五年级数学教案《行程问题(一)》
冀教版数学五年级上册《行程问题》课件

线段图
甲车 42km/时
43km/时乙车
255km
甲行的路程=甲的速度×时间。 乙行的路程=乙的速度×时间。
甲行的路程+乙行的路程=总路程
42km/时
甲车
43km/时乙车
255km
(速度和)
总路程=速度和×相遇时间。பைடு நூலகம்
2.小5?时相遇
甲 5?km/时
4km/时
乙
?km
同时相向而行,最后相遇.
(求总路程、相遇时间、某一速度)
思考方法 1.出发的时间 2.行驶的方向 3.最后的结果
甲、乙两辆汽车同时从 某相距地3相9千背米而的行两。地背向而行 甲车的速度是千米/时,乙 车的速度是千米/时。两车 几小时后相距312千米?
背向而行
甲、乙相距5千米,两车同时从两 地出发, 背向而行,甲车每小时行 42千米,乙车每小时行43千米,3小 时后两车相距多少千米?
本课小结
结合具体情境,经历解决相遇问题 的过程。要求大家理解相遇问题的数量 关系。会解决简单的相遇问题。能对问 题中的数学信息作出合理的解释。
冀教版五年级数学上册
教学目标
1.知识目标:结合具体情境,经历解决相遇 问题的过程。要求大家理解相遇问题的数 量关系。
2.能力目标:会解决简单的相遇问题。能对 问题中的数学信息作出合理的解释。
3.情感目标:体验解决问题策略的多样化。
例:
两个城市相距255千米,甲、 乙两辆汽车同时从两个城 市出发,相向而行。甲车 的速度是42千米/时,乙车 的速度是43千米/时.两车 几小时后相遇?
行程问题教案(共五篇)

行程问题教案(共五篇)第一篇:行程问题教案课题名称:行程问题教学目标:1:理解相遇、追及问题的中路程、时间、速度的关系2:能准确地画出线段图3:能结合线段图来抓住路程时间速度的关系来求解教学重点与难点:1:掌握把题意转化为线段图来解题2:掌握相遇、追及、行程问题中时间、路程、速度的数理关系教学内容知识点一:相遇问题1:两个物体在同一路段上两个不同的地点相对而行时,如果同时到达某一地点,通常叫做相遇。
2:基本公式:速度和×相遇时间=距离3:解题时的关键在于理清运动过程,抓住两者同时行驶的路程及速度和,同时结合线段图求解。
例题1:例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
(基本相遇问题)练习:1,一辆货车和一辆客车同时从相距450千米的两地相向而行,货车每小时行40千米,客车每小时行50米,问:几小时后两车在途中相遇?2.两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?3.辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?例2:小明住东村,小牛住西村,小明和小牛同时从东村、西村出发到对方家走去,2小时后在途中相遇,小明每小时走3千米,小牛每小时走4千米,东西村相距多少千米?练习二:1,甲车每小时行50千米,乙车每小时行60千米,两车同时从两地相对开出,经过3小时两车可以相遇,两地之间相距多少千米?2,两辆汽车从相距450公里的两地相对开出,3小时后相遇,一辆汽车的速度是每小时80公里,求另一辆汽车的速度?课后作业:1、小明家和小牛家相距14千米,星期六小明和小牛同时从自己家出发向对方家里走去,小明每小时行3千米,小牛每小时走4千米,经过几小时两人在途中相遇?2、甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。
五年级数学上册教案-5.2.4 行程问题1-人教版

《行程问题》说题稿尊敬的各位老师评委,大家好,今天我要交流的题目是行程问题,我将从学情分析、题目分析、思想和方法、解题指导、变式练习、解题反思等方面进行说题。
首先请看习题:甲、乙两艘轮船同时从上海出发开往青岛。
经过18小时后,甲船落后乙船57.6km。
甲船每小时行32.5km,乙船每小时行多少千米?一、学情分析本题出自人教版小学数学五年级上册第五单元“简易方程”练习十九的第14题,属于第三学段小学数学“数与代数”中的内容。
在这之前学生已掌握了行程问题的基本数量关系,学习了用方程解决一些简单问题,但对相遇问题的特殊情况,例如同向而行、相向而行的理解还需进一步加深。
在本节课的学习中让孩子通过画线段图、分析、归纳等方式进一步解决较为复杂行程问题。
在解决问题的过程中提高学生的多种能力,为六年级工程问题的教学内容起到奠基作用。
二、题目分析本题的设计意图是:一是要考查数学思想:如:在解决问题时要用到数形结合与方程的思想。
二是要考查数学能力:如:解决问题时要用到画线段图、分析数量关系式和运算求解的能力;三是要让学生获得解决问题的基本方法,体验解决问题方法的多样性,体会数学的基本思想和思维方式。
本题稍显复杂,尤其是对数学思维较弱的学生来说,主要出现的问题如下:1、审题不清。
2、找不准题目的数量关系,3、不理解速度、时间和路程三者之间的关系。
三、数学思想和方法用方程解决问题,一定要先分析题意,找出等量关系再列方程求解。
一般的情况下,我们用画线段图的方法来分析理解题意。
教材要求学生能看懂线段图,能根据应用题的题意画出线段图。
我觉得,解决应用题的关键是要理解抽象的等量关系。
由于学生尚处在形象思维的发展阶段,教师应当引导学生利用形象的线段图来解决抽象的问题。
画线段图是解决很多应用题很好的辅助手段。
比如在解答行程问题(包括相遇问题、追及问题、过桥问题)时,画线段图能很快理顺题中的等量关系。
在进行小学数学课堂教学的过程中,教师要将教学内容进行拓展,使得教学内容不仅局限于书本知识中,而是结合生活实际,帮助学生提高解决问题的能力。
2017年春季学期新苏教版五年级数学下册行程问题(一)相遇问题

