数学:专题——构造全等三角形解题
专题11 利用中点构造全等三角形(解析版)
七年级数学下册解法技巧思维培优专题11 利用中点构造全等三角形题型一 倍长中线法的运用【典例1】已知:如图,AD 是△ABC 中BC 边上的中线,延长AD 到E ,使DE =AD .(1)求证:AB =EC ;(2)试说明AB +AC >2AD 的理由;(3)当AB =6,AC =4时,中线AD 的取值范围为 1<AD <5 .【点睛】(1)根据三角形中线的定义可得BD =CD ,然后利用“边角边”证明△ABD 和△ECD 全等,根据全等三角形对应边相等可得AB =EC ;(2)根据三角形的任意两边之和大于第三边可得EC +AC >AE ,然后等量代换即可得证;(3)根据三角形的任意两边之和大于第三边,任意两边之差小于第三边求出AE 的取值范围,再除以2即可.【详解】(1)证明:∵AD 是△ABC 中BC 边上的中线,∴BD =CD ,在△ABD 和△ECD 中,{DE =AD∠ADB =∠EDC BD =CD,∴△ABD ≌△ECD (SAS ),∴AB =EC ;(2)解:由三角形的三边关系得,EC +AC >AE ,∵DE =AD ,∴AE =2AD ,又∵AB =EC ,∴AB+AC>2AD;(3)解:∵AB=6,∴EC=6,又∵AC=4,∴6﹣4<AE<6+4,即2<AE<10,∵AE=2AD,∴1<AD<5.故答案为:1<AD<5.【典例2】(2019•海安月考)数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在△ABC中,AB=8,AC=6,D是BC的中点,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,再证明“△ADC≌△EDB”.(1)探究得出AD的取值范围是1<AD<7;(2)【问题解决】如图2,△ABC中,∠B=90°,AB=2,AD是△ABC的中线,CE⊥BC,CE=4,且∠ADE=90°,求AE的长.【点睛】(1)根据全等三角形的性质、三角形的三边关系计算;(2)延长AD交EC的延长线于F,证明△ABD≌△FCD,根据全等三角形的性质解答.【详解】解:(1)AD的取值范围是1<AD<7;故答案为:1<AD<7(2)延长AD 交EC 的延长线于F ,∵AB ⊥BC ,EF ⊥BC ,∴∠ABD =∠FCD ,在△ABD 和△FCD 中,{∠ABD =∠FCD BD =CD ∠ADB =∠FDC,∴△ABD ≌△FCD (ASA )∴CF =AB =2,AD =DF ,∵∠ADE =90°,∴AE =EF ,∵EF =CE +CF =CE +AB =4+2=6,∴AE =6. 【典例3】(2019•恩平市校级月考)如图,AD 是△ABC 的中线,点E 在BC 的延长线上,CE =AB ,∠BAC=∠BCA ,求证:AE =2AD .【点睛】首先延长AD 至M ,使DM =AD ,先证明△ABD ≌△MCD ,进而得出MC =AB ,∠B =∠MCD ,即可得出∠ACM =∠ACE ,再证明△ACM ≌△ACE ,即可得出答案.【详解】证明:延长AD 至M ,使DM =AD ,∵AD是△ABC的中线,∴DB=CD,且∠ADB=∠MDC,AD=DM∴△ABD≌△MCD(SAS),∴MC=AB,∠B=∠MCD,∵AB=CE,∴CM=CE,∵∠BAC=∠BCA,∴∠B+∠BAC=∠ACB+∠MCD,即∠ACM=∠ACE,且AC=AC,CM=CE,∴△ACM≌△ACE(SAS).∴AE=AM,∵AM=2AD,∴AE=2AD.题型二作垂线法的运用4.如图,△ABC中,D为BC的中点,(1)在图中作出CM⊥AD,BN⊥AD,垂足分别为M、N;(2)求证:DM=DN;(3)求AD=3,求AM+AN的值.【点睛】(1)根据条件作出图形,即可解答;(2)证明△BND≌△CMD,即可得到DN=DM.(3)由△BND ≌△CMD ,得到DM =DN ,利用线段的和与差得到AM =AD +DM ,AN =AD ﹣ND ,所以AM +AN =AD +DM +AD ﹣ND =2AD =6.【详解】解:(1)如图,(2)∵D 为BC 的中点,∴BD =CD ,∵CM ⊥AD ,BN ⊥AD ,∴∠BND =∠CMD =90°,在△BND 和△CMD 中,{∠BND =∠CMD ∠BDN =∠CDM BD =CD∴△BND ≌△CMD ,∴DN =DM .(3)∵△BND ≌△CMD ,∴DM =DN ,∵AM =AD +DM ,AN =AD ﹣ND ,∴AM +AN =AD +DM +AD ﹣ND ,∵DM =DN ,∴AM +AN =2AD =6.5.已知如图,在△ABC 中,∠BAC =90°,AB =AC ,M 是AC 边的中点,AD ⊥BM 交BC 于D ,交BM 于E ,CF ⊥AC ,证明:(1)△ABM ≌△CAF ;(2)∠AMB =∠DMC .【点睛】(1)由三角形ABC 为等腰直角三角形,利用等腰直角三角形的性质得到AB =AC ,且∠ABC =∠ACB =45°,利用同角的余角相等得到一对角相等,再由一对直角相等,且AB =AC ,利用AAS 得到三角形ABM 与三角形CAF 全等;(2)由全等三角形的对应边相等得到AM =CF ,由M 为AC 中点,得到AM =CM ,等量代换得到CM =CF ,由公共边CD =CD ,且夹角相等得到三角形CMD 与三角形CFD 全等,利用全等三角形对应角相等得到∠DMC =∠F ,等量代换即可得证.【详解】证明:(1)∵在△ABC 中,∠BAC =90°,AB =AC ,∴∠ABC =∠ACB =45°,∵∠F +∠CAF =90°,∠CAF +∠AMB =90°,∴∠F =∠AMB ,在△ABM 和△CAF 中,{∠BAM =∠ACF ∠AMB =∠F AB =CA,∴△ABM ≌△CAF (AAS );(2)∵∠MCD =45°,∴∠FCD =90°﹣∠MCD =45°,∵M 为AC 的中点,∴AM =CM ,∵△ABM ≌△CAF ,∴AM =CF ,∴CM =CF ,在△CMD 和△CFD 中,{CM =CF ∠MCD =∠FCD CD =CD,∴△CMD ≌△CFD (SAS ),∴∠DMC =∠F ,则∠AMB =∠DMC .6.如图.∠C =90°,BE ⊥AB 且BE =AB ,BD ⊥BC 且BD =BC ,CB 的延长线交DE 于F(1)求证:点F 是ED 的中点;(2)求证:S △ABC =2S △BEF .【点睛】(1)过点E 作EM ⊥CF 交CF 的延长线于M ,根据同角的余角相等求出∠EBM =∠A ,然后利用“角角边”证明△ABC 和△BEM 全等,根据全等三角形对应边相等可得BC =EM ,再求出BD =EM ,然后利用“角角边”证明△EMF 和△DBF 全等,根据全等三角形对应边相等可得EF =DF ,从而得证;(2)根据全等三角形的面积相等和等底等高的三角形的面积相等进行证明.【详解】证明:(1)如图,过点E 作EM ⊥CF 交CF 的延长线于M ,∵BE ⊥AB ,∴∠EBM +∠ABC =180°﹣90°=90°,∵∠C =90°,∴∠A +∠ABC =180°﹣90°=90°,在△ABC 和△BEM 中,{∠EBM =∠A∠C =∠M =90°BE =AB,∴△ABC ≌△BEM (AAS ),∴BC =EM ,∵BD =BC ,∴BD =EM ,在△EMF和△DBF中,{∠M=∠DBF=90°∠EFM=∠DFBBD=EM,∴△EMF≌△DBF(AAS),∴EF=DF,∴点F是ED的中点;(2)∵△ABC≌△BEM,△EMF≌△DBF,∴S△ABC=S△BEM,S△EMF=S△DBF,∵点F是ED的中点,∴S△BEF=S△DBF=12S△BEM=12S△ABC,∴S△ABC=2S△BEF.巩固练习1.如图,四边形ABCD中,AC⊥BD,求证:BC+AD>AB+CD.【点睛】在OD上截取OB'=OB,在OC上截取OC'=OA,连接C'B',DC',CB',设CB',DC'交于点E,易证△ABO≌△C'B'O可得AB=B'C',易证△DOA≌△DOC'可得AD=DC',易证△COB≌△COB'可得BC=B'C,根据三角形三边关系即可求得CB'+DC'>AB+CD即可解题.【详解】解:在OD上截取OB'=OB,在OC上截取OC'=OA,连接C'B',DC',CB',设CB',DC'交于点E(如图),在△ABO 和△C 'B 'O 中,{OC′=OA ∠AOB =∠C′OB′OB′=OB,∴△ABO ≌△C 'B 'O (SAS ),∴AB =B 'C ',在△DOA 和△DOC '中,{OA =OC′∠AOD =∠C′OD OD =OD,∴△DOA ≌△DOC '(SAS ),∴AD =DC ',在△COB 和△COB '中,{BO =B′O ∠BOC =∠B′OC CO =CO,∴△COB ≌△COB '(SAS ),∴BC =B 'C ,∵在△B 'C 'E 中,B 'E +C 'E >B 'C ',①在△CDE 中,CE +DE >CD ,②①+②得:CE +C 'E +DE +B 'E >B 'C '+CD ,∴CB '+DC '>AB +CD ,∴BC +AD >AB +CD .2.(2019•德城区期末)如图,Rt △ACB 中,∠ACB =90°,△ABC 的角平分线AD 、BE 相交于点P ,过P作PF ⊥AD 交BC 的延长线于点F ,交AC 于点H(1)求∠APB 度数;(2)求证:△ABP ≌△FBP ;(3)求证:AH +BD =AB .【点睛】(1)根据角平分线性质可得∠P AB +∠PBA =45°,即可解题;(2)易得∠DPB =45°,可得∠BPF =135°,即可证明△ABP ≌△FBP ;(3)由(2)结论可得∠F =∠BAD ,AP =PF ,AB =BF ,即可求得∠F =∠CAD ,即可证明△APH ≌△FPD ,可得AH =DF ,即可解题.【详解】解:(1)∵AD 平分∠BAC ,BE 平分∠ABC ,∴∠P AB +∠PBA =12(∠ABC +∠BAC )=45°,∴∠APB =180°﹣45°=135°;(2)∵∠APB =135°,∴∠DPB =45°,∵PF ⊥AD ,∴∠BPF =135°,在△ABP 和△FBP 中,{∠BPF =∠APB =135°BP =BP ∠ABP =∠FBP,∴△ABP ≌△FBP (ASA );(3)∵△ABP ≌△FBP ,∴∠F =∠BAD ,AP =PF ,AB =BF ,∵∠BAD =∠CAD ,∴∠F =∠CAD ,在△APH 和△FPD 中,{∠F =∠CAD AP =PF ∠APH =∠FPD =90°,∴△APH ≌△FPD (ASA ),∴AH =DF ,∵BF =DF +BD ,∴AB =AH +BD .3.(2019•鄂州期末)如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,∠ABC =45°,点D 为BC 的中点,CE ⊥AD 于点E ,其延长线交AB 于点F ,连接DF .求证:∠ADC =∠BDF .【点睛】作BG ⊥CB ,交CF 的延长线于点G ,由ASA 证明△ACD ≌△CBG ,得出CD =BG ,∠CDA =∠CGB ,证出BG =BD ,∠FBD =∠GBF =12∠CBG ,再由SAS 证明△BFG ≌△BFD ,得出∠FGB =∠FDB ,即可得出结论.【详解】证明:作BG ⊥CB ,交CF 的延长线于点G ,如图所示:∵∠CBG =90°,CF ⊥AD ,∴∠CAD +∠ADC =∠BCG +∠ADC =90°,∴∠CAD =∠BCG ,在△ACD 和△CBG 中,{∠CAD =∠BCG AC =BC ∠ACD =∠CBG =90°,∴△ACD ≌△CBG (ASA ),∴CD =BG ,∠CDA =∠CGB ,∵CD =BD ,∴BG =BD ,∵∠ABC =45°,∴∠FBD =∠GBF =12∠CBG ,在△BFG 和△BFD 中,{BG =BD ∠FBD =∠GBF BF =BF,∴△BFG ≌△BFD (SAS ),∴∠FGB =∠FDB ,∴∠ADC =∠BDF .4.(2019•嘉祥期末)如图,BE ,AD 是△ABC 的高且相交于点P ,点Q 是BE 延长线上的一点.(1)试说明:∠1=∠2;(2)若AP =BC ,BQ =AC ,线段CP 与CQ 会相等吗?请说明理由.【点睛】(1)由余角的性质可得∠1=∠2;(2)由“SAS ”可证△APC ≌△BCQ ,可得CP =CQ .【详解】证明:(1)∵BE ,AD 是△ABC 的高∴∠1+∠BCA =90°,∠2+BCA =90°,∴∠1=∠2,(2)∵AP =BC ,∠1=∠2,BQ =AC ,∴△APC ≌△BCQ (SAS )∴CP =CQ .5.(2019•高邑期末)问题原型:如图①,在锐角△ABC 中,∠ABC =45°,AD ⊥BC 于点D ,在AD 上取点E ,使DE =CD ,连结BE .求证:BE =AC .问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM=EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=√5,直接写出A、M两点之间的距离.【点睛】问题原型:由AD⊥BC可得∠ADB=∠ADC=90°,又∠ABC=45°易得∠ABC=∠BAD,可得AD=BD,由SAS定理可得△BDE≌△ADC;问题拓展:(1)利用SAS判断出△BEF≌△CMF,得出BE=CM,即可得出结论;(2)借助问题原型与问题延伸的结论判断出△ACM是等腰直角三角形,即可得出结论.【详解】解:问题原型:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°,∴∠ABC=∠BAD,∴AD=BD,在△BDE和△ADC中,∵{BD=AD∠EDB=∠CDA DE=DC,∴△BDE≌△ADC(SAS),∴BE=AC,问题拓展:(1)AC=CM,理由:∵点F是BC中点,∴BF=CF,在△BEF和△CMF中,∵{BF=CF∠BFE=∠CFM EF=MF,∴△BEF≌△CMF(SAS),∴BE=CM,由(1)知,BE=AC,∴AC=CM;(2)如图②,连接AM,由(1)知,△BDE≌△ADC,∴∠BED=∠ACD,由(2)知,△BEF≌△CMF,∴∠EBF=∠BCM,∴∠ACM=∠ACD+∠BCM=∠BED+∠EBF=90°,∵AC=CM,∴AM=√2AC=√10.。
