高考物理力学综合题

合集下载

2023年高考物理:力学综合复习卷(基础必刷)

2023年高考物理:力学综合复习卷(基础必刷)

2023年高考物理:力学综合复习卷(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,两端封闭的玻璃管在常温下竖直放置,管内充有理想气体,一段汞柱将气体封闭成上下两部分,两部分气体的长度分别为,,且,下列判断正确的是( )A.将玻璃管转至水平,稳定后两部分气体长度B.将玻璃管转至水平,稳定后两部分气体长度C.保持玻璃管竖直,使两部分气体升高相同温度,稳定后两部分气体长度D.保持玻璃管竖直,使两部分气体升高相同温度,稳定后两部分气体长度第(2)题某质点P从静止开始以加速度a1做匀加速直线运动,经t(s)立即以反向的加速度a2做匀减速直线运动,又经t(s)后恰好回到出发点,则( )A.a1=a2B.2a1=a2C.3a1=a2D.4a1=a2第(3)题如图所示,OA、OB是竖直面内两根固定的光滑细杆,O、A、B位于同一圆周上,OB为圆的直径。

每根杆上都套着一个小滑环(图中未画出),两个滑环都从O点无初速释放,用t1、t2分别表B示滑环到达A、B所用的时间,则()A.B.C.D.无法比较t1、t2的大小第(4)题如图所示,小钢球m以初速度v0在光滑水平面上运动,后受到磁极的侧向作用力而做图示的曲线运动到达D点,从图可知磁极的位置及极性可能是( )A.磁极在A位置,极性一定是N极B.磁极在B位置,极性一定是S极C.磁极在C位置,极性一定是N极D.磁极在B位置,极性无法确定第(5)题如图所示,绝缘水平面上,虚线左侧有垂直于水平面向上的匀强磁场、右侧有垂直于水平面向下的匀强磁场,磁感应强度大小均为,、、为绝缘水平面上的三个固定点,点在虚线上,、两点在左右两磁场中,两根直的硬导线连接和间,软导线连接在间,连线与垂直,、到的距离均为,,、、三段导线电阻相等,,。

通过、两点给线框通入大小为的恒定电流,待、间软导线形状稳定后线框受到的安培力大小为( )A.0B.C.D.第(6)题如图所示,山上一条输电导线架设在两支架间,M、N分别为导线在支架处的两点,P为导线最低点,则这三处导线中的张力、、大小关系是( )A.B.C.D.第(7)题足够长的光滑斜面上的三个相同的物块通过与斜面平行的细线相连,在沿斜面方向的拉力的作用下保持静止,如图甲所示,物块2的右侧固定有不计质量的力传感器。

高考物理力学压轴综合大题专题复习

高考物理力学压轴综合大题专题复习

高考物理力学压轴综合大题专题复习高考物理压轴综合大题专题复1.一辆质量为M的平板车在光滑的水平地面上以速度v0向右做匀速直线运动。

现在将一个质量为m(M=4m)的沙袋轻轻地放到平板车的右端。

如果沙袋相对平板车滑动的最大距离等于车长的4倍,那么当沙袋以水平向左的速度扔到平板车上时,为了不使沙袋从车上滑出,沙袋的初速度最大是多少?解:设平板车长为L,沙袋在车上受到的摩擦力为f。

沙袋轻轻放到车上时,设最终车与沙袋的速度为v′,则有:Mv = (M+m)v′ - fL2fL = mv/5又因为M=4m,所以可得:2fL = mv/5 = 8fL/5fL = 0因为沙袋不会从车上滑落,所以摩擦力f为0,即沙袋不受任何水平力,初速度最大为0.2.在光滑的水平面上,有一块质量为M=2kg的木板A,其右端挡板上固定一根轻质弹簧,在靠近木板左端的P处有一大小忽略不计质量m=2kg的滑块B。

木板上Q处的左侧为粗糙面,右侧为光滑面,且PQ间距离L=2m。

某时刻,木板A以速度υA=1m/s的速度向左滑行,同时滑块B以速度υB=5m/s的速度向右滑行。

当滑块B与P处相距时,二者刚好处于相对静止状态。

若在二者其共同运动方向的前方有一障碍物,木块A与障碍物碰后以原速率反弹(碰后立即撤去该障碍物)。

求B与A的粗糙面之间的动摩擦因数μ和滑块B最终停在木板A上的位置。

(g取10m/s2)解:设M和m的共同速度为v,由动量守恒得mvB - MυA = (m+M)v代入数据得:v=2m/s对AB组成的系统,由能量守恒得umgL = 2MυA^2 + 2mυB^2 - 2(M+m)v^2代入数据得:μ=0.6木板A与障碍物发生碰撞后以原速度反弹。

假设B向右滑行,并与弹簧发生相互作用。

当AB再次处于相对静止时,共同速度为u。

由动量守恒得mv - Mu = (m+M)u设B相对A的路程为s,由能量守恒得umgs = (m+M)υA^2 - (m+M)u^2代入数据得:s=3m因为s>L/4,所以滑块B最终停在木板A的左端。

