的思想方法,也是在解决数学问题过程中无处不存在的的基本思想方法,各种变换方法、分析法、反证法、待定系数法、构造法等都是转化的手段.高考中十分重视对化归与转化思想的考查,要求考生熟悉化归与转化各种变换方法,并有意识地运用变换方法解决有关的数学问题.化归与转化的原则是:将不熟悉和难解的问题转化为熟知的易知的易解的或已经解决的问题;将抽象的问题转化为具体的直观的问题;将复杂的问题转化为简单的问题;将一般性的问题转化为直观的特殊的问题,将实际问题转化为数学问题,使问题便于解决.题例1题例2 比较下图面积大小题例3回忆:我们在推导图形的面积或体积公式时用过哪些转化策略?题例1用分数表示各图中的涂色部分( )( )圆面积推导题例4 把一个圆剪拼成一个近似的长方形,已知长方形的周长是33.12cm,求阴影部分的面积.练习一1.1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90=2.在一列数2,7,14,23,……中的第十个数为____。
3.两数相除,商是4余数是8,被除数,除数,商和余数的和是415,则被除数是多少?4.一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为。
5.小明卖出一批苹果得到一笔钱。
如果小明多卖出10个苹果且所得到的钱的总数相同的话,则每个苹果的售价将比原售价少2元。
如果小明少卖出10个苹果且所得到的钱的总数相同的话,则每个苹果的售价将比原售价多4元。
请问a) 小明卖出几个苹果?b) 每个苹果原来的售价是多少元?6. 五个连续偶数之和是完全平方数,中间三个偶数之和是立方数(即一个整数的三次方),这样一组数中的最大数的最小值是多少?7. P 、Q 两城市相距625公里,小华从P 市于上午5:30出发,以每小时100公里之速度驶向Q 市。
《转化与化归思想》课件
配方法:将复杂式子转 化为简单式子
换元法:将复杂式子转 化为简单式子
待定系数法:通过设定未 知系数,将复杂式子转化 为简单式子
数学归纳法:通过归纳推 理,将复杂式子转化为简 单式子
反证法:通过反证法,将 复杂式子转化为简单式子
方程的转化方法
代数变形: 通过代数 运算,将 方程转化 为更简单 的形式
转化与化归思想包括化归法和转化法两种方法,化归法是将复杂问题转化 为简单问题,转化法是将未知问题转化为已知问题。
转化与化归思想在数学解题中有广泛的应用,可以帮助我们解决许多复杂 的数学问题。
转化与化归思想的核心思想是将复杂问题转化为简单问题,将未知问题转 化为已知问题,从而解决问题。
转化与化归思想的重要性
几何图形的转化方法
平移:将图形沿水平或垂直方向移动
旋转:将图形绕某一点旋转一定角度
反射:将图形沿某一直线或平面进行反 射
缩放:将图形按比例放大或缩小
剪切:将图形沿某一直线或平面进行剪 切
拼接:将多个图形拼接成一个新的图形
转化与化归思想在解题 中的应用
代数题中的转化与化归
转化与化归思想:将复杂问题转化为简单问题,将未知问题转化为已知问题 代数题中的转化:将复杂代数式转化为简单代数式,将未知数转化为已知数 代数题中的化归:将复杂问题转化为简单问题,将未知问题转化为已知问题 代数题中的转化与化归的应用:解决复杂代数问题,提高解题效率
转化与化归思想 的核心内容还包 括对问题的深入 理解和分析,以 及对问题的转化 和化归方法的掌 握。
展望转化与化归思想的发展方向
应用领域:数学、物理、化学等 学科
发展趋势:更加注重理论与实践 的结合
研究热点:转化与化归思想的新 方法、新应用
转化与化归的数学思想
转化与化归的数学思想一、转化与化归思想的含义化归指的是转化与归结.简单的化归思想就是把不熟悉的问题转化成熟悉问题的数学思想.即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的这种解决问题的思想,称为化归思想.化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程.数学中的转化比比皆是,比如将未知向已知转化;复杂问题向简单问题转化;命题间的转化;数与形的转化;空间向平面的转化;高次向低次的转化;多元向少元的转化;无限向有限的转化等都是化归思想的体现.化归思维模式:问题→新问题→解决新问题→解决原问题.化归与转化应遵循的基本原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据;(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。
二、化归思想的解题途径1、一般与特殊的转化21(0)11,2.243y ax a F P Q PF FQ p q p q A a B a C a D a =>+例 过抛物线的焦点作一直线与抛物线交于、两点,若线段、的长分别为、则的值为( )2.具体与抽象的转化.把抽象问题具体化是在数学解题中常有的化归途径,它是对抽象问题的理解和再认识,在抽象.例2、设函数 的定义域为D ,若所有点 构成一个正方形区域,则a 的值为A .-2B .-4C .-8D .不能确定3. 正面与反面的转化在处理某一问题时,按习惯思维从正面思考比较困难,这时用逆向思维的方式从反面去考虑,往往使问题变得比较简单。
转化与化归思想
3.直观化原则 将比较抽象的问题转化为比较直观的问题来解决. 4.正难则反原则 当问题正面讨论遇到困难时,应想到考虑问题的反面, 设法从问题的反面去探求,使问题获得解决,或证明问题的 可能性. 总之,化归与转化是高中数学的一种重要思想方法,掌 握好化归与转化的思想方法的特点、题型、方法、要素、原 则对我们学习数学是非常有帮助的.
