轴对称复习导学案
轴对称单元复习导学案
0
E A C
编号:
SX8—048
4、如图是一个平行四边形土地 ABCD,后来在其边缘挖了一个小平行四边形水塘 DFGH, 现准备将其分成两块,并使其满足:两块地的面积相等,分割线恰好做成水渠,便于灌 溉,请你在图中画出分界线(保留作图痕迹) ,简要说明理由.
A E F B
H G
D
C
教 与 学 反 思
O
教
者
八年
学 科
数学
设计- 2
学 习 通过复习进一步掌握轴对称图形的特点和应用 目 标 重 点
轴对称图形的特点和应用
旋转后与原图形重合
难 轴对称图形的特点和灵活应用 点
学 习 方 法 独立思考,实在不会再去问别人,不追求热闹,弄透才是根本
二、举例: 0 例 1:如图,将点阵中的图形绕点 O 按逆时针方向旋转 90 ,画出旋转后的图形.
例 2:画出将Δ ABC 绕点 O 按顺时针方向旋转 120°后的对应三角形。 A
·O B C
例 3:如图,已知Δ ABC 是直角三角形,BC 为斜边。若 AP=3,将Δ ABP 绕点 A 逆时针旋 转后,能与Δ ACP′重合,求 PP′的长。
编号:
A P′ P B C
SX8—048
1、画出等腰 Rt△ABC 绕点 C 逆时针旋转 90°后的图形。
编号:
SX8—048
导
题 学 目 校
期末复习八
星火 一中
学
案
年
设
级
计
课时
1
并且被对称中心平分。 3、中心对称图形: 把一个平面图形绕着某一点旋转 180°,如果旋转后的图形能够和原来的图形互相 重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。 中心对称图形上的每一对对应点所连成的线段都被对称中心平分。 4、中心对称与中心对称图形之间的关系: 区别: (1) 中心对称是指两个图形的关系, 中心对称图形是指具有某种性质的图形。 (2) 成中心对称的两个图形的对称点分别在两个图形上, 中心对称图形的对称点在一个图形 上。 联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把中心对称的 两个图形看成一个整体,则成为中心对称图形 . 5、对比轴对称图形与中心对称图形: 轴对称图形 有一条对称轴——直线 沿对称轴对折 对折后与原图形重合 中心对称图形 有一个对称中心——点 绕对称中心旋转 180
轴对称单元复习导学案2
SX8—043
导
题 学 目 校
期末复习三
星火 一中
学
案
年
设
级
计
课时
1
三边相等的三角形叫做等边三角形或正三角形。 ② 等边三角形的性质: 等边三角形是轴对称图形,并且有 3 条对称轴; 0 等边三角形的每个角都等于 60 。 ③等边三角形的判定: 3 个角相等的三角形是等边三角形; 有两个角等于 60 的三角形是等边三角形;
0
E A A E D B C B C D
例 8:如图,在等边△ABC 中,P 为△ABC 内任意一点,PD⊥BC 于 D,PE⊥AC 于 E,PF ⊥AB 于 F,AM⊥BC 于 M,试猜想 AM、PD、PE、PF 之间的关系,并证明你的猜想. A
例 5:如图,已知:△ABC 中,BD、CE 分别是 AC、AB 边上的高,G、F 分别是 BC、DE 的中点。试探索 FG 与 DE 的关系。 A E B F · D
F
E P DM C
B
·G
C
编号:
1、如图,在△ABC 中,∠ACB=90°,高 CD 和角平分线 AE 交于点 F,EH⊥AB 于点 H, 那么 CF=EH 吗?说明理由。 C E F
SX8—043
教 与 学
B
A
D
H
反 思
达 标 测 评
2、如图,△ABE 和△ACE 都是等边三角形,BD 与 CE 相交于点 O。 (1)EC=BD 吗?为什么?若 BD 与 CE 交于点 O,你能求出∠BOC 的度数是多少吗? (2)如果要△ABE 和△ACD 全等,则还需要什么条件?在此条件下,整个图形是轴对称 图形吗?此时∠BOC 的度数是多少? E A O B C D
新人教版第十三章《轴对称》全章导学案复习进程
第十三章轴对称13.1《轴对称(1)》导学案一、学习目标:1.理解轴对称图形及轴对称的定义,认识轴对称与全等的关系,了解轴对称图形与轴对称的联系与区别。
2.通过独立思考、小组合作、展示质疑,发展学生的观察、归纳、想象能力。
3.激情投入,快乐学习,感受对称美。
二、重点难点重点:对轴对称图形与轴对称概念的理解难点:轴对称图形与轴对称的联系与区别三、课时:第1课时四、导学过程:(一)合作探究(同学合作,教师引导)1、在一张半透明的纸上画△ABC,使AB=AC,作BC上的高AD,沿直线AD折叠,直线两旁的部分重合吗?轴对称图形的定义:叫做轴对称图形,这条直线..叫做它的2、在一张半透明的纸上建立一个平面直角坐标系,并描出点A(-1,3)、B(-2,-4)、C (-3,-1)、A1(1,3)、B1(2,-4)、C1(3,-1),画出△ABC和△A1B1C1,沿y轴折叠,这两个三角形重合吗?轴对称的定义:那么就说这两个图形关于这条直线对称,这条直线..叫做,折叠后重合的点是对应点,叫做。
3、第2中的△ABC和△A1B1C1全等吗?把其中的△A1B1C1向下平移一个单位,得到△A2B2C2,△ABC和△A2B2C2全等吗?折一折,△ABC和△A2B2C2成轴对称吗?轴对称与全等的关系:两个图形成轴对称,则它们一定;两个图形全等,成轴对称。
