(精典整理)平行四边形、矩形、菱形、正方形知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
A
平行四边形、矩形、菱形、正方形知识方法总结
一. 平行四边形、矩形、菱形、正方形的性质:
平行四边形
矩形
菱形
正方形
图形
一般 性质
1.边:
且 ; 2.角: ;
; 3.对角线 ;
1.边:
且 ; 2.角: ;
; 3.对角线 ;
1.边:
且 ; 2.角: ; ; 3.对角线 ;
1.边:
且 ; 2.角: ;
; 3.对角线 ;
面积
二. 判断(识别)方法小结:
(1) 识别平行四边形的方法:(从边、角、对角线3方面)
①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形; ④两组对角分别相等的四边形是平行四边形; ⑤对角线互相平分的四边形是平行四边形。
(2) 识别矩形的方法:(从定义、特殊元素(角、对角线)3方面) ①有一个角是直角的平行四边形是矩形;( t R ⊕∠Y 一个 ) ②对角线相等的平行四边形是矩形; ( ⊕Y 对角线 =) ③有三个角是直角的四边形是矩形; (3t R ∠个 )
④对角线相等且互相平分的四边形是矩形。( ⊕对角线互相平分对角线 =)
(3) 识别菱形的方法:(从定义、特殊元素(边、对角线)3方面) ①有一组邻边相等的平行四边形是菱形; ( =⊕Y 一组邻边 ) ②对角线互相垂直的平行四边形是菱形; ( ⊕⊥Y 对角线 ) ③四边都相等的四边形是菱形; (4= 边)
④对角线互相垂直平分的四边形是菱形。( ⊕⊥对角线互相平分对角线 ) (4) 识别正方形的方法:(从边、角、对角线3方面) 抓本质:矩形+菱形
①有一组邻边相等且有一个角是直角的平行四边形是正方形;( = Rt ∠⊕⊕Y 一组邻边一个 ) ②对角线互相垂直且相等的平行四边形是正方形; ( ⊕⊕⊥=Y 对角线 对角线) ③有一组邻边相等的矩形是正方形; ( =⊕ 矩形一组邻边 ) ④对角线互相垂直的矩形是正方形; ( ⊕⊥矩形对角线 ) ⑤有一个角是直角的菱形是正方形; ( Rt ∠⊕菱形一个 ) ⑥对角线相等的菱形是正方形; (⊕=菱形 对角线)
⑦对角线互相垂直平分且相等的四边形是正方形。 ( ⊕⊕⊥=对角线互相平分对角线 对角线) 小结:把以上识别方法的编号分别填入下图中的每一条带方向的线上:(如平行四边形的第一种识别方法的编号为 (1) ①,其他方法类似)
三、其他性质:
1、平行四边形、矩形、菱形、正方形(平行四边形系列图形):都具有的
(1)与面积有关的:任意一条对角线分得的两部分面积___________;两条对角线分得的四部分面积________。
⇒推广:若一条直线过平行四边形(系列图形)对角线的交点,则直线被一组对边截下的
线段以对角线的交点为中点,且这条直线二等分平行四边形(系列图形)的面积。
(2)与对称性有关的:平行四边形、矩形、菱形、正方形(平行四边形系列图形)都是____________________图形;但只有:矩形、菱形、正方形为_________________图形;平行四边形______________图形。
即:矩形、菱形、正方形既是_________________图形,又是____________图形;平行四边形只是______________图形。
○1 矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线。
○2 菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是对角线所在的直线。
○
3 正方形是轴对称图形,其对称轴为对边中点所在的直线或对角线所在的直线,也是中心对称图形,对称中心为对角线的交点。 2、矩形具有平行四边形的一切性质 菱形具有平行四边形的一切性质
正方形具有平行四边形、矩形、菱形的一切性质 3、拓展知识:
(1)三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线
(2)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
推广(灵活应用):
(结合:三角形的中位线;三角形中位线定理;三角形相似)
以右图△ABC 为例,在 ○
1 D 为AB 中点 ○
2 E 为AC 中点 ○
3 DE BC ∥ ○
4 1
=2
DE BC 中知道任意两个必能够推得另外两个。 (3)菱形的面积:菱形的面积等于对角线乘积的一半。
推广:对角线互相垂直的四边形面积等于对角线乘积的一半。 (4)直角三角形斜边上的中线等于斜边的一半
四、梯形:
1、定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
2、等腰梯形:两腰相等的梯形是等腰梯形。
3、直角梯形:有一个角是直角的梯形是直角梯形
4、等腰梯形的性质:
○1对称性:等腰梯形是轴对称图形,上下底的中点连线所在的直线是对称轴,
○2角:等腰梯形同一底边上的两个角相等;同腰上的两个角互补。
○3对角线:等腰梯形的两条对角线相等。
○4边:两腰相等;上下底不等。
5、等腰梯形的判定定理
同一底上两个角相等的梯形是等腰梯形。
6、等腰梯形的判定方法:
○1先判定它是梯形,○2再用两腰相等或同一底上的两个角相等来判定它是等腰梯形。
7、梯形常见的辅助线(解决梯形问题常用的方法:)
解梯形问题常用的辅助线:如图
1.延长两腰交于一点
作用:使梯形问题转化为三角形问题。
若是等腰梯形则得到等腰三角形。
2.平移一腰
作用:使梯形问题转化为平行四边形及三角形问题。
3.作高
作用:使梯形问题转化为直角三角形及矩形问题。
4.平移一条对角线
作用:(1)得到平行四边形ACED,使CE=AD,
BE等于上、下底的和
(2)S梯形ABCD=S△DBE