高等数学基本公式微分方程部分

合集下载

高等数学常微分方程讲义,试题,答案

高等数学常微分方程讲义,试题,答案

高等数学常微分方程讲义,试题,答案常微分方程§4.1 基本概念和一阶微分方程(甲)内容要点一、基本概念1、常微分方程和阶2、解、通解和特解3、初始条件4、齐次线性方程和非齐次线性方程二、变量可分离方程及其推广1、dyp(x)Q(y)dx(Q(y) 0) 2、齐次方程:dy dxy f x三、一阶线性方程及其推广1、dydyP(x)y Q(x) 2、P(x)y Q(x)y dxdx( 0,1)四、全微分方程及其推广(数学一)1、P(x,y)dx Q(x,y)dy 0,满足Q P2、P(x,y)dx Q(x,y)dy 0,五、差分方程(数学三)(乙)典型例题例1、求y x22Q p (RQ) (RP)但存在R(x,y),使x y x ydydyxy的通解。

dxdx解:y (x xy)22dy0dxydyy2 x d__y x2 y1 x2yduu2令u,则u x udx x(1 u)du 0xdxu 11 udxdu u x C1 ln|xu| u C1例2C1 uce, y cedyy的通解d__ y4uyx求微分方程d__ y4dx1解:此题不是一阶线性方程,但把x看作未知函数,y看作自变量,所得微分方程即x y3是一阶dyydyy11dy 14 dy 133yydy C y Cy 线性方程P(y) ,Q(y) y x e yey 3例3设y e是xy p(x)y x的一个解,求此微分方程满足yx ln2 0的特解xx解:将y e代入微分方程求出P(x) xe先求出对应齐次方程x,方程化为dy(e x 1)y 1 dxx xdy(e x 1)y 0的通解y cex e根据解的结构立刻可得非齐次方程通解y ex cex e dx再由yx ln2 0得2 2ec 0,c e例4设1212故所求解y e exx e x12满足以下件F(x) f(x)g(x),其中f(x),g(x)在( , )内f (x) g(x),g (x) f(x),且f(0) 0,f(x) g(x) 2ex(1)求F(x)所满足的一阶微分方程(2)求出F(x)的表达式解:(1)由F (x) f (x)g(x) f(x)g (x) g2(x) f2(x) [f(x) g(x)]2 2f(x)g(x) (2ex)2 2F(x) 可知F(x)所满足的一阶微分方程为F (x) 2F(x) 4e2x (2)F(x) e2dx4e2xe 2dxdx c e 2x 4e4xdx c e2x ce 2x将F(0) f(0)g(0) 0代入,可知c 1 于是例52F(x) e2x e 2xdy2(1 y)的通解求微分方程(y x) xdxsec2udusec3u 解:令y tanu,x tanv, 原方程化为(tanu tanv)secv2secvdv化简为sin(u v)dudzdudz 1 再令z u v,则1,方程化为sinz 1 sinz dvdvdvdv sinz(sinz 1) 1dz dv c, 1 sinz 1 sinzdz v c,1 sinzv c21 sinz1 sinz z v c 2coszz tanz secz v c z最后Z再返回x,y,v也返回x,即可。

高数微积分公式大全(考试必考)

高数微积分公式大全(考试必考)

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

微分积分公式大全

微分积分公式大全

1 1+ x2
dx

d
(arc cot
x)
=
−1 1+ x2
dx
九、微分运算法则
⑴ d (u ± v) = du ± dv
⑵ d (cu) = cdu
考无忧论坛-----考霸整理版
⑶ d (uv) = vdu + udv
十、基本积分公式
⑴ ∫ kdx = kx + c

d
⎛ ⎜⎝
u v
⎞ ⎟⎠
=
vdu − udv v2
(1) a2 − x2 x = a sin t (2) a2 + x2
【特殊角的三角函数值】
x = a tan t
(3) x2 − a2 x = a sec t
(1) sin 0 = 0 (2) sin π = 1 (3)sin π = 3 (4)sin π = 1 ) (5)sin π = 0
62
⑶ d (sin x) = cos xdx
⑷ d (cos x) = −sin xdx ⑸ d (tan x) = sec2 xdx ⑹ d (cot x) = − csc2 xdx
⑺ d (sec x) = sec x ⋅ tan xdx
⑻ d (csc x) = − csc x ⋅ cot xdx
1
(2)lim (1+ x)x = e x→0
(4) lim n n = 1 n→∞
(7) lim arc cot x = 0 x→∞
(5) lim arctan x = π
x→∞
2
(8) lim arc cot x = π x→−∞
(10) lim ex = ∞ x→+∞