高考物理一轮总复习 力学综合训练(含解析)新人教版-新人教版高三全册物理试题

高考物理一轮总复习 力学综合训练(含解析)新人教版-新人教版高三全册物理试题

力学综合训练一、选择题:(此题共8小题,每一小题6分,共48分.在每一小题给出的四个选项中,其中第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求,全部答对得6分,选对但不全得3分,错选得0分)1.甲、乙两物体同时从同一位置开始做直线运动,其运动的v -t 图象如下列图,在0~t 0时间内如下说法正确的答案是( )A .甲的位移大于乙的位移B .甲的加速度先增大后减小C .甲的平均速度等于乙的平均速度D .t 0时刻甲、乙相遇解析:选A. v -t 图象中图线与横轴所围图形的面积表示位移,所以甲的位移大于乙的位移,故A 项正确; v -t 图象中切线的斜率表示加速度,所以甲的加速度一直减小,故B 项错误;由于甲的位移大于乙的位移,而时间一样,所以甲的平均速度大于乙的平均速度,故C 项错误;甲乙从同一位置开始运动,t 0时间内甲的位移大于乙的位移,所以t 0时刻甲在乙的前面,故D 项错误.2.假设我国宇航员在2022年,首次实现月球登陆和月面巡视勘察,并开展了月表形貌与地质构造调查等科学探测,假设在地面上测得小球自由下落某一高度所用的时间为t 1,在月面上小球自由下落一样高度所用的时间为t 2,地球、月球的半径分别为R 1、R 2,不计空气阻力,如此地球和月球的第一宇宙速度之比为( )A.R 1t 22R 2t 12 B .R 1t 1R 2t 2 C.t 1t 2R 1R 2D .t 2t 1R 1R 2解析:选D.对小球自由下落过程有:h =12gt 2,又天体外表上有G MmR 2=mg ,第一宇宙速度v =gR ,如此有v 地v 月= g 地R 地g 月R 月=t 2t 1R 1R 2,故D 项正确. 3.一物块从某一高度水平抛出,从抛出点到落地点的水平距离是下落高度的2倍,不计空气阻力,该物块落地时的速度方向与水平方向的夹角为( )A.π6B .π4C.π3 D .5π12解析:选B.物块平抛运动的过程中,水平方向有x =v 0t ,竖直方向有h =v y t2,又x =2h ,如此有tan θ=v y v 0=1,即θ=π4,故B 项正确.4.一串质量为50 g 的钥匙从橱柜上1.8 m 高的位置由静止开始下落,掉在水平地板上,钥匙与地板作用的时间为0.05 s ,且不反弹.重力加速度g =10 m/s2,此过程中钥匙对地板的平均作用力的大小为( )A .5 NB .5.5 NC .6 ND .6.5 N解析:选D.钥匙落地时的速度v =2gh =6 m/s ,以竖直向上为正方向,钥匙与地面作用前后由动量定理得:(F N -mg )t =0-(-mv ) ,解得F N =6.5 N ,故D 项正确.5.如下列图,质量分别为0.1 kg 和0.2 kg 的A 、B 两物体用一根轻质弹簧连接,在一个竖直向上、大小为6 N 的拉力F 作用下以一样的加速度向上做匀加速直线运动,弹簧的劲度系数为1 N/cm ,取g =10 m/s 2.如此弹簧的形变量为( )A .1 cmB .2 cmC .3 cmD .4 cm解析:选D.此题考查了连接体问题的分析.对AB 两物体由牛顿第二定律得F -(m A +m B )g =(m A +m B )a ,对B 物体由牛顿第二定律得F T -m B g =m B a ,又F T =kx ,解得x =4 cm ,故D 项正确.6.如下列图,P 、Q 两物体保持相对静止,且一起沿倾角为θ的固定光滑斜面下滑,Q 的上外表水平,如此如下说法正确的答案是( )A .Q 处于失重状态B .P 受到的支持力大小等于其重力C .P 受到的摩擦力方向水平向右D .Q 受到的摩擦力方向水平向右解析:选AD.由于P 、Q 一起沿着固定光滑斜面下滑,具有一样的沿斜面向下的加速度,该加速度有竖直向下的分量,所以Q 处于失重状态,故A 项正确;P 也处于失重状态,所以受到的支持力小于重力,故B项错误;由于P的加速度有水平向左的分量,所以水平方向受到的合力方向水平向左,即P受到的摩擦力方向水平向左,故C项错误;由牛顿第三定律可知,P对Q的摩擦力水平向右,故D项正确.7.如图甲所示,有一倾角θ=37°足够长的斜面固定在水平面上,质量m=1 kg的物体静止于斜面底端固定挡板处,物体与斜面间的动摩擦因数μ=0.5,物体受到一个沿斜面向上的拉力F作用由静止开始运动,用x表示物体从起始位置沿斜面向上的位移,F与x的关系如图乙所示,sin 37°=0.6,cos 37°=0.8,取g=10 m/s2.如此物体沿斜面向上运动过程中,如下说法正确的答案是( )A.机械能先增大后减小,在x=3.2 m处,物体机械能最大B.机械能一直增大,在x=4 m处,物体机械能最大C.动能先增大后减小,在x=2 m处,物体动能最大D.动能一直增大,在x=4 m处,物体动能最大解析:选AC.物体所受滑动摩擦力的大小为F f=μmg cos θ=4 N,所以当F减小到4 N 之前,物体的机械能一直增加,当F从4 N减小到0的过程中,物体的机械能在减小,由F­x图象可知,当F=4 N时,位移为3.2 m,故A项正确,B项错误;当F=mg sin θ+μmg cos θ=10 N时动能最大,由F­x图象知此时x=2 m,此后动能减小,故C项正确,D项错误.8.绷紧的传送带与水平方向夹角为37°,传送带的v­t图象如下列图.t=0时刻质量为1 kg的楔形物体从B点滑上传送带并沿传送带向上做匀速运动,2 s后开始减速,在t =4 s时物体恰好到达最高点A点.重力加速度为10 m/s2.对物体从B点运动到A点的过程中,如下说法正确的答案是(sin 37°=0.6,cos 37°=0.8)( )A.物体与传送带间的摩擦因数为0.75B.物体重力势能增加48 JC.摩擦力对物体做功12 JD.物块在传送带上运动过程中产生的热量为12 J解析:选AD.物体前两秒内沿传送带向上匀速运动,如此有mg sin θ=μmg cos θ,解得μ=0.75 ,故A项正确;经分析可知,2 s时物体速度与传送带一样,由图象可知等于2 m/s ,2 s 后物体的加速度a =g sin θ+μg cos θ=12 m/s 2>1 m/s 2,故物体和传送带相对静止,加速度为1 m/s 2,所以物体上滑的总位移为x =vt 1+v 22a=6 m ,物体的重力势能增加E p =mgx sin θ=36 J ,故B 项错误;由能量守恒得摩擦力对物体做功W =E p -12mv2=34 J ,故C 项错误;物块在传送带上运动过程产生的热量为Q =μmg cos θΔx 1,结合图象可得Δx 1=x 带1-vt 1=2 m ,Q =12 J ,选项D 对.二、非选择题(此题共3小题,共52分)9.(9分)某同学用如下列图装置验证动量守恒定律.在上方沿斜面向下推一下滑块A ,滑块A 匀速通过光电门甲,与静止在两光电门间的滑块B 相碰,碰后滑块A 、B 先后通过光电门乙,采集相关数据进展验证.(最大静摩擦力近似等于滑动摩擦力)(1)如下所列物理量哪些是必须测量的______. A .滑块A 的质量m A ,滑块B 的质量m B .B .遮光片的的宽度d (滑块A 与滑块B 上的遮光片宽度相等)C .本地的重力加速度gD .滑块AB 与长木板间的摩擦因数μE .滑块A 、B 上遮光片通过光电门的时间(2)滑块A 、B 与斜面间的摩擦因数μA 、μB ,质量m A 、m B ,要完本钱实验,它们需要满足的条件是________.A .μA >μB m A >m B B .μA >μB m A <m BC .μA =μB m A >m BD .μA <μB m A <m B(3)实验时,要先调节斜面的倾角,应该如何调节?________________.(4)假设光电门甲的读数为t 1,光电门乙先后的读数为t 2,t 3,用题目中给定的物理量符号写出动量守恒的表达式________.解析:(1)本实验中要验证两滑块碰撞前后动量是否守恒,需要验证m Ad t A 甲=m A dt A 乙+m Bdt B 乙,应当选项A 、E 正确. (2)由于滑块A 匀速通过光电门甲,如此有mg sin θ=μmg cos θ,要通过光电门验证两滑块碰撞前后动量是否守恒,需要滑块B 也满足mg sin θ=μmg cos θ,即μ=tan θ,所以有μA =μB ,又因为碰后两滑块先后通过光电门乙,所以A 的质量大于B 的质量,故C 项正确.(3)实验过程要求两滑块匀速运动,所以调整斜面的倾角,当滑块下滑通过两光电门所用时间相等时,表示滑块在斜面上做匀速运动.(4)由第(1)问解析可得两滑块碰撞前后动量守恒的表达式为:m A dt 1=m A d t 3+m B d t 2. 答案:(1)AE (2)C(3)滑块下滑通过两光电门所用时间相等 (意思相近的表示均可给分) (4)m A d t 1=m A d t 3+m B d t 2(或m A t 1=m A t 3+m Bt 2)10.(20分)如下列图,一质量为m 1=1 kg 的长直木板放在粗糙的水平地面上,木板与地面之间的动摩擦因数μ1=0.1,木板最右端放有一质量为m 2=1 kg 、大小可忽略不计的物块,物块与木板间的动摩擦因数μ2=0.2.现给木板左端施加一大小为F =12 N 、方向水平向右的推力,经时间t 1=0.5 s 后撤去推力F ,再经过一段时间,木板和物块均停止运动,整个过程中物块始终未脱离木板,取g =10 m/s 2,求:(1)撤去推力F 瞬间,木板的速度大小v 1和物块的速度大小v 2; (2)木板至少多长;(3)整个过程中因摩擦产生的热量.解析:(1)假设木板和物块有相对滑动,撤F 前, 对木板:F -μ1(m 1+m 2)g -μ2m 2g =m 1a 1 解得:a 1=8 m/s 2对物块:μ2m 2g =m 2a 2 解得:a 2=2 m/s 2因a 1>a 2,故假设成立,撤去F 时,木板、物块的速度大小分别为:v 1=a 1t 1=4 m/s v 2=a 2t 1=1 m/s(2)撤去F 后,对木板:μ1(m 1+m 2)g +μ2m 2g =m 1a 3 解得:a 3=4 m/s 2对物块:μ2m 2g =m 2a 4 解得:a 4=2 m/s 2撤去F 后,设经过t 2时间木板和物块速度一样: 对木板有:v =v 1-a 3t 2 对物块有:v =v 2+a 4t 2 得:t 2=0.5 s ,v =2 m/s撤去F 前,物块相对木板向左滑行了 Δx 1=v 12t 1-v 22t 1=0.75 m撤去F 后至两者共速,物块相对木板又向左滑行了 Δx 2=v 1+v 2t 2-v 2+v2t 2=0.75 m之后二者之间再无相对滑动,故板长至少为:L =Δx 1+Δx 2=1.5 m(3)解法一:物块与木板间因摩擦产生的热量:Q 1=μ2m 2gL =3 J共速后,两者共同减速至停止运动,设加速度为a ,有:a =μ1g =1 m/s 2全过程中木板对地位移为:s =v 12t 1+v 1+v 2t 2+v 22a =4.5 m木板与地面间因摩擦产生的热量为:Q 2=μ1(m 1+m 2)gs =9 J故全过程中因摩擦产生的热量为:Q =Q 1+Q 2=12 J解法二:由功能关系可得:Q =Fx 1x 1=v 12t 1Q =12 J答案:(1)4 m/s 1 m/s (2)1.5 m (3)12 J11.(23分)如下列图,竖直平面内,固定一半径为R 的光滑圆环,圆心为O ,O 点正上方固定一根竖直的光滑杆,质量为m 的小球A 套在圆环上,上端固定在杆上的轻质弹簧与质量为m 的滑块B 一起套在杆上,小球A 和滑块B 之间再用长为2R 的轻杆通过铰链分别连接,当小球A 位于圆环最高点时,弹簧处于原长;当小球A 位于圆环最右端时,装置能够保持静止,假设将小球A 置于圆环的最高点并给它一个微小扰动(初速度视为0),使小球沿环顺时针滑下,到达圆环最右端时小球A 的速度v A =gR (g 为重力加速度),不计一切摩擦,A 、B 均可视为质点,求:(1)此时滑块B 的速度大小;(2)此过程中,弹簧对滑块B 所做的功; (3)小球A 滑到圆环最低点时,弹簧弹力的大小.解析:(1)由于此时A 、B 速度方向都是竖直向下的,即此时它们与轻杆的夹角大小相等,又因为A 、B 沿轻杆方向的分速度大小相等,所以此时滑块B 的速度大小为:v B =v A =gR .(2)对系统,由最高点→图示位置有:(W GA +W GB )+W 弹=⎝ ⎛⎭⎪⎫12m A v 2A +12m B v 2B -0其中:W GA =m A g ·Δh A =mgRW GB =m B g ·Δh B =mg ·(3R -3R )解得:W 弹=(3-3)mgR .(3)图示位置系统能够保持静止,对系统进展受力分析,如下列图kx 1=(m A +m B )g x 1=Δh B =(3-3)R小球A 滑到圆环最低点时弹簧的伸长量为:x 2=2R ,所以在最低点时,弹簧的弹力大小为:F 弹=kx 2解得:F 弹=6+23mg3答案:(1)gR (2)(3-3)mgR (3)6+23mg3。

高考物理专题突破—力学综合题集锦

高考物理专题突破—力学综合题集锦

力学综合题集锦1. 长为L 的轻绳,将其两头分别固定在相距为 d 的两坚直墙面上的A、B 两点。

一小滑轮OC,均衡时如下图,则AB绳中的张力为。

越过绳索下端悬挂一重力为G的重物2.如下图,由物体 A 和 B 构成的系统处于静止状态 . A、B 的质量分别为 m A和 m B, 且 m A>m B, 滑轮的质量和全部摩擦不计 . 使绳的悬点由 P 点向右挪动一小段距离到 Q点,系统再次达到静止状态 . 则悬点挪动前后图中绳与水平方向的夹角θ 将()A.变大B.变小C.不变D.可能变大,也可能变小3.如下图,三个木块 A、B、C 在水平推力 F 的作用下靠在竖直墙上,且处于静止状态,则以下说法中正确的选项是()A.A 与墙的接触面可能是圆滑的B.B 遇到 A 作用的摩擦力,方向可能竖直向下C.B 遇到 A 作用的静摩擦力,方向与C作用的静摩擦力方向必定相反D.当力 F 增大时, A 遇到墙作用的静摩擦力必定不增大4.如下图,水平桌面圆滑, A、 B 物体间的动摩擦因数为μ ( 可以为最大静摩擦力等于滑动摩擦力 ) , A 物体质量为 2m,B 和 C物体的质量均为 m,滑轮圆滑,砝码盘中能够随意加减砝码.在保持 A、B、C 三个物体相对静止且共同向左运动的状况下,B、C 间绳索所能达到的最大拉力是 ()1A.2μmg B.μmg C. 2μmg D.3μmg5.如下图,物体 B 叠放在物体 A 上, A、B 的质量均为m,且上、下表面均与斜面平行,它们以共同速度沿倾角为θ的固定斜面C匀速下滑,则()A. A, B 间没有静摩擦力B. A 遇到 B 的静摩擦力方向沿斜面向上C. A 遇到斜面的滑动摩擦力大小为2mgsinθD. A 与 B 间的动摩擦因数μ= tan θ6.如下图,自动卸货车一直静止在水平川面上,车厢在液压机的作用下能够改变与水平面间的倾角θ,用以卸掉车厢中的货物.以下说法正确的选项是()A.当货物相对车厢静止时,跟着θ 角的增大货物与车厢间的摩擦力增大B.当货物相对车厢静止时,跟着θ 角的增大货物与车厢间的支持力增大C.当货物相对车厢加快下滑时,地面对货车没有摩擦力D.当货物相对车厢加快下滑时,货车对地面的压力小于货物和货车的总重力7.如下图,在倾角为α 的传递带上有质量均为m的三个木块 1、 2、 3,中间均用原长为L、劲度系数为 k 的轻弹簧连结起来,木块与传递带间的动摩擦因数均为μ,此中木块 1 被与传递带平行的细线拉住,传递带按图示方向匀速运转,三个木块处于均衡状态.以下结论正确的选项是 ()μmgcos αA.2、3 两木块之间的距离等于L+ksinα +μcosαmgB.2、3 两木块之间的距离等于L+kC.1、2 两木块之间的距离等于2、 3 两木块之间的距离D.假如传递带忽然加快,相邻两木块之间的距离将不变8.物体 B 放在物体 A 上, A、B 的上下表面均与斜面平行(如图),当二者以同样的初速度靠惯性沿圆滑固定斜面 C向上做匀减速运动时,A. A 遇到 B 的摩擦力沿斜面方向向上。