行程问题(一)(相遇问题)例1:甲乙两辆列车同时从两地相对开出。
快车每小时行60千米,乙车每小时行55千米。
相遇时,甲车比乙车多行45千米,求两地相距多少千米?快慢两车同时从甲乙两地相对开出,快车每小时行80千米,慢车每小时行45千米,相遇时快车比慢车多行70千米。
求甲乙两地之间的路程。
例2:甲乙两队学生从相距18千米的两地同时出发,相向而行,一个同学骑自行车以每小时14千米的速度,在两队之间不停的往返联络,甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?两队同学同时从相距30千米的甲乙两地相向出发,一只鸽子以每小时二20千米的速度在两队之间不断往返送信,如果鸽子从同学们出发到相遇共飞行了30千米。
而甲队同学比乙队同学每小时多走0.4千米。
求两队同学的行走速度。
例3:甲乙两辆汽车从相距600千米的两地相对开出,甲车每小时行45千米,乙车每小时行40千米,甲车先开出2小时后,乙车才开出,问乙车行几小时后与甲车相遇?相遇时两车各行多少千米?甲乙两地相距1050千米,一辆快车以每小时150千米的速度从甲地开出,3小时后一辆慢车每小时90千米的速度从乙地开出,问慢车几小时后与快车相遇?相遇吋两车各行多少千米?例4:甲乙两车同时从ab两地相向出发,3小时后两车还相距120千米。
又行3小时两车又相距120千米,问ab两地相距多少千米?快慢车早上6时同时从甲乙两地相向开出。
中午12时两车相距50千米,继续行驶到14时,两车又相距170天。
甲乙两地相距多少千米?例5:甲乙两辆汽车从东西两地相向而行,甲车每小时行48千米,乙车每小时行42千米。
两车离中点21千米处相遇,求东西两地相距多少千米?甲乙两辆汽车同时从东西两城市相向而行,甲车每小时行60千米,乙车每小时行56千米。
两车在距中点16千米处相遇,求东西两城市相距多少千米?例6:甲乙两列火车同时从ab两站相向开出,在离a站60千米的地方相遇后,两车仍以原速继续前进,各车分别到达对方出发点后立即返回。
五年级下第3讲《行程问题综合(一)》教学课件

行程问题综合 (一)
数学知识点
mathematics
• Culture
1.知识精讲 3.极限挑战
2.例题讲解 4.巩固提升
数学知识点
mathematics
知识精讲 在小学数学中,行程问题占了很大的分量,行程问题主要考查学生对于运动三要素:速 度、时间和路程的认识;学习行程问题对于学生认识世界,以及对以后理科课程的学习 都有很大的帮助. 行程问题中最基本的内容是相遇和追及,在与相遇追及相关的行程问题中,找出“路程 和”与“路程差”是解题的关键.
例题讲解
mathematics
例题4:甲、乙二人在一个环形跑道的起点同时开始跑步,结果发现:若甲沿顺时针方向, 乙沿逆时针方向,从出发到第一次迎面相遇需要2分钟:若甲、乙都沿逆时针方向,则从出 发到甲第一次追上乙要用9分钟;已知相遇地点与追及地点相距130米,那么整条环形跑道 的长度是多少?
例题讲解
mathematics
练习4:甲、乙二人在一个环形跑道的起点同时开始跑步,结果发现:若甲沿顺针方向,乙 沿逆时针方向,从出发到第一次迎面相遇需要3分钟;若甲、乙都沿逆针方向,则从出发到 甲第一次追上乙要用5分钟,已知相遇地点与追及地点相距100米,那么整条环形跑道的长 度是多少?
极限挑战
mathematics
巩固提升
mathematics
作业5:甲、乙两人从周长为400米的环形跑道上的同一点同时出发相背而行,8分钟后两人 第三次相遇;已知甲每秒钟比乙每秒钟多行0.1米,那么两人第三次相遇的地点与出发点之 间的距离是多少?
下节课见!
你若盛开,清风自来!
例题5:小明和小刚的速度分别为每分钟90米和每分钟70米,早上8:00他们分别从A、B两 站同时出发,相向而行,第一次迎面相遇后两人继续前进,分别到达B、A后返回并在途中 第二次迎面相遇,第二次迎面相遇地点距离A、B两站的中点450米,从两人同时出发到第二 次迎面相遇总共经历了多少分钟?A、B两站的距离为多少米?他们第一次迎面相遇是在几 点几分?
2023-2024学年五年级下学期数学行程(1)(教案)