高等数学公式大全

高等数学公式大全

高等数学宝典(上篇)——公式大全(含微分方程、复变函数)一. 初等数学1. 三角函数 (1) 相互联系,1cos sin 22=+x x ,sec 1tan 22x x =+ .csc 1cot 22x x =+ ,1csc sin =⋅x x ,1sec cos =⋅x x .1cot tan =⋅x x ,tan cos sin x x x = .cot sin cos x xx= 奇变偶不变, 符号看象限:⎩⎨⎧±±=±±±=±=+,3 ,1 ,0 )(,4 ,2 ,0 )()2(n cof n f nf αααπ其中“±”号由角)2(απ+n 所处的象限确定. (2) 和角公式,sin cos cos sin )sin(βαβαβα±=±,sin sin cos cos )cos(βαβαβα∓=±tan tan 1tan tan )tan(βαβαβα∓±=±(3) 积化和差)],sin()[sin(21cos sin βαβαβα−++= )],cos()[cos(21cos cos βαβαβα−++=)].cos()[cos(21sin sin βαβαβα−−+−=(4) 和差化积2cos2sin2sin sin βαβαβα−+=+ 2sin2cos2sin sin βαβαβα−+=−,2cos 2cos 2cos cos βαβαβα−+=+ .2sin 2sin 2cos cos βαβαβα−+−=−(5) 降幂公式22cos 1sin 2αα−=.22cos 1cos 2αα+= (6) 半角公式, ,1cos sin tansin 1cos αααα−==+, 1cos sin cot sin 1cos αααα+==−.2. 复数(1) 代数表示 z = a +b i(2) 三角表示 z = r (cos θ +i sin θ), 其中r = |a + b i| = , a = r cos θ, b = r sin θ. (3) 指数表示 a + b i = re i θ (欧拉公式: e i θ = cos θ +i sin θ ).3. 一些常见的曲线(1) 圆222a y x =+的参数方程为⎩⎨⎧==,sin ,cos θθa y a x极坐标方程为ρ = a (θ∈[0, 2π) );(2) 圆222)(a a y x =−+的参数方程为⎩⎨⎧+==,sin ,cos t a a y t a x (t ∈[0, 2π) ) 极坐标方程为ρ = 2a sin θ (θ∈[0, π) ) ;(3)圆222)(a y a x =+−的参数方程为⎩⎨⎧=+=,sin ,cos t a y t a a x (t ∈[0, 2π) )极坐标方程为ρ = 2a cos θ )]2,2((ππθ−∈ ;(4) 圆222)(a y a x =++的参数方程为⎩⎨⎧=+−=,sin ,cos t a y t a a x (t ∈[0, 2π) ) 极坐标方程为ρ = -2a cos θ ))23,2[(ππθ∈;(5) 圆222)(a a y x =++的参数方程为⎩⎨⎧+−==,sin ,cos t a a y t a x (t ∈[0, 2π) ) 极坐标方程为ρ = -2a sin θ (θ∈[π, 2π) );(6) 椭圆12222=+b y a x 的参数方程为⎩⎨⎧==,sin ,cos t b y t a x (t ∈[0, 2π) );(7) 空间螺线⎪⎩⎪⎨⎧===,,sin ,cos bt z t a y t a x (t;(8) 笛卡儿叶线x 3+y 3=3axy的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=3231313t at y t at x ;(9) 星形线x 2/3+y 2/3=a 2/3的参数方程为⎪⎩⎪⎨⎧==θθ33sin cos a y a x ; (10) 摆线(圆滚线) 22)1arcsin(y ay aya x −−−=的参数方程为⎩⎨⎧−=−=)cos 1()sin (t a y tt ax;(11) 心形线)(2222x y x a y x −+=+的极坐标方程为ρ = a (1-cos θ);(12) 心形线)(2222x y x a y x ++=+的极坐标方程为ρ = a (1+cos θ);(13) 双纽线(x 2+y 2)2=a 2(x 2-y 2)的极坐标方程为ρ2 = a 2cos2θ ;(14) 双纽线(x 2+y 2)2=2a 2xy的极坐标方程为ρ2 = a 2sin2θ ;(15) 阿基米德螺线xya y x arctan 22=+的极坐标方程为ρ = a θ(16) 不经过原点的直线ax + by + c = 0 (a 2 + b 2 ≠ 0)⇒ a ρcos θ + b ρsin θ + c = 0⇒.sin cos θθρb a c+=例如: x = a (a > 0) ⇒2,2(cos ππθθρ−∈=ax = a (a <0) ⇒23,2(cos ππθθρ∈=a y = a (a >0) ⇒);,0(sin πθθρ∈=ay = a (a <0) ⇒);2,(sin ππθθρ∈=ay = x − a (a > 0) ⇒43,4(sin cos ππθθθρ−∈+=a 二. 极限1. |q |<1, nn q ∞→lim = 0. 2. n n n ∞→lim =1.3. 设数列{a n }与{b n }都收敛, a a n n =∞→lim , b b n n =∞→lim , 则n n n n n n n b a b a ∞→∞→∞→±=±lim lim )(lim = a ±b ; )lim )(lim ()(lim n n n n n n n b a b a ∞→∞→∞→== ab ;n n n n n n n b a b a ∞→∞→∞→=lim lim lim =b a (b ≠0). 4. 设x n =m m ll n b n b b n a n a a ++++++ 1010, 其中a l ≠0, b m ≠0, l ≤m , 则∞→n lim x n =⎩⎨⎧<=m l m l a m l 0. 5. ∞→n lim (p 1+22p+…+n p n ) =2)1(−p p , 其中p >1. 6. ()nn n 11lim +∞→= e. 7. 设)(lim 0x f x x →=A , )(lim 0x g x x →=B . 则)(lim )(lim )()([lim 0x g x f x g x f x x x x x x →→→±=±= A ±B;)](lim )][(lim [)]()([lim 0x g x f x g x f n n x x ∞→∞→→== AB ; )(lim )(lim )()(lim 000x g x f x g x f x x x x x x →→→==B A(B ≠0).8. 设y = f (u )与u = g (x )的复合函数f [g (x )]在x 0的某去心邻域)(0x N内有定义.若)(lim 0x g x x →=u 0, )(lim 0u f u u →=A , 且∀x ∈)(0x N, 有g (x )≠u 0, 其中x 0, u 0为有限值.则复合函数f [g (x )]当x →x 0时也有极限, 且)]([lim 0x g f x x →=)(lim 0u f u u →=A .9. x x x sin lim 0→=1. xx x ⎟⎠⎞⎜⎝⎛+∞→11lim = e.10. 常用的等价无穷小:sin x ~tan x ~arcsin x ~arctan x ~ x (x →0); (1- cos x )~221x (x →0) ln(1+x )~x (x →0) (e x -1)~x (x →0) (n x +1-1)~nx (x →0); [α)1(x +-1]~αx (x →0). 三. 导数与微分1. 导数定义: 0000000)()(lim )()(lim lim)(0x x x f x f x x f x x f x yx f x x x x −−=∆−∆+=∆∆=′→→∆→∆.2. 函数四则运算的求导法则).()(])()([x v x u x v x u ′±′=′± ).()()()(])()([x v x u x v x u x v x u ′+′=′⋅.)()()()()()()(2x v x v x u x v x u x v x u ′−′=⎥⎦⎤⎢⎣⎡/3. 反函数的求导法则设定义在区间I 上的严格单调连续函数x = f ( y )在点y 处可导, 且0)(≠′y f , 则其反函数y = f -1(x )在对应的点x 处可导, 且)(1)()(1y f x f′=′−即yx x y d d 1d d =. 4. 复合函数的求导法则设函数)(x u ϕ=在点x 处可导, 函数y = f (u )在对应的点)(x u ϕ=处可导, 则复合函数))((x f y ϕ=在点x 处可导, 且),()(d d x u f xyϕ′′=即x u u y x y d d d d d d ⋅=. 5. 设函数y = f (x )由参数方程⎩⎨⎧==)()(t y t x ψϕ确定. ),(t x ϕ= )(t y ψ=在区间],[βα上可导, 函数)(t x ϕ= 具有连续的严格单调的反函数),(1x t −=ϕ且,0)(≠′t ϕ则)).(()(1x t y −==ϕψψ函数y = f (x )的导函数由参数方程⎪⎩⎪⎨⎧′′=′=)()()(t x t y y t x ϕ确定.6. 基本求导公式(1) (x α)′ = αx α−1. (2)(a x )′ = a x ln a . (3) (e x )′ = e x . (4) (log a x )′ =1ln x a . (5) (ln x )′ =1x. (6) (sin x )′ = cos x . (7) (cos x )′ = −sin x . (8) (tan x )′ = sec 2x . (9)(cot x )′ = −csc 2x . (10) (sec x )′ = sec x ⋅tan x . (11) (csc x )′ = −csc x ⋅cot x . (12) (arcsin x )′=(arccos x )′ =(14) (arctan x )′ =211x +. (15) (arccot x )′ = −211x +. 7. 一些简单函数的高阶导数(n , k 为正整数) (1)⎪⎩⎪⎨⎧>=<+−−⋅=−,0,!,)1()1()()(n k n k n n k x k n n n x k n k n(2) ,)1()1()1()()(k n k k n x k n n n x −−−−++⋅−= (3) ,)1()1(])1[()(k k x k x −+−−⋅=+ααααα (4) ),(ln )()(a a a k x k x = 特别的, ,)()(x k x e e =(5) ,)!1()1()(ln 1)(kk k x k x −−=− (6) )1()!1()1()]1[ln(1)(k k k x k x +−−=+−(7)),2sin()(sin )(πk x x k += (8) 2cos()(cos )(πk x x k +=(9) ()()()0()nn k n k k n k uv C u v −==∑ ()(1)(2)()()()(1)(1)(1)2!!n n n n k k n n n n n n k u v nu v u v u v uv k −−−−−−+′′′=++++++8. 微分四则运算法则: ,d d )(d v u v u ±=± ,d d )(d v u u v uv += ).0(d d d 2≠−=⎟⎠⎞⎜⎝⎛v v vu u v v u 9. 微分复合运算法则(一阶微分形式不变性)设函数y = f [g(x )]由可微函数y = f (u )与u = g (x )复合而成, 则有,d )(d u u f y ′= ,d )(d x x g u ′= 另一方面, d y =().d )(d )()(d )]([u u f x x g u f x x g f ′=′′=′10. 拉格朗日中值定理:设函数f (x )满足下列条件: (1) f (x )∈C [a , b ], (2) f (x )在(a , b )内可导. 则至少存在一点ξ∈(a , b ), 使得f (b ) − f (a ) = f ′(ξ)(b −a ). 11. 柯西中值定理:设函数f (x ), g (x )满足下列条件:(1) f , g ∈C [a , b ], (2) f , g 在(a , b )内可导, (3) g ′(x )≠0 ∀x ∈(a , b ).则至少存在一点ξ∈(a , b ), 使得)()()()()()(ξξg f a g b g a f b f ′′=−−13. 洛必达法则设函数f (x )在区间(x 0, x 0+δ)(δ>0)内满足下列条件: (1) ,0)(lim )(lim 0==++→→x g x f x x x x (2) f , g 在(x 0, x 0+δ)内可导, 且,0)(≠′x g (3) A x g x f x x =′′+→)()(lim 0(A 为有限数或∞). 则.)()(lim )()(lim 00A x g x f x g x f x x x x =′′=++→→ 设函数f (x )在区间(x 0, x 0+δ)(δ>0)内满足下列条件: (1) ,)(lim )(lim 0∞==++→→x g x f x x x x (2) f , g 在(x 0, x 0+δ)内可导, 且,0)(≠′x g (3)A x g x f x x =′′+→)()(lim 0(A 为有限数或∞). 则.)()(lim )()(lim 00A x g x f x g x f x x x x =′′=++→→ 不可用洛必达法则的情形.(1) 21lim 1++→x x x , (2) xx x x sin lim +∞→, (3) x x xx x e e e e −−+∞→+−lim .事实上, 21lim 1++→x x x =32, xx x x sin lim +∞→=sin 1(lim x xx +∞→=1, x x x x x e e e e −−+∞→+−lim =x x x e e 2211lim −−+∞→+−=1. 