4、你能说说轴对称图形与轴对称的区别和联系吗?区别:联系:(A) (B)(C) (D)(二)、精讲精练例1下列图案中,不是轴对称图形的是( )例2、下面四组图形中,右边与左边成轴对称的是()A. B. C. D.例3、仔细观察下列图案,并按规律在横线上画出合适的图形_________例4、在镜中看到的一串数字是“309087”,则这串数字是。
例5、下列图形中对称轴最多的是 ( )A、圆B、正方形C、等腰三角形D、线段(三)课堂练习1、在实际生活中,轴对称无处不在,请你用给定的图形“○○,△△,————”(两个圆,两个三角形,两条线段)为构件,尽可能多地构思独特且有实际生活意义的成轴对称的一对图形,并写出一两句诙谐、贴切的解说词。
轴对称复习导学案(李明)
赣州一中2010—2011学年度第一学期初二数学导学案设计:李明第十二章轴对称小结与复习学习目标1.对整章的学习内容做一回顾,系统地把握定义、定理和基本技能。
2.通过例题和练习,能较好地运用中垂线和等腰三角形知识解决有关问题。
学习重点:线段的垂直平分线、角平分线、等腰三角形的性质和判定及其应用。
学习难点:综合运用全等与等腰三角形知识进行计算与证明。
学习过程:一、本章知识结构:二、回顾与思考:问题1:轴对称图形的定义是什么?两图形成轴对称的定义是什么?问题2:是否会画轴对称图形的对称轴?问题3:轴对称图形对称点所连线段与对称轴有什么关系?。
问题4:线段垂直平分线、角平分线具有什么性质?线段垂直平分线上的点相等;角平分线上的点相等。
的点在线段的中垂线上;的点在角的平分线上。
问题5:等腰三角形有什么性质?⑴等腰三角形的两个_____________相等(简写成“________________”)⑵等腰三角形的____________、_____________、___________互相重合(简称为“________________”)问题6:等腰三角形有什么判定方法?⑴⑵问题7:等边三角形有什么性质?(1)三边;(2)三角;(3);定理:30°角所对的等于的一半。
问题8:等边三角形判定方法?(1)的三角形是等边三角形;(2)的三角形是等边三角形;(3)的三角形是等边三角形。
问题9:关于坐标轴对称的点的坐标有什么关系?点(x,y)关于x轴对称的点的坐标为( , ),即坐标相等,坐标互为相反数;点(x,y)关于y轴对称的点的坐标为( , ),即坐标互为相反数,坐标相等.三、基础练习:(一)、选择题1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形12B A PCDE的有( )A .1个B .2个C .3个D .4个 2.图9-19中,轴对称图形的个数是( )A .4个B .3个C .2个D .1个3.到三角形的三个顶点距离相等的点是 ( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点4.一个等腰三角形的一个角是50°,它的一腰上的高与底边的夹角是( )A .25°B .40°C .25°或40°D .不确定. 5.有一个等腰三角形的周长为25,一边长为11,那么腰长为( )A .11B .7C .14D .7或11 6.等边三角形的两条高线相交所成钝角的度数是( )A .105°B .120°C .135°D .150° (二)、填空题1、等腰三角形一边长是7cm ,另一边长15cm ,则等腰三角形的周长是_____2、等腰三角形中的一个角等于100°,则另两个内角的度数分别是__________3、等腰三角形的一个外角是100°,则这个三角形的三个 内角分别为_______________________________4、在△ABC 中,AB=AC ,若∠A-∠B=30°则∠A=________,∠B=________5.如图,在△ABC 中BC=5cm ,BP 、CP 分别是∠ABC 和∠ACB 的角的平分线,且PD ∥AB ,PE ∥AC ,则△PDE 的周长是_______cm6. 如图,△ABC 中,∠C=900,DE 是AB 的垂直平分线,且∠BAD :∠CAD=3:1,则∠B =_______.7.如图,分别作出点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2, 分别交OA 、OB 于点M 、N ,若P 1P 2=5cm ,则△PMN 的周长为__________________.四、例题精析:1、已知:在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求∠C 的度数。
人教版数学八年级上册《轴对称复习》导学案设计
《轴对称复习》学案学习目标:重点:轴对称的概念、性质,线段垂直平分线的概念、判定、性质及其应用。
难点:正确画轴对称图形,应用线段垂直平分线的判定和性质进行计算和证明。
一、相关概念和性质:1.如果沿某一条直线折叠,能够互相重合,这个图形就叫轴对称图形.这条直线叫。
2.把沿着某一直线折叠,如果它能够与重合,就说这两个图形关于这条直线对称,这条直线叫.。
3.图形轴对称的性质:如果两个图形关于某直线对称,那么对称轴是的垂直平分线。