构造全等三角形的技巧大全【难】——八年级数学上册同步精华
第8讲 构造全等三角形的技巧【难】【补形法】 1、【★★】如图,在四边形ABCD 中,BD 平分∠ABC ,∠BAD+∠C=180°,求证:AD=CD 。
2、【★★仿上题】如图,在四边形ABCD 中,BC >BA ,AD=CD ,BD 平分∠ABC ,求证:∠A+∠C=180°.【难点突破】有角平分线时的辅助线1——作边的垂线,可得两组全等三角形3、【★★】已知:如图,在△ABC 中.∠BCA=90°,AC=BC ,AE 平分∠BAC ,BE ⊥AE .求证:BE=21AD .【难点突破】有角平分线时的辅助线2——作角平分线的垂线,可得两组全等三角形4、【★★】如图,∠AOB=90°,OM 平分∠AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.【难点突破】有两个内角互补的四边形——当图中∠P+∠O=180时,∠D=∠ACP 。
为什么?5、【★★★】如图,四边形ABCD 中,AB=AD ,AC=5,∠DAB= ∠DCB=90°,则四边形ABCD 的面积为____。
【难点突破】求不规则图形面积的重要方法——图形拼接。
6、【仿上题,★★★】如图,在四边形ABCD中,AB=AD ,∠BAD=∠BCD =90°,若AC=6,则四边形ABCD 的面积为________.【难点突破】和上题完全一样,换个方向就不认识了! 7、【★★★】如图,在直角梯形ABCD 中,AD//BC ,∠C =90°,AD =5,BC =9,以A 为中心将腰AB 顺时针旋转90°至AE ,连接DE ,求△ADE 的面积【难点突破】旋转——对应边相等。
(AE=AB )8、【★★★】如图,在△ABC 中,∠ACB=90°,AB=2,点D 是线段AC 上的点,点E 是线段CB 延长线上的点,且BE=AD ,连接DE 交AB 于点F ,过点D 作DG ⊥AB ,垂足为G ,则线段FG 的长为_________.【难点突破】给你相等的线段就是要构造全等三角形。
北师大版数学七升八暑假作业专题复习提升专题六 倍长中线构造全等三角形(含答案)
北师大版数学七升八暑假作业专题复习提升-专题六倍长中线构造全等三角形中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造.类型倍长中线构造全等三角形1. 在△ABC中,AB=7,AC=3,则BC边的中线AD的取值范围是.2. 在△ABC中,AB=10,AC=6,则BC边上的中线AD的取值范围是.3.如图,在△ABC中,∠ABC=45∘,AD,BE分别为BC,AC边上的高,AD,BE相交于点F.下列结论:①∠FCD=45∘;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则△FDC的周长等于AB的长.正确结论的序号是.4.如图,AD为△ABC中BC边上的中线(AB>AC).(1)求证:AB−AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.5. 如图,已知AD是△ABC的中线,过点B作BE⊥AD,垂足为E.若BE=6,求点C到AD的距离.6.某校数学课外兴趣小组活动时,老师提出如下问题:【探究】如图1,在△ABC中,若AB=8,AC=6,点D是BC的中点,试探究BC 边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下解决方法:延长AD到点E,使DE=AD,连接BE.请补充完整证明“△ADC≌△EDB”的推理过程.(1)求证:△ADC≌△EDB.证明:∵延长AD到点E,使DE=AD,连接BE.在△ADC和△EDB中,AD=ED(已作),∠ADC=∠EDB(), CD=BD(中点定义),∴△ADC≌△EDB().(2)探究得出AD的取值范围是.【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AC=BF.求证:∠BFD=∠CAD.7. 【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,在△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下解决方法:延长AD到点E,使DE=AD,连接BE,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A. SSSB. SASC. AAS(2)求得AD的取值范围是.A. 6<AD<8B. 6≤AD≤8C. 1<AD<7D. 1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF.试说明AC=BF.(1)【方法学习】数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下解决方法(如图2).①延长AD到点M,使得DM=AD;②连接BM,通过三角形全等把AB,AC,2AD转化在△ABM中;③利用三角形的三边关系可得AM的取值范围为AB−BM<AM<AB+BM,从而得到AD的取值范围是.【方法总结】上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以说明.(3)【深入思考】如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE =∠CAF=90∘,试判断线段AD与EF的数量关系,并加以说明.答案专题六倍长中线构造全等三角形类型倍长中线构造全等三角形1.2<AD<52.2<AD<83.①③④4.(1)证明:如图,延长AD至点E,使AD=DE,连接BE.在△ACD 和△EBD 中,{DC =BD ,∠ADC =∠BDE ,AD =DE ,∴△ACD≌△EBD (SAS),∴AC =BE (全等三角形的对应边相等).在△ABE 中,由三角形的三边关系可得AB−BE <AE <AB +BE ,即AB−AC <2AD <AB +AC .(2) 解:∵AB =8cm ,AC =5cm ,∴8−5<2AD <8+5,∴32<AD <132.5.解:如图,过点C 作CF ⊥AD ,交AD 的延长线于点F .∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD .∵AD 是△ABC 的中线,∴BD =CD .在△BED 和△CFD 中,{∠BED =∠CFD ,∠BDE =∠CDF ,BD =CD ,∴△BED≌△CFD (AAS),∴BE =CF .∵BE =6,∴CF =6,∴ 点C 到AD 的距离为6.(1) 对顶角相等; SAS(2) 1<AD <7(3) 证明:如图,延长AD 到点H ,使DH =AD ,连接BH .由(1)得△ADC≌△HDB,∴BH=AC,∠BHD=∠CAD.∵AC=BF,∴BH=BF,∴∠BFD=∠BHD,∴∠BFD=∠CAD.(1)B(2)C(3)解:如图,延长AD到点M,使AD=DM,连接BM.∵AD是△ABC的中线,∴CD=BD.∵在△ADC和△MDB中,{DC=DB,∠ADC=∠MDB,DA=DM,∴△ADC≌△MDB(SAS),∴BM=AC,∠CAD=∠M.∵AE=EF,∴∠CAD=∠AFE.∵∠AFE=∠BFD,∴∠BFD=∠M,∴BF=BM=AC,即AC=BF.(1)1<AD<7(2)解:AC//BM,且AC=BM.理由:由(1)知,△MDB≌△ADC,∴∠M=∠CAD,AC=BM,∴AC//BM.(3)EF=2AD.理由:如图,延长AD到点M,使得DM=AD,连接BM.由(1)知,△BDM≌△CDA(SAS),∴BM=AC.∵AC=AF,∴BM=AF.由(2)知:AC//BM,∴∠BAC+∠ABM=180∘.∵∠BAE=∠FAC=90∘,∴∠BAC+∠EAF=180∘,∴∠ABM=∠EAF.在△ABM和△EAF中,{AB=EA,∠ABM=∠EAF,BM=AF,∴△ABM≌△EAF(SAS),∴AM=EF.∵AD=DM,∴AM=2AD.∵AM=EF,∴EF=2AD.。
初中数学经典几何模型03-一线三垂直模型构造全等三角形(含答案)
初中数学经典几何模型专题03 一线三垂直模型构造全等三角形【专题说明】一线三垂直问题,通常问题中有一线段绕某一点旋转900,或者问题中有矩形或正方形的情况下考虑,作辅助线,构造全等三角形形或相似三角形,建立数量关系使问题得到解决。
【知识总结】过等腰直角三角形的直角顶点或者正方形直角顶点的一条直线。
过等腰直角三角形的另外两个顶点作该直线的垂线段,会有两个三角形全等(AAS)常见的两种图形:图1 图21、如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,设∠BCD=α,以D为旋转中心,将腰DC绕点D逆时针旋转90°至DE.当α=45°时,求△EAD的面积.当α=30°时,求△EAD的面积当0°<α<90°,猜想△EAD的面积与α大小有无关系,若有关,写出△EAD的面积S与α的关系式,若无关,请证明结论.2、如图,向△ABC的外侧作正方形ABDE,正方形ACFG,过A作AH⊥BC于H,AH的反向延长线与EG 交于点P,求证:BC=2AP3、已知:在△ABC中,∠BAC=90°,AB=AC,AE是多点A的一条直线,且BD⊥AE于D,CE⊥AE于点E.当直线AE处于如图1的位置时,有BD=DE+CE,请说明理由.当直线AE处于如图2的位置时,则BD、DE、CE的关系如何?请说明理由.4、如图,在△ABC中,∠ABC=45°,点F是△ABC的高AD、BE的交点,已知CD=4,AF=2,则线段BC 的长为()5、如图所示,直线α经过正方形ABCD的顶点A,分别过顶点B,D作DE⊥α于点F,若DE=4,BF=3,则EF的长为()6、如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()7、如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于D,CE⊥BD的延长线于点E,求BD证:CE=12【基础训练】1、如图,在平面直角坐标系中,等腰R t△ABC有两个顶点在坐标轴上,求第三个顶点的坐标.2、已知点P为∠EAF平分线上一点,PB⊥AE于点B,PC⊥AF于C,点M、N分别是射线AE、AF上的点.如图1,当点M在线段AB上,点N在线段AC的延长线上,且PM=PN,求证BM=CN.在(1)的条件下,直接写出线段AM、CN与AC的数量关系_______3、如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B,C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.当DC等于多少是,△ABD≌△DCE?请证明你的结论.4、如图,在△ABC中,AB=AC,∠A=90°,点D在线段BC上,∠BDE=1∠C,BE⊥DE,垂足为E,DE与AB2DF.交于点F,求证:BE=125、已知:在等腰直角△ABC中,∠BAC=90°,AB=AC,E是AC边上的点,AF⊥BE交BC于点D,如果AE=CD 证明:BF平分∠ABC证明:AB+AE=BC【巩固提升】1、如图,AB⊥BD于点B,CD⊥BD于点D,P是BD上一点,且AP=PC,AP⊥PC,求证:△ABP≌△PDC2、如图,二次函数y=x2+bx+c的图象与x轴交于点A(-1,0)和点B(3,0),与y轴交于点N,以AB 为边在x轴上作正方形ABCD,点P是x轴上一动点,连接CP,过点P作CP的垂线与y轴交于点E。
八年级数学上册 第十二章 全等三角形 专题训练(五)作辅助线构造三角形全等的常见技巧课件
(2)过点 A 作 AD⊥x 轴,垂足为 D,过点 C 作 CE⊥AD,垂足为 E.同(1) 可证△ACE≌△BAD,∴AE=BD,CE=AD.∵A(1,3),B(-1,0),∴BD =2,AD=3.∴CE=3,DE=AD-AE=1,∴C(4,1)
(3)过点 A 作 AD⊥x 轴,AE⊥ y 轴,垂足分别为 D, E.同(1)可证 △BAD≌△CAE,∴CE=BD,AE=AD.∵B(-4,0),C(0,-1),∴OB=4, OC=1,∴AE=OB-BD=OB-CE=OB-(OC+OE)=3-AE,∴AE=32 , ∴A(-32 ,32 )
∠CFP=∠DEP, 在△CFP 和△DEP 中,PF=PE,
∠1=∠2,
∴△CFP≌△DEP(ASA),∴PC=PD
第四页,共二十二页。
2.如图,在四边形ABCD中,BC>BA,AD=CD,若BD平分(píngfēn)∠ABC,求证:∠A +∠C=180°.