14. 带皮亚诺余项的泰勒公式设函数f (x )在x 0处n 阶可导, 则f (x )=k nk k x x k x f )!)(000)(−∑=+ o((x -x 0)n ). 15. 几个初等函数的麦克劳林公式(1) e x =1+x +21x 2+61x 3+…+!1n x n+ o(x n ).(2) sin x = x -!31x 3+!51x 5-…+(-1)n )!12(1+n x 2n +1 + o(x 2n +1). (3) cos x = 1-!21x 2+!41x 4-…+(-1)n )!2(1n x 2n + o(x 2n ).(4) ln(1+x ) = x -21x 2+31x 3-…+(-1)n -1n 1x n + o(x n ).(5) α)1(x +=n x n n x x !)1()1(!2)1(12+−−++−++αααααα + o(x n ).(6) sin 2x =22cos 1x −=()⎥⎦⎤⎢⎣⎡+−+−+−−n nn x n x x x 2242)2(o )!2()2()1(!4)2(!2)2(12121=)(o !)!12(!2)1(3221142n n n n x x n n x x +−−++−−+ .(7) cos 2x =1- sin 2x = 1-)(o !)!12(!2)1(322142n n n nx x n n x x +−−+−+− .16. 带拉格朗日余项的泰勒公式设函数)(],[)(n b a C x f ∈, 且)1(),()(+∈n b a C x f , 则],[,0b a x x ∈∀, 有 f (x )=knk k x x k x f )!)(000)(−∑=+10)1()()!1()(++−+n n x x n f ξ, 其中ξ介于x 与x 0之间. 17. 几个初等函数的带拉格朗日余项的麦克劳林公式(1) e x=1+x +21x 2+61x 3+…+!1n x n+1)!1(++n x x n e θ (x ∈R , 0<θ<1).(2) sin x = x -!31x 3+!51x 5-…+(-1)n -1)!12(1−n x 2n -1 +12)!12(cos )1(++−n n x n x θ (x ∈R , 0<θ<1). (3) cos x = 1-!21x 2+!41x 4-…+(-1)n )!2(1n x 2n +221)!22(cos )1(+++−n n x n x θ (x ∈R , 0<θ<1). (4) ln(1+x ) = x -21x 2+31x 3-…+(-1)n -1n 1x n+)1(1)1)(1()1(++++−n n n x n x θ (x ∈R , 0<θ<1). (5) α)1(x +=n x n n x x !)1()1(!2)1(12+−−++−++αααααα +11)1)!1()()1(+−−++−−n n x x n n αθααα (x ∈R , 0<θ<1). 18. 曲率(1) 设曲线C 在直角坐标系中的方程为y = y (x )且y (x )具有二阶导数. 则K =232])(1[y y ′+′′.(2) 设曲线C 的参数方程为⎩⎨⎧==)()(t y y t x x , 则K =2322])()[(t t t t t t y x y x y x ′+′′′′−′′′. 四. 一元积分1. 定积分的性质(1) 若f , g 在[a , b ]上可积, k 1, k 2∈R , 则∫+bax x g k x f k )]d ()([21.)d (d )(21∫∫+=babax x g k x x f k(2) 若f 在某区间I 上可积, 则f 在I 的任一子区间上可积, 且∀a , b , c ∈I ,∫bax x f d )(.)d (d )(∫∫+=bcc ax x f x x f(3) 若f , g 在[a , b ]上可积, 且∀x ∈[a , b ], f (x )≤g (x ), 则∫bax x f d )(≤.d )(∫bax x g(4) 若f 在[a , b ]上可积, 且∀x ∈[a , b ], f (x )≥0, 则∫bax x f d )(≥0.(5) 若f 在[a , b ]上可积, 则∫bax x f d )(≤.d )(∫bax x f(6) 若f 在[a , b ]上可积, 且∀x ∈[a , b ], m ≤f (x )≤M , 则m (b -a )≤∫bax x f d )(≤M (b -a ).(7) 若f ∈C [a , b ], 则至少存在一点ξ∈[a , b ]使∫bax x f d )(= f (ξ)(b -a ).2. 变上限积分所定义的函数的性质设f (x )∈C[a , b ], 则函数∫=Φxat t f x d )()(在区间[a , x ]上可导, 且Φ′(x )= f (x ).3. 微积分学基本公式若f (x )∈C[a , b ], F (x )为f (x )在区间[a , b ]上的一个原函数, 则∫bax x f d )(= F (b )-F (a ).4. 不定积分的性质(1) ),(]d )([x f x x f =′∫,d )(]d )([d x x f x x f =∫,)(d )(C x f x x f +=′∫ .)()(d C x f x f +=∫(2) 设f (x ), g (x )有原函数, k 1, k 2∈R , 则.d )(d )(d )]()([2121∫∫∫+=+x x g k x x f k x x g k x f k5. 基本积分表(1) d k x kx C =+∫ (k 是常数). (2) 1d 1x x x C ααα+=++∫ (α ≠−1)(3) 1d ln ||x x C x =+∫. (4) 21d arctan 1x x C x =++∫.(5)arcsin x x C =+. (6) cos d sin x x x C =+∫. (7) sin d cos x x x C =−+∫. (8) 221d sec d tan cos x x x x C x==+∫∫. (9) 221d csc d cot sin x x x x C x==−+∫∫. (10) sec tan d sec x x x x C =+∫. (11) csc cot d csc x x x x C =−+∫. (12) d x xe x e C =+∫.(13) d ln xxa a x C a=+∫. (14) sh d ch x x x C =+∫. (15)ch d sh x x x C =+∫. (16) tan d ln |cos |x x x C =−+∫.(17) cot d ln |sin |x x x C =+∫ (18) sec d ln |sec tan |x x x x C =++∫.(19)csc d ln |csc cot |x x x x C =−+∫ (20)2211d arctan xx C a x a a=++∫. (21) 2211d ln 2x a x C x a a x a −=+−+∫. (22) 2211d ln 2a x x C a x a a x −=+−−∫.(23)C +∫. (24) ln(x x C =++∫.(25) 2ln ||2a x x C =±+∫.(26) 2arcsin 2a x x C a =+∫. (27) /20sin d n n I x x π=∫=/20cos d nx x π∫=21n n I n−−.6. 换元积分法(1) 第一类换元积分法: 设函数u =ϕ (x )可微, F (u )为f (u )的一个原函数. 则∫′x x x f d )()]([ϕϕ∫=u u f d )(C u F +=)(.)]([C x F +=ϕ(2) 常见的凑微分法①)(d 1d b ax ax +=(a , b 为常数且a ≠0) ②)(d )1(1d 1b ax an x x n n++=+(a , b 为常数且a ≠0, n ≠-1)③),(ln d 1x x x= ④),(d d xx e x e = ⑤),(cos d d sin x x x −= ⑥),(tan d d sec 2x x x = ⑦),(arctan d d 112x x x =+ ⑧∫+x x a 122∫+++++=x x a x a x x a x d )(222222∫++++=)(d 12222x a x x a x , ⑨∫−x a x d 122∫−−+−+=x a x a x x a x x d )(222222∫−+−+=)(d 12222a x x a x x ,⑩∫−+x x x d 112=∫−x x 112∫−+x x x d 12∫−−−=)1(d 1121arcsin 22x x x .(3) 第二类换元积分法: 设函数f (x ) 连续, 函数x = ϕ (u )有连续的导数, ϕ '(u )≠0, 且∫′u u u f d )()]([ϕϕ.)(C u F +=则∫x x f d )(∫′=u u u f d )()]([ϕϕC u F +=)(.)]([1C x F +=−ϕ (4) 常见的第二类换元法①令u b ax n =+(a , b 为常数且a ≠0) ②令nd cx bax ++= t (其中ac ≠0, b , d 不同时为零) ③令,1u x =④令u = tan 2x , 则sin x =221u u +, cos x =2211u u −+, d x =22d 1uu +.⑤令x = a sin t , = a cos x , d x = a cos t d t , 其中a > 0, t ∈ [0, π/2].⑥令x = a sec t , a tan x , d x = a sec t tan t d t , 其中a > 0, t ∈ (0, π/2).⑦令x = a tan t , a sec x , d x = a sec 2x d t , 其中a > 0, t ∈ (0, π/2).7. 分部积分法(1) 不定积分的分部积分法∫u (x )d v (x ) = u (x )v (x ) - ∫v (x )d u (x )(2) 分部积分法中u (x ), v (x )的常见选取方法① P (x )sin x d x = -P (x )d(cos x ), P (x )cos x d x = P (x )d(sin x ). ② P (x )e x d x = P (x )d(e x ).③ P (x ) ln x d x = ln x d(∫P (x )d x ).④ e ax cos(bx )d x =a 1cos(bx )d(e ax ) =b 1e ax d(sin(bx )), e ax sin(bx )d x =a 1sin(bx )d(e ax ) =b1−e ax d(cos(bx )).(3) 定积分的分部积分法∫′bax x v x u d )()(∫=bax v x u )(d )(.)(d )()()(∫−=babax u x v x v x u8. 平面曲线的弧长(1) 在直角坐标系中: y = f (x ), x ∈[a , b ], 其中,C )()1(],[b a x f ∈取d s =,)d ()d (22y x +则∆s -d s = o(∆x ) (∆x →0), 于是.d )(12∫′+=bax y s(2) 参数方程⎩⎨⎧==)()(t y t x ψϕ t ∈[α, β], 其中,C )(),()1(],[βαψϕ∈t td s =22)d ()d (y x+,t =于是.d )]([])([22∫′+′=βαψϕt t t s(3) 极坐标系中: ρ = ρ (θ), θ∈[α, β], 则⎩⎨⎧==θθρθθρsin )(cos )(y x , .d )]([)(22∫′+=βαθθρθρs 9. 空间曲线的弧长设空间曲线L 的参数方程为()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩ t ∈[α, β], 其中(1)[,](),(),()C ,x t y t z t αβ∈则d s,t = 于是L的长度为.s t βα=∫10. 平面图形的面积(1) 直角坐标系中① y = f (x ) 与 y = g (x )以及x = a , x = b 所围成的图形的面积(其中f (x )≥ g (x )).d )]()([∫−=bax x g x f A② x = ϕ(y ) 与 x = ψ(y )以及y = c , y = d 所围成的图形的面积(其中ψ(y )≥ ϕ(y )).d )]()([∫−=dcy y y A ϕψ(2) 极坐标系中ρ = a θ, θ∈[α, β], ,d )(21d 2θθρ=A .d )(212∫=βαθθρA 11. 空间立体的体积(1) 平行截面面积A (x )已知的立体(a ≤ x ≤ b ): d V = A (x )d x , .d )(∫=bax x A V(2) 旋转体的体积① y = f (x ) (x ∈[a , b ])绕x 轴旋转一周(其中f (x )≥0), A (x ) = π f 2(x ), 故.d )(2∫=b a x x f V π② x = g (y ) (y ∈[c , d ])绕y 轴旋转一周(其中g (y )≥0), A (y ) = πg 2(y ), 故.d )(2∫=dcy y g V π五. 微分方程1. 一阶可分离变量的微分方程:),()(d d y g x f xy=其中f (x ), g (y )连续. )()(d d y g x f x y =x x f y g y d )()(d =⇒∫∫=⇒x x f y g yd )()(d .)()(C x F y G +=⇒ (其中g (y )≠0, )(1)(y g y G =′ F ′ (x ) = f (x ), C 为任意常数) 2. 一阶线性微分方程: ),()(d d x q y x p xy=+其中p (x ), q (x )连续.(1) 对于,0)(d d =+y x p x y分离变量得:,d )(d x x p yy −= ∫=−x x p Ce y d )(( C 为任意常数). (2) 对于),()(d d x q y x p xy=+ ∫=−x x p e x C y d )()(得].d )([d )(d )(C x e x q e y x x p x x p +∫∫=∫− 3. 