4.图形对称轴的作法:要作两个图形的对称轴,只要找到这两个图形的一对,然后连结它们,得到一条线段,再作出这条线段的,这条就是这两个图形的对称轴.5.经过线段的并且于这条线段的直线,叫做线段的垂直平分线.6.线段垂直平分线的性质:线段垂直平分线上的点到的距离相等;7.线段垂直平分线的判定:到一条线段的点,在这条线段的上.二、例题解析:例1 如图1,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离相等?图1例2 如图2,△ABC中,∠BAC=120°,若DE、FG分别垂直平分AB、AC,△AEF的周长为10cm,求:BC的长.图1图2三、堂堂清:1.下列图形中,轴对称图形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个2.下列哪个选项的左边图形与右边的图形成轴对称图形( )(A ) (B) (C) (D)3.下列两个图案中,其中一个是另一个关于某直线对称的对称图形的是( )(A ) (B ) (C ) ( D )4. 如图6,在∠AOB 的内部有一点P ,点M 、N 分别是点P 关于0A 、0B 的对称点,MN 分别交OA 、OB 于C 、D 点,若△PCD 的周长为30cm ,则线段MN 的长为________.图6 图7 5.如图7,△ABC 中,AB=AC ,AB 的垂直平分线DE 交BC 的延长线于E ,交AC 于F ,AB =8cm ,BC=6 cm ,则△BCF 的周长为_________6.在平面镜里看到背后墙上,电子钟示数如图1所示,这时的实际时间应该是__7.如图,在Rt △ABC 中,∠C=90°,DB 平分∠ABC 交AC 于点D ,DE 的垂直平分斜边AB 于E.(1)请你在图形中找出至少两对相等的线段,并说明它们为什么相等?(2)如果BC=5,AC=9,则△BDC 的周长为多少?。
轴对称复习导学案
《第十二章轴对称复习》导学案(一)认清目标,明确要求1.通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质。
2.探索简单图形之间的轴对称关系,能够按照要求作出简单图形经过一次或两次轴对称后的图形,认识和欣赏轴对称在现实生活中的应用,能应用轴对称进行简单的图案设计。
3.了解线段的垂直平分线的概念,探索并掌握其性质;了解等腰三角形、等边三角形的有关概念,探索并掌握它们的性质以及判定方法。
4.能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题,在观察、操作、想象、论证、交流的过程中,发展空间观念,激发学习兴趣。
(二)自主复习,盘点知识1、关于“轴对称图形”与“轴对称”的认识⑴轴对称图形:如果_____个图形沿某条直线折叠后,直线两旁的部分能够________,那么这个图形叫轴对称图形,这条直线叫做____________。
⑵轴对称:对于____个图形,如果沿着一条直线对折后,它们能完全重合,那么称这两个图形成________,这条直线就是对称轴。
两个图形中的对应点叫做__________2、线段垂直平分线的性质⑴线段是轴对称图形,它的对称轴是__________________⑵线段的垂直平分线上的点到______________________相等3、角平分线的性质⑴角是轴对称图形,其对称轴是_______________⑵角平分线上的点到______________________________相等4、等腰三角形的特征和识别⑴等腰三角形的两个_____________相等(简写成“________________”)⑵等腰三角形的_________________、_________________、_________________互相重合(简称为“________________”)⑶如果一个三角形有两个角相等,那么这两个角所对的_____也相等(简称为“____________”)5、等边三角形的特征和识别⑴等边三角形的各____相等,各____相等并且每一个角都等于________⑵三个角相等的三角形是__________三角形⑶有一个角是60°的____________三角形是等边三角形(三)、误区警示1.注意分类讨论思想,如等腰三角形的周长为20,有一边为8,这时就必须讨论所给的这条边是腰还是底。
轴对称期末复习导学案
轴对称期末复习导学案欣赏下面几张美丽的图片,回顾本单元的知识结构1.轴对称图形:如果一个图形沿着一条直线,两侧的图形能够,这个图形就是轴对称图形。
折痕所在的这条直线叫做______。
图形上能够重合的点叫。
分别在上面图形中画出它们的对称轴。
2.轴对称:欣赏下面几幅图片,并完成问题。
如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成,这条直线叫做。
两个图形中的对应点叫。
如图,写出一对对称点是。
3.轴对称的性质上图中点A和F的连线与直线MN有什么样的关系?同理,点C和D,点B和E的连线也被直线MN ,图中相等的线段有:,相等的角有:。
可以概括为:如果两个图形关于某条直线成轴对称,那么对应点的连线被对称轴,对应线段,对应角。
4.欣赏下面的图片,完成对镜面对称的回顾。
一辆汽车的车牌在水中的倒影如图所示,你能确定该车车牌的号码吗?在照镜子时,镜子外的物体和镜子内的成像不变,发生相反变化。
5.线段垂直平分线的性质线段垂直平分线上的点到的距离相等。
6.角的平分线的性质角的平分线的性质上的点到的距离相等。
7.等腰三角形的性质等腰三角形是图形,它的对称轴是,等腰三角形的两个底角,互相重合。
,有条对称轴。
1.(一)轴对称和轴对称图形的联系和区别区别:轴对称是两个图形能沿对称轴折叠后能重合,指的是个图形的位置关系。
而轴对称图形是指个图形的两部分沿对称轴折叠后能完全重合,指的是具有对称性的个图形。
联系:如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形。
如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称。