第五页,共二十二页。
证明:过点 D 作 DE⊥BC 于点 E,过点 D 作 DF⊥AB 交 BA 的延长线于 点 F,
(2)∵AB-BE<AE<AB+BE,∴AB-AC<2AD<AB+AC,又AB=5,AC=3, ∴2<2AD<8.∴1<AD<4
第十五页,共二十二页。
方法2:倍延过中点的线段 8.如图,在△ABC中,D是BC边上(biān shànɡ)的中点,DE⊥DF,DE交AB于点E,DF 交AC于点F,连接EF. 求证:BE+CF>EF.
(一)结合“ 过角平分线上一点作角两边的垂线”模型(móxíng)构造全等三角形 1.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线 OM上滑动,两直角边分别与OA,OB交于点C,D.求证:PC=PD.
模型构建专题:全等三角形中的常见七种解题模型全攻略(学生版)
模型构建专题:全等三角形中的常见七种解题模型【考点导航】目录【典型例题】【模型一平移型模型】【模型二轴对称型模型】【模型三四边形中构造全等三角形解题】【模型四一线三等角模型】【模型五三垂直模型】【模型六旋转型模型】【模型七倍长中线模型】【典型例题】【模型一平移型模型】1(2023秋·江苏淮安·八年级淮安市浦东实验中学校考开学考试)如图,点E,C在线段BF上,AB∥DE,AB=DE,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠B=40°,∠D=70°,求∠ACF的度数.【变式训练】1(2023秋·浙江·八年级专题练习)如图,在△ACD和△CBE中,点A、B、C在一条直线上,∠D=∠E,AD⎳EC,AD=EC.求证:△ACD≌△CBE.2(2023秋·浙江·八年级专题练习)如图,已知△ABC≌△DEF,点B,E,C,F在同一条直线上.(1)若∠BED=140°,∠D=75°,求∠ACB的度数;(2)若BE=2,EC=3,求BF的长.3(2023春·山西太原·八年级统考期中)综合与实践--探索图形平移中的数学问题问题情境:如图1,已知△ABC是等边三角形,AB=6,点D是AC边的中点,以AD为边,在△ABC外部作等边三角形ADE.操作探究:将△ADE从图1的位置开始,沿射线AC方向平移,点A,D,E的对应点分别为点A ,D ,E .(1)如图2,善思小组的同学画出了BA =BD 时的情形,求此时△ADE平移的距离;(2)如图3,点F是BC的中点,在△ADE平移过程中,连接E F 交射线AC于点O,敏学小组的同学发现OE =OF始终成立!请你证明这一结论;拓展延伸:(3)请从A,B两题中任选一题作答,我选择题.A.在△ADE平移的过程中,直接写出以F,A ,D 为顶点的三角形成为直角三角形时,△ADE平移的距离.B.在△ADE平移的过程中,直接写出以F,D ,E 为顶点的三角形成为直角三角形时,△ADE平移的距离.【模型二轴对称型模型】1(2023秋·内蒙古呼伦贝尔·八年级校考期中)如图,AB=AD,BC=DC,求证:∠B=∠D.【变式训练】1(2023春·四川成都·七年级成都嘉祥外国语学校校考期中)如图,在中,,是的中点,,且,求证:.2(2023秋·河南南阳·八年级统考期末)如图,点E、F是线段上的两个点,与交于点M.已知,,.(1)求证:;(2)若.求证:是等边三角形.3(2023春·湖南益阳·八年级校考期中)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形中,,,、相交于点,求证:(1);(2).【模型三四边形中构造全等三角形解题】中点.求证:DE=DF.【变式训练】这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究.(1)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形中,,.求证:.证明:(2)小文连接筝形的两条对角线,探究得到筝形对角线的性质是.(写出一条即可)2如图,在四边形ABCD中,CB⊥AB于点B,CD⊥AD于点D,点E,F分别在AB,AD上,AE =AF,CE=CF.(1)若AE=8,CD=6,求四边形AECF的面积;(2)猜想∠DAB,∠ECF,∠DFC三者之间的数量关系,并证明你的猜想.3在四边形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF:(2)在图中,若G在AB上且∠EDG=60°,试猜想CE,EG,BG之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB=60°,∠CDB=120°改为∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?【模型四一线三等角模型】1(2023春·广西南宁·七年级南宁市天桃实验学校校考期末)(1)问题发现:如图1,射线AE在∠MAN的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,若∠BAC=∠BFE=∠CDE=90°,求证:△ABF≌△CAD;(2)类比探究:如图2,AB=AC,且∠BAC=∠BFE=∠CDE.(1)中的结论是否仍然成立,请说明理由;(3)拓展延伸:如图3,在△ABC中,AB=AC,AB>BC.点E在BC边上,CE=2BE,点D、F在线段AE上,∠BAC=∠BFE=∠CDE.若△ABC的面积为15,DE=2AD,求△BEF与△CDE的面积之比.【变式训练】1已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①如图1,若∠BCA=90°,∠α=90°,求证:BE=CF;②如图2,若∠α+∠BCA=180°,探索三条线段EF,BE,AF的数量关系,并证明你的结论;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,题(1)②中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确的结论再给予证明.2(2023春·上海·七年级专题练习)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180°时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在△ABC中,∠BAC是钝角,AB=AC,∠BAD<∠CAE,∠BDA=∠AEC=∠BAC,直线m与CB的延长线交于点F,若BC=3FB,△ABC的面积是12,求△FBD与△ACE的面积之和.【模型五三垂直模型】1(2023春·辽宁本溪·七年级统考期末)已知∠ACB=90°,AC=BC,AD⊥NM,BE⊥NM,垂足分别为点D,E.(1)如图①,求证:AD=BE+DE(2)如图②,(1)中的结论还成立吗?如果不成立,请写出线段AD,BE,DE之间的数量关系,并说明理由.【变式训练】1(2023春·甘肃酒泉·八年级校联考期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;2如图,已知:在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN,BE⊥MN.(1)当直线MN绕点C旋转到图(1)的位置时,求证:△ADC≅△CEB;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系:.【模型六旋转型模型】1在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.(1)操作发现如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为;线段BD、AB、EB的数量关系为;(2)猜想论证当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;(3)拓展延伸若AB=5,BD=7,请你直接写出△ADE的面积.【变式训练】2(2023秋·湖南长沙·八年级长沙市湘郡培粹实验中学校考开学考试)【问题初探】△ABC和△DBE是两个都含有45°角的大小不同的直角三角板(1)当两个三角板如图(1)所示的位置摆放时,D 、B ,C 在同一直线上,连接AD 、CE ,请证明:AD =CE 【类比探究】(2)当三角板ABC 保持不动时,将三角板DBE 绕点B 顺时针旋转到如图(2)所示的位置,判断AD 与CE 的数量关系和位置关系,并说明理由.【拓展延伸】如图(3),在四边形ABCD 中,∠BAD =90°,AB =AD ,BC =34CD ,连接AC ,BD ,∠ACD =45°,A 到直线CD 的距离为7,请求出△BCD 的面积.3(2023·全国·九年级专题练习)阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为45°的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:如图1,在正方形ABCD 中,以A 为顶点的∠EAF =45°,AE 、AF 与BC 、CD 边分别交于E 、F 两点.易证得EF =BE +FD .大致证明思路:如图2,将△ADF 绕点A 顺时针旋转90°,得到△ABH ,由∠HBE =180°可得H 、B 、E 三点共线,∠HAE =∠EAF =45°,进而可证明△AEH ≌△AEF ,故EF =BE +DF .任务:如图3,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠BAD =120°,以A 为顶点的∠EAF =60°,AE 、AF 与BC 、CD 边分别交于E 、F 两点.请参照阅读材料中的解题方法,你认为结论EF =BE +DF 是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.4(2023·山西大同·校联考模拟预测)综合与实践课上,李老师让同学们以“等腰直角三角形的旋转”为主题开展数学活动.数学兴趣小组将两块大小不同的等腰直角三角形AOB 和等腰直角三角形COD 按图1的方式摆放,∠AOB =∠COD =90°,随后保持△AOB 不动,将△COD 绕点O 按逆时针方向旋转α0°<α<90° ,连接BC ,AD ,延长BC 交AD 于点M .该数学兴趣小组进行如下探究,请你帮忙解答:,【初步探究】(1)如图1,直接写出线段BC 和AD 的关系:.(2)如图2,当CD∥BO时,则α=.【深入探究】(3)如图3,当0°<α<90°时,连接OM,兴趣小组认为不仅(1)中的结论仍然成立,而且在△COD旋转过程中,∠CMO的度数不发生变化,请给出推理过程并求出∠CMO的度数.【拓展延伸】(4)如图3,试探究线段AM,BM,OM,之间是否存在某种特定的数量关系,若存在,直接写出数量关系式;若不存在,请说明理由.【模型七倍长中线模型】1(2023春·全国·七年级专题练习)[阅读理解]课外兴趣小组活动时,老师提出了如下问题:如图1,在ΔABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连结BE,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB,其理由是什么?(2)AD的取值范围是什么?[感悟]解题时,条件中出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和结论转化到一个三角形中.[问题解决](3)如图3,AD是ΔABC的中线,BE交AC于点F,且AE=EF,试说明AC=BF.【变式训练】1(2023春·四川达州·七年级四川省大竹中学校考期末)(1)阅读理解:如图①,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,这样就把AB,,集中在中,利用三角形三边的关系可判断线段的取值范围是;则中线的取值范围是;(2)问题解决:如图②,在中,是边的中点,于点,交于点,交于点,连接,此时:与的大小关系,并说明理由.(3)问题拓展:如图③,在四边形中,,,,以为顶点作,边,分别交,于,两点,连接,此时:、与的数量关系2(2023春·江苏泰州·七年级统考期末)【发现问题】(1)数学活动课上,王老师提出了如下问题:如图1,在中,,,求边上的中线的取值范围.【探究方法】第一小组经过合作交流,得到了如下的解决方法:①延长到E,使得;②连接,通过三角形全等把、、转化在中;③利用三角形的三边关系可得的取值范围为,从而得到的取值范围是.方法总结:解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(2)如图2,是的中线,是的中线,且,,下列四个选项中:直接写出所有正确选项的序号是.①②③④【问题拓展】(3)如图3,,,与互补,连接、,E 是的中点,求证:.(4)如图4,在(3)的条件下,若,延长交于点F ,,,则的面积是.。