20232024学年五年级下学期数学行程(1)(教案)一、教学内容本节课的教学内容主要包括教材第五章第一节《行程》的相关概念和计算方法。
通过本节课的学习,学生将掌握行程的定义、行程的基本公式及其应用。
二、教学目标1. 让学生理解行程的概念,掌握行程的计算方法。
2. 培养学生的逻辑思维能力和解决实际问题的能力。
3. 提高学生的数学素养,使他们在生活中能够运用数学知识解决行程问题。
三、教学难点与重点1. 教学难点:行程公式的理解和应用,以及解决实际行程问题。
2. 教学重点:行程概念的掌握,行程公式的记忆和应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:笔记本、尺子、圆规。
五、教学过程1. 实践情景引入:以火车行驶为例,让学生观察并描述火车的行程。
2. 概念讲解:介绍行程的定义,解释行程的基本公式。
3. 例题讲解:讲解行程的计算方法,引导学生运用行程公式解决问题。
4. 随堂练习:布置具有代表性的练习题,让学生独立完成,并及时给予反馈和讲解。
5. 小组讨论:让学生分组讨论实际行程问题,培养学生的合作意识。
六、板书设计1. 行程的定义2. 行程公式3. 行程公式的应用七、作业设计1. 请用一句话描述行程的概念。
2. 请写出一个行程公式,并解释其含义。
八、课后反思及拓展延伸1. 课后反思:本节课通过实践情景引入,让学生更好地理解了行程的概念。
在讲解行程公式时,注重了学生的参与和互动,提高了他们的学习兴趣。
在布置作业时,注重了题目的多样性和实际意义,有助于巩固所学知识。
2. 拓展延伸:让学生调查生活中的行程问题,如步行、骑车、坐车等,并尝试用所学的行程知识解决问题。
重点和难点解析实践情景引入的环节是我特别重视的部分。
我认为,通过结合实际情境来引入新知识,可以有效地激发学生的兴趣和好奇心。
例如,在讲解行程概念时,我选择了火车行驶作为实例,让学生观察并描述火车的行程。
这样不仅能够让学生对行程有一个直观的理解,还能够让他们意识到数学与实际生活的紧密联系。
最新人教版小学五年级上册数学《火车行程问题》优质教学课件

答:这列火车的速度是30米/秒。
例3:
国庆节接受检阅一列车队共52辆,每辆车长 4米,每相邻两辆车相隔6米,车队每分钟行驶 105米,这列车要通过536米长的检阅场地,要 多少分钟?
车长: 52×4=208(米)
52辆车总间距长:(52 – 1)×6=306(米)
总长: 208+306=514(米)
(514+536)÷105=10(分)
答:需要10分钟。
例3:
5、 六年级210名同学排成两路纵队去春游,每两名同 学相隔0.5米,队伍以每分钟60米的速度通过长308米 的一座小桥,一共需要多少时间?
路程=速度×时间
路程=速度×时间
ቤተ መጻሕፍቲ ባይዱ
一列火车长180米,每秒钟行20米,全车通 过一个360米的山洞,需要多少时间?
开始计时
山洞
360米
结束计时
火车运动的总路程=桥长+车长
桥长+车长=速度×时间
速度=(桥长+车长)÷时间 时间=(桥长+车长)÷速度
例1:
一列火车长180米,每秒钟行20米,全车通
过一个360米的山洞,需要多少时间?
(180+360)÷20=27(秒) 答:需要27秒。
例1:
1、一列火车长360米,每秒行18米,全车通过一座长90 米的大桥,需要多长时间?
(360+90)÷18=25(秒)
答:需要25秒。
2、一座大桥长2100米,一列火车以每分钟800米的速度 通过这座大桥,从车头上桥到车尾离桥共用3.1分钟,这列 火车长多少米?
思维拓展第11讲《行程问题(一)》(教案)五年级上册数学人教版

思维拓展第11讲《行程问题(一)》(教案)五年级上册数学人教版一、教学目标1. 知识与技能:通过本节课的学习,使学生掌握行程问题的基本概念和分类,学会运用速度、时间、路程之间的关系解决实际问题。
2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维和分析问题的能力。
3. 情感、态度与价值观:激发学生对数学的兴趣,培养学生积极思考、合作交流的学习习惯。
二、教学内容1. 行程问题的基本概念和分类2. 速度、时间、路程之间的关系3. 行程问题的解题方法三、教学重点与难点1. 教学重点:行程问题的基本概念和分类,速度、时间、路程之间的关系。
2. 教学难点:行程问题的解题方法,特别是涉及到多个未知数的行程问题。
四、教具与学具准备1. 教具:PPT、黑板、粉笔、教学图片等。
2. 学具:练习本、笔、尺子等。
五、教学过程1. 导入:通过生活中的实例,引出行程问题的概念,激发学生的兴趣。
2. 新课导入:讲解行程问题的基本概念和分类,让学生了解行程问题的特点和解题方法。
3. 案例分析:通过具体案例,让学生了解速度、时间、路程之间的关系,并学会运用这些关系解决实际问题。
4. 练习:让学生独立完成练习题,巩固所学知识。
5. 小组讨论:让学生分组讨论行程问题的解题方法,培养学生的合作精神和交流能力。
7. 作业布置:布置课后作业,巩固所学知识。
六、板书设计1. 行程问题的基本概念和分类2. 速度、时间、路程之间的关系3. 行程问题的解题方法七、作业设计1. 基础题:行程问题的基础知识,包括行程问题的概念、分类和速度、时间、路程之间的关系。
2. 提高题:行程问题的解题方法,特别是涉及到多个未知数的行程问题。
3. 拓展题:行程问题的实际应用,让学生运用所学知识解决实际问题。
八、课后反思1. 教学内容是否清晰易懂,学生是否能够掌握行程问题的基本概念和分类。
2. 教学方法是否合适,是否能够激发学生的兴趣和积极性。
五年级数学提高讲义——行程问题(一)