返回
返回
等与不等是数学解题中矛盾的两个方面,但是它们 在一定的条件下可以相互转化,例如本例,表面看来似 乎只具有相等的数量关系,且根据这些相等关系很难解 决,但是通过挖掘其中的不等量关系,转化为不等式(组) 来求解,则显得非常简捷有效.
返回
正向与逆向的转化
[例3] 某射手射击1次击中目标的概率是0.9他连续射击4 次且他各次射击是否击中目标是相互独立的,则他至少击中 目标1次的概率为 ________.
返回
2.转化与化归的常见方法 (1)直接转化法:把原问题直接转化为基本定理、基本公式 或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂 等,把较复杂的函数、方程、不等式问题转化为易于解决的基 本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形 式(图形)关系,通过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价问题, 以达到化归的目的.
同一区间,故a=1.
返回
“化归与转化”还有“数与形的转化、数学各分支之间的转 化”等,应用时还应遵循以下四条原则:
1.熟悉化原则 将陌生的问题转化为熟悉的问题,以利于运用熟知的知识 和经验来解答问题. 2.简单化原则 将复杂的问题转化为简单的问题,通过对简单问题的解决, 达到解决复杂问题的目的,或获得某种解题的启示和依据.
§4 转化与化归思想
变式训练 3 已知定义在实数集 R 上的函数 y=f(x)恒不为 零,同时满足 f(x+y)=f(x)· f(y),且当 x>0 时,f(x)>1,
④ 那么当 x<0 时,一定有________(填序号).
①f(x)<-1;②-1<f(x)<0;③f(x)<1;④0<f(x)<1.
解析 设 f(x)=2x, ,则符合题意,结合图象知④正确.
§4 转化与化归思想 方法解读
1.转化与化归思想 所谓转化与化归思想,就是将待解决的问题和未解决的 问题,采取某种策略,转化归结为一个已经能解决的问 题;或者归结为一个熟知的具有确定解决方法和程序的 问题;归结为一个比较容易解决的问题,最终求得原问 题的解. 2.转化与化归思想的原则 (1)熟悉已知化原则:将陌生的问题转化为熟悉的问题, 将未知的问题转化为已知问题,以便于我们运用熟知的 知识、经验和问题来解决.
归纳拓展 本题如果从已知条件 a2=a1·9⇒(a1+2d)2=a1(a1 a 3 a1+a3+a9 +8d),解得 a1 与 d 的关系后,代入所求的式子: a2+a4+a10 a1+(a1+2d)+(a1+8d) = ,也能求解,但计算较繁锁, (a1+d)+(a1+3d)+(a1+9d) 易错. 因此, 把抽象数列转化为具体的简单的数列进行分析, 可以很快得到答案.
(6)类比法:运用类比推理,猜测问题的结论,易于确定转 化途径. (7)特殊化方法:把原问题的形式向特殊化形式转化,并证 明特殊化后的结论适合原问题. (8)等价问题法:把原问题转化为一个易于解决的等价命题, 达到转化的目的. (9)加强命题法:在证明不等式时,原命题难以得证,往往 把命题的结论加强,即命题的结论加强为原命题的充分条 件,反而能将原命题转化为一个较易证明的命题,比如在证 明不等式时,原命题往往难以得证,这时常把结论加强,使 之成为原命题充分条件,从而易证. (10)补集法:如果正面解决问题有困难,可把原问题结果看 作集合 A,而包含问题的整体问题的结果类比为全集 U,通 过解决全集 U 及补集∁ UA 使原问题得以解决.