高中物理新高考考点复习22 动量守恒中的力学综合问题

高中物理新高考考点复习22 动量守恒中的力学综合问题

考点规范练22 动量守恒中的力学综合问题一、单项选择题 1.(2021·湖南模拟)如图所示,水平面上固定着两根足够长的平行导槽,质量为m 的U 形管恰好能在两导槽之间自由滑动,一质量也为m 的小球沿水平方向,以初速度v 0从U 形管的一端射入,从另一端射出。

已知小球的半径略小于管道半径,不计一切摩擦,下列说法正确的是( )A.该过程中,小球与U 形管组成的系统机械能和动量都守恒B.小球从U 形管的另一端射出时,速度大小为12v 0C.小球运动到U 形管圆弧部分的最左端时,速度大小为12v 0 D.从小球射入至运动到U 形管圆弧部分的最左端的过程中,U 形管对平行导槽的冲量大小为√22mv 0,方向垂直于导槽向上 二、非选择题2.如图甲所示,半径R=0.8 m 的14光滑圆弧轨道固定在竖直平面内,A 为轨道最高点,与圆心O 等高;B 为轨道最低点。

在光滑水平面上紧挨B 点有一静止的平板车,其质量m 0=3 kg,小车足够长,车的上表面与B 点等高,平板车上表面涂有一种特殊材料,物块在上面滑动时,动摩擦因数随物块相对小车左端位移的变化图像如图乙所示。

物块(可视为质点)从圆弧轨道最高点A 由静止释放,其质量m=1 kg,g 取10 m/s 2。

(1)求物块滑到B 点时对轨道压力的大小。

(2)物块相对小车静止时距小车左端多远?3.如图所示,厚度均匀的长木板C静止在光滑水平面上,木板上距左端l处放有小物块B,某时刻小物块A以某一初速度从左端滑上木板向右运动,已知A、B均可视为质点,A、B与C间的动摩擦因数均为μ,A、B、C三者的质量相等,重力加速度为g。

(1)求A刚滑上木板时,A、B的加速度大小。

(2)要使A、B不发生碰撞,A的初速度应满足什么条件?(3)若已知A的初速度为v0',且A、B之间发生弹性碰撞,碰撞前后A、B均沿同一直线运动,要保证A、B均不会从木板上掉下,木板的最小长度是多少?4.下图为一种打积木的游戏装置,四块完全相同的硬质积木叠放在靶位上,每块积木的质量均为m1=0.3 kg,长l=0.5 m,积木B、C、D夹在固定的两光滑硬质薄板间,一可视为质点的钢球用不可伸长的轻绳挂于O点,钢球质量m2=0.1 kg,轻绳长R=0.8 m。

高考物理复习 力 学 综 合 一

高考物理复习 力 学 综 合 一

十六、力学综合一绵阳一中向容德张小平学号姓名_________一、选择题(共7小题,每小题7分,共49分.)1,一轻弹簧的上端固定,下端悬挂一个重物,重物静止时,弹簧伸长了8cm,若再将重物向下拉4cm,然后放手,则在释放重物的瞬间,重物的加速度的大小是( )A.g / 4B.g / 2C. 3 g / 2D. g2.质量为5.0×103 kg的汽车,在水平路面上由静止开始做加速度为2.0 m / s2的匀速直线运动,所受阻力是1.0×103 N,汽车在起动后第1 s末牵引力的瞬时功率是( ) A.22 kW B.20 kW C.11 kW D.2.0 kW3.水泥基座上固定一根质量为M的竖直木杆,一个质量为m的人以加速度a沿杆匀加速向上直爬,则此时基座对地面的压力为( )A.Mg+mg-ma B.Mg+ma-mg C.Mg+mg+ma D.Mg-mg-ma 4.关于一对互为作用力和反作用力的滑动摩擦力在某段时间内的作用效果,下列说法正确的是( )A.这两个滑动摩擦力可能都做正功B.这两个滑动摩擦力可能都做负功C.这两个力中必有一个做正功,一个做负功D.这两个力做的总功可能为负也可能为零5.两物体处于静止状态,它们的质量m1=2m2,它们与水平面间的动摩擦因数μ2=2μ1,开始它们之间被细绳连接,并夹一压缩状态的轻质弹簧.当烧断细线后,两物脱离弹簧时的速度均不为零,则()A.两物体脱离弹簧时速度最大B.两物体脱离弹簧时m1与m2的速率比为2:1C.两物体的速率同时达到最大值D.两物体在弹开后不同时达到静止6.质量为0.8 kg的物块静止在倾角为30°的斜面上,若用平行于斜面向上、大小等于3N 的力推物块,物块仍保持静止,则物块所受的摩擦力大小等于( )A.1N B.3N C.4N D.6N7.常用的通讯卫星是地球的同步卫星,它定位于地球赤道上方,已知某同步卫星离地面高度为h,地球自转角速度为ω,地球半径为R,地球表面附近的重力加速度为g,该同步卫星运动的加速度大小为()A.0 B.ω2 (R+h) C.g D.ω2h二、主观题(25分+26分)8.一级方程式(F )汽车大赛中,冠军舒马赫驾着一辆总质量为m(约为1.5 t)的法拉利赛车,经过一半径为R的水平弯道时的速度为υ,工程师为提高赛车的性能,都将赛车形状设计得使其上下方空气存在一个压力差——气压动力(行业术语),从而增大了赛车对地面的正压力,行业中将正压力与摩擦力的比简称为侧向附着系数,用η表示,要使上述赛车转弯时不侧滑,所需气动压力至少为多大?9.在光滑水平面上有两个质量都为0.5㎏的小球(半径可忽略)A和B,假设两球之间的作用力有下面的特点:当球心间的距离大于2 m时,两球间无相互作用力;当两球心间的距离等于或小于2 m并大于1 m时,两球间存在大小等于6 N的相互作用的恒定斥力;当两球心间的距离等于或小于1m时,两球间存在大小等于8N的相互作用的恒定斥力,现A球从远离B 处以8 m / s的速度沿两球的连心线向原来静止的B球运动.求(1)A、B两球最终的速度?(2)两球心间的最小距离?十七、力 学 综 合 二绵阳一中 向容德 邓智 学号 姓名_________一、选择题(共6小题,每小题7分,共42分.)1.宇宙飞船围绕太阳在近似圆形的轨道上运行,若轨道半径是地球轨道半径的9倍,则宇宙飞船绕太阳运行的周期是( )A .3年B .9年C .27年D .81年2.完全相同的两辆汽车,以相同的速度在平直公路上匀速齐头并进,当它们各自推下质量相同的物体后,甲车保持原来的牵引力继续前进,而乙车保持原来的功率继续前进,假定汽车所受阻力与车重成正比,经过一段时间后( )A .甲车超前,乙车落后B .乙车超前,甲车落后C .它们仍齐头并进D .条件不足,无法判断3.关于质点的运动情况,下列叙述正确的是( )A .如果质点做自由落体运动,每1s 内,质点所受重力做功都相同B .如果质点做平抛运动,每1s 内,质点的动量增量都相同C .如果质点做匀速圆周运动,每1s 内,质点所受合力的冲量都相同D .如果质点做简谐运动,每四分之一周期回复力做的功都相同4.如图所示为斧头劈柴的剖面图,图中BC 边为斧头背,AB 、AC 边为斧头的刃面,要使斧头劈柴更容易,则应该( )A .BC 边短一些,AB 边也短一些 B .BC 边长一些,AB 边短一些C .BC 边短一些,AB 边长一些D .BC 边长一些,AB 边也长一些5.物块A 沿斜面体B 倾斜面滑下时,B 处于静止状态,此时B 与水平面间的静摩擦力大小为f 1 ,若A 以某初速沿斜面上滑时,B 仍处于静止状态,此时B 与水平面间的静摩擦力大小为f 2 ,则( )A .f 1可能为零,f 2 不为零B .f 1 不可能为零,f 2 可能为零C .f 1 和f 2 都不可能为零D .f 1 和f 2 都可能为零6.在水平流动的大气中,质量为m 的气球沿着与水平方向成θ角的方向斜向下匀速直线运动,则大气对气球的作用力的方向为( )A .水平向右B .竖直向上C .与气球运动方向相反D .以上均不是 二、主观题(18分+20分+20分)7.2003年10月15日上午9时整,中国自行研制的第一艘载人飞船“神舟”五号从酒泉航天发射场升空,9时10分左右,飞船进入人预定轨道,飞船按计划在太空飞行了14圈后,于10月16日5时56分开始进入返回轨道,6时许成功降落在内蒙古预定区域.假设飞船是沿圆形轨道运动的,已知地球半径R=6.4×103km,地面重力加速度g取10 m / s2,求:地(1)飞船的运行周期;(2)飞船的轨道半径;(3)飞船的绕行速度?8.在光滑水平的地面上,有一辆上表面光滑正以速度v0向右运动的小车,其左端有固定档板P和质量为m = 9㎏的木块,它们之间有少量炸药,在爆炸前小车和木块相对静止,爆炸提供给小车和木块的总机械能为E0 ,求:(1) 爆炸后木块的速度为多大?(2) 在爆炸前小车的速度v0为多大?9.质量为m=2㎏的物体,放在倾角为θ=30°的传送带上,物体于传送带间的动摩擦因数为3/ 3,若物体受到的最大静摩擦力与滑动摩擦力大小相等,传送带足够长,原来物体与传送带都处于静止状态,求当传送带以加速度a=2 m / s2 加速运动时,物体受到的摩擦力大小和方向?(g=10 m / s2)(提示:传送带顺转、逆转)。