(二)线段垂直平分线的性质应用:三角形三边垂直平分线的交点到距离相等。
(三)角的平分线的性质应用:三角形三个内角平分线的交点到距离相等。
(四)等腰三角形的三线合一性是指:。
2.自我诊断:(1)下列说法中,正确的个数是()①轴对称图形只有一条对称轴,②轴对称图形的对称轴是一条线段,③两个图形成轴对称,这两个图形是全等图形,④全等的两个图形一定成轴对称,⑤轴对称图形是指一个图形,而轴对称是指两个图形而言。
数学第五章《轴对称图形》导学案
第五章:轴对称图形导学案(1)5.1轴反射与轴对称图形学习目标:1.通过展示轴对称图形的图片,使学生初步认识轴对称图形;2.通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;3.培养学生的动手试验能力、归纳能力和语言表述能力。
重点、难点:轴对称图形的概念是教学重点,判断图形是否是轴对称图形既是教学重点又是教学难点。
教学过程:(一)预习自学案:一、知识链接:1.什么是对称图形?2、还记得空间图形中的欧拉公式吗?二、预习探究:1.自学P114的“观察”中的图形。
观察图形的结构特点归纳轴对称图形和对称轴的概念。
2.自学P115“观察”中的问题进一步归纳轴反射、原像、像、两个图形成轴对称、对称轴、对称点等概念。
3. 两个图形成轴对称与轴对称图形这两个概念有什么区别与联系?4. 轴反射具有什么性质?怎样画出轴对称图形的对称轴?怎样画轴对称图形?(二)教师精讲一、基础知识梳理:基本概念:二、重点内容点拨:轴反射的性质、画轴对称图形的对称轴、画轴对称图形:(三)合作探究案问题1、(1)找出教材P114的图5-2中各个图形的对称轴,哪一个图形的对称轴最多,哪一个图形没有对称轴.(2)下列图案中,有且只有三条对称轴的是()探究结论:B C D A问题2、(1)画出教材P115图5-3中各个图形的对称轴,并按对称轴的多少对图形进行分类.(2) 以下四个图形中,对称轴条数最多的一个图形是( )(1) (2) (3) (4)探究结论:(四)训练案一、当堂训练1. 教材P115图5-4中的五角星有几条对称轴?你能用一张纸剪出这个图形吗?2.教材P116图5-6中绘出的每幅图形中的两个图案成轴对称吗?如果是,画出它们的对称轴,并找出一对对称点.3.教材P116图5-7中蓝色的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?4.下列图形中不是轴对称图形的是( ).5.教材P116习题5.1A 组:1题.二、课后练习作业:教材P116习题5.1A 组:2题家庭思考练习:1、教材P117习题5.1A组:3题;B 组:1题。
第13章《轴对称》总复习-导学案(人教版)
第十三章《轴对称》总复习导学案一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做 .折叠后重合的点是对应点,叫做 .2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,•这条直线叫做,折叠后重合的点是对应点,叫做.(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。
3.线段的垂直平分线经过线段点并且这条线段的直线,叫做这条线段的垂直平分线.4.等腰三角形有的三角形,叫做等腰三角形.相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做 .5.等边三角形三条边都的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 .或者说轴对称图形的对称轴,是任何一对对应点所连线段的 .2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离 .3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,).(2)点P(x,y)关于y轴对称的点的坐标为P″(,).4.等腰三角形的性质(1)等腰三角形的两个底角(简称“等边对等角”).(2)等腰三角形的顶角、底边上的、底边上的相互重合. (3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的 .(4)等腰三角形两腰上的高、中线分别,两底角的平分线也 .5.等边三角形的性质(1)等边三角形的三个内角都,并且每一个角都等于0.(2)等边三角形是轴对称图形,共有条对称轴.(3)等边三角形每边上的、和该边所对内角的互相重合.6.在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的.三、有关判定1.与一条线段两个端点距离的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角,那么这两个角所对的边也(简写成“等角对等边”).3.三个角都相等的是等边三角形.4.有一个角是60°的是等边三角形.四、练习一、选择题1、下列说法正确的是().A.轴对称涉及两个图形,轴对称图形涉及一个图形B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形D.有两个内角相等的三角形不是轴对称图形2、点M(1,2)关于x轴对称的点的坐标为().A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)3、下列图形中对称轴最多的是( ) .A.等腰三角形B.正方形C.圆D.