高中数学-化归与转化思想
一、 考点回顾化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想。
转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。
化归转化思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中。
转化有等价转化与不等价转化。
等价转化后的新问题与原问题实质是一样的,不等价转则部分地改变了原对象的实质,需对所得结论进行必要的修正。
应用化归转化思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化。
常见的转化有: 1、等与不等的相互转化等与不等是数学中两个重要的关系,把不等问题转化成相等问题,可以减少运算量,提高正确率;把相等问题转化为不等问题,能突破难点找到解题的突破口。
2、正与反的相互转化对于那些从“正面进攻”很难奏效或运算较难的问题,可先攻其反面,从而使正面问题得以解决。
3、特殊与一般的相互转化对于那些结论不明或解题思路不易发现的问题,可先用特殊情形探求解题思路或命题结论,再在一般情况下给出证明,这不失为一种解题的明智之举。
4、整体与局部的相互转化整体由局部构成,研究某些整体问题可以从局部开始。
5、高维与低维的相互转化事物的空间形成,总是表现为不同维数且遵循由低维想高维的发展规律,通过降维转化,可把问题有一个领域转换到另一个领域而得以解决,这种转化在复数与立体几何中特别常见。
6、数与形的相互转化通过挖掘已知条件的内涵,发现式子的几何意义,利用几何图形的直观性解决问题,使问题简化。
7、函数与方程的转化 二、经典例题剖析例1、设0a ≥,2()1ln 2ln (0)f x x x a x x =--+>.(Ⅰ)令()()F x xf x '=,讨论()F x 在(0)+,∞内的单调性并求极值; (Ⅱ)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.解析:(Ⅰ)讨论()F x 在(0)+,∞内的单调性并求极值只需求出()F x 的导数'()F x 即可解决;(Ⅱ)要证当1x >时,恒有2ln 2ln 1x x a x >-+,可转化为证1x >时2ln 2ln 10x x a x -+->,亦即转化为1x >时()0f x >恒成立;因(1)0f =,于是可转化为证明()(1)f x f >,即()f x 在(1,)+∞上单调递增,这由(Ⅰ)易知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化归与转化思想 一.利用换元法进行转化
1.若
,42x ππ<<求函数3tan 2tan y x x =的最大值。
2.在平面直角坐标系xOy 中,点()P x y ,是椭圆2213
x y +=上的一个动点,求S x y =+的最大值.
3.奇函数f(x)的定义域R ,且在[0+∞)上是增函数,当0≤θ≤π/2时,是否存在实数
m, 使f(cos2θ-3)+f(4m-2mcosθ)>f(0)对所有θ∈〔0,π/2〕的均成立?若存在,求出适合条件的所有实数m;若不存在,说明理由.
二.正难则反的转化
4.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,
则重点项目A 和一般项目B 至少有一个被选中的不同选法种数是( )
A .15
B .45
C .60
D .75
5.已知非空集合A={x| 2
x -4mx+2m+6=0,x ∈R},若 A ∩R-≠,求实数m 的取值范围(R-
表示负实数集, R+表示正实数集).
三.利用构造法进行转化
6.已知a b e >>。
证明b a a b <
7.已知函数2
2
()ln (1).1x f x x x =+-+ (1) 求函数()f x 的单调区间;
(2)若不等式1(1)
n a e n ++≤对任意的N*n ∈都成立(其中e 是自然对数的底数).
求a 的最大值.
∅
四.空间问题平面化的原则
8.如图,设正三棱锥S-ABC 的底面边长为a ,侧面等腰三角形的顶角
为0
30,过A 作与侧棱SB,SC 都相交的截面AEF ,求这个截面周长的
最小值。
五.等与不等的转化
9.若f(x)是定义在R 上的函数,对任意实数x 都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2,且f(1)=1,则 f(2 010)= .
六.常量与变量的转化
10.设f (x )是定义在R 上的单调增函数,若f (21ax x --)≤f (2-a )对任意
a ∈[-1,1]恒成立,求x 的取值范围.
11.已知函数247(),[0,1]2x f x x x
-=∈- (1)求()f x 的单调区间和值域;
(2)设1a ≥,函数32
()32,[0,1]g x x a x a x =--∈,若对于任意的1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 取值范围。