第五讲行程问题(一)基础班1. A ,B 两村相距2800 米,小明从 A 村出发步行 5 分钟后,小军骑车从 B 村出发,又经过 10 分钟两人相遇。
已知小军骑车比小明步行每分钟多行130 米,小明每分钟步行多少米?2.甲、乙两人从周长为 1600 米的正方形水池相对的两个极点同时出发逆时针行走,两人每分钟分别行 50 米和 46 米。
出发后多长时间两人第一次在同一边上行走?3. 一只猎狗正在追赶前方20 米处的兔子,已知狗一跳行进 3 米,兔子一跳行进 2.1 米,狗跳 3 次的时间兔子跳 4 次。
兔子跑出多远将被猎狗追上?4. 甲、乙二人分别从 A, B 两地同时出发,两人同向而行,甲26 分钟追上乙;两人相向而行, 6 分钟可相遇。
已知乙每分钟行50 米,求 A , B 两地的距离。
5.某人沿着电车道旁的便道以 4.5 千米 / 时的速度步行,每 7.2 分钟有一辆电车迎面开过,每12 分钟有一辆电车从后边追过。
假如电车按相等的时间间隔发车,并以同一速度不断地来回运转,那么电车的速度是多少?电车发车的时间间隔是多少?答案1.分析:(2800-130× 10)÷( 10×2+5 ) =60(米)2.分析:甲追上乙一条边(400 米)需400÷( 50-46) =100 (分),此时甲走了50× 100=5000 (米),位于某条边的中点,再走 200 米抵达前方的极点还需 4 分,因此出发后100+4=104 (分),两人第一次在同一边上行走。
3.分析:狗跑 3× 3=9 (米)的时间兔子跑 2.1× 4=8.4 (米),狗追上兔子时兔子跑了8.4× [20 ÷( 9-8.4) ]=280 (米)。
4.分析:设甲每分钟走 x 米。
由 A ,B 两地距离可得( x+50 )× 6 =( x- 50)× 26。
人教版五年级数学第五讲:行程问题1

第五讲:行程问题(1)班级 姓名精讲精练1. 小华和小李两家相距400米,两人同时从家中出发,在同一条路上行走。
小华每分钟走60米,小李每分钟走70米。
3分钟后,两人相距多少米试一试: 甲乙两人同时从某地出发,反方向行走,甲46米/分,乙54米/分,7分钟后两人相距多少米?甲乙两车分别从相距480km 的两地出发,相向而行,甲50km/h,乙70km/h ,几小时后两车相遇?甲乙两车分别从相距480km 的两地出发,相向而行,4小时后相遇,甲50km/h ,乙车每小时行多少千米?★★2. 大毛和二毛同时从相距1000米的两地相向而行。
大毛每分钟行120米,二毛每分钟行80米。
如果一只小狗与大毛同时同向而行,,每分钟行500米,遇到二毛后立即回头向大毛跑去,遇到大毛后再向二毛跑去,不断来回,直到大毛、二毛相遇。
小狗共跑了多少米?学习目标:会画线段图解决行程问题。
3.甲乙两车从相距675千米的两地出发,相向而行,甲每小时行45km,乙每小时行60km,甲先行1小时后乙才出发,再过几小时两车相遇?4.甲乙两港相距540km,甲乙两船同时从两港相对开出,经过9小时相遇。
已知甲船的速度比乙船快4km。
求甲、乙两船的速度。
独立练习1. 甲乙两人分别从两地同时出发,相向而行,甲4km/h,乙6km/h,2小时后相遇,两地相距多少千米?2.甲乙两车分别从相距480km的两地同时出发,相向而行,甲车从A城到B 城需要6小时,乙车从B城到A城需要12小时,两车出发后几小时相遇?3.两个车站相距285km,甲乙两列火车分别从两个车站同时对开,经过3小时相遇。
已知甲火车比乙火车快5km/h,求两列火车的速度。
挑战自我(★★★)1. 两列火车分别从甲乙两地同时出发,相对而行,第一列火车每小时行60km,第二列火车每小时行55km,两车在距离中点10km的地方相遇,求甲乙两地之间的距离。
2. AB两城相距450km,甲乙两车同时从A城开往B城,甲车每小时行52km,乙车每小时行38km,甲车到达B城后立即返回,两车从出发到相遇共需要多少小时?。
5.6一元一次方程的应用行程问题(教案)