可经变量代换化为已知类型的几类一阶微分方程 (1) 齐次方程:),,(d d y x f xy= 其中f (tx , ty ) = f (x , y ), .0≠∀t①将原方程化为),(d d x yx y ϕ= ②令x y u =得,ux y = 从而d d d d x u x u x y +=代入原方程并整理得,)(d d u u xux −=ϕ③分离变量, 得,d )(d xxu u u =−ϕ ④两边积分,⑤以xy代替u . (2) 伯努里方程: ,)()(d d αy x q y x p x y=+其中.1,0≠α①两边同除以αy 得),()(d d 1x q y x p xy y =+−−αα②令,1α−=y z 则,d d )1(d d x y y xz αα−−= 原方程化为),()1()()1(d d x q z x p x z αα−=−+ ③解上述关于z 的一阶线性非齐次微分方程,④ 以α−1y 代替z .4. 可降阶的高阶微分方程 (1) )()(x f yn =型(2) 不显含未知函数y 的方程:).,(y x f y ′=′′令,z y =′ 则).,(d d z x f xz= 若解之得),,(1C x z ϕ= 则.d ),(21∫+=C x C x y ϕ (3) 不显含自变量x 的方程: ).,(y y f y ′=′′改取y 为自变量, 令),(y z y z =′= 则.d d d d d d d d yz z x y y z x z y ⋅=⋅==′′ 于是原方程化为).,(d d z y f y zz= 这是关于z (y )的一阶微分方程, 若解之得: ),,(1C y z ϕ= 即),,(d d 1C y x y ϕ= 则.),(d 21∫+=C C y yx ϕ5. 设a 1(x ), a 2(x ) f (x ) ∈ C I , 则∀x ∈I 及任给的初始条件y (x 0) = y 0, y ′(x 0) = y 1, 初值问题⎩⎨⎧=′==+′+′′,)(,)(),()()(100021y x y y x y x f y x a y x a y 存在定义于区间I 上的唯一解y = y (x ).6. 设y 1(x ), y 2(x )是线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0的两个解, 1212()()()()()y x y x W x y x y x =′′, 则(1) y 1(x ), y 2(x )在区间I 上线性相关 ⇔ ∃x 0∈I 使它们的Wronski 行列式W (x 0) = 0.(2) y 1(x ), y 2(x )在区间I 上线性无关⇔∀x ∈I , 它们的Wronski 行列式W (x ) ≠ 0. 7. 线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0必存在两个线性无关的解.8. 设y 1(x ), y 2(x )是线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0的两个线性无关的解, 则该线性齐次方程的解集S 是y 1(x ), y 2(x )生成的一个二维线性空间{}112212|,.y c y c y c c =+为任意常数9. 设y *(x )是二阶线性非齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = f (x ) ①的一个特解, y 1(x ), y 2(x )是对应的齐次方程 y ″ + a 1(x )y ′ + a 2(x ) y = 0 ②的两个线性无关的解, 则y = c 1y 1(x ) + c 2y 2(x ) + y *(x )为非齐次方程①的通解. 10. 设)(*x y i 是方程y ″ + a 1(x )y ′ + a 2(x ) y = f i (x ) (i = 1, 2, …, n )的特解,则)()(**1x y x y n ++ 是方程y ″ + a 1(x )y ′ + a 2(x ) y = f 1(x ) + … + f n (x )的特解. 11. 二阶线性常系数齐次方程的解法(1) 特征方程ar 2+br +c = 0有两个相异实根r 1, r 2, 则通解.2121xr xr e c e c y += (2) 特征方程有两个相等实根r 1 = r 2 = r , 则通解.)(21rx e x c c y +=(3) 特征方程有一对共轭复根r = α ± i β, 则通解).sin cos (21x c x c e y xββα+= 12. 二阶线性常系数非齐次方程的解法(1) 待定系数法求ay ″+by ′+cy = f (x ) (a ≠0, b , c 为常数)的特解.① f (x ) = P n (x )e α x .若α不是ar 2+br +c = 0的根, 则令y * = (b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 若α是ar 2+br +c =0的单根, 则令y * = x (b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 若α是ar 2+br +c =0的重根, 则令y * = x 2(b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 再代入原方程, 通过比较系数确定b 0, b 1, …, b n . ② f (x ) = P n (x )e α x cos βx 或f (x ) = P n (x )e α x sin βx .先求ay ″+by ′+cy = P n (x )e α x [cos βx + isin βx ] = P n (x )e (α+i β)x 的特解Y *.则原方程的特解互取为⎪⎩⎪⎨⎧===xe x P xf Y xe x P xf Y y xn xn ββααsin )()( *,Im cos )()( *,Re * (2) 常数变易法13. n 阶Euler 方程: a 0x n y (n ) + a 1x n -1y (n -1) +…+ a n -1xy ′ + a n y = f (x ) (其中a 0, a 1, …, a n 为常数). 14. 二阶Euler 方程的解法.令x = e t, 则ax 2y ′′ + bxy ′ + cy = f (x )化为).(d d )(d d 22te f cy ty a b t y a =+−+这是一个线性常系数微分方程, 求出其通解后将t 换为ln x 即得原方程的解.六. 多元函数微分学1. 偏导数定义00(,)x y zx ∂∂ = z x (x 0, y 0) = f x (x 0, y 0) = x y x f y x x f x ∆−∆+→∆),(),(lim 00000.00(,)x y zy ∂∂ = z y (x 0, y 0) = f y (x 0, y 0) = y y x f y y x f y ∆−∆+→∆),(),(lim 00000.),,()(2222y x f xfx z x z x xx =∂∂=∂∂=∂∂∂∂ ),,()(22y x f y x f y x z x z y xy =∂∂∂=∂∂∂=∂∂∂∂),,()(22y x f x y fx y z y z x yx =∂∂∂=∂∂∂=∂∂∂∂ ),,()(2222y x f y f y z y z y yy =∂∂=∂∂=∂∂∂∂2. 可微的必要条件:若函数f (x , y )在点M 0(x 0, y 0)处可微, 则 ① f (x , y )在点M 0(x 0, y 0)处连续;② f (x , y )在点M 0(x 0, y 0)处存在偏导数, 且.d ),(d ),(d 0000),(00y y x f x y x f z y x y x+=3. 全微分的运算法则d[f (x , y ) ± g (x , y )] = d f (x , y ) ± d g (x , y );d[f (x , y )g (x , y )] = g (x , y )d f (x , y ) + f (x , y )d g (x , y );),(),(d ),(),(d ),(),(),(d2y x g y x g y x f y x f y x g y x g y x f −= (g (x , y ) ≠ 0). 4. 方向导数(1) z = f (x , y )在点M 0(x 0, y 0)处沿着向量l 的方向导数00(,)x y z ∂∂lty x f t y t x f t ),()cos ,cos (lim00000−++→βα,其中向量l 的方向余弦为cos α, cos β.(2) 若函数f (x , y )在点M 0(x 0, y 0)处可微, 则f (x , y )在点M 0(x 0, y 0)处沿任一方向l 的方向导数都存在,且有.cos ),(cos ),(0000),(00βαy x f y x f zy x y x +=∂∂l5. 梯度grad f (x 0, y 0)j.),(i ),(0000y x f y x f y x +=6. 复合函数微分法(1) 设函数u = ϕ(x ), v = ψ(x )在点x 处可导, 而z = f (u , v )在对应的点(u , v )处可微,则复合函数z = f (ϕ(x ), ψ(x ))在点处可导, 且x vv z x u u z x z d d d d d d ∂∂+∂∂=d d grad {,}.d d u v z x x=⋅ (2) 设函数u = ϕ(x , y ), v = ψ(x , y )在点(x , y )处可偏导, 而z = f (u , v )在对应的点(u , v )处可微,则复合函数z = f (ϕ(x , y ), ψ(x , y ))在点(x , y )处存在偏导数, 且xvv z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂},,{grad x v x u z ∂∂∂∂⋅= y v v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂},,{grad yv y u z ∂∂∂∂⋅= 7. 隐函数微分法(1) 设二元函数F (x , y )满足下列条件:①F x (x , y ), F y (x , y )在点(x 0, y 0)的某邻域内连续. ②F (x 0, y 0) = 0, ③F y (x 0, y 0) ≠ 0.则存在点x 0的一个邻域N (x 0, δ )以及在N (x 0, δ )内定义的唯一的函数y = y (x )满足: (i) y 0 = y (x 0), F (x , y (x )) ≡ 0, ∀x ∈N (x 0, δ ).(ii) 在N (x 0, δ )中, 函数y = y (x )有连续的导数, 且yxF F y −=′ (2) 设n +1元函数F (x 1, x 2, …, x n , y )满足下列条件:①),,,,(21y x x x F n x i (i = 1, 2, …, n ), F y (x 1, x 2, …, x n , y )在点M 0的某邻域内连续. ②F (M 0, y 0) = 0, ③F y (M 0, y 0) ≠ 0.则存在点M 0的一个邻域N (M 0, δ )以及在N (M 0, δ )内定义的唯一的一个n 元函数 y = y (x 1, x 2, …, x n )满足: (i) y 0 = y (M 0),且F (x 1, x 2, …, x n , y (x 1, x 2, …, x n )) ≡ 0, ∀( x 1, x 2, …, x n )∈N (M 0, δ ). (ii) y = y (x 1, x 2, …, x n )在N (M 0, δ )中有一阶连续偏导数, 且y x iF F x yi −=∂∂(i = 1, 2, …, n ).(3) 设三元函数F (x , y , z ), G (x , y , z )满足下列条件:①F x , F y , F z , G x , G y , G z 在点M 0(x 0, y 0, z 0)的某邻域内连续.②F (x 0, y 0, z 0) = 0, G (x 0, y 0, z 0) = 0, ③.00≠M zy z y G G F F则存在点x 0的一个邻域N (x 0, δ )以及在N (x 0, δ )内定义的唯一的一组函数⎩⎨⎧==)()(x z z x y y 满足:(i) y 0 = y (x 0), z 0 = z (x 0), 且⎩⎨⎧≡≡0))(),(,(0))(),(,(x z x y x F x z x y x F ∀x ∈N (x 0, δ ).(ii) y = y (x ), z = z (x )在N (x 0, δ )中均有连续的导数,且,),(),(),(),(d d z y G F x z G F x y ∂∂∂∂=,),(),(),(),(d d z y G F y x G F x z ∂∂∂∂=其中,),(),(x z x z G G F F x z G F =∂∂,),(),(zy zy G G F F z y G F =∂∂.),(),(yx yx G G F F y x G F =∂∂8. 切线方程与法平面方程(1) 设曲线Γ的参数方程为(),(),(),x x t y y t z z t =⎧⎪=⎨⎪=⎩ M 0, M 的坐标分别为(x (t 0), y (t 0), z (t 0)), 则切线方程为)()()(000000t z z z t y y y t x x x ′−=′−=′− 故切向量为a = {x ′(t 0), y ′(t 0), z ′(t 0)}, 法平面的方程为x ′(t 0)(x -x 0) + y ′(t 0) (y -y 0) + z ′(t 0)(z -z 0) = 0. (2) 设曲线Γ的方程为⎩⎨⎧==),(),(x z z x y y 则点))(),(,(0000x z x y x M 处的切线方程为)()()()(100000x z x z z x y x y y x x ′−=′−=− 法平面方程为:(x -x 0) + y ′(x 0) (y -y (x 0)) + z ′(t 0)(z -z (x 0)) = 0.