模型构建专题:全等三角形中的常见解题模型(解析版)八年级数学上册重难点专题提优训练(人教版)
专题06模型构建专题:全等三角形中的常见解题模型模型构建一四边形中构造全等三角形解题模型构建二一线三等角模型模型构建三三垂直模型模型构建四倍长中线模型模型构建一四边形中构造全等三角形解题例题:(2021·天津·耀华中学八年级期中)如图,在四边形ABCD中,AB=CB,AD=CD.求证∠C=∠A.【答案】见解析【解析】【分析】先连接BD,由AB=CB、AD=CD、BD=BD可证∠ABD∠∠CBD,即可证得结论.【详解】证明:如图:连接BD,∠在∠ABD和∠CBD中,AB BCAD CDBD BD=⎧⎪=⎨⎪=⎩∠∠ABD∠∠CBD,∠∠C=∠A.【点睛】本题主要考查了全等三角形的判定与性质,正确作出辅助线、灵活运用SSS 证明三角形全等是解答本题的关键.【变式训练】1.(2022·山东济宁·八年级期末)如图,在四边形ABCD 中,CB AB ⊥于点B ,CD AD ⊥于点D ,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =.(1)若8AE =,6CD =,求四边形AECF 的面积;(2)猜想∠DAB ,∠ECF ,∠DFC 三者之间的数量关系,并证明你的猜想.【答案】(1)48(2)∠DAB +∠ECF =2∠DFC ,证明见解析【解析】【分析】(1)连接AC ,证明∠ACE ∠∠ACF ,则S △ACE =S △ACF ,根据三角形面积公式求得S △ACF 与S △ACE ,根据S 四边形AECF =S △ACF +S △ACE 求解即可;(2)由∠ACE ∠∠ACF 可得∠FCA =∠ECA ,∠F AC =∠EAC ,∠AFC =∠AEC ,根据垂直关系,以及三角形的外角性质可得∠DFC +∠BEC =∠FCA +∠F AC +∠ECA +∠EAC =∠DAB +∠ECF .可得∠DAB +∠ECF =2∠DFC(1)解:连接AC ,如图,在∠ACE和∠ACF中AE AF CE CF AC AC=⎧⎪=⎨⎪=⎩∠∠ACE ∠∠ACF(SSS).∠S△ACE=S△ACF,∠F AC=∠EAC.∠CB∠AB,CD∠AD,∠CD=CB=6.∠S△ACF=S△ACE=12AE·CB=12×8×6=24.∠S四边形AECF=S△ACF+S△ACE=24+24=48.(2)∠DAB+∠ECF=2∠DFC证明:∠∠ACE ∠∠ACF,∠∠FCA=∠ECA,∠F AC=∠EAC,∠AFC=∠AEC.∠∠DFC与∠AFC互补,∠BEC与∠AEC互补,∠∠DFC=∠BEC.∠∠DFC=∠FCA+∠F AC,∠BEC=∠ECA+∠EAC,∠∠DFC+∠BEC=∠FCA+∠F AC+∠ECA+∠EAC=∠DAB+∠ECF.∠∠DAB+∠ECF=2∠DFC【点睛】本题考查了三角形全等的性质与判定,三角形的外角的性质,掌握三角形全等的性质与判定是解题的关键.2.(2022·福建·漳州实验中学七年级阶段练习)在四边形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF:(2)在图中,若G在AB上且∠EDG=60°,试猜想CE,EG,BG之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB=60°,∠CDB=120°改为∠CAB=α,∠CDB=180°﹣α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?【答案】(1)见解析;(2)CE+BG=EG,理由见解析;(3)当∠EDG =90°-12α时,(2)中结论仍然成立.【解析】【分析】(1)首先判断出C DBF ∠=∠,然后根据全等三角形判定的方法,判断出ΔΔCDE BDF ≅,即可判断出DE DF =.(2)猜想CE 、EG 、BG 之间的数量关系为:CE BG EG +=.首先根据全等三角形判定的方法,判断出ABD ACD ∆≅∆,即可判断出60BDA CDA ∠=∠=︒;然后根据60EDG ∠=︒,可得CDE ADG ∠=∠,ADE BDG ∠=∠,再根据CDE BDF ∠=∠,判断出EDG FDG ∠=∠,据此推得ΔΔDEG DFG ≅,所以EG FG =,最后根据CE BF =,判断出CE BG EG +=即可.(3)根据(2)的证明过程,要使CE BG EG +=仍然成立,则12EDG BDA CDA CDB ∠=∠=∠=∠,即11(180)9022EDG αα∠=︒-=︒-,据此解答即可. (1)证明:360CAB C CDB ABD ∠+∠+∠+∠=︒,60CAB ∠=︒,120CDB ∠=︒,36060120180C ABD ∴∠+∠=︒-︒-︒=︒,又180DBF ABD ∠+∠=︒,C DBF ∴∠=∠,在CDE ∆和BDF ∆中,CD BD C DBF CE BF =⎧⎪∠=∠⎨⎪=⎩ΔΔ()CDE BDF SAS ∴≅,DE DF ∴=.(2)解:如图,连接AD ,猜想CE 、EG 、BG 之间的数量关系为:CE BG EG +=.证明:在ABD ∆和ACD ∆中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,ΔΔ()ABD ACD SSS ∴≅,111206022BDA CDA CDB ∴∠=∠=∠=⨯︒=︒, 又60EDG ∠=︒,CDE ADG ∴∠=∠,ADE BDG ∠=∠,由(1),可得ΔΔCDE BDF ≅,CDE BDF ∴∠=∠,60BDG BDF ∴∠+∠=︒,即60FDG ∠=︒,EDG FDG ∴∠=∠,在DEG ∆和DFG ∆中,DE DF EDG FDG DG DG =⎧⎪∠=∠⎨⎪=⎩ΔΔ()DEG DFG SAS ∴≅,EG FG ∴=,又CE BF =,FG BF BG =+,CE BG EG ∴+=;(3)解:要使CE BG EG +=仍然成立, 则12EDG BDA CDA CDB ∠=∠=∠=∠, 即11(180)9022EDG αα∠=︒-=︒-, ∴当1902EDG α∠=︒-时,CE BG EG +=仍然成立. 【点睛】本题综合考查了全等三角形的性质和判定,此题是一道综合性比较强的题目,有一定的难度,能根据题意推出规律是解此题的关键.模型构建二 一线三等角模型例题:(2022·全国·八年级专题练习)如图,在ABC 中,240AB AC B ==∠=︒,,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于E .(1)点D 从B 向C 运动时,BDA ∠逐渐变__________(填“大”或“小”),但BDA ∠与EDC ∠的度数和始终是__________度.(2)当DC 的长度是多少时,ABD DCE △△≌,并说明理由.【答案】(1)小;140(2)当DC =2时,∠ABD ∠∠DCE ,理由见解析【解析】【分析】(1)利用三角形的内角和即可得出结论;(2)当DC =2时,利用∠DEC +∠EDC =140°,∠ADB +∠EDC =140°,求出∠ADB =∠DEC ,再利用AB =DC =2,即可得出∠ABD ∠∠DCE .(1)在∠ABD 中,∠B +∠BAD +∠ADB =180°,设∠BAD =x °,∠BDA =y °,∠40°+x +y =180°,∠y =140-x (0<x <100),当点D 从点B 向C 运动时,x 增大,∠y 减小,BDA ∠+EDC ∠=180°-140ADE ∠=︒故答案为:小,140;(2)当DC =2时,∠ABD ∠∠DCE ,理由:∠∠C =40°,∠∠DEC +∠EDC =140°,又∠∠ADE =40°,∠∠ADB +∠EDC =140°,∠∠ADB =∠DEC ,又∠AB =DC =2,在∠ABD 和∠DCE 中===ADB DEC B CAB DC ∠∠⎧⎪∠∠⎨⎪⎩, ∠∠ABD ∠∠DCE (AAS );【点睛】此题主要考查学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,三角形的内角和公式,解本题的关键是分类讨论.【变式训练】1.(2022·全国·八年级)如图,在∠ABC 中,点D 是边BC 上一点,CD =AB ,点E 在边AC 上,且AD =DE ,∠BAD =∠CDE .(1)如图1,求证:BD =CE ;(2)如图2,若DE 平分∠ADC ,在不添加辅助线的情况下,请直接写出图中所有与∠ADE 相等的角(∠ADE 除外).【答案】(1)见解析(2)∠EDC ,∠BAD ,∠B ,∠C【解析】【分析】(1)由“SAS ”可证△ABD ∠∠DCE ,可得BD =CE ;(2)由全等三角形的性质可得∠B =∠C ,由三角形的外角性质和角平分线的性质可求解.(1)证明:在∠ABD 和∠DCE 中,AB CD BAD CDE AD DE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠DCE (SAS ),∠BD =CE.(2)解:∠∠ABD ∠∠DCE ,∠∠B =∠C ,∠DE 平分∠ADC ,∠∠ADE =∠CDE =∠BAD ,∠∠ADC =∠B +∠BAD =∠ADE +∠CDE ,∠∠B =∠ADE =∠BAD =∠EDC =∠C ,∠与∠ADE 相等的角有∠EDC ,∠BAD ,∠B ,∠C .【点睛】本题考查了全等三角形的判定和性质,三角形的外角性质,角平分线的定义,掌握全等三角形的判定,明确角度的数量关系是解题的关键.2.(2021·全国·八年级专题练习)如图1,ABC 中,A ABC CB =∠∠.点D 、E 、F 分别是AB 、BC 、AC 边上的点,BE CF =.(1)若DEF ABC ∠=∠,求证:DE EF =;(2)若2180A DEF ∠+∠=︒,9BC =,2EC BE =,求BD 的长:(3)把(1)中的条件和结论反过来,即:若DE EF =,则DEF ABC ∠=∠;这个命题是否成立?若成立,请证明:若不成立,请说明理由.【答案】(1)见解析;(2)6BD =;(3)成立,见解析【解析】【分析】(1)证明DBE ECF ≌即可;(2)求出6EC =,由已知2180A DEF ∠+∠=︒及三角形内角和定理2180A ABC ∠+∠=︒得到DEF ABC ACB ∠=∠=∠,进而证明DBE ECF ≌,即可得到6BD CE ==;(3)过点E 、F 分别作EM AB ⊥于点M ,FN BC ⊥于点N ,证明MBE NCF △≌△,得到ME FN =,再结合条件DE EF =可以证明Rt Rt DME ENF △≌△,进而得到MDE NEF ∠=∠即可求解.