-理解和掌握相遇问题和追及问题的基本概念。
-学会使用一元一次方程表示行程问题中的数量关系。
-能够根据问题情境选择合适的等量关系,建立方程并求解。
-举例:在相遇问题中,两个物体从A、B两地相向而行,设它们的速度分别为v1和v2,相遇时间为t,A、B两地距离为s,则根据“路程和=速度和×时间”的关系,可得到方程(v1+v2)t=s。
4.数学运算:在求解一元一次方程的过程中,加强学生的数学运算能力,特别是对速度、时间和路程的计算方法。
5.数据分析:培养学生对实际问题的数据分析能力,能够从数据中找出关键信息,为建立方程提供依据,进而解决问题。
三、教学难点与重点
1.教学重点
-核心知识:一元一次方程在行程问题中的应用,特别是速度、时间和路程的关系。
然而,在实践活动过程中,我也发现部分同学在小组合作中参与度不高,依赖性强。为了解决这个问题,我计划在接下来的教学中,加强对学生合作学习的指导,提高他们在小组中的积极性和主动性。
此外,对于教学难点,我发现通过案例分析和具体操作,同学们更容易理解和接受。这说明在教学中,我们要注重将抽象的知识具体化、形象化,帮助学生降低学习难度。
五、教学反思
在上完这节课之后,我对整个教学过程进行了深入的思考。首先,我发现同学们在理解行程问题的基本概念上还存在一定的困难。例如,有些同学在建立一元一次方程时,对速度、时间和路程的关系把握不准确,导致解题过程中出现错误。在今后的教学中,我需要更加注重对基础知识的讲解和巩固。
其次,通过小组讨论和实验操作,同学们对行程问题的实际应用有了更深刻的认识。他们能够将理论知识与生活实际相结合,提出一些有创意的想法。这让我意识到,引导学生从生活中发现数学问题,有助于提高他们的学习兴趣和积极性。
佳一数学暑假教案 5升6-9 行程问题(一)

第9讲生活中的数学——行程问题(一)[教学内容]:《佳一数学思维训练教程》暑假版,5升六第9讲“生活中的数学——行程问题”。
[教学目标]:知识与技能:认识相遇问题、追及问题的特点和数量关系,会解决有关相遇问题、追及问题的实际问题。
过程与方法:通过观察、操作、比较、分析等方法,进一步培养学生的抽象概括能力、迁移类推的能力,养成作图分析的良好学习习惯。
情感、态度与价值观:通过用小组学习的方式,培养合作交流的意识,同时使学生感悟到数学源于生活,与生活的紧密联系。
[教学重点和难点]:教学重点:发现行程问题中相关量之间的关系和状态,掌握解题思路和解题方法。
教学难点:学生自己生成问题、提出问题,培养学生自我探究和创新精神.[教学准备]:动画多媒体语言课件第一课时教学过程:第二课时教学过程:本讲教材及练习册答案:教材:探究类型1:100÷(1.5+1)=40秒2×40=80米探究类型2:100×4=400米60×4=240米400-240=160米探究类型3:250-100=150米18×100=1800米1800÷150=12分钟探究类型4:180÷60=3 (90×3+180)÷2=225大胆闯关:1、(100+80)×5÷(100-80)=45 45×100=45002、75×3-55=1703、108×2÷(54-48)=36 (54+48)×36÷3=1224练习册:1、32×2÷(56-48)×(56+48)=8322、480÷(35+45)×50=3003、3000÷(160+240)=7.5 3000÷(240-160)=37.54、2÷(3÷15-1÷10)=205、(6000+2000)÷(40×3)=66.7 (6000+4000)÷(40×3)=83.3。
一元一次方程行程问题教案

一元一次方程行程问题教案教学目标:1.理解行程问题的基本概念和公式,掌握一元一次方程在行程问题中的运用。
2.提高学生分析问题和解决问题的能力,发展学生的数学思维。
3.激发学生对数学的兴趣,培养良好的学习习惯和合作精神。
教学内容:1.行程问题的基本概念和公式。
2.一元一次方程在行程问题中的运用。
教学重点与难点:1.重点:理解和掌握行程问题的基本概念和公式,一元一次方程在行程问题中的运用。
2.难点:正确理解和应用公式,将实际问题转化为数学问题。
教具和多媒体资源:1.黑板和粉笔。
2.教学软件(如PPT,白板等)。
3.数学模型和图形(如示意图、图表等)。
教学方法:1.激活学生的前知:回顾一元一次方程的概念和解法。
2.教学策略:通过讲解、示范、小组讨论和案例分析等方法,帮助学生掌握新知识。
3.学生活动:设计小组活动,让学生在合作中解决问题。
教学过程:1.导入:故事导入,举出一个与行程问题相关的实例,激发学生的兴趣。
2.讲授新课:通过讲解、示范和小组讨论等方式,帮助学生掌握新知识点。
3.巩固练习:设计一系列练习题,让学生在练习中巩固新知识。
4.归纳小结:回顾本节课学到的知识,总结重点和难点。
评价与反馈:1.设计评价策略:通过小组报告、观察、口头反馈等方式评价学生的学习情况。
2.为学生提供反馈,指导学生如何改进。
作业布置:1.完成教材上的练习题。
2.找出生活中的一个行程问题,尝试用今天学到的知识解决。
3.阅读相关材料,了解行程问题的应用和发展。
思维拓展第11讲《行程问题(一)》(教案)五年级上册数学人教版