(3) 设曲线Γ的方程为⎩⎨⎧==,0),,(,0),,(z y x G z y x F 它确定⎩⎨⎧==),(),(x z z x y y 则点M 0处的切线方程为:00),(),(),(),(),(),(000M M M y x G F z z x z G F y y z y G F x x ∂∂−=∂∂−=∂∂−法平面方程为:.0)(),(),()(),(),()(),(),(000000=−∂∂+−∂∂+−∂∂z z y x G F y y x z G F x x z y G F M M M9. 切平面方程与法线方程(1) Σ: F (x , y , z ) = 0在点M 0(x 0, y 0, z 0)处的切平面方程为,0))(())(())((000000=−+−+−z z M F y y M F x x M F z y x法线方程为)()()(000000M F z z M F y y M F x x z y x −=−=−(2) Σ: z = f (x , y )在点M 0(x 0, y 0, z 0)处的切平面方程为,0)())(,())(,(0000000=−−−+−z z y y y x f x x y x f y x法线方程为1),(),(0000000−−=−=−z z y x f y y y x f x x y x10. 多元函数的Taylor 公式设二元函数f (x , y )在点M 0(x 0, y 0)的某邻域N (M 0)内有n +1阶连续偏导数. 则 ∀M (x 0+∆x , y 0+∆y )∈N (M 0), 有),(00y y x x f ∆+∆+),()(),(0000y x f y y x x y x f ∂∂⋅∆+∂∂⋅∆+= +∂∂⋅∆+∂∂⋅∆+),((!21002y x f yy x x),()(!100y x f y y xx n n ∂∂⋅∆+∂∂⋅∆+),()()!1(1001y y x x f y y x x n n ∆+∆+∂∂⋅∆+∂∂⋅∆+++θθ 其中0<θ <1.上式称为二元函数f (x , y )在点M 0处带有Lagrange 型余项的n 阶Taylor 公式. 特殊情形 (1) 中值公式),(00y y x x f ∆+∆+y y y x x f x y y x x f y x f y x ∆∆+∆++∆∆+∆++=),(),(),(000000θθθθ其中0<θ <1.(2) 一阶Taylor 公式),(00y y x x f ∆+∆+),((),(0000y x f y y xx y x f ∂∂⋅∆+∂∂⋅∆+=),()(21002y y x x f yy x x ∆+∆+∂∂⋅∆+∂∂⋅∆+θθ0],[),(00M y x f f y x y x f ⎥⎦⎤⎢⎣⎡∆∆+=⎥⎦⎤⎢⎣⎡∆∆∆∆+y x M H y x f )(],[21*其中M *(x 0+θ∆x , y 0+θ∆y ), 0<θ <1, H f (M )为f 在点M (x , y )处的Hessian 矩阵.⎥⎥⎦⎤⎢⎢⎣⎡yy xy xy xx f f f f(3) Maclaurin 公式f (x , y ) = f (0, 0)∑=∂∂+∂∂⋅+nk k f y y x x k 1)0,0()(!1),(()!1(11y x f y y x x n n ∆∆∂∂⋅+∂∂⋅+++θθ, 其中0<θ <1.七. 数量函数积分1. 数量函数积分的定义 ∫Ω f (M )d Ω = 01lim()nkk d k f M→=∆Ω∑.2. 数量函数积分的性质(1) ∫Ω [a f (M ) + b g (M )]d Ω = a ∫Ω f (M )d Ω + b ∫Ω g (M )d Ω, 其中a , b 为常数.(2) ∫Ω f (M )d Ω = ∫Ω1 f (M )d Ω + ∫Ω2 f (M )d Ω, 其中Ω = Ω1∪Ω2, 且Ω1与Ω2无公共内点. (3) f (M ) ≤ g (M ) (∀M ∈Ω) ⇒ ∫Ω f (M )d Ω ≤ ∫Ω g (M )d Ω. (4) |∫Ω f (M ) d Ω| ≤ ∫Ω | f (M )|d Ω.(5) a ≤ f (M ) ≤ b (∀M ∈Ω) ⇒ aV ≤ ∫Ω f (M )d Ω ≤ bV , 其中V 为Ω的度量. (6) f (M ) ∈ C Ω ⇒ ∃M ∗∈Ω s.t. ∫Ω f (M )d Ω = f (M ∗)V , 其中V 为Ω的度量. 3. 直角坐标系下的二重积分的计算(1) D = {(x , y ) | a ≤ x ≤ b , ϕ1(x ) ≤ y ≤ ϕ2(x )}, 则∫∫D f (x , y )d σ =21()()d (,)d bx ax x f x y y ϕϕ∫∫.(2) D = {(x , y ) | c ≤ y ≤ d , ψ1(y ) ≤ x ≤ ψ2(y )}, 则∫∫D f (x , y )d σ =21()()d (,)d dy cy y f x y x ψψ∫∫.4. 二重积分换元法设函数f (x , y )在有界闭区域D 上连续, x = ϕ(u , v ) 和 y = ψ(u , v )有一阶连续偏导数, 且Jacobi 行列式J (u , v ) =(,)(,)x y u v ∂∂=u vu vϕϕψψ≠ 0,则 ∫∫D f (x , y )d x d y = ∫∫D f (ϕ(u , v ), ψ(u , v ))|J (u , v )|d u d v .5. 极坐标系下二重积分的计算令x = ρcos ϕ, y = ρsin ϕ, 则∫∫D f (x , y )d x d y = ∫∫D f (ρcos ϕ, ρsin ϕ)ρd ρd ϕ. (1) 极点O 在D 的外部D = {(ϕ, ρ) | α ≤ ϕ ≤ β, ρ1(ϕ) ≤ ρ ≤ ρ2(ϕ)}, 则∫∫D f (x , y )d x d y =21()()d (cos ,sin )d f βρϕαρϕϕρϕρϕρρ∫∫.(2) 极点O 在D 的边界曲线上D = {(ϕ, ρ) | α ≤ ϕ ≤ β, 0 ≤ ρ ≤ ρ(ϕ)}, 则∫∫D f (x , y )d x d y =()d (cos ,sin )d f βρϕαρϕρϕρϕρ∫∫.(3) 极点O 在D 的内部D = {(ϕ, ρ) | 0 ≤ ϕ ≤ 2π, 0 ≤ ρ ≤ ρ(ϕ)}, 则∫∫D f (x , y )d x d y =2()d (cos ,sin )d f πρϕϕρϕρρρϕ∫∫.6. 广义极坐标变换令x = a ρcos ϕ, y = b ρsin ϕ, 则∫∫D f (x , y )d x d y = ∫∫D f (a ρcos ϕ, b ρsin ϕ)ab ρd ρd ϕ. 7. 直角坐标系下三重积分的计算(1) Ω = {(x , y , z ) | (x , y ) ∈ D xy , z 1(x , y ) ≤ z ≤ z 2(x , y )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d xyz x y z x y D f x y z z x y ∫∫∫. (2) Ω = {(x , y , z ) | (y , z ) ∈ D yz , x 1(y , z ) ≤ x ≤ x 2(y , z )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d yzx y z x y z D f x y z x y z ∫∫∫.(3) Ω = {(x , y , z ) | (z , x ) ∈ D zx , y 1(z , x ) ≤ y ≤ y 2(z , x )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d zxy z x y z x D f x y z y z x ∫∫∫.(4) Ω = {(x , y , z ) | (x , y ) ∈ D (z ), p ≤ z ≤ q }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d qpD z f x y z x y z ∫∫∫. (5) Ω = {(x , y , z ) | (y , z ) ∈ D (x ), a ≤ x ≤ b }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d ba D x f x y z y z x ∫∫∫. (6) Ω = {(x , y , z ) | (z , x ) ∈ D (y ), c ≤ y ≤ d }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d d cD y f x y z z x y ∫∫∫.8. 柱面坐标系下三重积分的计算令x = ρcos ϕ, y = ρsin ϕ, z = z , 则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (ρcos ϕ, ρsin ϕ, z )ρd ϕd ρd z . 9. 球面坐标系下三重积分的计算令x = r sin θcos ϕ, y = r sin θsin ϕ, z = r cos θ,则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (r sin θcos ϕ, r sin θsin ϕ, r cos θ)r 2sin θd r d θd ϕ. 10. 广义球坐标系下三重积分的计算令x = ar sin θcos ϕ, y = br sin θsin ϕ, z = cr cos θ,则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (ar sin θcos ϕ, br sin θsin ϕ, cr cos θ)abcr 2sin θd r d θd ϕ.11. 第一型曲线积分的计算(1) L : y = y (x ) ∈(1)[,]C,a b 则 ∫L f (x , y )d s=(,(baf x y x x ∫.(2) L : x = x (y ) ∈(1)[,]C ,c d 则 ∫L f (x , y )d s=((),dcf x y y y ∫.(3) L : x = x (t ), y = y (t ) ∈(1)[,]C ,αβ 则 ∫L f (x , y )d s=((),(f x t y t t βα∫.(4) L : ρ = ρ(ϕ) ∈(1)[,]C,αβ 则 ∫L f (x , y )d s=(()sin ,()cos f βαρϕϕρϕϕϕ∫.(5) L : x = x (t ), y = y (t ), z = z (t ) ∈(1)[,]C ,αβ 则∫L f (x , y , z )d s=((),(),(.f x t y t z t t βα∫12. 第一型曲面积分的计算(1) 设Σ: z = z (x , y )分片光滑, f 在Σ上连续, Σ在xOy 平面上的投影区域为D xy ,则∫∫Σ f (x , y , z )d A=(,,(,d xyD f x y z x y x y ∫∫.(2) 设Σ: y = y (z , x )分片光滑, f 在Σ上连续, Σ在zOx 平面上的投影区域为D zx ,则∫∫Σ f (x , y , z )d A=(,(,),d zxD f x y z x z z x ∫∫.(3) 设Σ: x = x (y , z )分片光滑, f 在Σ上连续, Σ在yOz 平面上的投影区域为D yz ,则∫∫Σ f (x , y , z )d A=((,),,d yzD f x y z y z y z ∫∫.13. 线密度为µ(x , y )的平面曲线段L 的质心坐标(x ,y )(,)d (,)d LLx x y s x x y s µµ=∫∫,(,)d (,)d LLy x y s y x y sµµ=∫∫.14. 面密度为µ(x , y )的平面薄片D 的质心坐标(x ,y )(,)d d (,)d d DDx y x y x x y x y x µµ=∫∫∫∫,(,)d d (,)d d DDx y x y y x y x yy µµ=∫∫∫∫. 15. 密度为µ(x , y , z )的空间立体Ω的质心坐标(x ,y ,z )(,,)d d d (,,)d d d x y z x y z x x y z x y x z µµΩΩ=∫∫∫∫∫∫,(,,)d d d (,,)d d d x y z x y z y x y z x y y z µµΩΩ=∫∫∫∫∫∫, (,,)d d d (,,)d d d x y z x y z z x y z x y z zµµΩΩ=∫∫∫∫∫∫.16. 线密度为µ(x , y )的平面曲线段L 对x 轴的转动惯量I x = ∫L y 2µd s , 对y 轴的转动惯量I y = ∫L x 2µd s . 17. 面密度为µ(x , y )的平面薄片D 对x 轴的转动惯量I x = ∫∫D y 2µd σ, 对y 轴的转动惯量I y = ∫∫D x 2µd σ. 18. 密度为µ(x , y , z )的空间立体Ω关于x 轴, y 轴, z 轴的转动惯量I x , I y , I z .I x = ∫∫∫Ω (y 2+ z 2)µd x d y d z , I y = ∫∫∫Ω (z 2+ x 2)µd x d y d z , I z = ∫∫∫Ω (x 2+ y 2)µd x d y d z .19. 线密度为µ(x , y )的平面曲线段 L 对位于L 外的点M 0(x 0, y 0)处的单位质点的引力F 的两个分量F x =03()(,)d L k x x x y s r µ−∫, F y =03()(,)d L k y y x y s rµ−∫, 其中k 为引力常数, r20. 面密度为µ(x , y , z )的曲面块Σ对Σ外的一点M 0(x 0, y 0, z 0)处单位质点的引力F 的三个分量F x =03()d k x x A r µΣ−∫∫, F y =03()d k y y A r µΣ−∫∫, F z =03()d k z z A rµΣ−∫∫,。