【详解】解:(1)如图1所示:由三角形的外角定理可知:DEC ABC BDE ∠=∠+∠,且DEC DEF CEF ∠=∠+∠,DEF ABC ∠=∠,BDE CEF ∴∠=∠,在DBE ∆和ECF ∆中,DBC ECF BDE CEF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DBE ECF AAS ≌∴∆∆,DE EF ∴=;(2)9BC =,2EC BE =,6EC ∴=,在ABC ∆中,由三角形内角和定理可知:180A ABC ACB ∠+∠+∠=︒,且A ABC CB =∠∠.2180A ABC ∴∠+∠=︒又2180A DEF ∠+∠=︒,DEF ABC ACB ∴∠=∠=∠,同(1)可知:DBE ECF ≌,6BD CE ∴==;(3)成立,理由如下:过点E 、F 分别作EM AB ⊥于点M ,FN BC ⊥于点N ,如图2所示:EM AB ⊥,FN BC ⊥,90BME CNF ∴∠=∠=︒,又ABC ACB ∠=∠,在MBE △和NCF △中,MBE CNF BMB CNF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩()MBE NCF AAS ∴△≌△.ME FN ∴=,又DE EF =,Rt Rt (HL)DME ENF ∴△≌△,MDE NEF ∴∠=∠,又DEC DEF CEF ∠=∠+∠,DEC MDE ABC ∠=∠+∠.DEF ABC ∴∠=∠.即若DE EF =,则DEF ABC ∠=∠此命题成立.【点睛】本题是三角形综合题,考查了角的和差,全等三角形的判定与性质,三角形的外角与不相邻两个内角的关系,重点掌握全等三角形的判定与性质,难点作辅助线构建全等三角形.3.(2022·全国·八年级)(1)如图①,点B 、C 在∠MAN 的边AM 、AN 上,点E ,F 在∠MAN 内部的射线AD 上,∠1、∠2分别是∠ABE 、∠CAF 的外角.已知AB =AC ,∠1=∠2=∠BAC .求证:∠ABE ∠∠CAF .(2)应用:如图②,在∠ABC 中,AB =AC ,AB >BC ,点D 在边BC 上,且CD =2BD ,点E ,F 在线段AD 上.∠1=∠2=∠BAC ,若∠ABC 的面积为15,求∠ABE 与∠CDF 的面积之和.【答案】(1)见解析;(2)10【解析】【分析】(1)利用外角的性质和已知角的关系证明∠BAE =∠FCA ,∠ABE =∠F AC ,利用ASA 即可证明∠ABE ∠∠CAF ; (2)同(1)证明∠ABE ∠∠CAF ,推出S △ABE =S △CAF ,S △ABE +S △CDF =S △CAF +S △CDF =S △ACD ,根据CD =2BD 可知23ACD ABC SS =,计算求解即可. 【详解】解:(1)证明如下:∠∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠F AC +∠FCA ,∠BAC =∠BAE +∠F AC ,∠∠BAE =∠FCA ,∠ABE =∠F AC ,又∠AB =AC ,∠∠ABE ∠∠CAF (ASA );(2)∠∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠F AC +∠FCA ,∠BAC =∠BAE +∠F AC ,∠∠BAE =∠FCA ,∠ABE =∠F AC ,又∠AB =AC ,∠∠ABE ∠∠CAF (ASA )∠S △ABE =S △CAF ,∠S △ABE +S △CDF =S △CAF +S △CDF =S △ACD ,∠CD =2BD ,∠ABC 的面积为15,∠S △ACD =DC BD DC⋅+S △ACD =23S △ABC =215103⨯=, ∠S △ABE +S △CDF =10.【点睛】本题考查了全等三角形的判定和性质,证明∠ABE ∠∠CAF 并掌握“等高三角形面积比等于底边边长之比”是解题的关键.4.(2022·河南郑州·七年级期末)在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE 的面积之和.【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【解析】【分析】(1)由∠BDA =∠BAC =∠AEC =90°得到∠BAD +∠EAC =∠BAD +∠DBA =90°,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(2)由∠BDA =∠BAC =∠AEC =α得到∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(3)由∠BAD >∠CAE ,∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,由AAS 证得△ADB ≌△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.(1)解:DE =BD +CE ,理由如下,∵∠BDA =∠BAC =∠AEC =90°,∴∠BAD +∠EAC =∠BAD +∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC的底边BC上的高为h,则△ABF的底边BF上的高为h,∴S△ABC=12BC•h=12,S△ABF=12BF•h,∵BC=3BF,∴S△ABF=4,∵S△ABF=S△BDF+S△ABD=S△FBD+S△ACE=4,∴△FBD与△ACE的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,三角形的面积,解题的关键是熟练掌握全等三角形的判定与性质.模型构建三三垂直模型例题:(2021·福建·武夷山市第二中学八年级期中)如图,在∠ABC中,∠ACB = 90°,AC = BC,BE ∠CE于点E,AD ∠CE于点D.(1)求证:△BCE ∠∠CAD;(2)若AD =12,BE =5,求ED的长.【答案】(1)见解析;(2)ED的长为7.【解析】【分析】(1)根据AAS证明三角形全等即可;(2)根据全等三角形的性质得到AD=CE=12,CD=BE=5,从而求得ED的长.【详解】解:(1)证明:∠BE ∠CE于点E,AD ∠CE于点D,∠∠CEB=∠ADC=90°,∠∠ACD+∠CAD=90°,∠∠ACB = 90°,∠∠ACD+∠BCE=90°,∠∠CAD=∠BCE,又∠AC = BC,∠BCE∠CAD;(2)由(1)知,BCE∠CAD,∠BE=CD,CE=AD,∠AD =12,BE =5,∠CE=12,CD=5,∠ED=CE-CD=12-5=7.【点睛】本题考查了全等三角形的判定与性质,熟练掌握判定及性质定理是解题的关键.【变式训练】1.(2021·天津·八年级期中)在∠BAC中,∠BAC=90°,AB=AC,AE是过A的一条直线,BD∠AE于点D,CE∠AE于E.(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE的关系如何?请予以证明;(3)若直线AE绕点A旋转,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.【答案】(1)BD﹣EC(2)BD=DE﹣CE.见解析(3)当B,C在AE的同侧时,BD=DE﹣CE;当B,C在AE的异侧时,BD=DE+CE.【解析】【分析】(1)通过互余关系可得∠ABD =∠CAE ,进而证明∠ABD ∠∠ACE (AAS ),即可求得BD =AE ,AD =EC ,进而即可求得关系式;(2)方法同(1)证明∠ABD ∠∠CAE (AAS ),进而得出结论;(3)综合(1)(2)结论,分当B ,C 在AE 的同侧或异侧时,写出结论即可.(1)结论:DE =BD ﹣EC .理由:如图1中,∠BD ∠AE ,CE ∠AE ,∠∠ADB =∠CEA =90°,∠∠ABD +∠BAD =90°,又∠∠BAC =90°,∠∠EAC +∠BAD =90°,∠∠ABD =∠CAE ,在∠ABD 与∠ACE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠BAD ∠∠ACE (AAS ),∠BD =AE ,AD =EC ,∠BD =DE +CE ,即DE =BD ﹣EC .故答案为:BD ﹣EC ;(2)结论:BD =DE ﹣CE .理由:如图2中,∠BD ∠AE ,CE ∠AE ,∠∠ADB =∠CEA =90°,∠∠ABD +∠BAD =90°,又∠∠BAC =90°,∠∠EAC +∠BAD =90°,∠∠ABD =∠CAE ,在∠ABD 与∠CAE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ABD∠∠CAE(AAS),∠BD=AE,AD=EC,∠BD=DE﹣CE;(3)归纳:由(1)(2)可知:当B,C在AE的同侧时,BD=DE﹣CE;当B,C在AE的异侧时,BD=DE+CE.【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.2.(2022·广东佛山·七年级阶段练习)在△ABC中,△BAC=90°,AC=AB,直线MN经过点A,且CD∠MN于D,BE∠MN于E.∠+∠=度;(1)当直线MN绕点A旋转到图1的位置时,EAB DAC(2)求证:DE=CD+BE;(3)当直线MN绕点A旋转到图2的位置时,试问DE、CD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)90°(2)见解析(3)CD= BE + DE,证明见解析【解析】【分析】∠+∠=90°;(1)由△BAC=90°可直接得到EAB DAC(2)由CD∠MN,BE∠MN,得∠ADC=∠BEA=∠BAC=90°,根据等角的余角相等得到∠DCA=∠EAB,根据AAS 可证△DCA∠∠EAB,所以AD=CE,DC=BE,即可得到DE = EA+AD = DC+BE.(3)同(2)易证△DCA∠∠EAB,得到AD=CE,DC=BE,由图可知AE = AD +DE,所以CD= BE + DE.(1)∠△BAC=90°∠ ∠EAB+∠DAC=180°-∠BAC=180°-90°=90°故答案为:90°.(2)证明:∠ CD∠MN于D,BE∠MN于E∠ ∠ADC=∠BEA=∠BAC=90°∠∠DAC+∠DCA=90°且∠DAC+∠EAB=90°∠ ∠DCA=∠EAB∠在△DCA和△EAB中90 ADC BEA DCA EABAC AB ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∠△DCA∠∠EAB (AAS)∠ AD=BE且EA=DC由图可知:DE = EA+AD = DC+BE.(3)∠ CD∠MN于D,BE∠MN于E∠ ∠ADC=∠BEA=∠BAC=90°∠ ∠DAC+∠DCA=90°且∠DAC+∠EAB=90°∠ ∠DCA=∠EAB∠在△DCA和△EAB中90 ADC BEA DCA EABAC AB ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∠△DCA∠∠EAB (AAS)∠ AD=BE且AE=CD由图可知:AE = AD +DE∠ CD= BE + DE.【点睛】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角,也考查了三角形全等的判定与性质.3.(2021·北京·东北师范大学附属中学朝阳学校八年级期中)如图,在∠ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,①求证:∠EAC=∠BCF.②猜想EF、AE、BF的数量关系并证明.(2)将直线l 绕点C 顺时针旋转,使l 与底边AB 交于点D (D 不与AB 点重合),请你探究直线l ,EF 、AE 、BF 之间的关系.(直接写出)【答案】(1)①证明见解析,②EF =AE +BF ;证明见解析;(2)AE =BF +EF 或BF =AE +EF .【解析】【分析】(1)①根据∠AEC =∠BFC =90°,利用同角的余角相等证明∠EAC =∠FCB 即可;②根据AAS 证△EAC ≌△FCB ,推出CE =BF ,AE =CF 即可;(2)类比(1)证得对应的两个三角形全等,求出线段之间的关系即可.