线段4、已知直角三角形中30°角所对的直角边为2cm,则斜边的长为().A.2cm B.4cm C.6cm D.8cm5、若等腰三角形的周长为26cm,一边为11cm,则腰长为().A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对6、如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A .16B .18C .26D .287、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ). A .75°或15° B .75° C .15° D .75°和30°9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) .A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 二、填空题(每小题2分,共20分)11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 .16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,ACB A ''C '图2图1E DCBAlODCBABA交OB 于N ,P 1P 2=15,则△PMN 的周长为 .17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm .18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.FE DCAP 2P 1N MO PB Aα35°115°DECBAO22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.D C BAADEFB C25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .F CBAEDCBAABCDE28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .29、如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,求证:AH=2BD .31.如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.HEA(1)写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)(2)如果点M 、N 分别在线段AB 、AC 上移动, 在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论N MDCBA。
八年级数学上册第14章轴对称复习导学案
八年级上册第14章轴对称复习导学案知识结构图:一、知识回顾1. 轴对称图形:如果沿某条直线对折,对折的两部分能够 ,那么就称这样的图形为 ,这条直线叫做这个图形的 ; *注:轴对称图形是“一个图形”2. 轴对称:把一个图形沿某一条直线折叠,如果能够与另一个图形 ,那么就说这两个图形 ,这条直线就是 ,两个图形的对应点叫做 *注:轴对称是指“两个图形”3. 轴对称的性质:a :关于某直线对称的两个图形是 ;b :对称点的连线被对称轴 ;c :轴对称的两个图形,它们的对应线段或延长线相交,交点在 上。
例题:如图,最大圆直径为4cm ,则图中阴影部分的面积之和为( )。
(A) 8πcm (B) 4πcm (C) 2πcm (D) πcm经典练习选讲:1. 下列各图中,为轴对称图形的是( )2.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是 ( )A. B. C. D4. 垂直平分线的定义以及性质:定义: 的直线叫做这条线段的垂直平分线或中垂线;性质:a :线段的垂直平分线上的点到 距离相等;b :和一条线段两个端点的 在这条线段的垂直平分线上。
*线段是轴对称图形,它的对称轴是它的垂直平分线。
练一练:用直尺和圆规作已知线段的中垂线。
A .B .C .D .附:角平分线的定义及性质:定义:从角的顶点出发并且平分这个角的射线称为这个角的角平分线性质:a:角平分线上的点到这个角的两边的距离相等;b:到角的两边的距离相等的点在这个角的角平分线上。
*角是轴对称图形,它的对称轴是它的角平分线。
练一练:用直尺和圆规作已知角的角平分线。
经典练习选讲:1.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点 B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点2.如右图所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,∠A=49°,求∠DBC度数及三角形BDC的周长。
八年级轴对称复习导学案
轴对称复习导学案一、复习目标1.熟练掌握轴对称的概念、轴对称图形的概念、轴对称的性质、线段的垂直平分线、坐标对称特征、等腰三角形的性质与判定、等边三角形的性质与判定,形成知识体系。
2.复习本章的重点内容,整理本章知识,形成知识体系.二、重难点重点:掌握线段的垂直平分线、等腰三角形的性质及判定应用构建本章知识结构.难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质判定应用教学过程一、预习检测1、轴对称和轴对称图形的概念(1)轴对称图形:如果_____个图形沿某条直线折叠后,直线两旁的部分能够________,那么这个图形叫轴对称图形,这条直线叫做____________。