思维拓展第11讲《行程问题(一)》教案一、教学目标1. 知识与技能:使学生掌握行程问题中的基本概念,如速度、时间、路程,并能够运用这些概念解决简单的行程问题。
2. 过程与方法:通过观察、分析、讨论等活动,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度价值观:激发学生对数学学习的兴趣,培养学生合作学习的意识。
二、教学重点与难点1. 教学重点:使学生掌握行程问题中的基本概念,并能够运用这些概念解决简单的行程问题。
2. 教学难点:理解速度、时间、路程之间的关系,并能灵活运用。
三、教学过程1. 导入新课在上课开始,我会利用PPT展示一些关于行程的图片,如汽车行驶在公路上,火车行驶在铁轨上等,引导学生观察并提问:“你们知道这些物体在运动过程中有哪些共同的量吗?”学生可能会回答出速度、时间、路程等,我会根据学生的回答进行总结,并引出本节课的主题——行程问题。
2. 探究新知在这一环节,我会让学生通过观察、分析、讨论等方式,来探究行程问题中的基本概念。
首先,我会给出一个简单的行程问题,如:“小明从家到学校需要步行30分钟,路程是1.5公里,那么他的步行速度是多少?”然后,我会引导学生分析这个问题,找出其中的速度、时间、路程,并让学生用自己的语言描述它们之间的关系。
接下来,我会让学生分组讨论,每组给出一个行程问题,并尝试用自己理解的方式解决。
最后,我会对学生的讨论进行总结,给出行程问题的一般解法。
3. 实践应用在学生对行程问题有了基本的理解之后,我会给出一些实际的行程问题,让学生独立解决。
例如:“小红骑自行车从家到图书馆,路程是5公里,她以每小时15公里的速度行驶,那么她需要多长时间才能到达图书馆?”我会鼓励学生运用所学知识,灵活解决这些问题,并在学生解答过程中给予适当的指导。
4. 总结提升在课程的最后,我会对本节课的内容进行总结,强调行程问题中的基本概念和解决方法。
同时,我会鼓励学生在日常生活中多观察、多思考,将所学知识运用到实际生活中去。
五年级行程问题

五年级行程问题
背景
五年级学生拟定了一次学校行程,但还有一些争议和问题需要解决。
本文档将概述这些问题,并提供一些解决策略。
问题一:行程安排
行程安排方面存在一些争议。
有些学生希望增加娱乐活动的时间,而其他学生则希望增加参观历史景点的时间。
如何平衡两者之间的需求是一个需要解决的问题。
解决策略一
我们可以通过增加娱乐活动和参观历史景点的时间来平衡学生们的需求。
在安排行程时,我们可以合理地分配时间,确保每个活动都得到一定的时间。
问题二:交通安排
行程中的交通安排也是一个问题。
有些家长担心交通工具的安全性,希望提供更安全的交通方式,而另一些家长则对费用产生担忧。
解决策略二
为了解决这个问题,我们可以选择使用安全可靠的交通工具,并寻找价格合理的选择。
我们可以与交通公司协商,寻求折扣或特殊优惠。
问题三:费用分配
行程所需的费用也引发了争议。
有些家长认为费用过高,而其他家长则认为费用合理。
解决策略三
为了解决费用分配的问题,我们可以考虑提供不同的付款计划,以使费用更容易承担。
此外,我们还可以寻找其他资金来源,如赞
助商赞助或组织募捐活动。
结论
通过平衡行程安排、解决交通安排问题和合理分配费用,我们
可以解决五年级学生行程中存在的问题。
这样能够满足学生、家长
和学校的需求,并确保行程的顺利进行。
请在接下来的讨论中考虑上述建议,并提出任何其他的解决策略。
我们将共同努力,以达成一个最佳的行程安排。
五年级行程问题教案

五年级行程问题教案第一篇:五年级行程问题教案行程问题第一部分知识梳理1、路程=速度×时间速度=路程÷时间时间=路程÷速度2、相遇问题中,总路程=甲的路程+乙的路程=甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间 =速度和×相遇时间3、追击问题中,时间=路程差÷速度差第二部分例题讲解例1甲、乙两车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇,东、西两地相距多少千米?例2快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?例3甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米?例4甲、乙两车早上8点分别从A、B两地同时出发相向而行,到10点时两车相距112.5千米。
两车继续行驶到下午1点,两车相距还是112.5千米。
A、B两地间的距离是多少千米?第三部分课堂练习1,小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫出发,相向而行,并在离中点120米处相遇。
学校到少年宫有多少米?2,一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米。
甲、乙两地相距多少千米?3,兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?4,汽车从甲地开往乙地,每小时行32千米。
4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到达乙地?5,甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
五年级《行程问题》奥数教案