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

大学高等数学所有公式大全.

大学高等数学所有公式大全.

大学高等数学公式·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·平方关系:sin^2(α+cos^2(α=1tan^2(α+1=sec^2(αcot^2(α+1=csc^2(α·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β=cosα·cosβ-sinα·sinβcos(α-β=cosα·cosβ+sinα·sinβsin(α±β=sinα·cosβ±cosα·sinβtan(α+β=(tanα+tanβ/(1-tanα·tanβtan(α-β=(tanα-tanβ/(1+tanα·tanβ·三角和的三角函数:sin(α+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ=(tanα+tanβ+tanγ-tanα·tanβ·tanγ/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα·辅助角公式:Asinα+Bcosα=(A^2+B^2^(1/2sin(α+t,其中sint=B/(A^2+B^2^(1/2cost=A/(A^2+B^2^(1/2tant=B/AAsinα+Bcosα=(A^2+B^2^(1/2cos(α-t,tant=A/B·倍角公式:sin(2α=2sinα·cosα=2/(tanα+cotαcos(2α=cos^2(α-sin^2(α=2cos^2(α-1=1-2sin^2(αtan(2α=2tanα/[1-tan^2(α]·三倍角公式:sin(3α=3sinα-4sin^3(αcos(3α=4cos^3(α-3cosα·半角公式:sin(α/2=±√((1-cosα/2cos(α/2=±√((1+cosα/2tan(α/2=±√((1-cosα/(1+cosα=sinα/(1+cosα=(1-cosα/sinα·降幂公式sin^2(α=(1-cos(2α/2=versin(2α/2cos^2(α=(1+cos(2α/2=covers(2α/2 tan^2(α=(1-cos(2α/(1+cos(2α·万能公式:sinα=2tan(α/2/[1+tan^2(α/2] cosα=[1-tan^2(α/2]/[1+tan^2(α/2] tanα=2tan(α/2/[1-tan^2(α/2]·积化和差公式:sinα·cosβ=(1/2[sin(α+β+sin(α-β] cosα·sinβ=(1/2[sin(α+β-sin(α-β] cosα·cosβ=(1/2[cos(α+β+cos(α-β] sinα·sinβ=-(1/2[cos(α+β-cos(α-β]·和差化积公式:sinα+sinβ=2sin[(α+β/2]cos[(α-β/2] sinα-sinβ=2cos[(α+β/2]sin[(α-β/2] cosα+cosβ=2cos[(α+β/2]cos[(α-β/2] cosα-cosβ=-2sin[(α+β/2]sin[(α-β/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2^2·其他:sinα+sin(α+2π/n+sin(α+2π*2/n+sin(α+2π*3/n+……+sin[α+2π*(n-1/n]=0cosα+cos(α+2π/n+cos(α+2π*2/n+cos(α+2π*3/n+……+cos[α+2π*(n-1/n]=0 以及sin^2(α+sin^2(α-2π/3+sin^2(α+2π/3=3/2tanAtanBtan(A+B+tanA+tanB-tan(A+B=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得:sinx=[e^(ix-e^(-ix]/(2i cosx=[e^(ix+e^(-ix]/2 tanx=[e^(ix-e^(-ix]/[ie^(ix+ie^(-ix]泰勒展开有无穷级数,e^z=exp(z=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

高等数学第十二章微分方程

高等数学第十二章微分方程
2
dy 1 dy y 2 y 2 。这是贝努利方程, 解出 ? ,得 dx x dx
对于这些类型的方程,它们各自都有固定的解法。如
果所给的方程按上述思路不能转化为已知类型的方程,这 时常用的方法和技巧如下: A.熟悉常用的微分公式; B.选取适当的变量代换,转化成上述可解类型的方程; C.变换自变量和因变量(即有时把 y看成自变量,而 考虑
dx 的方程类型)。 dy
一阶微分方程的解题方法流程图如下。
解题方法流程图
求Pdx Qdy 通解 0 Yes 可分离变量 No Yes
P Q y x
dy 解出 dx = f ( x, y )
No
可分离变 量方程
全微分 方程
齐次方程
dy y ( ) dx x
dy P ( x ) y Q( x ) dx
一阶线性方程
dy P ( x ) y Q( x ) y n dx
dy y (2)齐次方程: dx x
dy P ( x ) y Q( x ) (3)一阶线性微分方程: dx
dy n (4)伯努利方程: P ( x ) y Q( x ) y ( n 0,1) dx
(5)全微分方程:P ( x , y )dx Q( x , y )dy 满足 ,0
y dy du u x 解:令 u ,于是 y ux , ,上式可化为 x dx dx
du 1 u cos u u x sec u u dx cos u
du sec u , 为可分离变量的方程 即x dx
分离变量 积分得 所以 故原方程的通解为
dx cos udu x sin u ln x ln C