(2)轴对称:把____个图形沿着某一条直线折叠,如果他能与另一个图形____,那么就说这两个图形关于这条直线________,这条直线叫做对称轴。
两个图形中的对应点叫做__________请说出轴对称和轴对称图形的区别和联系:2、轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的()。
即对称点的连线被对称轴垂直平分。
(2)类似地,轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线。
3、线段垂直平分线的性质:;与一条线段两个端点距离相等的点在这条线段的上几何语言:如图:∵AD是BC的中垂线∴,依据(线段垂直平分线上的点与这条线段两个端点的距离相等)∵AB=AC∴点A在线段BC的上,依据()4、关于坐标轴对称的点的坐标规律点P(x,y)关于x轴对称的点的坐标是()点P(x,y)关于y轴对称的点的坐标是()5等腰三角形的定义:等边三角形的定义:等腰三角形的性质:等边三角形的性质:等腰三角形的判定方法:等边三角形的判定方法:6、直角三角形中,30°的锐角所对的直角边等于__________二、展示评价:运用上面知识完成下面练习1等腰三角形一个角为110°,它的另外两个角为2、等腰三角形的两条边的长为3,7,则三角形的周长是3.如图:在Rt △ABC 中∠A=300,AB+BC=12,求AB 。
轴对称复习(1)导学案ab
八年级数学 《轴对称复习1》导学案主备:宦吉成一、复习目标1、认识轴对称、轴对称图形,理解并掌握轴对称的有关性质;2、掌握简单图形之间的轴对称关系,能按照要求作出简单图形经过一次或两次轴对称后的图形;3、了解线段的垂直平分线的概念,并掌握其性质;4、能利用轴对称的性质解决简单的实际问题。
学习重点:掌握轴对称的有关性质学习难点:用轴对称的性质解决简单的实际问题一、独立自学:1 、如图(1), 判断下列图形是不是轴对称图形.2 、如图(2),判断每组图形是否关于某条直线成轴对称.二、合作互学3、如图(3)所示,已知△ABC 和直线MN.求作:△A′B ′C ′,使△A ′B ′C ′和△ABC 关于直线MN 对称.(不要求写作法,只保留作图痕迹)三、展示竟学4、 如图(4)所示,有一块三角形田地,AB=AC=10m ,作AB 的垂直平分线ED 交AC 于D ,交AB 于E ,量得△BDC 的周长为17m ,请你替测量人员计算BC 的长.图(2) 图(1) 图(3) 图(4)四、精讲导学例题、某地有两所大学和两条相交叉的公路,如图(6)所示(点M ,N 表示大学,AO ,BO 表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.(1)你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;(2)阐述你设计的理由.五、小结评学1、复习轴对称后,说说你的感悟:2、方法总结:六、检测固学1、一只小狗正在平面镜前欣赏自己的全身像,此时,它所看到的全身像是( )2、如果O 是线段AB 的垂直平分线与AB 的交点,那么 = .3、如图(5)所示,AB=AC=12,BC=7,AB 的垂直平分线交AB 于D ,交AC 于E ,求△BCE 的周长.图(5) 图(6)。
新人教版八年级数学上册《13.1——13.2轴对称复习》导学案
新人教版八年级数学上册《13.1——13.2轴对称复习》导学案班级小组姓名一、学习目标:目标:对轴对称的概念、性质、判定及画法的进一步巩固和应用二、知识点回顾三、考点透视考点1:轴对称的概念及性质:1、下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同?请指出这个图形,并说明理由.答:这个图形是(写出序号即可),理由是.2、已知△ABC与△A1B1C1关于直线MN对称,且BC与B1C1交于直线MN上一点O,则() A.点O是BC的中点; B.点O是B1C1的中点; C.线段OA与OA1关于直线MN对称; D.以上都不对.3、已知平面上的两点A、B,下列说法不正确的是()A.点A、B关于AB的中垂线对称B.点A、B可以看作以直线AB为轴的轴对称图形C.点A、B是轴对称图形,有且只有一条对称轴D.点A、B是轴对称图形,有两条对称轴4、如图,若两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x= .5、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于 .6、在平面镜里看到背后墙上的电子钟示数如图所示,这时的实际时间应是()A. 21:02B. 21:05C. 20:15D. 20:05考点2:线段垂直平分线的性质7、 如图,有A 、B 、C 三个村庄,现要建一个车站,到三个村庄的距离相等,这样的车站选址有( ) A.1处 B. 2处 C. 3处 D. 4处8、如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D , ① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.9、如图,已知AB 比AC 长3cm ,BC 的垂直平分线交AB 于D ,交BC 于E ,△ACD•的周长是15cm ,求AB 和AC 的长.