备课教员:第五讲行程问题一、教学目标:1、能通过画线段图或实际演示,理解什么是“同时出发”、“相向而行”、“相遇”等术语,形成空间表象。
2、掌握两个物体运动中,速度、时间、路程之间的数量关系,会根据此数量关系解答求路程的相遇应用题。
能用不同方法解答相遇求路程的应用题,培养学生的求异思维能力。
3、通过阐明数学在日常生活的广泛应用,激发学生学习数学的兴趣。
二、教学重点:掌握相遇问题的结构特点,弄懂每经过一个单位时间两物体的变化,并能根据速度、时间、路程的数量关系解相遇求路程的应用题。
三、教学难点:理解行程问题中的“相遇求路程”的解题思路四、教学准备:PPT五、教学过程:第一课时(40分钟)一、外星游记(5分钟)师:老师遇到了困难,需要同学们帮忙,你们要不要帮忙?生:要。
师:今天我和妈妈打赌,晚上回家我要和她同时到家,但是我妈妈比我下班早。
生:那老师可以走得比老师妈妈快点。
师:那要快多少呢,我妈妈平时一分钟能走40米,她的公司到家里有1000米,而且她是5点钟下班的,我到家的距离是810米,我是5点10分下班。
生:不知道。
师:那你们想到了再告诉我好不好?生:好。
师:今天我们学习的课题与我这个问题有关。
【出示课题:行程问题】二、星海遨游(30分钟)(一)星海遨游1(10分钟)甲、乙两地相距450千米,快慢两列火车同时从两地相向开出。
3小时后两车在距中点12千米处相遇,快车每小时比慢车每小时快多少千米?师:快车和慢车同时从两地相向开出,3小时后两车距中点12千米处相遇,哪辆车行得更多?生:快车。
师:快车多行了多少呢?生:多行了12×2=24(千米)师:这里要计算快车每小时比慢车每小时快多少千米,那我们是不是只要用快车比慢车多行的距离除以时间就能算出了?生:是。
板书:12×2=24(千米)24÷3=8(千米)答:快车每小时比慢车每小时快8千米。
(一)星海历练1(5分钟)甲乙两辆摩托车同时从东与西两地相向开出,甲每小时行40千米,乙每小时行32千米,两车在距中点8千米处相遇,东西两地相距多少千米?分析:甲乙两车同时从两地相向开出,两车在距中点8千米处相遇。
行程问题之追及问题(一等奖创新教案)冀教版五年级上册数学1(表格式)

行程问题之追及问题(一等奖创新教案)冀教版五年级上册数学1(表格式)课例名称行程问题之追及问题教材版本冀教版教学目标知识与技能 1.借助“线段图”分析复杂问题中的数量关系,从而建立算术解决实际问题,进一步掌握列方程解应用题的步骤。
2.能充分利用行程中的速度、路程、时间之间的关系列方程解应用题。
过程与方法 1.培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识。
2.培养学生文字语言、图形语言、符号语言这三种语言转换的能力。
情感、态度与价值观 1. 通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识、团队精神和克服困难的勇气。
2. 体验生活中数学的应用与价值,感受数学来源于生活,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。
教学重难点掌握追及问题的基本公式,找出变量,并利用公式求简单的追及问题。
学情分析提示:学生的认知规律与特点;学生已有知识与经验基础。
教学方法在科学技术日新月异发展的今天,借助平板教学和智慧课堂的结合,实现我们课堂的现代化,达到实时监测学生学习情况,及时反馈,及时解决上课过程出现的问题,实现了翻转课堂的转换。
教学过程一、故事导入:师:同学们都听过龟兔赛跑的故事吧!下面让有请郭春豪同学再为我们讲一遍这个故事,好不好?郭春豪同学上台讲故事。
(…………)师:讲的真精彩,但是后来呀,兔子有些不服气,决心再跟乌龟比一次。
下面请看老师下发的微课,边想边思考,老师是如何解决的这个问题的?开始看吧!学生观看老师下发的微课。
二、例题分析【例】微课:龟兔赛跑,乌龟以每分钟跑30米的速度爬行,兔子每分钟330米,兔子让乌龟先跑1500米,问兔子多少时间追上乌龟?【思路分析】首先分析题中给出的三个数,并借助线段图,给学生动画出示题意。
先算出一分钟兔子比乌龟快了多少米?330-30=300(米)一共相差1500米里有多少个300,就是有多少分钟?1500÷(330-30)=5(分钟)路程差÷速度差=追及时间答:5分钟后兔子追上乌龟。
五年级数学《行程问题一》教案