2024全国高考真题物理汇编:热力学定律章节综合

2024全国高考真题物理汇编:热力学定律章节综合

2024全国高考真题物理汇编热力学定律章节综合一、单选题1.(2024北京高考真题)一个气泡从恒温水槽的底部缓慢上浮,将气泡内的气体视为理想气体,且气体分子个数不变,外界大气压不变。

在上浮过程中气泡内气体()A.内能变大B.压强变大C.体积不变D.从水中吸热2.(2024重庆高考真题)某救生手环主要由高压气罐密闭。

气囊内视为理想气体。

密闭气囊与人一起上浮的过程中。

若气囊内气体温度不变,体积增大,则()A.外界对气囊内气体做正功B.气囊内气体压强增大C.气囊内气体内能增大D.气囊内气体从外界吸热3.(2024山东高考真题)一定质量理想气体经历如图所示的循环过程,a→b过程是等压过程,b→c过程中气体与外界无热量交换,c→a过程是等温过程。

下列说法正确的是()A.a→b过程,气体从外界吸收的热量全部用于对外做功B.b→c过程,气体对外做功,内能增加C.a→b→c过程,气体从外界吸收的热量全部用于对外做功D.a→b过程,气体从外界吸收的热量等于c→a过程放出的热量二、多选题4.(2024河北高考真题)如图,水平放置的密闭绝热汽缸被导热活塞分成左右两部分,左侧封闭一定质量的理想气体,右侧为真空,活塞与汽缸右壁中央用一根轻质弹簧水平连接。

汽缸内壁光滑且水平长度大于弹簧自然长度,弹簧的形变始终在弹性限度内且体积忽略不计。

活塞初始时静止在汽缸正中间,后因活塞密封不严发生缓慢移动,活塞重新静止后()A.弹簧恢复至自然长度B.活塞两侧气体质量相等C.与初始时相比,汽缸内气体的内能增加D.与初始时相比,活塞左侧单位体积内气体分子数减少5.(2024海南高考真题)一定质量的理想气体从状态a开始经ab、bc、ca三个过程回到原状态,已知ab 垂直于T轴,bc延长线过O点,下列说法正确的是()A .bc 过程外界对气体做功B .ca 过程气体压强不变C .ab 过程气体放出热量D .ca 过程气体内能减小6.(2024全国高考真题)如图,一定量理想气体的循环由下面4个过程组成:1→2为绝热过程(过程中气体不与外界交换热量),2→3为等压过程,3→4为绝热过程,4→1为等容过程。

高考物理真题专项解析—力学综合计算题

高考物理真题专项解析—力学综合计算题
(1)A与B的挡板碰撞后,二者的速度大小 与 ;
(2)B光滑部分的长度d;
(3)运动过程中A对B的摩擦力所做的功 ;
(4)实现上述运动过程, 的取值范围(结果用 表示)。
【答案】(1) , ;(2) ;(3) ;(4)
【解析】
(1)设水平向右为正方向,因为 点右侧光滑,由题意可知A与B发生弹性碰撞,故碰撞过程根据动量守恒和能量守恒有
【答案】(1) ;(2) ;(3)
【解析】
(1)篮球下降过程中根据牛顿第二定律有
mg-λmg=ma下
再根据匀变速直线运动的公式,下落的过程中有
v下2=2a下H
篮球反弹后上升过程中根据牛顿第二定律有
mg+λmg=ma上
再根据匀变速直线运动的公式,上升的过程中有
v上2=2a上h
则篮球与地面碰撞的碰后速率与碰前速率之比
【答案】
【解析】
频闪仪每隔0.05s发出一次闪光,每相邻两个球之间被删去3个影像,故相邻两球的时间间隔为
设抛出瞬间小球的速度为 ,每相邻两球间的水平方向上位移为x,竖直方向上的位移分别为 、 ,根据平抛运动位移公式有
令 ,则有
已标注的线段 、 分别为
则有
整理得
故在抛出瞬间小球的速度大小为
【母题来源二】2022年高考全国乙卷
(1)若释放点距B点的长度l=0.7m,求滑块到最低点C时轨道对其支持力FN的大小;
(2)设释放点距B点的长度为 ,滑块第一次经F点时的速度v与 之间的关系式;
(3)若滑块最终静止在轨道FG的中点,求释放点距B点长度 的值。
【答案】(1)7N;(2) ;(3)见解析
【解析】
(1)到C点过程
C点时
(2)能过最高点时,则能到F点,则恰到最高点时

(word完整版)高考物理运动学力学综合题库汇总,

(word完整版)高考物理运动学力学综合题库汇总,

1. 图示为某研究活动小组设计的节能运动系统。

斜面轨道倾角为30°,质量为 M的木箱与轨3道的动摩擦因数为6。

木箱在轨道端时,自动装货装置将质量为m的货物装入木箱,而后木箱载着货物沿轨道无初速滑下,与轻弹簧被压缩至最短时,自动卸货装置马上将货物卸掉,而后木箱恰巧被弹回到轨道顶端,再重复上述过程。

以下选项正确的选项是()A.m=MB.m=2MC.木箱不与弹簧接触时,上滑的加快度大于下滑的加快度D.在木箱与货物从顶端滑到最低点的过程中,减少的重力势能所有转变为弹簧的弹性势能2.以下图,质量分别为m1、 m2的两个物体经过轻弹簧连结,在力 F 的作用下一同沿水平方向做匀速直线运动(m1在地面, m2在空中),力 F 与水平方向成角。

则 m1所受支持力N 和摩擦力 f 正确的选项是()A.N m1g m2 g F sin B .N m1 g m2g F cosC.f F cos D. f F sin3. 倾角370,质量的粗拙斜面位于水平川面上,质量的木块置于斜面顶端,M=5kg m=2kg从静止开始匀加快下滑,经t=2s抵达底端,运动行程L=4m,在此过程中斜面保持静止( sin 37o0.6,cos37 o0.8, g取10m / s2),求:(1)地面对斜面的摩擦力大小与方向;(2)地面对斜面的支持力大小(3)经过计算证明木块在此过程中知足动能定理。

4. 以下图,在圆滑绝缘水平面上搁置 3 个电荷量均为 q q 0 的同样小球,小球之间用劲度系数均为 k0的轻质弹簧绝缘连结。

当 3 个小球处在静止状态时,每根弹簧长度为 l 0已知静电力常量为k ,若不考虑弹簧的静电感觉,则每根弹簧的原长为( C)5kq 2 kq 2 5kq 2 5kq 2A . l2B . l2C . l2D . l22k 0lk 0l4k 0 l 2k 0 l5、以下图,一根长为 l 的细线,一端固定于 O 点,另一端拴一个质量为 m 的小球。

高考物理力学综合题 精品优选公开课件

高考物理力学综合题 精品优选公开课件

A 运动到B 所需的时间
v
解:v1=k/d1 k=d1 v1 1/v1= d1 / k v1
v2=k/d2= d1v1 / d2 1/v2= d2 / d1 v1
作出v—d图线,见图线, 将v—d图线转化为1/v--d图线,
v2
d
取一小段位移d,可看作匀速运动, 0 d1 d2
t= d/v= d×1/v即为小窄条的面积。
(1)求弹簧长度刚被锁定后A球的速度。
(2)求在A球离开挡板P之后的运动过程中,弹簧的最大
弹性势能。
P
A
B
v0
C
(1)设C球与B球粘结成D时,D的速度为v1,由动量
守恒,有 mv0 =(m+m)v 1

当弹簧压至最短时,D与A的速度相等,设此速
度为v2 ,由动量守恒,有
2mv1 =3m v2

由①、②两式得A的速度
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 m0v(m2M)V

在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
擦。
D
求电动机的平均输出功率P。
A BC
解析:以地面为参考系(下同),设传送带的运动速度
为v0,在水平段运输的过程中,小货箱先在滑动摩擦 力作用下做匀加速运动,设这段路程为s,所用时间
为t,加速度为a,则对小箱有: S =1/2·at2 v0 =at

高考物理专题【“三大观点”解答力学综合问题】典型题(带解析)

高考物理专题【“三大观点”解答力学综合问题】典型题(带解析)