考点3:线段垂直平分线的判定:10、点P 是△ABC 中边AB 的垂直平分线上的点,则一定有( ) A .PB=PC B.PA=PC C.PA=PB D.点P 到∠ABC 的两边距离相等(7题)(8题)∶(4题)(5题)(6题)(9题)11、下列说法错误的是()A.D、E是线段AB的垂直平分线上的两点,则 AD=BD,AE=BEB.若AD=BD,AE=BE,则线段DE是线段AB的垂直平分线C.若PA=PB,则点P在线段AB的垂直平分线上D.若PA=PB,则过点P的直线是线段AB的垂直平分线12、已知E是∠AOB的平分线上一点,EC⊥OA ,ED⊥OB 垂足分别为C、D.求证:OE是CD的垂直平分线.考点4:轴对称的作图13、如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形。
人教版初二数学上册轴对称(复习)导学案
第十三章轴对称导学案一、轴对称1轴对称图形:把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
2、轴对称:把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点练习:1、判断下列图形是不是轴对称图形。
①线段;②三角形;③角;④正方形;⑤等腰梯形;⑥圆2、如图四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,AB=1.6cm,CD=2.3cm,则四边形ABCD的周长为()A 3.9cmB 7.8cmC 4cmD 4.6cm的周长是22cm,则厶ABN的周长是()三、用坐标表示轴对称:在平面直角坐标系中,关于x轴对称的点横坐标相等, 纵坐标互为相反数关于y轴对称的点纵坐标相等,横坐标互为相反数。
练习:1.填表:已知点(2,-3)(-1,2)(4,0)关于x轴的对称点关于y轴的对称点2、如图,四边形ABCD的顶点坐标为A (—5,1),B (—1,1),C (—1,6),□(—5,4),请作出四边形ABCD关于y轴的对称图形,并写出坐标。
二、线段的垂直平分线知识回顾:1、线段垂直平分:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
2、定理:线段垂直平分线上的点与这条线段的两个端点的距离相等3■逆理定:与一条线段两个端点距离相等的点,在线段的垂直平分线上练习:四、等腰三角形1■等腰三角形的性质①■等腰三角形的两个底角相等。
(等边对等角)②■等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)2、等腰三角形的判定:如图:△ ABC中,MN是AC的垂直平分线,若练习:1等腰三角形有一个角等于70°,则它的另外两个角是:. _______ 2、在Rt△ ABC 中,/ ACB= 90°,/ A= 30°,若3. 数学课上,张老师画出下图,并写下了四个等式:①AB=DC ② BE=CE ③/ B = / C, ④/ BAE= / CDE要求同学从这四个等式中选出两个作为条件,推出△ AED是等腰三角形•请你试着完成张老师提出的问题,并说明理由. (写出一种即可)已知:__________________________ (填代号)求证:△ AED是等腰三角形.证明:A、 A EBD是等腰三角形B、折叠后/ ABE和/CBD一定相等C、折叠后得到的图形是轴对称图形D A EBA和厶EDC一定全等3如图,在△ ABC中,AB= AC, ADL BC于D点,点E、F分别是AD的三等分点,若BC= 6cm, AD=8cm,则图中阴影部分面积为__________ cm2AB D C第3题图4如图,已知△ ABC为等边三角形,点D E分别在BG AC边上,AD与BE 相交于点F,且AE=CD°(1)求证:AD=BE (2)求/ BFD的度数.如果一个三角形有两个角相等,那么这两个角所对的边也相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《轴对称》复习导学案
一、轴对称图形的概念:
如果一个图形沿着某一条直线对折,对折的两部分___________,那么就称这样的图形为,这条直线叫做这个图形的。
这时,我们就说这个图形关于这条直线(或轴)对称。
注意:(1)一个轴对称图形的对称轴不一定只有一条,如正方形有条对称轴、长方形有条对称轴、圆形有条对称轴、正三角形有条对称轴、正n边形有条对称轴。
(2)轴对称图形需要注意的重点:①一个图形;②沿一条直线折叠,对折的两部分能完全重合(即重合到自身上)。
二、轴对称的概念:
把一个图形沿着某一条直线翻折过去,如果_______________________________________,那么就说这两个图形成轴对称,这条直线就是。
两个图形中经过翻折之后互相重合的点叫做对应点,也叫做对称点。
注意:(1)两个图形成轴对称和轴对称图形的概念,前提不一样,前者是两个图形,后者是一个图形。
(2)成轴对称的两个图形不仅大小、形状一样而且与位置有关。
三、轴对称的性质:
(1)关于某条直线对称的图形是_____________;
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的_______________;
注意:全等的图形不一定是轴对称的,轴对称的图形一定是全等的。
四、轴对称作(画)图:
(1)画图形的对称轴步骤:
①;
②;
③。