五年级数学《行程问题一》教案
教学要求:
1.能通过画线段图或实际演示,理解什么是”同时出发“”相向而行“、”相遇“等术语,形成空间表象。
2.弄通每经过一个单位时间,两个物体之间的距离变化。
3.掌握两个物体运动中,速度、时间、路程之间的数量关系,会根据此数量关系解答求路程的相遇应用题。
能用不同方法解答相遇求路程的应用题,培养学生的求异思维能力。
4.通过阐明数学在日常生活的广泛应用,激发学生学习数学的兴趣。
教学重点:
掌握相遇问题的结构特点,弄通每经过一个单位时间两物体的变化,并能根据速度、时间、路程的数量关系解相遇求路程的应用题。
教学难点:
理解行程问题中的”相遇求路程“的解题思路。
教学过程:
一、激发
1.口答:
(1)张华从家到学校每分钟走60米,3分钟走多少米?
(2)汽车每小时行40千米,6小时行多少千米?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3/7
现在两人的距离 1分 60 米 70 米 2分 3分 2.出示例 5:小强和小丽同时从自己家里走向学校。小强每分钟 走 65 米,小丽每分钟走 70 米,经过 4 分两人在校门相遇,他们两家 相距多少米? 每分 65 米每分 70 米 小强小丽 ?米 (1) 读题,找出已知所求及他们是怎样运动的。 (2) 指名边指线段图边说解题思路,使学生看到两人相遇时走的路 程就是两家之间的距离。
75 千米,乙车每小
(1) 经过 3 小时两车相遇,两地间的铁路长多少千米?
Байду номын сангаас
(2) 如乙车先开出 1 小时,甲车才出发,再过 3 小时两车相遇,两 地间的铁路长多少千米?
6/7
(3) 如果甲车先开出 1 小时,乙才开出,再过 2 小时两车相遇,两 地间铁路长多少千米?
四、体验 1. 谈谈你的收获? 2. 教师指明:今天学习的应用题是利用速度、时间、路程三者的 关系解答相遇求路程的应用题。 五、作业 练习十四第 2 题
5/7
②525 表示 () 。
③两地的总路程:()()+()+()= () 米或() 4=() 米。
3.小结:刚才我们研究的是什么类型的应用题?解这类题的关键 是什么?
板书:
速度时间=路程
( 两人速度的和 )( 相遇时间 )
三、应用
1.练习十四第 1 题
2.两列火车从两地相对行驶,甲车每小时行 时行 69 千米。
4/7
第一种:小强 4 分走的路程+小丽 4 分走的路程 第二种:(小强每分走的路程+小丽每分走的路程) 4 (3) 独立列式解答 654+704(65+ 70) 4 =260+ 280= 1354 =540( 米) =540(米) 追问: 654、704 各表示什么? (65 +70) 表示什么? (65 +70)4 又表示什么? (4) 比较两种算式之间的联系。 (5) 做一做第 1 题:志明和小龙同时从两地对面走来 ( 如图 ) ,经 5 分两人相遇,两地相距多少米?(用两种方法解答) 志明每分走 54 米小龙每分走 52 米 口答: ①相遇时,志明行的米数列式为()()=()米。
1/7
要求:读题列出算式并说出数量关系。 板书:速度时间=路程 提问:这两题研究的是什么? 2.揭题:以前研究的行程应用题,是指一个物体、一个人的运动 情况,今天我们根据这个数量关系研究两个物体或两个人运动的一种 情况。(板书:应用题) 二、尝试 1.出示准备题:张华家距李诚家 390 米,两人同时从家里出发向 对方走去。李诚每分钟走 60 米,张华每分钟走 70 米。 (1) 读题看线段图,汇报你知道了什么?(回答:这题是两个人同 时出发,对着而行;是两个人共同走这段路程的。) 60 米 60 米 70 米 70 米 张华李诚 390 米
2/7
(2) 边看演示边说明:象这样两个人对着而行,我们叫它相向而行 或相对而行。
(3) 看多媒体或实物演示:汇报你发现了什么?( 1 分钟,张华走 了 60 米,李诚走了 70 米; 2 分钟张华走了 120 米,李诚走了 140 米, 两人的路程和是 260 米,两人还距离 130 米;两人走 3 分钟分别走了 180 米、 210 米,两人间的距离变成了 0 米。
五年级数学教案《行程问题(一) 》
1.能通过画线段图或实际演示,理解什么是同时出发相向而行、 相遇等术语,形成空间表象。
2.弄通每经过一个单位时间,两个物体之间的距离变化。 3.掌握两个物体运动中,速度、时间、路程之间的数量关系,会 根据此数量关系解答求路程的相遇应用题。能用不同方法解答相遇求 路程的应用题,培养学生的求异思维能力。 4. 通过阐明数学在日常生活的广泛应用,激发学生学习数学的兴 趣。
7/7
教学重点:掌握相遇问题的结构特点,弄通每经过一个单位时间 两物体的变化,并能根据速度、时间、路程的数量关系解相遇求路程 的应用题。
教学难点:理解行程问题中的相遇求路程的解题思路。
教学过程:
一、激发
1.口答:
(1) 张华从家到学校每分钟走 60 米, 3 分钟走多少米?
(2) 汽车每小时行 40 千米, 6 小时行多少千米?