【详解】(1)证明:①∵AE ⊥EF ,BF ⊥EF ,∠ACB =90°,∴∠AEC =∠BFC =∠ACB =90°,∴∠EAC +∠ECA =90°,∠ECA +∠FCB =90°,∴∠EAC =∠FCB ,②EF =AE +BF ;证明:在△EAC 和△FCB 中,AEC CFB EAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△FCB (AAS ),∴CE =BF ,AE =CF ,∴EF =CE +CF =AE +BF ,即EF =AE +BF ;(2)①当AD >BD 时,如图①,∵∠ACB =90°,AE ⊥l 直线,同理可证∠BCF =∠CAE (同为∠ACD 的余角),又∵AC =BC ,BF ⊥l 直线即∠BFC =∠AEC =90°,∴△ACE ≌△CBF (AAS ),∴CF=AE,CE=BF,∵CF=CE+EF=BF+EF,∴AE=BF+EF;②当AD<BD时,如图②,∵∠ACB=90°,BF⊥l直线,同理可证∠CBF=∠ACE(同为∠BCD的余角),又∵AC=BC,BE⊥l直线,即∠AEC=∠BFC=90°.∴△ACE≌△CBF(AAS),∴CF=AE,BF=CE,∵CE=CF+EF=AE+EF,∴BF=AE+EF.【点睛】本题考查了三角形综合题,主要涉及到了全等三角形的判定与性质,解题关键是证明△ACE≌△CBF(AAS),利用全等三角形的性质得出线段之间的关系.模型构建四倍长中线模型例题:(2022·全国·八年级课时练习)在△ABC中,AB=5,BC边上的中线AD=4,则AC的长m的取值范围是_______.【答案】3<m<13【解析】【分析】延长AD至E,使DE=AD=4,连接CE,利用SAS证明∠ABD∠∠ECD,可得CE=AB,再根据三角形的三边的关系即可解决问题.【详解】解:如图,延长AD至E,使DE=AD=4,连接CE,∠AD 是BC 边上的中线,∠BD =CD ,在∠ADB 和∠CDE 中,AD ED ADB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠ECD (SAS ),∠CE =AB ,在∠ACE 中,AE -CE <AC <AE +CE ,∠CE =AB =5,AE =8,∠8-5<AC <8+5,∠3<AC <13,∠3<m <13.故答案为:3<m <13.【点睛】此题考查了全等三角形的性质与判定,三角形的三边的关系,解题的关键是利用已知条件构造全等三角形,然后利用三角形的三边的关系解决问题.【变式训练】1.(2021·江苏·徐州市第二十六中学八年级阶段练习)如图,AD 是∠ABC 中BC 边上的中线,若AB =6,AC =8,则AD 的取值范围是________________.【答案】1<AD <7【解析】【分析】延长AD 到E ,使DE =AD ,然后利用“边角边”证明∠ABD 和∠ECD 全等,根据全等三角形对应边相等可得CE =AB ,然后根据三角形任意两边之和大于第三边,两边之差小于第三边求出AE 的取值范围,然后即可得解.【详解】解:如图,延长AD 到E ,使DE =AD ,∠AD 是BC 边上的中线,∠BD =CD ,在∠ABD 和∠ECD 中,BD CD ADB EDC AD ED =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠ECD (SAS ),∠CE =AB ,∠AB =6,AC =8,∠8-6<AE <8+6,即2<2AD <14,∠1<AD <7,故答案为:1<AD <7.【点睛】本题考查了三角形的三边关系,全等三角形的判定与性质,遇中点加倍延,作辅助线构造出全等三角形是解题的关键.2.(2022·全国·八年级课时练习)已知:多项式x 2+4x +5可以写成(x ﹣1)2+a (x ﹣1)+b 的形式.(1)求a ,b 的值;(2)△ABC 的两边BC ,AC 的长分别是a ,b ,求第三边AB 上的中线CD 的取值范围.【答案】(1)6a =,10b =(2)2<CD <8【解析】【分析】(1)把()()211x a x b -+-+展开,然后根据多项式x 2+4x +5可以写成(x ﹣1)2+a (x ﹣1)+b 的形式,可得2415a a b -=⎧⎨-+=⎩,即可求解; (2)延长CD 至点H ,使CD =DH ,连接AH ,可得∠CDB ∠∠HAD ,从而得到BC =AH =a =6,再根据三角形的三边关系,即可求解.(1)解:∠()()211x a x b -+-+ 221x x ax a b =-++-+()221x a x a b =+-+-+,根据题意得:x 2+4x +5=(x ﹣1)2+a (x ﹣1)+b∠2415a ab -=⎧⎨-+=⎩,解得:610a b =⎧⎨=⎩; (2)解:如图,延长CD 至点H ,使CD =DH ,连接AH ,∠CD 是AB 边上的中线,∠BD =AD ,在∠CDB 和∠HDA 中,∠CD =DH ,∠CDB =∠ADH ,BD =DA ,∠∠CDB ∠∠HDA (SAS ),∠BC =AH =a =6,在∠ACH 中,AC -AH <CH <AC +AH ,∠10-6<2CD <10+6,∠2<CD <8.【点睛】本题主要考查了全等三角形的判定和性质,整式乘法和二元一次方程组的应用,三角形的三边关系,熟练掌握全等三角形的判定和性质,整式乘法法则,三角形的三边关系是解题的关键.3.(2022·全国·八年级课时练习)某数学兴趣小组在活动时,老师提出了这样一个问题:如图,在ABC 中,AB =6,AC =8,D 是BC 的中点,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使DE =AD ,请补充完整证明“∠ABD ∠∠ECD ”的推理过程.(1)求证:∠ABD ∠∠ECD证明:延长AD 到点E ,使DE =AD在∠ABD 和∠ECD 中∠AD =ED (已作)∠ADB =∠EDC ( )CD = (中点定义)∠∠ABD ∠∠ECD ( )(2)由(1)的结论,根据AD 与AE 之间的关系,探究得出AD 的取值范围是 ;(3)【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】如下图,ABC 中,90B ∠=︒,2AB =,AD 是ABC 的中线,CE BC ⊥,4CE =,且90ADE ∠=︒,求AE 的长.【答案】(1)对顶角相等;BD ;SAS(2)17AD <<(3)6【解析】【分析】(1)延长AD 到点E ,使DE =AD ,根据SAS 定理证明∠ABD ∠∠ECD ;(2)根据全等三角形的性质、三角形的三边关系计算;(3)延长AD 交EC 的延长线于F ,证明△ABD ∠∠FCD ,∠ADE ∠∠FDE ,根据全等三角形的性质解答.(1)延长AD 到点E ,使DE =AD在∠ABD 和∠ECD 中∠AD =ED (已作)∠ADB =∠EDC (对顶角相等)CD =BD (中点定义)∠∠ABD ∠∠ECD (SAS )故答案为:对顶角相等;BD ;SAS(2)∠∠ABD ∠∠ECD ,AB =6,AC =8,6CE AB ∴==,8686AE -<<+,1AD 7∴<<,故答案为1AD 7<<;(3)延长AD 交EC 的延长线于F ,AB BC ⊥,EF BC ⊥,ABD FCD ∴∠=∠,在ABD △和FCD 中,ABD FCD BD CDADB FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ABD ∴∠FCD ,2CF AB ∴==,AD DF =,又∠∠FDE =∠ADE =90°ED =ED∠∠ADE ∠∠FDEAE EF ∴=,426EF CE CF CE AB =+=+=+=,6AE ∴=.【点睛】本题考查了三角形的三边关系定理和全等三角形的性质和判定,解题关键是熟记全等三角形的判定条件. 4.(2022·辽宁沈阳·七年级期中)【问题情境】如图1,A ,B 两点分别位于一个池塘的两端,小明想用绳子测量A ,B 间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意:先在地上取一个可以直接到达A 点和B 点的点C ,连接AC 并延长到D ,使CD CA =;连接BC 并延长到E ,使CE CB =,连接DE 并测量出它的长度,如果100DE =米,那么AB 间的距离为___________米.【探索应用】如图2,在ABC 中,若5,3AB AC ==,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE (或将ACD △绕着点D 逆时针旋转180︒得到EBD △),把,2AB AC AD 、集中在ABE △中,利用三角形三边的关系即可判断,中线AD 的取值范围是___________;【拓展提升】如图3,在ABC 中,90,,,90,∠=︒===︒∠=∠ACB AB AD AC AE BAD CAE CA 的延长线交DE 于点F ,求证:DF EF =.【答案】(1)100米;(2)1<AD <4;(3)见详解【解析】【分析】(1)证明∠ABC ∠∠DEC ,由全等三角形的性质即可得AB =DE ;(2)延长AD 到点E 使DE AD =,再连接BE ,由“SAS ”可证∠ADC ∠∠EDB ,可得AC =BE =3,由三角形三边关系可得1<AD <4;(3)在BC 上截取BG =AF ,易证△ABG ≌△ADF ,可得DF =AG 和∠DF A =∠BGA ,即可求证△ACG ≌△EAF ,可得GE =AF ,即可解题.【详解】(1)解:在∠ABC 和∠DEC 中,ACB DCE BC EC ⎪∠=∠⎨⎪=⎩,∠∠ABC ∠∠DEC (SAS ),∠DE =AB=100米;故答案为:100米(2)延长AD 到点E 使DE AD =,再连接BE如图所示∠AD =DE ,CD =BD ,∠ADC =∠BDE ,∠∠ADC ∠∠EDB (SAS )∠AC =BE =3,∠在∠ABE 中,AB ﹣BE <AE <AB +BE∠2<2AD <8,∠1<AD <4,故答案为:1<AD <4;(3)证明:在BC 上截取BG =AF ,∵∠BAD =∠CAE =∠ACB =90°∴∠BAC +∠ABC =∠BAC +∠DAF =90°∴∠CBA =∠DAF ,在△ABG 和△ADF 中,CBA DAF AF BG ⎪∠=∠⎨⎪=⎩,∴△ABG ≌△ADF ,(SAS )∴DF =AG ,∠DF A =∠BGA ,∴∠EF A =∠CGA ,∵在△ACG 和△EAF 中,EFA CGA BCA EAF AC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACG ≌△EAF (AAS )∴EE =AG =FD .∠DF EF =【点睛】考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.。
初中数学——构造全等三角形的五种常用方法
所以∠1=∠2. ∠1=∠2,
在△ACD 和△CBG 中,AC=CB, ∠ACD=∠CBG=90°,
所以△ACD≌△CBG(ASA). 所以∠ADC=∠G,CD=BG. 因为点 D 为 BC 的中点,所以 CD=BD.所以 BD=BG. 因为∠DBG=90°,∠DBF=45°,
所以∠GBF=∠DBG-∠DBF=90°-45°=45°.
解:如图,过点B作BG⊥BC交CF的延长线于点G. 因为∠ACB=90°,所以∠2+∠ACF=90°. 因为CE⊥AD, 所以∠AEC=90°. 所以∠1+∠ACF=180°-∠AEC=180°-90°=90°. 因为CE⊥AD,所以∠AEC=90°. 所以∠1+∠ACF=180°-∠AEC=180°-90°=90°.
在△AEH 和△AEF 中,AE=AE, EH=EF,
所以△AEH≌△AEF(SSS).
所以∠EAH=∠EAF.
所以∠EAF=12∠HAF=45°.
返回
方 法 4 倍长中线法
4.如图,在△ABC中,D为BC的中点.若AB=5, AC=3,求AD长度的取值范围. 解:如图,延长AD至点E,使DE= AD,连接BE. 因为D为BC的中点,所以CD=BD.
第四章 三角形
构造全等三角形的五种常用方法
方 法 1 翻折法
1.如图,在△ABC中,BE是∠ABC的平分线, AD⊥BE,垂足为D.试说明:∠2=∠1+∠C.
解:如图,延长AD交BC于点F(相当于将AB边向下翻 折,与BC边重合,A点落在F点处,折痕为BE). 因为BE平分∠ABC, 所以∠ABE=∠CBE. 因为BD⊥AD, 所以∠ADB=∠FDB=90°.