(2)如果一个图形关于某直线对称,那么对称点之间的线段的垂直平分线就是该图形的对称轴。
(3)画某点关于某直线的对称点的步骤:
①;
②。
(4)画已知图形关于某直线的对称图形的步骤:
①;
②。
注意:“某些点”是指能确定图形形状和大小及位置的关键点。
如果是多边形,“某些点”就是指所有的顶点;如果是线段,“某些点”就是指线段的两个端点;如果是直角,“某些点”就是指角的顶点与角两边上每一边一个任意点,其余类推。
五、线段垂直平分线的概念:
(1)垂直于一条线段,并平分这条线段的直线叫做_______________________;
(2)线段的垂直平分线可以看做和线段两个端点距离相等的所有点的集合。
六、线段垂直平分线的性质定理:线段垂直平分线上的点_________________________相等。
七、线段垂直平分线的性质定理的逆定理:
和线段两个端点_________________的点,在这条线段的垂直平分线上。
注意:(1)“和线段两个端点距离相等的点,在这条线段的垂直平分线上。
”的作用是:判定一点在线段的垂直平分线上;
(2)如果两点到一条线段的两个端点的距离相等,那么,这两点所在直线是该线段的垂直平分线。
八、等腰三角形的概念、性质、判定:
概念:_____________的三角形叫做等腰三角形,在等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角,顶角是直角的等腰三角形叫做______________,三条边都相等的三角形叫_______________。
性质:(1)等腰三角形是轴对称图形,有一条对称轴,其顶角平分线、底边上的中线、底边上的高线所在直线是对称轴;
(2)等腰三角形的两底角相等(简写为“_________________”);
(3)等腰三角形顶角平分线、底边上的中线、底边上的高重合(简称“_________”)。
(4)等腰三角形的两腰相等。
判定:(1)定义(有两边相等的三角形叫做等腰三角形);
(2)如果一个三角形有两个角相等,那么,这两个角所对的边也相等(简称“___________________”)。
注意:(1)等腰三角形的判定和性质的关系:等腰三角形的定义既体现了等腰三角形的性质,也可以作为判定,等腰三角形的性质定理“等边对等角”和等腰三角形的判定定理“等角对等边”互为逆定理;
(2)“等角对等边”在同一三角形内证两条边相等的应用极为广泛,往往通过计算三角形各角的度数得角相等,则可得边相等;
(3)底角为顶角2倍的等腰三角形非常特殊(黄金三角形),其底角平分线将原等腰三角形分成两个等腰三角形。
九、等边三角形的定义、性质、判定:
定义:三条边相等的三角形叫做等边三角形。
注意:(1)由定义可知,等边三角形是一种特殊的等腰三角形,也就是说等腰三角形包括等边三角形,因而等边三角形具有等腰三角形的一切性质;
(2)等边三角形有三条对称轴,故三边上均有“三线合一”的性质,其三条中线交于一点,称其为“中心”。
性质:等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于60°,每一个外角都等于120°。
判定:(1)的三角形是等边三角形;
(2)的三角形是等边三角形;
(3)有一个内角是的________________是等边三角形;
十、含30°角的直角三角形的性质:
如果在直角三角形中有一个锐角为30°,那么30°角所对的直角边等于_______的一半。
注意:性质是由等边三角形的性质得出的,它的主要作用是能解决直角三角形中的有关线段长度、线段关系、角的度数等的计算问题。
例1 如图所示,AB=AC,BC=BD=ED=EA,求∠A的度数.
练习:1.如图所示,△ABC中,D在
BC上,若AD=BD,AB=AC=CD,求
∠BAC的度数.
2.如图所示,在△
ABC中,D在BC
上,若AD=BD=CD,求证:△ABC是直角三角形.
例 2 △ABC内,∠BAC=60°,∠ACB=40°,P,Q分别在边BC,CA 上,并且AP,BQ分别是∠BAC , ∠ABC 的角平分线。
求证:BQ+AQ=AB+BP
A
B
P
C
Q
A
y 练习.如图,在△ABC 中,∠B =60°,AD ,CE 是△ABC 的角平分线,且交于点O . 求证:AC =AE +CD
例 3 已知:如图,Rt ΔABC 中,∠BAC =90°,AB =AC ,D 是BC 的中点,点E 、F 分别在边AC 、AB 上,且AE =BF .求证:(1)DE =DF ;(2)△DEF 为等腰直角三角形.
练习: 1.已知:在⊿ABC
中,∠A=900
,AB=AC ,在BC
上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于
R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
2.如图,在平面直角坐标系中,△AOB 为等腰直角三角形,A (4,4).
(1)求B 点坐标;
(2)若C 为x 轴正半轴上一动点,以AC 为直角边作等腰直角△ACD ,∠ACD=90°连
OD ,求∠AOD 的度数;
A E B
D C A
O y x
B
R
Q C
A
(3)过点A 作y 轴的垂线交y 轴于E ,F 为x 轴负半轴上一动点,G 在EF 的延长线上,
以EG 为直角边作等腰Rt △EGH ,过A 作x 轴垂线交EH 于点M ,连FM ,当点F 在
x 轴负半轴上移动时,式子
OF
FM
AM 的值是否会发生变化?若变化,请求出变化
的范围:若不变化,请求出其值说明理由.。