高考物理专题【“三大观点”解答力学综合问题】典型题1.(多选)质量为M和m0的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图所示,碰撞时间极短,在此过程中,下列情况可能发生的是()A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=M v1+m0v2+m v3B.m0的速度不变,M和m的速度变为v1和v2,而且满足M v=M v1+m v2C.m0的速度不变,M和m的速度都变为v′,且满足M v=(M+m)v′D.M、m0、m速度均发生变化,M、m0速度都变为v1,m的速度变为v2,且满足(M +m0)v=(M+m0)v1+m v2解析:选BC.在M与m碰撞的极短时间内,m0的速度来不及改变,故A、D均错误;M与m碰撞后可能同速,也可能碰后不同速,故B、C均正确.2.(多选)如图所示,在光滑的水平面上,有一质量为M的木块正以速度v向左运动,一颗质量为m(m<M)的弹丸以速度v向右水平击中木块并最终停在木块中.设弹丸与木块之间的相互作用力大小不变,则在相互作用过程中()A.弹丸和木块的速率都是越来越小B.弹丸在任一时刻的速率不可能为零C.弹丸对木块一直做负功,木块对弹丸先做负功后做正功D.弹丸对木块的水平冲量与木块对弹丸的水平冲量大小相等解析:选CD.弹丸击中木块前,由于m<M,两者速率相等,所以两者组成的系统总动量向左,弹丸水平击中木块并停在木块中的过程,系统的动量守恒,由动量守恒定律可知,弹丸停在木块中后它们一起向左运动,即弹丸开始时向右运动,后向左运动,故弹丸的速率先减小后增大,木块的速率一直减小,由以上分析知,弹丸的速率在某一时刻可能为零,故A、B错误;木块一直向左运动,弹丸对木块一直做负功,弹丸先向右运动后向左运动,则木块对弹丸先做负功后做正功,故C正确;由牛顿第三定律知,弹丸对木块的水平作用力与木块对弹丸的水平作用力大小相等,相互作用的时间相等,由冲量的定义式I=Ft知,弹丸对木块的水平冲量与木块对弹丸的水平冲量大小相等,故D 正确.3.(多选)如图所示,水平光滑轨道宽度和轻弹簧自然长度均为d ,m 2的左边有一固定挡板.m 1由图示位置静止释放,当m 1与m 2相距最近时m 1的速度为v 1,则在以后的运动过程中( )A .m 1的最小速度是0B .m 1的最小速度是m 1-m 2m 1+m 2v 1C .m 2的最大速度是v 1D .m 2的最大速度是2m 1m 1+m 2v 1解析:选BD .由题意结合题图可知,当m 1与m 2相距最近时,m 2的速度为0,此后,m 1在前,做减速运动,m 2在后,做加速运动,当再次相距最近时,m 1减速结束,m 2加速结束,因此此时m 1速度最小,m 2速度最大,在此过程中系统动量守恒和机械能守恒,m 1v 1=m 1v 1′+m 2v 2,12m 1v 21=12m 1v 1′2+12m 2v 22,可解得v 1′=m 1-m 2m 1+m 2v 1,v 2=2m 1m 1+m 2v 1,B 、D 选项正确.4.如图所示,一小车置于光滑水平面上,小车质量m 0=3 kg ,AO 部分粗糙且长L =2 m ,物块与AO 部分间动摩擦因数μ=0.3,OB 部分光滑.水平轻质弹簧右端固定,左端拴接物块b ,另一小物块a ,放在小车的最左端,和小车一起以v 0=4 m/s 的速度向右匀速运动,小车撞到固定竖直挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点,质量均为m =1 kg ,碰撞时间极短且不粘连,碰后以共同速度一起向右运动.(g 取10 m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离; (3)当物块a 相对小车静止时在小车上的位置到O 点的距离. 解析:(1)对物块a ,由动能定理得-μmgL =12m v 21-12m v 2代入数据解得a 与b 碰前a 的速度v 1=2 m/s ;a 、b 碰撞过程系统动量守恒,以a 的初速度方向为正方向, 由动量守恒定律得:m v 1=2m v 2 代入数据解得v 2=1 m/s.(2)当弹簧恢复到原长时两物块分离,物块a 以v 2=1 m/s 的速度在小车上向左滑动,当与小车同速时,以向左为正方向,由动量守恒定律得m v 2=(m 0+m )v 3, 代入数据解得v 3=0.25 m/s.对小车,由动能定理得μmgs =12m 0v 23 代入数据解得,同速时小车B 端到挡板的距离s =132 m.(3)由能量守恒得μmgx =12m v 22-12(m 0+m )v 23 解得物块a 与车相对静止时与O 点的距离:x =0.125 m. 答案:(1)1 m/s (2)132m (3)0.125 m5.如图甲所示,质量m 1=4 kg 的足够长的长木板静止在光滑水平面上,质量m 2=1 kg 的小物块静止在长木板的左端.现对小物块施加一水平向右的作用力F ,小物块和长木板运动的速度—时间图象如图乙所示.2 s 后,撤去F ,g 取10 m/s 2.求:(1)小物块与长木板之间的动摩擦因数μ; (2)水平力的大小F ;(3)撤去F 后,小物块和长木板组成的系统损失的机械能ΔE . 解析:(1)由题图可知:长木板的加速度a 1=12m/s 2=0.5 m/s 2由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力F f =m 1a 1=2 N小物块与长木板之间的动摩擦因数:μ=F fm 2g =0.2.(2)由题图可知,小物块的加速度a 2=42 m/s 2=2 m/s 2由牛顿第二定律可知:F -μm 2g =m 2a 2 解得F =4 N.(3)撤去F 后,小物块和长木板组成的系统动量守恒,以向右为正方向,最终两者以相同速度(设为v )运动m 1v 1+m 2v 2=(m 1+m 2)v 代入数据解得v =1.6 m/s 则系统损失的机械能ΔE =⎝⎛⎭⎫12m 1v 21+12m 2v 22-12()m 1+m 2v 2=3.6 J.答案:(1)0.2 (2)4 N (3)3.6 J6.如图所示,质量为m 1=0.5 kg 的小物块P 置于台面上的A 点并与水平弹簧的右端接触(不拴接),轻弹簧左端固定,且处于原长状态.质量M =1 kg 的长木板静置于水平面上,其上表面与水平台面相平,且紧靠台面右端.木板左端放有一质量m 2=1 kg 的小滑块Q .现用水平向左的推力将P 缓慢推至B 点(弹簧仍在弹性限度内),撤去推力,此后P 沿台面滑到边缘C 时速度v 0=10 m/s ,与小车左端的滑块Q 相碰,最后物块P 停在AC 的正中点,滑块Q 停在木板上.已知台面AB 部分光滑,P 与台面AC 间的动摩擦因数μ1=0.1,A 、C 间距离L =4 m .滑块Q 与木板上表面间的动摩擦因数μ2=0.4,木板下表面与水平面间的动摩擦因数μ3=0.1(g 取10 m/s 2),求:(1)撤去推力时弹簧的弹性势能; (2)长木板运动中的最大速度; (3)长木板的最小长度.解析:(1)小物块P 由B 点到C 点的过程: W 弹-μ1m 1gL =12m 1v 20-0 解得:W 弹=27 J E p =W 弹=27 J即:撤去推力时弹簧的弹性势能为27 J.(2)小物块P 和滑块Q 碰撞过程动量守恒,以v 0的方向为正方向 m 1v 0=-m 1v P +m 2v Q 小物块P 从碰撞后到静止 -12μ1m 1gL =0-12m 1v 2P 解得v Q =6 m/s滑块Q 在长木板上滑动过程中: 对Q :-μ2m 2g =m 2a 1对木板:μ2m 2g -μ3(M +m 2)g =Ma 2 解得:a 1=-4 m/s 2 a 2=2 m/s 2当滑块Q 和木板速度相等时,木板速度最大, 设最大速度为v ,滑行时间为t 0 对Q :v =v Q +a 1t 0 对木板:v =a 2t 0 解得:t 0=1 s v =2 m/s则长木板运动中的最大速度为2 m/s. (3)在滑块Q 和木板相对滑动过程中 Q 的位移:x Q =12(v Q +v )·t 0木板的位移:x 板=12(0+v )·t 0木板的最小长度:L =x Q -x 板 解得:L =3 m.答案:(1)27 J (2)2 m/s (3)3 m7.如图所示,固定点O 上系一长L =0.6 m 的细绳,细绳的下端系一质量m =1.0 kg 的小球(可视为质点),原来处于静止状态,球与平台的B 点接触但对平台无压力,平台高h =0.80 m ,一质量M =2.0 kg 的物块开始静止在平台上的P 点,现对物块M 施予一水平向右的初速度v 0,物块M 沿粗糙平台自左向右运动到平台边缘B 处与小球m 发生正碰,碰后小球m 在绳的约束下做圆周运动,经最高点A 时,绳上的拉力恰好等于小球的重力,而物块M 落在水平地面上的C 点,其水平位移x =1.2 m ,不计空气阻力,g =10 m/s 2.(1)求物块M 碰撞后的速度大小;(2)若平台表面与物块M 间的动摩擦因数μ=0.5,物块M 与小球的初始距离为x 1=1.3 m ,求物块M 在P 处的初速度大小.解析:(1)碰后物块M 做平抛运动,设其平抛运动的初速度为v 3,平抛运动时间为t h =12gt 2①x =v 3t ② 得:v 3=xg2h=3.0 m/s ③ (2)物块M 与小球在B 点处碰撞,设碰撞前物块M 的速度为v 1,碰撞后小球的速度为v 2,由动量守恒定律:M v 1=m v 2+M v 3④碰后小球从B 点处运动到最高点A 过程中机械能守恒,设小球在A 点的速度为v A ,则 12m v 22=12m v 2A+2mgL ⑤ 小球在最高点时有:2mg =m v 2AL ⑥由⑤⑥解得:v 2=6.0 m/s ⑦由③④⑦得:v 1=m v 2+M v 3M=6.0 m/s ⑧物块M 从P 点运动到B 点过程中,由动能定理: -μMgx 1=12M v 21-12M v 20⑨解得:v 0=v 21+2μgx 1=7.0 m/s ⑩答案:(1)3.0 m/s (2)7.0 m/s8.静止在水平地面上的两小物块A 、B ,质量分别为m A =1.0 kg ,m B =4.0 kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0 m ,如图所示.某时刻,将压缩的微型弹簧释放,使A 、B 瞬间分离,两物块获得的动能之和为E k =10.0 J .释放后,A 沿着与墙壁垂直的方向向右运动.A 、B 与地面之间的动摩擦因数均为μ=0.20.重力加速度取g =10 m/s 2.A 、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.(1)求弹簧释放后瞬间A 、B 速度的大小;(2)物块A 、B 中的哪一个先停止?该物块刚停止时A 与B 之间的距离是多少? (3)A 和B 都停止后,A 与B 之间的距离是多少?解析:(1)设弹簧释放瞬间A 和B 的速度大小分别为v A 、v B ,以向右为正,由动量守恒定律和题给条件有0=m A v A -m B v B ① E k =12m A v 2A +12m B v 2B ② 联立①②式并代入题给数据得 v A =4.0 m/s ,v B =1.0 m/s.③(2)A 、B 两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a .假设A 和B 发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B .设从弹簧释放到B 停止所需时间为t ,B 向左运动的路程为s B ,则有m B a =μm B g ④s B =v B t -12at 2⑤v B -at =0⑥在时间t 内,A 可能与墙发生弹性碰撞,碰撞后A 将向左运动,碰撞并不改变A 的速度大小,所以无论此碰撞是否发生,A 在时间t 内的路程s A 都可表示为s A =v A t -12at 2⑦联立③④⑤⑥⑦式并代入题给数据得 s A =1.75 m ,s B =0.25 m .⑧这表明在时间t 内A 已与墙壁发生碰撞,但没有与B 发生碰撞,此时A 位于出发点右边0.25 m 处,B 位于出发点左边0.25 m 处,两物块之间的距离s 为s=0.25 m+0.25 m=0.50 m.⑨(3)t时刻后A将继续向左运动,假设它能与静止的B碰撞,碰撞时速度的大小为v A′,由动能定理有12-12m A v2A=-μm A g(2l+s B)⑩2m A v A′联立③⑧⑩式并代入题给数据得v A′=7 m/s⑪故A与B将发生碰撞.设碰撞后A、B的速度分别为v A″和v B″,由动量守恒定律与机械能守恒定律有m A(-v A′)=m A v A″+m B v B″⑫12=12m A v A″2+12m B v B″2⑬2m A v A′联立⑪⑫⑬式并代入题给数据得v A″=375m/s,v B″=-275m/s⑭这表明碰撞后A将向右运动,B继续向左运动.设碰撞后A向右运动距离为s A′时停止,B向左运动距离为s B′时停止,由运动学公式2as A′=v A″2,2as B′=v B″2⑮由④⑭⑮式及题给数据得s A′=0.63 m,s B′=0.28 m⑯s A′小于碰撞处到墙壁的距离.由上式可得两物块停止后的距离s′=s A′+s B′=0.91 m.⑰答案:(1)4.0 m/s 1.0 m/s(2)物块B先停止0.50 m(3)0.91 m。