所以∠D=∠ABH=90°. AB=AD,
在△ABH 和△ADF 中,∠ABH=∠D=90°, BH=DF,
浙教版初中数学第1章 三角形的初步知识小专题:构造全等三角形的方法技巧(含答案)
小专题(一) 构造全等三角形的方法技巧类型1 连结线段构造全等三角形【例1】 如图,已知AB =AD ,BC =CD ,求证:∠B =∠D .证明:连结AC ,在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC (SSS ). ∴∠B =∠D .【方法归纳】 通过连结两点,构造出三角形,再证明两个三角形全等,然后利用全等三角形的性质说明角相等或边相等.1.如图,已知AB ∥CD ,AD ∥BC ,求证:∠A =∠C .证明:连结BD , ∵AB ∥CD , ∴∠ABD =∠CDB . ∵AD ∥BC , ∴∠ADB =∠CBD . 又∵BD =DB ,∴△ABD ≌△CDB (ASA ).∴∠A =∠C .2.如图,在△ABC 中,AB =AC ,点M 为BC 中点,MD ⊥AB 于点D ,ME ⊥AC 于点E .求证:MD =ME .证明:连结AM .在△ABM 和△ACM 中,⎩⎨⎧AB =AC ,AM =AM ,BM =CM ,∴△ABM ≌△ACM (SSS ). ∴∠BAM =∠CAM .∵MD ⊥AB ,ME ⊥AC ,∴MD =ME .类型2 利用“截长补短”构造全等三角形【例2】 如图,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB .求证:CD =AD +BC .证明:在CD 上截取DF =DA ,连结FE .在△ADE 和△FDE 中,⎩⎨⎧AD =FD ,∠ADE =∠FDE ,DE =DE ,∴△ADE ≌△FDE . ∴∠A =∠DFE .又∵AD ∥BC ,∴∠A +∠B =180°. ∵∠DFE +∠EFC =180°. ∴∠B =∠EFC .在△EFC 和△EBC 中,⎩⎨⎧∠EFC =∠B ,∠ECF =∠ECB ,EC =EC ,∴△EFC ≌△EBC . ∴FC =BC .∴CD =DF +FC =AD +BC .【方法归纳】 遇到证明线段的和差倍分问题时,通常利用截长法或补短法,具体的作法是在某条线段上截取一条线段与特定线段相等,或者延长某条线段,使之与特定线段相等,再利用三角形全等的有关性质解决.3.如图,在△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD,CE交于点O,试判断BE,CD,BC的数量关系,并加以证明.解:BC=BE+CD.证明:在BC上截取BF=BE,连结OF.∵BD平分∠ABC,∴∠EBO=∠FBO.又∵BO=BO,∴△EBO≌△FBO.∴∠EOB=∠FOB.∵∠A=60°,BD,CE分别平分∠ABC和∠ACB,∴∠BOC=180°-∠OBC-∠OCB=180°-12∠ABC-12∠ACB=180°-12(180°-∠A)=120°.∴∠EOB=∠DOC=60°.∴∠BOF=60°,∠FOC=∠DOC=60°.∵CE平分∠DCB,∴∠DCO=∠FCO.又∵CO=CO,∴△DCO≌△FCO.∴CD=CF.∴BC=BF+CF=BE+CD.4.(德州中考)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.点E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.(1)小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连结AG.先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF;(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由.解:EF =BE +DF 仍然成立.证明:延长FD 到G ,使DG =BE ,连结AG ,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG .在△ABE 和△ADG 中,⎩⎨⎧BE =DG ,∠B =∠ADG ,AB =AD ,∴△ABE ≌△ADG (SAS ). ∴AE =AG ,∠BAE =∠DAG . ∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD -∠EAF =∠EAF . ∴∠EAF =∠GAF .在△AEF 和△AGF 中,⎩⎨⎧AE =AG ,∠EAF =∠GAF ,AF =AF ,∴△AEF ≌△AGF (SAS ).∴EF =FG .∵FG =DG +DF =BE +DF ,∴EF =BE +DF .类型3 利用“中线倍长”构造全等三角形【例3】 如图,在△ABC 中,AD 是BC 边上的中线,AC >AB ,求证:AB +AC >2AD >AC -AB .证明:延长AD 至E ,使AD =DE ,并连结CE , ∵D 是BC 上的中点,∴CD =BD .又∵AD =DE ,∠ADB =∠CDE , ∴△ADB ≌△EDC (SAS ). ∴AB =CE .∵AC +CE >2AD >AC -CE , ∴AB +AC >2AD >AC -AB .【方法归纳】 当题目中出现中线时,常常延长中线,使所延长部分与中线的长度相等,然后连结相应的端点,便可以得到全等三角形.5.已知:如图,AD ,AE 分别是△ABC 和△ABD 的中线,且BA =BD .求证:AE =12AC .证明:延长AE 至F ,使EF =AE ,连结DF . ∵AE 是△ABD 的中线, ∴BE =DE .又∵∠AEB =∠FED ,∴△ABE ≌△FDE .∴∠B =∠BDF ,AB =DF . ∵BA =BD ,∴∠BAD =∠BDA ,BD =DF .∵∠ADF =∠BDA +∠BDF ,∠ADC =∠BAD +∠B , ∴∠ADF =∠ADC .∵AD 是△ABC 的中线, ∴BD =CD . ∴DF =CD . 又∵AD =AD ,∴△ADF ≌△ADC (SAS ). ∴AC =AF =2AE ,即AE =12AC .6.如图,AB =AE ,AB ⊥AE ,AD =AC ,AD ⊥AC ,点M 为BC 的中点,求证:DE =2AM .证明:延长AM 至点N ,使MN =AM ,连结BN , ∵M 为BC 中点,∴BM =CM .又∵AM =MN ,∠AMC =∠NMB , ∴△AMC ≌△NMB (SAS ). ∴AC =BN ,∠C =∠NBM .∴∠ABN =∠ABC +∠NBM =∠ABC +∠C =180°-∠BAC =∠EAD . ∵AD =AC ,AC =BN ,∴AD =BN .又∵AB =AE ,∴△ABN ≌△EAD (SAS ).∴DE=NA.又∵AM=MN,∴DE=2AM.。
初中数学经典几何模型05-手拉手模型构造全等三角形(含答案)
初中数学经典几何模型专题05 手拉手模型构造全等三角形【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。
【知识总结】【基本模型】一、等边三角形手拉手-出全等图1 图2图3 图4二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;图1图2图3图41、如图,点C在线段AB上,△DAC和△DBE都是等边三角形,求证:△DAB≌△DCE;DA∥EC.2、已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连结AE,BD交于点O,AE与DC交于点0,AE与DC交于点M,BD与AC交于点N.3、已知,在△ABC中,AB=AC,点P平面内一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,⑴若点P在△ABC内部,求证BQ=CP;⑵若点P在△ABC外部,以上结论还成立吗?4、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=√2,AG=1,则EB=________________.5、已知正方形ABCD和正方形AEFG有一个公共点,点G、E分别在线段AD、AB上,若将正方形AEFG 绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长度始终相等?并说明理由。
6、已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠BDC=45°;④BE2=2(AD2+AB2)其中结论正确的个数是_______【基础训练】1、已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B,点C重合).以AD为边作等边三角形ADE,连接CE.如图1,当点D在边BC上时,求证:△ABD≌△ACE;直接判断结论BC=DC+CE是否成立(不需要证明);如图2,当点D在边BC的延长线上时,其他条件不变,请写出BC、DC、CE之间存在的数量关系,并写出证明过程.2、如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点.若DE=13,BD=12,求线段AB的长.3、如图,点A、B、C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM.下面结论:△ABE≌△DBC;∠DMA=60°;△BPQ为等边三角形;MB平分∠AMC.其中正确的有____________4、如图1,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.求证:BE=AD;用含α的式子表示∠AMB的度数;当α=90°时,取AD、BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.【巩固提升】1、已知△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,AB=2BD,连接CE.(1)如图1,若点D在AB边上,点F是CE的中点,连接BF.当AC=4时,求BF的长;(2)如图2,将图1中的△BDE绕点B按顺时针方向旋转,使点D在△ABC的内部,连接AD,取AD 的中点M,连接EM并延长至点N,使MN=EM,连接CN.求证:CN⊥CE.2、如图,△ABC中AB=AC=5,tan∠ACB=,点D为边BC上的一动点(不与点B、C重合),将线段AD绕点A顺时针旋转得AE,使∠DAE=∠BAC,DE与AB交于点F,连接BE.(1)求BC的长;(2)求证∠ABE=∠ABC;(3)当FB=FE时,求CD的长.3、如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.(1)求证:△BCD≌△ACE;(2)如图2,连接ED,若CD=2,AE=1,求AB的长;(3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.4、如图,△ABC和△EDC都是等腰直角三角形,C为它们的公共直角顶点,连接AD、BE,点F为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,试判断线段BE、CF的关系,并证明你的结论;(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变时,请探究BE、CF的关系并直接写出结论.5、如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.(1)探究DB'与EC'的数量关系,并结合图2给予证明;(2)填空:①当旋转角α的度数为时,则DB'∥AE;②在旋转过程中,当点B',D,E在一条直线上,且AD=时,此时EC′的长为.6、如图,∠AOB=120°,OC平分∠AOB,∠MCN=60°,CM与射线OA相交于M点,CN与直线BO相交于N点.把∠MCN绕着点C旋转.(1)如图1,当点N在射线OB上时,求证:OC=OM+ON;(2)如图2,当点N在射线OB的反向延长线上时,OC与OM,ON之间的数量关系是(直接写出结论,不必证明)专题05 手拉手模型构造全等三角形答案【专题说明】两个具有公共顶点的相似多边形,在绕着公共顶点旋转的过程中,产生伴随的全等或相似三角形,这样的图形称作共点旋转模型;为了更加直观,我们形象的称其为“手拉手”模型。
八年级数学上册第十二章全等三角形考点题型与解题方法(带答案)
八年级数学上册第十二章全等三角形考点题型与解题方法单选题1、如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为()A.7B.3.5C.3D.2答案:C分析:利用全等三角形的性质求解即可.解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故选C.小提示:本题主要考查了全等三角形的性质,熟知全等三角形对应边相等是解题的关键.2、如图,AD平分∠BAC,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF.则下列结论中:①AD是△ABC的高;②AD是△ABC的中线;③ED=FD;④AB=AE+BF.其中正确的个数有()A.4个B.3个C.2个D.1个答案:A分析:过点D作DG⊥AB于点G,由角平分线的定义及平行线的性质可得∠ADB=90°,然后可证△ADC≌△ADB,△DEC≌△DFB,进而问题可求解.解:∵AD平分∠BAC,BC平分∠ABF,∴∠CAD=∠BAD=12∠CAB,∠ABC=∠FBC=12∠ABF,∵BF∥AC,∴∠CAB+∠ABF=180°,∴∠DAB+∠ABD=90°,即∠ADB=90°,∴AD⊥BC,即AD是△ABC的高,故①正确;∵∠ADB=∠ADC=90°,AD=AD,∴△ADC≌△ADB(ASA),∴DB=DC,即AD是△ABC的中线,故②正确;∵BF∥AC,∴∠CED=∠F,∵∠CDE=∠BDF,∴△DEC≌△DFB(AAS),∴ED=FD,故③正确;过点D作DG⊥AB于点G,如图所示:∵AD平分∠BAC,BC平分∠ABF,∠AED=∠F=90°,∴DE=DG=DF,∵AD=AD,∴△AED≌△AGD(HL),∴AE=AG,同理可知BF=BG,∵AB=AG+BG,∴AB=AE+BF,故④正确;综上所述:正确的个数有4个;故选A.小提示:本题主要考查全等三角形的性质与判定、平行线的性质及角平分线的性质,熟练掌握全等三角形的性质与判定、平行线的性质及角平分线的性质是解题的关键.3、墨墨想在纸上作∠A1O1B1等于已知的∠AOB,步骤有:①画射线O1M;②以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;③以点A1为圆心,以CD为半径画弧,与已画的弧交于点B1,作射线O1B1;④以点O1为圆心,以OC为半径画弧,交O1M于点A1.在上述的步骤中,作∠A1O1B1的正确顺序应为()A.①④②③B.②③④①C.①②④③D.①③④②答案:C分析:根据作一个角等于已知角的方法,选择合适的顺序即可.解:根据作一个角等于已知角的步骤可知,正确的顺序是①②④③故选C.小提示:此题考查了尺规作图-作一个角等于已知角,熟练掌握其作法步骤过程是解题的关键.4、如图,已知AB=AD,BC=DE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,则∠EGF的度数为()A.120°B.135°C.115°D.125°答案:C分析:由已知可得△ABC≌△ADE,故有∠BAC=∠DAE,由∠EAB=120°及∠CAD=10°可求得∠AFB的度数,进而得∠GFD的度数,在△FGD中,由三角形的外角等于不相邻的两个内角的和即可求得∠EGF的度数.