高等数学微积分公式大全

高等数学微积分公式大全

高等数学完整版计算公式一、0101101lim 0n n n m m x m a n m b a x a x a n m b x b x b n m−−→∞⎧=⎪⎪+++⎪=<⎨+++⎪∞>⎪⎪⎩(系数不为0的情况)二、重要公式(1)0sin lim 1x xx→= (2)()10lim 1x x x e →+= (3))1n a o >=(4)lim 1n →∞= (5)lim arctan 2x x π→∞=(6)lim tan 2x arc x π→−∞=−(7)lim arccot 0x x →∞= (8)lim arc cot x x π→−∞= (9)lim 0xx e →−∞=(10)lim x x e →+∞=∞ (11)0lim 1xx x +→=三、下列常用等价无穷小关系(0x→)sin x x ∼ tan x x ∼ arcsin x x ∼ arctan x x ∼ 211cos 2x x −∼()ln 1x x +∼ 1x e x −∼ 1ln x a x a −∼ ()11x x ∂+−∂∼四、导数的四则运算法则()u v u v ′′′±=± ()uv u v uv ′′′=+ 2u u v uv v v ′′′−⎛⎞=⎜⎟⎝⎠五、基本导数公式⑴()0c ′= ⑵1x xμμμ−= ⑶()sin cos x x ′=⑷()cos sin x x ′=− ⑸()2tan sec x x ′= ⑹()2cot csc x x ′=− ⑺()sec sec tan x x x ′=⋅ ⑻()csc csc cot x x x ′=−⋅ ⑼()xxee′= ⑽()ln xxaaa ′= ⑾()1ln x x′=⑿()1log ln xax a ′=⒀()arcsin x ′= ⒁()arccos x ′=⒂()21arctan 1x x ′=+ ⒃()21arccot 1x x′=−+⒄()1x ′=⒅′=六、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x −=⋅=⎡⎤⎣⎦∑七、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎞+=++⋅⎡⎤⎜⎟⎣⎦⎝⎠(5) ()()cos cos 2n n ax b a ax b n π⎛⎞+=++⋅⎡⎤⎜⎟⎣⎦⎝⎠(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎞=−⎜⎟+⎝⎠+ (7) ()()()()()11!ln 1n n n na n axb ax b −⋅−+=−⎡⎤⎣⎦+八、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ−= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =− ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =− ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =−⋅ ⑼()xxd ee dx = ⑽()ln xxd a aadx = ⑾()1ln d x dx x=⑿()1log ln xad dx x a= ⒀()arcsin d x dx = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x =−+九、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu =⑶()d uv vdu udv =+ ⑷2u vdu udvd v v −⎛⎞=⎜⎟⎝⎠十、基本积分公式⑴kdx kx c =+∫ ⑵11x x dx c μμμ+=++∫ ⑶ln dxx c x=+∫ ⑷ln xxa a dx c a=+∫ ⑸x x e dx e c =+∫ ⑹cos sin xdx x c =+∫ ⑺sin cos xdx x c =−+∫ ⑻221sec tan cos dx xdx x c x ==+∫∫⑼221csc cot sin xdx x c x ==−+∫∫⑽21arctan 1dx x c x =++∫ ⑾arcsin x c =+十一、下列常用凑微分公式十二、补充下面几个积分公式tan ln cos xdx x c =−+∫ cot ln sin xdx x c =+∫ sec ln sec tan xdx x x c =++∫ csc ln csc cot xdx x x c =−+∫2211arctan xdx c a x a a=++∫ 2211ln 2x adx c x a a x a−=+−+∫c ln c =+十三、分部积分法公式⑴形如n ax x e dx ∫,令n u x =,axdv e dx = 形如sin n x xdx ∫令nu x =,sin dv xdx = 形如cos n x xdx ∫令nu x =,cos dv xdx = ⑵形如arctan n x xdx ∫,令arctan u x =,ndv x dx = 形如ln n x xdx ∫,令ln u x =,ndv x dx =⑶形如sin axe xdx ∫,cos ax e xdx ∫令,sin ,cos axu e x x =均可。

高等数学公式、定理最全版

高等数学公式、定理最全版

高等数学公式导数公式:根本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβα-+=--+=+βαβαβαβαβαβαβαβαtg tg tg ±=±=±±=±)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹〔Leibniz 〕公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

部分分式展开法公式

部分分式展开法公式

部分分式展开法公式部分分式展开法公式是高等数学中常用的一种技巧,用于将一个分式拆分成多个分式之和的形式。

这种技巧在微积分、复变函数、常微分方程等领域都有广泛的应用。

一、部分分式展开法的基本思想部分分式展开法的基本思想是将一个分式表示成若干个分式之和的形式,其中每个分式的分母是不可约的一次多项式。

具体而言,对于一个有理函数 $frac{P(x)}{Q(x)}$,如果 $Q(x)$ 可以分解成若干个不可约的一次多项式的乘积,即 $Q(x) = (x - a_1)^{k_1} cdots (x - a_m)^{k_m}$,则我们可以将 $frac{P(x)}{Q(x)}$ 表示成如下形式的分式之和:$$frac{P(x)}{Q(x)} = frac{A_{1,1}}{x - a_1} + cdots +frac{A_{1,k_1}}{(x - a_1)^{k_1}} + cdots + frac{A_{m,1}}{x - a_m} + cdots + frac{A_{m,k_m}}{(x - a_m)^{k_m}}$$其中 $A_{i,j}$ 是待定系数,可以通过比较系数的方法求得。

这样,我们就成功地将一个分式展开成了若干个分式之和的形式,每个分式的分母都是不可约的一次多项式。

二、部分分式展开法的具体步骤部分分式展开法的具体步骤如下:1. 对于一个有理函数 $frac{P(x)}{Q(x)}$,首先将 $Q(x)$ 分解成不可约的一次多项式的乘积形式,即 $Q(x) = (x - a_1)^{k_1} cdots (x - a_m)^{k_m}$。

2. 对于每个不可约的一次多项式 $(x - a_i)^{k_i}$,分别列出如下形式的分式:$$frac{A_{i,1}}{x - a_i} + cdots + frac{A_{i,k_i}}{(x -a_i)^{k_i}}$$其中 $A_{i,j}$ 是待定系数。

高等数学:微分方程

高等数学:微分方程

两边积分,得
用lnC 表示任意常数,考虑到R >0,得积分结果

微分方程
微分方程
二、 一阶线性微分方程
我们把形如
的方程称为一阶线性微分方程.当q(x)≡0时,方程
称为一阶线性齐次微分方程;当q(x)≠0时,方程(6-15)称为一阶
线性非齐次微分方程.
微分方程
一阶线性齐次微分方程(6-16)是可分离变量的微分方程,
当p2-4q=0时,特征方程r2+pr+q=0有两个相等的实根,即

r1=r2=- ,此时
2
可得到方程(6-30)的一个特解y=er1x .容易验证
y=xer1x 也是方程(6-30)的一个特解, 且y1 =er1x 与y2 =xer1x 是线
性无关的.由定理6-1可知,齐次方程(6-30)的通解为
微分方程
1.f(x)=Pm (x)eλx 型
f(x)=Pm (x)eλx 型时,Pm (x)为m 次多项式,λ 为常数.此时,可
以证明方程(6-29)具有形如y* =xkQm (x)eλx 的特解,其中Qm (x)
静止状态下沉,所受阻力与下 沉速度成正比(比例系数为k 的
常数).试求潜水艇下沉深度s与时间t的函数关系式.
微分方程
解 潜水艇下沉过程中所受的力有重力、水对潜艇的浮
力及下沉时遇到的阻力.前两个 力都是常量,其合力称为下沉
力,即下沉力F= 重力-浮力;下沉时遇到的阻力大小为
由牛顿第二定律,有

微分方程
假设 y=erx是方程(6-30)的特解,其中r为待定常数.将y=erx 、
y'=rerx 、y″=r2erx代入 方程(6-30),得

高等数学公式大全

高等数学公式大全

高等数学公式大全
1.极限运算法则:lim(f(x)+g(x))=limf(x)+limg(x),
lim(f(x)-g(x))=limf(x)-limg(x),
lim(f(x)*g(x))=limf(x)*limg(x),
lim(f(x)/g(x))=limf(x)/limg(x)。

2.导数公式:包括求导的四则运算法则、复合函数的求导法
则、高阶导数等。

3.导数的应用:包括极值与拐点、曲线的凹凸性和拐点、函
数图形的描绘等。

4.不定积分:包括不定积分的性质和运算法则、基本积分公
式、积分的方法等。

5.定积分:包括定积分的性质和运算法则、微积分基本定理
等。

6.多重积分:包括二重积分、三重积分等。

7.微分方程:包括一阶微分方程、高阶微分方程、线性微分
方程等。

8.空间解析几何:包括向量的表示与运算、向量的数量积、
向量积等。

9.多元函数的微分学:包括偏导数与高阶偏导数、全微分、
方向导数等。

10.重积分:包括二重积分、三重积分、曲线积分、曲面
积分等。

高等数学微积分公式大全

高等数学微积分公式大全

a+b a −b ⋅ sin 2 2 a+b a −b ⋅ sin cos a − cos b = −2sin 2 2
5.积化和差公式
1 sin a sin b = − ⎡ cos ( a + b ) − cos ( a − b ) ⎤ ⎦ 2⎣ 1 sin a cos b = ⎡ sin ( a + b ) + sin ( a − b ) ⎤ ⎦ 2⎣
(4) lim n n = 1
n →∞
(5) lim arctan x =
x →∞
π
2
(6) lim arc tan x = −
x →−∞
π
2
(7) lim arc cot x = 0
x →∞
(8) lim arc cot x = π
x →−∞
(9) lim e = 0
x x →−∞
(10) lim e = ∞
u = arctan x
u = arcsin x
1− x
2
十二、补充下面几个积分公式
∫ tan xdx = − ln cos x + c ∫ sec xdx = ln sec x + tan x + c
∫a ∫
2
∫ cot xdx = ln sin x + c ∫ csc xdx = ln csc x − cot x + c
高等数学完整版计算公式
⎧ a0 ⎪b n = m 0 n n −1 a x + a1 x + + an ⎪ ⎪ 一、 lim 0 m = 0 (系数不为 0 的情况) n<m ⎨ x →∞ b x + b x m −1 + + b 0 1 m ⎪∞ n > m ⎪ ⎪ ⎩ 1 sin x (2)lim (1 + x ) x = e (3)lim n a (a > o) = 1 二、 重要公式 (1)lim =1 n →∞ x x →0 → 0 x