专题14力学综合计算题(解析版)—近5年(2017-2021)高考物理试题分类解析

专题14力学综合计算题(解析版)—近5年(2017-2021)高考物理试题分类解析

专题14 力学综合计算题(解析版)—近5年(2017-2021)高考物理试题分类解析1.2021全国甲卷第11题. 如图,一倾角为θ的光滑斜面上有50个减速带(图中未完全画出),相邻减速带间的距离均为d ,减速带的宽度远小于d ;一质量为m 的无动力小车(可视为质点)从距第一个减速带L 处由静止释放。

已知小车通过减速带损失的机械能与到达减速带时的速度有关。

观察发现,小车通过第30个减速带后,在相邻减速带间的平均速度均相同。

小车通过第50个减速带后立刻进入与斜面光滑连接的水平地面,继续滑行距离s 后停下。

已知小车与地面间的动摩擦因数为μ,重力加速度大小为g 。

(1)求小车通过第30个减速带后,经过每一个减速带时损失的机械能; (2)求小车通过前30个减速带的过程中在每一个减速带上平均损失的机械能;(3)若小车在前30个减速带上平均每一个损失的机械能大于之后每一个减速带上损失的机械能,则L 应满足什么条件?【答案】(1)sin mgd θ;(2)()29sin 30mg L d mgs θμ+-;(3)sin s L d μθ>+ 【解析】(1)由题意可知小车在光滑斜面上滑行时根据牛顿第二定律有sin mg ma θ=设小车通过第30个减速带后速度为v 1,到达第31个减速带时的速度为v 2,则有22212v v ad -=因为小车通过第30个减速带后,在相邻减速带间的平均速度均相同,故后面过减速带后的速度与到达下一个减速带均为v 1和v 2;经过每一个减速带时损失的机械能为22211122E mv mv ∆=- 联立以上各式解得sin E mgd θ∆=(2)由(1)知小车通过第50个减速带后的速度为v 1,则在水平地面上根据动能定理有21102mgs mv μ-=- 从小车开始下滑到通过第30个减速带,根据动能定理有()21129sin Δ2mg L d E mv θ+-=总(易错点:此式中注意是29不是30) 联立解得 ()Δ=29sin E mg L d mgs θμ+-总故在每一个减速带上平均损失的机械能为()29sin 3030mg L d mgs E E θμ+-∆'∆==总 (3)由题意可知 E E '∆>∆可得sin s L d μθ>+。

高考物理第一轮复习 力学综合练习题(附答案)

高考物理第一轮复习 力学综合练习题(附答案)

1.如右图所示,质量m =20 kg 的物体,在粗糙水平面上向左运动,物体与水平面间的动摩擦因数μ=0.1,物体同时还受到大小为10 N 方向向右的水平拉力F 的作用,则水平面对物体的摩擦力(g 取10 m/s 2)( )A .10 N ,水平向左B .20 N ,水平向左C .20 N ,水平向右D .30 N ,水平向右【答案】 C2.卡车上装着一只集装箱,不计空气阻力,下面说法正确是( )A .当卡车开始运动时,卡车对集装箱的静摩擦力使集装箱随卡车一起运动B .当卡车匀速运动时,卡车对集装箱的静摩擦力使集装箱随卡车一起运动C .当卡车匀速运动时,卡车对集装箱的静摩擦力等于零D .当卡车制动时,卡车对集装箱的静摩擦力等于零【答案】 AC3. 2008年初我国南方发生罕见的雪灾,导致大量交通车辆受阻,为解决这一问题,有的车辆轮胎上安装了防滑链,下列叙述正确的是( )A .装防滑链主要目的是增大车辆重力,从而增大摩擦力B .装防滑链主要目的是增大车辆与地面接触面积,从而增大摩擦力C .装防滑链主要目的是增大车辆与路面间粗糙程度,增大摩擦力D .以上叙述均不正确【答案】 C4. 如右图所示,一物体置于水平地面上静止不动,若用水平向左的力F =5.0 N 拉物体,物体仍静止,下述结论正确的是( )A .物体受到的合外力增加5.0 NB .物体对水平面的压力增加5.0 NC .物体对水平面的作用力大小增加5.0 ND .物体受到水平面的静摩擦力是5.0 N【解析】 物体一直处于静止平衡状态,受到合外力为零不变,物体对水平面的压力大小不变(等于物体受到的重力的大小),由平衡条件可知物体受到的静摩擦力与水平方向的拉力大小相等,为5.0 N ,A 、B 均错,D 对;物体对水平面的作用力有压力与静摩擦力,方向互相垂直,即物体对水平面的作用力是这两个力的合力,不在同一直线上的力应用矢量平行四边形定则计算,而不能用代数方法运算,C 错.【答案】 D5. (2008年高考全国卷Ⅱ)如右图,一固定斜面上两个质量相同的小物块A 和B 紧挨着匀速下滑,A 与B 的接触面光滑.已知A 与斜面之间的动摩擦因数是B 与斜面之间动摩擦因数的2倍,斜面倾角为α,B 与斜面之间的动摩擦因数是( )A.23tan αB.23cot α C .tan α D .cot α【解析】 对A 和B 进行受力分析可知,A 、B 两物块受到斜面的支持力均为mg cos α,所受滑动摩擦力分别为F fA =μA mg cos α、F fB =μB mg cos α,对整体受力分析结合平衡条件可得2mg sin α=μA mg cos α+μB mg cos α,且μA =2μB ,解得μB =23tan α,故答案为A. 【答案】 A6. 如右图所示,质量为m 1的木块在质量为m 2的长木板上滑行,长木板与地面间动摩擦因数为μ1,木块与长木板间动摩擦因数为μ2,若长木板仍处于静止状态,则长木板受地面摩擦力大小一定为( )A .μ1(m 1+m 2)gB .μ2m 1gC .μ1m 1gD .μ1m 1g +μ2m 2g【解析】 木块在木板上滑行,木板上表面所受滑动摩擦力F f =μ2m 1g ;木板处于静止状态,水平方向上受到木板对木板的滑动摩擦力和地面对木板的静摩擦力,根据力的平衡条件可知,地面对木板的静摩擦力的大小等于木块对木板的滑动摩擦力的大小,B 项正确.【答案】 B7. 如右图所示,一个木块A 放在长木板B 上,长木板B 放在水平地面上,有恒力F 作用下,长木板B 以速度v 匀速运动,水平的弹簧秤的示数为F T .下列有关摩擦力的说法正确的是( )A .木块受到的滑动摩擦力的大小等于FB .木块受到的静摩擦力的大小等于F TC .若长木板B 以2v 的速度匀速运动时,木块受到的摩擦力的大小等于2F TD .若用2F 的力作用在长木板B 上,木块受到的摩擦力的大小仍等于F T【解析】 若用2F 的力作用在长木板B 上,木块受到的摩擦力的大小仍等于F T .【答案】 D8. 如右图所示,倾角为θ的斜面体C 置于水平面上,B 置于斜面上,通过细绳跨过光滑的定滑轮与A 相连接,连接B 的一段细绳与斜面平行,A 、B 、C 都处于静止状态.则( )A .B 受到C 的摩擦力一定不为零B .C 受到水平面的摩擦力一定为零C .不论B 、C 间摩擦力大小、方向如何,水平面对C 的摩擦力方向一定向左D .水平面对C 的支持力与B 、C 的总重力大小相等【解析】 以B 物体为研究对象,沿斜面方向受到重力沿斜面方向向下的分力、绳的拉力和静摩擦力,静摩擦力的大小等于重力沿斜面方向向下的分力与拉力的合力,所以可能为0,可能沿斜面向上或向下,A 项错误;利用整体法可知不论B 、C 间摩擦力大小、方向如何,水平面对C 的摩擦力方向一定向左,B 项错误,C 项正确;同理,在竖直方向利用整体法判断水平面对C 的支持力等于B 、C 的总重力大小减去拉力在竖直方向上的分力,D 项错误.【答案】 C9. (2010年北京东城)如右图所示,物块M 在静止的传送带上以速度v 匀速下滑时,传送带突然启动,方向如图中箭头所示,若传送带的速度大小也为v ,则传送带启动后( )A .M 静止在传送带上B .M 可能沿斜面向上运动C .M 受到的摩擦力不变D .M 下滑的速度不变【解析】 本题考查的知识点为滑动摩擦力,由M 匀速下滑可知其处于平衡状态,受重力、摩擦力、支持力,传送带启动以后对M 受力没有影响,自然也不会影响其运动状态,故CD 正确.【答案】 CD10. (2010年山东济南)如右图所示,质量不等的两个物体A 、B 在水平拉力F 的作用下,沿光滑水平面一起向右运动,滑轮及细绳质量不计.则下列说法中正确的有( )A .物体B 所受的摩擦力方向一定向左B .物体B 所受的摩擦力方向可能向左C .物体B 所受的摩擦力一定随水平力F 的增大而增大D .只要水平力F 足够大,物体A 、B 间一定会打滑【解析】 A 、B 都受到绳子向右的拉力F T ,设两物体有共同的加速度a ,A 、B 的质量分别为M 、m ,两物体间摩擦力大小为F f, 但由于两物体的质量大小关系不确定,所以物体B 所受摩擦力的方向不确定,设A 对B 的摩擦力方向向右,B 对A 的摩擦力方向向左,则有:F T +F f =ma ,F T -F f =Ma ,得F f =12(m -M )a ,若m >M ,F f 为正值,B 受摩擦力方向向右;若m <M ,F f 为负值,B 受摩擦力方向向左.把两个物体看作一个整体,若F 增大,则两个物体的加速度a 也增大,F f 也增大,当F f 达到最大静摩擦力后,物体A 、B 间会打滑.【答案】 BCD11. (2009年高考全国卷Ⅰ)某同学为了探究物体在斜面上运动时摩擦力与斜面倾角的关系,设计实验装置如右图长直平板一端放在水平桌面上,另一端架在一物块上.在平板上标出A 、B 两点,B 点处放置一光电门,用光电计时器记录滑块通过光电门时挡光的时间.实验步骤如下:①用游标卡尺测量滑块的挡光长度d ,用天平测量滑块的质量m ;②用直尺测量AB 之间的距离s ,A 点到水平桌面的垂直距离h 1,B 点到水平桌面的垂直距离h 2;③将滑块从A 点静止释放,由光电计时器读出滑块的挡光时间t ;④重复步骤③数次,并求挡光时间的平均值t ;⑤利用所测数据求出摩擦力f 和斜面倾角的余弦值cos α;⑥多次改变斜面的倾角,重复实验步骤②③④⑤,做出f -cos α关系曲线.(1)用测量的物理量完成下列各式(重力加速度为g ):①斜面倾角的余弦cos α=________;②滑块通过光电门时的速度v =________;③滑块运动时的加速度a =________;④滑块运动时所受到的摩擦阻力f =________.(2)测量滑块挡光长度的游标卡尺读数如右图所示,读得d=s 2-(h 1-h 2) 2【解析】 (1)①②略.③由位移公式推论v 2t-v 20=2as 有a =v 2t 2s =d 22s t 2.④由动能定理有mg(h 1-h 2)-fs =12mv 2-0,故有f=mg h 1- h 2s -mv 22s =mg h 1- h 2s -md 22s t 2. (2)主尺读数3.6 cm 游标尺上第2条刻度线与主尺上某条刻度线对齐,十分度的游标卡尺的精度为0.1 mm ,故测量结果为d=3.6 cm+2×0.1 mm=3.62 cm.【答案】 (1)①1ss 2-(h 1-h 2)2 ②d t③d 22s t 2 ④mg h 1- h 2s -m d 22s t 2(2)d=3.62 cm12.物体A 单独放在倾角为37°的斜面上时,正好能匀速下滑.A 系上细线通过光滑滑轮挂上物体B ,且将斜面倾角改为30°时,如右图所示.A 又正好能沿斜面匀速上滑,则B 与A 的质量之比为多少?【解析】 倾角为37°时,物体沿斜面方向上受沿斜面向下的重力的分力m A g sin θ和沿斜面向上的滑动摩擦力F f =μF N =μm A g cos θ.因物体匀速下滑,由二力平衡知m A g sin 37°=μm A g cos 37°,μ=tan 37°=3/4.倾角改为30°且挂上物体B 后,取B 为研究对象,由二力平衡知,绳的拉力F T =m B g ,取A 为研究对象,A 在斜面上向上匀速滑行时,受平行于斜面向上的绳的拉力F T =m B g 和平行于斜面向下的重力的分力m A g sin θ以及滑动摩擦力F f =μm A g cos θ,根据平衡条件,在平行于斜面方向上有:m A g sin θ+μm A g cos θ=m B g ,其中θ=30°,μ=3/4,代入可得:m B ∶m A =(4+33)∶8.【答案】 (4+33)∶8。

高考物理复习练习:热点17 力学综合题(三种运动形式的应用)

高考物理复习练习:热点17 力学综合题(三种运动形式的应用)

热点17 力学综合题(三种运动形式的应用)(建议用时:20分钟)1.(2019·南京市六校联考)如图所示,一个质量为M、长为L的圆管竖直放置,顶端塞有一个质量为m的弹性小球,M=5m,球和管间的滑动摩擦力和最大静摩擦力大小均为5mg.管从下端距离地面为H处自由落下,运动过程中,管始终保持竖直,每次落地后向上弹起的速度与落地时速度大小相等,不计空气阻力,重力加速度为g.求:(1)管第一次落地弹起时管和球的加速度;(2)管第一次落地弹起后,若球没有从管中滑出,则球与管达到相同速度时,管的下端距地面的高度;(3)管第二次弹起后球不致滑落,L应满足什么条件?2.将一端带有四分之一圆弧轨道的长木板固定在水平面上,其中B点为圆弧轨道的最低点,BC段为长木板的水平部分,长木板的右端与平板车平齐并紧靠在一起,但不粘连.现将一质量m1=2 kg的物块由圆弧的最高点A无初速度释放,经过B点时对长木板的压力大小为40 N.物块经C点滑到平板车的上表面.若平板车固定不动,物块恰好停在平板车的最右端.已知圆弧轨道的半径R=3.6 m,BC段的长度L1=5.0 m,平板车的长度L2=4 m,物块与BC段之间的动摩擦因数为μ=0.2,平板车与水平面之间的摩擦可忽略不计,g=10 m/s2.求:(1)物块从A到B过程中克服摩擦做的功W克f;(2)物块在BC段滑动的时间t;(3)若换一材料、高度相同但长度仅为L3=1 m的平板车,平板车的质量m2=1 kg,且不固定,试通过计算判断物块是否能滑离平板车,若不能滑离,求出最终物块离平板车左端的距离;若能滑离,求出滑离时物块和平板车的速度大小.3.(2019·扬州高三考前调研)如图所示,质量为m=1 kg的可视为质点的小物块轻轻放在水平匀速运动的传送带上的P点,随传送带运动到A点后水平抛出,小物块恰好无碰撞地沿圆弧切线从B点进入竖直光滑圆弧轨道下滑,圆弧轨道与质量为M=2 kg的足够长的小车在最低点O点相切,并在O点滑上小车,水平地面光滑,当物块运动到障碍物Q处时与Q发生无机械能损失的碰撞.碰撞前物块和小车已经相对静止,而小车可继续向右运动(物块始终在小车上),小车运动过程中和圆弧无相互作用.已知圆弧半径R=1.0 m,圆弧对应的圆心角θ为53°,A点距水平面的高度h=0.8 m,物块与小车间的动摩擦因数为μ=0.1,重力加速度g=10 m/s2,sin 53°=0.8,cos 53°=0.6.试求:(1)小物块离开A点的水平初速度v1大小;(2)小物块经过O 点时对轨道的压力大小;(3)第一次碰撞后直至静止,物块相对小车的位移和小车做匀减速运动的总时间.热点17 力学综合题(三种运动形式的应用)1.解析:(1)管第一次落地弹起时,管的加速度a 1=5mg +5mg 5m=2g,方向竖直向下.球的加速度a 2=5mg -mg m=4g,方向竖直向上. (2)取竖直向下为正方向.管第一次碰地瞬间的速度v 0=2gH,方向竖直向下.碰地后,管的速度v 1=2gH,方向竖直向上;球的速度v 2=2gH,方向竖直向下若球刚好没有从管中滑出,设经过时间t 1,球、管的速度相同,则有-v 1+a 1t 1=v 2-a 2t 1t 1=2v 0a 1+a 2=2gH 3g故管下端距地面的高度h 1=v 1t 1-12a 1t 21=v 213g -v 219g =49H. (3)球与管达到相对静止后,将以速度v 、加速度g 竖直上升到最高点,由于v =v 2-a 2t 1=-132gH 故这个高度是h 2=v 22g=⎝ ⎛⎭⎪⎫132gH 22g =19H 因此,管第一次落地弹起后上升的最大高度H m =h 1+h 2=59H 从管弹起到球与管共速的过程球运动的位移s =v 2t 1-12a 2t 21=29H 则球与管发生的相对位移s 1=h 1+s =23H. 同理可知,当管与球从H m 再次下落,第二次落地弹起后到球与管共速,发生的相对位移为s 2=23H m 所以管第二次弹起后,球不会滑出管外的条件是s 1+s 2<L即L 应满足条件L>2827H. 答案:(1)见解析 (2)49H (3)L>2827H 2.解析:(1)设物块到达B 点时的速度大小为v 1,由题意可知此时长木板对物块的支持力N =40 N,由牛顿第二定律有N -m 1g =m 1v 21R解得v 1=6 m/s从A 到B 由功能关系有W 克f =m 1gR -12m 1v 21 解得W 克f =36 J.(2)设物块在C 点的速度大小为v 2,从B 运动到C 的时间为t,由动能定理有-μm 1gL 1=12m 1v 22-12m 1v 21 解得v 2=4 m/s由牛顿第二定律有μm 1g =m 1a解得a =2 m/s 2则从B 运动到C 的时间为t =v 1-v 2a=1 s. (3)当平板车固定时,由动能定理有0-12m 1v 22=-fL 2 解得f =4 N当平板车不固定时,假设物块恰好不能滑离平板车,它停在平板车最右端时二者共同的速度大小为v 3,物块相对平板车滑行的距离为x物块与平板车组成的系统动量守恒,有m 1v 2=(m 1+m 2)v 3物块与平板车组成的系统能量守恒,有fx =12m 1v 22-12(m 1+m 2)v 23 联立解得x =43m>1 m 说明假设不成立,物块滑离平板车设物块滑离平板车时物块的速度大小为v 4,平板车的速度大小为v 5物块与平板车组成的系统动量守恒,有m 1v 2=m 1v 4+m 2v 5物块与平板车组成的系统能量守恒,有fL 3=12m 1v 22-12m 1v 24-12m 2v 25 解得v 4=103m/s,v 5=43m/s 另一组解v 4=2 m/s,v 5=4 m/s 不合题意,舍去.答案:(1)36 J (2)1 s(3)能滑离 103m/s 43m/s 3.解析:(1)对小物块由A 到B 有v 2y =2gh在B 点tan θ=v y v 1解得v 1=3 m/s.(2)由A 到O,根据动能定理有mg(h +R -Rcos θ)=12mv 20-12mv 21 在O 点F N -mg =m v 20R解得v 0=33 m/s,F N =43 N由牛顿第三定律知,小物块对轨道的压力F ′N =43 N.(3)摩擦力F f =μmg=1 N,物块滑上小车后经过时间t 达到的共同速度为v t则v 0-v t a m =v t a M,a m =2a M 得v t =333 m/s 由于碰撞不损失能量,物块在小车上重复做匀减速和匀加速运动,相对小车始终向左运动,物块与小车最终静止,摩擦力做功使动能全部转化为内能,故有:F f ·l 相=12(M +m)v 2t 得l 相=5.5 m小车从物块碰撞后开始匀减速运动,(每个减速阶段)加速度不变a M =F f M=0.5 m/s 2,v t =a M t 得t =2333 s. 答案:(1)3 m/s (2)43 N (3)5.5 m2333 s。