高等数学基本公式整理微分方程部分

高等数学基本公式整理微分方程部分

微分 方 程的相关 概 念 :一阶微分方程: y f (x, y) 或 P( x, y)dx Q(x, y)dy 0 可分别变量的微分方程 :一阶微分方程能够化 为 g ( y)dy 的形式,解法:f (x)dxg ( y) dy f ( x)dx 得: G( y) F (x) C 称为隐式通解。

齐次方程:一阶微分方 程能够写成 dyf ( x, y),即写成 y的函数,解法:dx(x, y) x设 u y ,则 dy u x du , udu (u) , dxdu 分别变量,积分后将 y取代 ,x dx dx dx x (u) ux即得齐次方程通解。

一阶线性微分方程:1、一阶线性微分方程:dyP( x) y Q ( x)dx当 Q( x) 0时, 为齐次方程, yCe P( x) dx当 Q( x) 0时,为非齐次方程,yP( x) dxdxP ( x) dx( Q (x)e C )e、贝努力方程: dyP( x) y Q (x) y n , 0,1)2 dx (n全微分方程:假如 P(x, y)dx Q ( x, y)dy 0中左端是某函数的全微分方程,即:du (x, y)P(x, y) dx Q( x, y) dy 0,此中:uP( x, y),uQ ( x, y)xyu( x, y) C 应当是该全微分方程的通解。

二阶微分方程:2ydy, f ( x)时为齐次ddx 2P(x) dxQ( x) y f ( x)f ( x) 时为非齐次二阶常系数齐次线性微分方程及其解法:(*) y py qy 0,此中 p, q 为常数;求解步骤:、写出特点方程:)r 2pr q ,此中 2, 的系数及常数项恰巧是(*)式中的系数;1(rry , y , y2、求出 ( )式的两个根 r 1 ,r 23、依据 r 1 ,r 2的不一样状况,按下表写 出(*) 式的通解: r 1, r 2的形式(*) 式的通解两个不相等实根 ( p 24q 0)yc 1e r 1 x c 2 e r 2 x两个相等实根 ( p 24q0)y(c1 c2 x)e r1x一对共轭复根 ( p 24q0)y e x (c1 cos x c2 sin x) r1i ,r2ip ,4q p 222二阶常系数非齐次线性微分方程y py qy f ( x), p,q为常数f ( x) e x P m ( x)型,为常数;f ( x) e x [ P l ( x) cos x P n ( x)sin x]型。

高等数学 第十二章 微分方 第五节 全微分方程

高等数学 第十二章 微分方 第五节 全微分方程

dy x2 + x3 + y 的通解 . 例6 求微分方程 = − 1+ x dx
解1
1 dy 2 + y = −x , 整理得 dx 1 + x
C . A 常数变易法: 对应齐方通解 y = 1+ x x3 x4 C ( x) 设 y= . C ( x) = − − + C . 3 4 1+ x
凭观察凑微分得到?xy常见的全微分表达式?xy??xdxydyd???2??xdy?ydxy??d?arctan?22x?xy?22xdy?ydx?y?d??2x?x?xdyydxdlnxyxyxdxydy?122?d?lnxy?22xy??2xdy?ydx?1xy?d?ln?22x?y?2x?y?可选用的积分因子有xy11112222222等
C ( y ) = y,
x3 x4 + = C. 原方程的通解为 y + xy + 3 4
一阶微分方程小结
一阶微分方程
分离变量法 常数变易法 全微分方程
思考题
2x y − 3x dy = 0 方程 3 dx + 4 y y
2 2
是否为全微分方程?
思考题解答
∂P ∂ ⎛ 2 x ⎞ 6x = ⎜ 3⎟ =− 4, ∵ ∂y ∂y ⎝ y ⎠ y
x 2 3
∴ 是全微分方程 .
u( x , y ) = ∫ ( x + x + y )dx + ∫ dy,
0 0
y
B 凑微分法:
dy + ( xdy + ydx ) + x 2 dx + x 3 dx = 0, 3 4 x x dy + d ( xy ) + d +d = 0, 3 4 4 x3 x d ( y + xy + + ) = 0. 3 4

高等数学_第7章___常微分方程

高等数学_第7章___常微分方程

第7章 微分方程一、本章提要1. 基本概念微分方程,常微分方程(未知函数为一元函数),偏微分方程(未知函数为多元函数),微分方程的阶数(填空题).齐次方程 :()dy y dxx ϕ=或者()dxxdy yϕ=(计算) 一阶线性微分方程:()()y P x y Q x '+=或者()()x P y x Q y '+=通解公式()d ()d ()e d e P x x P x x y Q x x C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ 或者用常数变异法求解.(计算或者填空) 线性相关,线性无关(选择) 可降解(不显含x 或y )的(计算)齐次常系数线性微分方程:特征根法(填空)非齐次常系数线性微分方程:特接用待定系数法. (计算) 微分方程解的结构定理(选择或填空). 换元法也是求解微分方程的重要方法之一. 二、要点解析问题1 常微分方程有通用的解法吗?对本章的学习应特别注意些什么?解析 常微分方程没有通用的求解方法.每一种方法一般只适用于某类方程.在本章 我们只学习了常微分方程的几种常用方法.因此,学习本章时应特别注意每一种求解方法所适用的微分方程的类型.当然,有时一个方程可能有几种求解方法,在求解时,要选取最简单的那种方法以提高求解效率.要特别注意:并不是每一个微分方程都能求出其解析解,大多数方程只能求其数值解.例1 求微分方程 '+=y y 0 的通解.解一 因为 0y y '+= 所对应的特征方程为10r +=,特征根1r =-,所以e xy C -=(C 为任意常数)为所求通解.解二 因为0=+'y y ,所以)0(d d ≠-=y y xy ,分离变量x y y d d -=,两边积分⎰⎰-=x yy d d ,1ln ln y x C =-+, 所以exy C -= (C 为任意常数)三、例题精解例3 求''=y y 4满足初始条件01,2x x yy =='== 的特解.解一 令'=y p ,则d d d d d d d d p p y py pxy x y''==⋅=.将其代入原方程''=y y 4得 y yp p4d d =,分离变量 y y p p d 4d =, 两边积分⎰⎰=y y p p d 4d ,22111422p y C =⋅+, 2224p y C =+,因为001,2x x yp y =='===,所以222241C =⨯+,可得C 2=0.故224p y =,即 p y =±2.这里'=-y y 2 应舍去,因为此时'y 与y 异号,不能够满足初始条件.将2y y '=分离变量便得其解y =23exC +.再由y x ==01,得30C =,于是所求解为2e xy =.上面解法中,由于及时地利用初始条件确定出了任意常数C 1的值,使得后续步骤变得简单,这种技巧经常用到.解二 因为''=y y 4,所以40y y ''-=,特征方程 240r -=, 特征根 122,2r r =-=, 于是其通解为2212e e x x y C C -=+, 由初始条件可得C 1=0 ,C 2=1 ,所求特解为 2e x y =.例4 求方程''+=y y x sin 的通解.解一 该方程为二阶常系数非齐次线性方程,其对应的齐次方程为 ''+=y y 0, 特征方程为 210r +=, 特征根12i,=i r r =-,齐次方程的通解为12cos sin Y C x C x =+,由于方程0sin e sin y y x x ''+==,i i αβ+=(其中0,1αβ==) 恰是特征单根,故设特解为(c o s s i n y x a xb x *=+,代入原方程,可得1,02a b =-= 所以1cos 2y x x *=-,于是所求通解为y C x C x x x =+-1212c o ss i n c o s .上述解法一般表述为:若二阶线性常系数非齐次微分方程 ''+'+=y py qy f x ()中的非齐次项[]()e()c o s ()s i nxnh f x P x x P xx αββ=+,那么该微分方程的特解可设为[]e()c o s ()s i n kxp mm y x P x x Q xx αββ=+,其中(), ()m m P x Q x 均为 m 次待定多项式 {}m h n =m ax ,.如果非齐次项中的αβ,使i αβ±不是特征方程的根,则设0k =;如果i αβ±是特征方程的单根,则取1k =. 例5 求解微分方程x xe y y y 42=+'-''。

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,ax dv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

高数微积分公式大全

高数微积分公式大全

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()x x e e '= ⑽()ln x x a a a '= ⑾()1ln x x'=⑿()1log ln xa x a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()u v uv u v '''=+ 2u u v u v v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则(1)()()()()()()()nn n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()nn cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式(1)()()!n nx n = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln x a d dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin dx x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ c o t l n s i n x d x x c =+⎰ sec ln sec tan xdx x x c =++⎰ c s c l n c s cc o t xd x x x c=-+⎰ 2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsinxc a=+ ln x c =+九、下列常用凑微分公式十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin axe xdx ⎰,cos ax e xdx ⎰令,sin ,cos ax u e x x =均可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档