高考物理历年真题-力学综合计算题10道及答案解析

高考物理历年真题-力学综合计算题10道及答案解析

高考物理历年真题-力学综合计算题10道及答案解析
【题目1】:两个小球A、B相接触,用一张胶带将A小球拉
向右边,以a的速度沿水平方向匀速运动,小球B随之滑动,两个小球一起移动,当小球A以v1的速度移动时,小球B移
动的速度是多少?
【答案解析】:根据牛顿第二定律,胶带向右边施加了力F,
由于两个小球A、B系绱相接触,改变小球A的速度也会影
响小球B的速度,根据动量守恒定律:
M1 v1 + M2 v2 = M1 a + M2 v'
其中M1、M2分别为两个小球质量,v1、v2分别为小球A和
B原有速度,a为小球A以a的速度加速,v'为小球B所受到
力F后v’的速度。

故此题小球B受到力F后v'的速度= M1 a / M2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P 3
当弹簧伸到最长时,其势能最大,设此势能为 E P ,由能量守恒,有 1 1 2 2 2mv3 3mv4 EP ⑦ 2 2

1 2 mv 0 解以上各式得 E P 36

题目 上页
如图所示,A、B是静止在水平地面上完 全相同的两块长木板。A的左端和B的右端相接触。两 板的质量皆为M=2.0kg,长度皆为l =1.0m,C 是一质量 为m=1.0kg的木块.现给它一初速度v0 =2.0m/s,使它 从B板的左端开始向右动.已知地面是光滑的,而C与A、 B之间的动摩擦因数皆为μ=0.10.求最后A、B、C各以 多大的速度做匀速运动.取重力加速度g=10m/s2.
上页 下页
m 4 L 解: G 2 m 2 L T0 2
2 2
2L T0 L Gm
2
设暗物质的质量为M,重心在O点
2
M m( N 1) / 4 M 3( N 1)m 3 1 L3 2L 6
m 4Mm 4 L G 2 G 2 m 2 m 2 L L T 4 ( N 1) T : T0 1: N m2 4Mm 4 N 2 L m2 G 2 G 2 m 2 NG 2 L L T0 2 L
2 2mv1 2 3mv2 EP ④
2 当弹簧伸长,A球离开挡板P,并获得速度。当A、D 的速度相等时,弹簧伸至最长。设此时的速度为v4 , 由动量守恒,有 2mv =3mv ⑥
3 4
撞击P后,A与D 的动能都为零,解除锁定后,当弹簧 刚恢复到自然长度时,势能全部转变成D 的动能,设 D的速度为v3 ,则有 E 1 2mv2 ⑤
o
·
m
题目
上页
34、 一传送带装置示意如图,其中传送带经过 AB区域时是水 平的,经过BC区域时变为圆弧形(圆弧由光滑模板形成,未画 出),经过CD区域时是倾斜的,AB和CD都与BC相切。现将大 量的质量均为m的小货箱一个一个在A处放到传送带上,放置时 初速为零,经传送带运送到 D 处, D和 A 的高度差为 h。稳定工 作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离 为L。每个箱子在A处投放后,在到达B之前已经相对于传送带 静止,且以后也不再滑动(忽略经BC段时的微小滑动)。已知 在一段相当长的时间 T 内,共运送小货箱的数目为 N。这装置 由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩 D 擦。
T时间内,电动机输出的功为: W=PT 此功用于增加小箱的动能、势能以及克服摩擦 力发热,即:
1/2×3mv12 +Ep= 1/2×3mv22 + f l
∵v1= v2 ∴ Ep = f l
∴ 1/2mv02 = 1/2×3mv12 +2 Ep 即 ∴ 1/3mv02= 2 Ep
2m v0 m
6 EP v0 m
2m
v1
2m
m
∴ E=2 Ep
v2
m
在原子核物理中,研究核子与核关联的最有 效途径是“双电荷交换反应”。这类反应的前半部分过程和下 述力学模型类似。两个小球A和B用轻质弹簧相连,在光滑的 水平直轨道上处于静止状态。在它们左边有一垂直于轨道的固 定挡板P,右边有一小球C沿轨道以速度v0 射向 B球,如图所 示。C与B发生碰撞并立即结成一个整体D。在它们继续向左运 动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再 改变。然后,A球与挡板P发生碰撞,碰后A、D都静止不动, A与P接触而不粘连。过一段时间,突然解除锁定(锁定及解 除定均无机械能损失)。已知A、B、C三球的质量均为m。 (1)求弹簧长度刚被锁定后A球的速度。 (2)求在A球离开挡板P之后的运动过程中,弹簧的最大 弹性势能。 v
m=1.0kg
C
v0 =2.0m/s
A
B
M=2.0kg
M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这 时A、B、C 三者的速度相等,设为V. 由动量守恒得
mv0 (m 2M )V

在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
1 1 2 2 由功能关系得 mg ( s x) mV mv 0 2 2 1 mgs 2 MV 2 2 1 1 2 2 ② mgx ( m 2 M ) V mv 相加得 0
B

C
题目 上页 下页
当滑到A之后,B 即以V1= 0.155m/s 做匀速运动.而C 是 以 v1=1.38m/s 的初速在A上向右运动.设在A上移动了y 距离 后停止在A上,此时C 和A 的速度为V2,如图示: 对AC,由动量守恒得 解得
MV1 mv1 (m M)V2

V2 = 0.563 m/s ⑩ 1 1 1 2 2 2 mv MV (m M)V 由功能关系得 1 1 2 μ mgy 2 2 2 解得 y = 0.50 m y 比A 板的长度小,故小物块C 确实是停在A 板上 .最后A、B、C 的速度分别为:
力学综合题
P
A
B
v0 C
例:如图示:竖直放置的弹簧下端固定,上端连接 一个砝码盘 B,盘中放一个物体 A , A、 B的质量分 别是M=10.5kg、m=1.5 kg,k=800N/m,对A施加一个 竖直向上的拉力,使它做匀加速直线运动,经过 0.2 秒 A 与 B 脱 离 , 刚 脱 离 时 刻 的 速 度 为 v=1.2m/s , 取 g=10m/s2,求A在运动过程中拉力的最大值与最小值。 解:对整体 kx1=(M+m)g F + kx - (M+m)g= (M+m)a
1. 木块的未知速度v0 2. 以木块与木板为系统,上述过程中系统损失的机械能.
v0 m
2m
解: 弹簧压缩最短时,两者具有相同的速度v1, 由动量守恒定律得: v1=1/3 v0 木块返回到右端时,两者具有相同的速度v2, 同理v2=1/3 v0
由能量守恒定律
1/2mv02 =1/2×3mv12 +Ep+fl
VA V2 0.563m/s VB V1 0.155m/s VC VA 0.563m/s
B
V1
y C A
V2
题目 上页 下页
解:v1=k/d1 k=d1 v1 1/v1= d1 / k v1 v2=k/d2= d1v1 / d2 1/v2= d2 / d1 v1 作出v—d图线,见图线, v2 将v—d图线转化为1/v--d图线, 0 取一小段位移d,可看作匀速运动,
A
B
解: (1)当弹簧被压缩到最短时,AB两球的速度 相等设为v, 由动量守恒定律 2mv0=3mv v0
由机械能守恒定律
A
v1
B
v2

EP=1/2×2mv02 -1/2×3mv2 = mv2/3 (2)画出碰撞前后的几个过程图 由甲乙图 由丙丁图 2mv0=2mv1 +mv2 2mv1- mv2 =3mV
1 1 1 2 2 mv 0 mv1 2 MV12 μ mgl 2 2 2

以题给数据代入解得
8 24 V1 20
由于v1 必是正数,故合理的解是
8 24 2 24 v1 2 5 5
⑦ v1 V1 A
8 24 V1 0.155m / s 20 2 24 v1 1.38m / s 5
用f 表示小箱与传送带之间的滑动摩擦力,则传送 带对小箱做功为 A=f S=1/2· mv02
传送带克服小箱对它的摩擦力做功 A0=f S0=2×1/2· mv02 两者之差就是摩擦力做功发出的热量 Q=1/2· mv02
题目
[也可直接根据摩擦生热 Q= f △S= f(S0- S)计算]
可见,在小箱加速运动过程中,小箱获得的动能与 发热量相等. Q=1/2· mv02
d
d1 1/v d2
1/v2 1/v 1/v1 0 d1 d d2
d
经过用天文望远镜长期观测,人们在 宇宙中发现了许多双星系统。所谓双星系统是 由两个星体构成的天体系统,其中每个星体的 线度都远远小于两个星体之间的距离,根据对 双星系统的光度学测量确定,这两个星体中的 每一个星体都在绕两者连线中的某一点作圆周 运动,星体到该点的距离与星体的质量成反比, 一般双星系统与其它星体距离都很远,除去双 星系统中两个星体之间相互作用的万有引力外, 双星系统所受其它天体的作用都可以忽略不计 (这样的系统称为孤立系统)。现根据对某一 双星系统的光度学测量确定,该双星系统中每 个星体的质量都是m,两者的距离是L。 下页
t= d/v= d×1/v即为小窄条的面积。 同理可得梯形总面积即 为所求时间 t =1/2×(1/v2+1/v1)(d2-d1) =(d2-d1)2 /2d1v1
一只老鼠从洞口爬出后沿一直线运动,其速度大小与其 离开洞口的距离成反比,当其到达距洞口为d 1 的A点时速 度为v 1,若B点离洞口的距离为d 2 (d 2 > d 1 ),求老鼠由 A 运动到B 所需的时间 v
双星系统
(1)试根据动力学理论计算该双星系统的运动 周期 T0。
(2)若实际观测到该双星系统的周期为T, ( N 1) 且 T : T0 1: N 。为了解释T与 T0之间的差异,目前有一种流行的理论认为,在 宇宙中可能存在一种用望远镜观测不到的暗物质。 作为一种简化模型,我们假定认为在这两个星体 连线为直径的球体内均匀分布着这种暗物质,若 不考虑其它暗物质的影响,试根据这一模型和上 述观测结果确定该星系间这种暗物质的密度。
Mv x (2M m) g
C
2
解①、②两式得
代入数值得
2 0
2

A
v0
x 1 .6 m
B x
相关文档
最新文档