在△ABC和△ADE中{AB=AD ∠B=∠D BC=DE∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE∵∠EAB=∠BAC+∠DAE+∠CAD=120°∴∠BAC=∠DAE=12×(120°−10°)=55°∴∠BAF=∠BAC+∠CAD=65°∴在△AFB中,∠AFB=180°-∠B-∠BAF=90°∴∠GFD=90°在△FGD中,∠EGF=∠D+∠GFD=115°故选:C小提示:本题考查了三角形全等的判定和性质、三角形内角和定理,关键求得∠BAC的度数.5、如图,四边形ABCD中,AC、BD为对角线,且AC=AB,∠ACD=∠ABD,AE⊥BD于点E,若BD=6,CD=4.则DE的长度为()A.2B.1C.1.4D.1.6答案:B分析:过点A作AF⊥CD交CD的延长线于点F,根据AAS证明△AFC≌△AEB,得到AF=AE,CF=BE,再根据HL 证明Rt△AFD≌Rt△AED,得到DF=DE,最后根据线段的和差即可求解.解:过点A作AF⊥CD交CD的延长线于点F,∴∠AFC=90°,∵AE⊥BD,∴∠AFC=∠AED=∠AEB=90°,在△AFC和△AEB中,{∠AFC=AEB∠ACF=∠ABEAC=AB,∴△AFC≌△AEB(AAS),∴AF=AE,CF=BE,在Rt△AFD和Rt△AED中,{AF=AEAD=AD,∴Rt△AFD≌Rt△AED(HL),∴DF=DE,∵CF=CD+DF,BE=BD-DE,CF=BE,∴CD+DF=BD-DE,∴2DE=BD-CD,∵BD=6,CD=4,∴2DE=2,∴DE=1,故选:B.小提示:此题考查了全等三角形的判定与性质,根据AAS证明△AFC≌△AEB及根据HL证明Rt△AFD≌Rt△AED是解题的关键.6、如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是()A.2B.2.5C.3D.103答案:C分析:过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG(HL),同理Rt△ADF≌Rt△ABH,得S四边形DGBA=S四边形AFGH=12,然后求得Rt△AFG的面积=6,进而得到FG的长.如图所示,过点A作AH⊥BC于H,在△ABC与△ADE中,{AC=AE∠C=∠E BC=DE,∴△ABC≌△ADE(SAS),∴AD=AB,S△ABC=S△AED,又∵AF⊥DE,∴12×DE×AF=12×BC×AH,∴AF=AH,∵AF⊥DE,AH⊥BC,∴∠AFG=∠AHG=90°,在Rt△AFG和Rt△AHG中,,{AG=AGAF=AH∴Rt△AFG≌Rt△AHG(HL),同理:Rt△ADF≌Rt△ABH(HL),∴S四边形DGBA=S四边形AFGH=12,∵Rt△AFG≌Rt△AHG,∴SRt△AFG=6,∵AF=4,∴1×FG×4=6,2解得:FG=3.故选:C.小提示:本题考查全等三角形的判定与性质,综合运用各知识点是解题的基础,作出合适的辅助线是解此题的关键.7、如图,已知AB=AD,AE=AC=BC,∠1=∠2,∠C=40°,则∠ADE的度数为()A.40°B.65°C.70°D.75°答案:C分析:首先根据已知条件证明△ABC≅△ADE,再利用等腰三角形求角度即可.解:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,在△ABC与△ADE中,∵{AB=AD∠BAC=∠DAEAC=AE,∴△ABC≅△ADE(SAS),∴∠C=∠E=40°,AE=BC=DE,∴∠ADE=∠EAD=12(180°−∠E)=12(180°−40°)=70°,故选:C.小提示:本题主要考查三角形全等的证明,利用已知条件进行证明是解题的关键.8、小明不慎将一块三角形的玻璃摔碎成如图的四块,你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块答案:B分析:根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.小提示:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.9、如图,一块玻璃被打碎成三块,如果要去玻璃店配一块完全一样的玻璃,那么最合理的办法是()A.带①去B.带②去C.带③去D.带①②③去答案:C分析:根据三角形的定义,不在同一平面的三条线段,首尾相连组成的图形是三角形,即可求出答案.解:A选项的①上下两边可以无限延伸,无法确定③的大小,不符合题意;B选项的②上下两边可以无限延伸,能确定①的大小,无法确定③的大小,不符合题意;C选项的③上下两边可以延伸,能确定①、②的大小,符合题意,故选C;D选项不符合题意,只需带③即可配一块完全相同的玻璃.故选:C.小提示:本题主要考查三角形的定义,理解和识记三角形的定义,即可求出答案.10、如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,若AB=4,CF=3,则BD的长是( )A.0.5B.1C.1.5D.2答案:B分析:根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出ΔADE≅ΔCFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.∵CF//AB,∴∠A=∠FCE,∠ADE=∠F,在ΔADE和ΔFCE中{∠A=∠FCE∠ADE=∠FDE=FE,∴ΔADE≅ΔCFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB−AD=4−3=1.故选B.小提示:本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ΔADE≅ΔFCE是解此题的关键.填空题11、如图所示,△ABC与△ADE全等,则∠B的对应角是_________,AC的对应边是_________.答案:∠E AD首先确定三角形的对应顶点,再将对应顶点放在对应位置写出两个三角形的全等关系,即△ABC≌△AED,然后按照对应关系即可写出对应边和对应角,∠B的对应角为∠E,AC的对应边为AD.∠E AD12、如图,在Rt△ABC中,∠C=90°,AC=AE,DE⊥AB,若∠BDE=46°,则∠DAE=_______.答案:23°##23度分析:根据题目所给条件,可以得到∠CDE的度数,再根据题目所给条件以及角平分线的判定定理,可以得到DA是∠CDE的角平分线,即可得到∠ADE,再根据△ADE是直角三角形,从而得到最后的答案.解:∵∠BDE=46°,∴∠CDE=180°−∠BDE=180°−46°=134°,∵DE⊥AB,∴∠DEA=90°,又∵AC=AE,∠DEA=90°,∠C=90°,∴DA是∠CDE的角平分线,∴∠ADE=12∠CDE=12×134°=67°,∴在Rt△ADE中,∠DAE=180°−∠DEA−∠ADE=180°−∠90°−67°=23°,所以答案是:23°.小提示:本题考查的是三角形的内角和定理,角平分线的判定定理与性质,解答本题的关键是熟练掌握角平分线的性质和判定定理.13、如图所示的图案是由全等的图形拼成的,其中AD=0.5,BC=1,则AF=______.答案:6分析:由图形知,所示的图案是由梯形ABCD和七个与它全等的梯形拼接而成,根据全等则重合的性质求解即可.解:由题可知,图中有8个全等的梯形,所以AF=4AD+4BC=4×0.5+4×1=6.所以答案是:6.小提示:考查了全等图形的性质,本题利用了全等形图形一定重合的性质求解,做题的关键是找准相互重合的对应边.14、如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以v cm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为_____时,△ABP与△PCQ全等.答案:2或83分析:可分两种情况:①ΔABP≅ΔPCQ得到BP=CQ,AB=PC,②ΔABP≅ΔQCP得到BA=CQ,PB= PC,然后分别计算出t的值,进而得到v的值.解:①当BP=CQ,AB=PC时,ΔABP≅ΔPCQ,∵AB=8cm,∴PC=8cm,∴BP=12−8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,ΔABP≅ΔQCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,,解得:v=83时,ΔABP与ΔPQC全等,综上所述,当v=2或83.所以答案是:2或83小提示:主要考查了全等三角形的性质,矩形的性质,解本题的关键是熟练掌握全等三角形的判定与性质.15、如图,AD是△ABC的角平分线,若△ABC的面积是48,且AC=16,AB=8,则点D到AB的距离是______.答案:4分析:过D点作DE⊥AB于E,DF⊥AC于F,如图,根据角平分线的性质得到SΔABD+SΔACD=SΔABC,再利用三角形面积公式得到12×8×DE+12×DE×16=48,然后求出DE即可.解:过D点作DE⊥AB于E,DF⊥AC于F,如图,∵AD是ΔABC的角平分线,∴DE=DF,∵SΔABD+SΔACD=SΔABC,∴12AB⋅DE+12AC⋅DF=48,即12×8×DE+12×DE×16=48,∴DE=4,即点D到AB的距离为4.所以答案是:4.小提示:本题考查了角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等,也考查了三角形面积.解答题16、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN 绕点C 旋转到图①的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图②的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.(3)当直线MN 绕点C 旋转到图③的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.答案:(1)证明见解析(2)AD =BE +DE ,证明见解析(3)BE =AD +DE ,证明见解析分析:(1)先用AAS 证明△ADC ≌△CEB ,得AD =CE ,BE =CD ,进而得出DE =BE +CD ;(2)先证明△ACD ≌△CBE (AAS ),可得AD =CE ,CD =BE ,进而得出AD =CD +DE =BE +DE ;(3)证明过程同(2),进而可得BE =AD +DE .(1)证明:由题意知,∠BCA =90°,∠ADC =∠BEC =90°,∴∠ACD +∠BCE =90°,∠BCE +CBE =90°,∴∠ACD =∠CBE ,在△ADC 和△CEB 中,∵{∠ADC =∠CEB =90°∠ACD =∠CBE AC =BC,∴△ADC ≌△CEB (AAS ),∴AD =CE ,BE =CD ,∴DE =DC +CE =BE +AD .(2)解:AD=BE+DE.证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∴∠ACD+∠BCD=90°,∠BCD+∠CBE=90°,∴∠ACD=∠CBE,在△ABD和△ACE中,∵{∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,CD=BE,∴AD=CD+DE=BE+DE.(3)解:BE=AD+DE.证明:∵AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠BEC=90º,∴∠EBC+∠BCE=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠ACD=∠EBC,在△ACD和△CBE中,∵{∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴BE=CD,AD=CE,∴BE=CE+DE=AD+DE,∴BE=AD+DE.小提示:本题考查了全等三角形的判定与性质.解题的关键在于找出证明三角形全等的条件.17、如图,已知点C是AB的中点,CD//BE,且CD=BE.(1)求证:△ACD≌△CBE.(2)若∠A=87°,∠D=32°,求∠B的度数.答案:(1)见解析;(2)61∘分析:(1)根据SAS证明△ACD≌△CBE;(2)根据三角形内角和定理求得∠ACD,再根据三角形全等的性质得到∠B=∠ACD.(1)∵C是AB的中点,∴AC=CB,∵CD//BE,∴∠ACD=∠CBE,在△ACD和△CBE中,{AC=CB∠ACD=∠CBECD=BE,∴ΔACD≅ΔCBE;(2)∵∠A=87°,∠D=32°,∴∠ACD=180°−∠A−∠D=180°−87°−32°=61°,又∵ΔACD≅ΔCBE,∴∠B=∠ACD=61°.小提示:考查了全等三角形的判定和性质,解题关键是根据SAS证明△ACD≌△CBE.18、阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.答案:(1)2;(2)4分析:(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证△FGH≌△FNK,则有FK=FH,因为HM=GH+MN易证△FMK≌△FMH,故可求解.(1)由题意知S四边形ABCD =S△ABC+S△ADC=S△ABC+S△ABE=S△AEC=12AC2=2,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示:∵ FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,∴∠FNK=∠FGH=90°,∴△FGH≌△FNK,∴FH=FK,又∵FM=FM,HM=KM=MN+GH=MN+NK,∴△FMK≌△FMH,∴MK=FN=2cm,∴S五边形FGHMN =S△FGH+S△HFM+S△MFN=2S△FMK=2×12MK⋅FN=4.小提示:本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.。
八年级数学专题——构造全等三角形解题人教实验版知识精讲
初二数学专题——构造全等三角形解题人教实验版【本讲教育信息】一、教学内容:专题——构造全等三角形解题1. 构造全等三角形证明角相等及线段的垂直、相等及和差等关系.2. 构造全等三角形解决实际问题.二、知识要点:全等三角形是初中几何的重要内容之一,在几何证明题中有着极其广泛的应用.然而在许多情况下,给定的题设条件及图形并不具有明显的全等条件,这就需要我们认真分析、仔细观察,根据图形的结构特征,挖掘潜在因素,通过添加适当的辅助线,巧构全等三角形.借助全等三角形的有关性质,就会迅速找到证题途径,直观易懂,简捷明快.三、考点分析:三角形是最常见的几何图形之一,是后续知识的基础,是历年中考命题的热点,三角形全等的条件是三角形的一大重点.中考考查仍然是要求能应用所学知识解决比较简单的实际问题以及联系比较紧密的知识考查双基.从题型设计上看,由传统的以填空题、选择题为主转向综合应用和自主探究的阅读、探索等新颖题型、答案不唯一,具有开放性和创新性.考查数学的分类思想、方程思想以及转化思想.【典型例题】题型一:证明线段的垂直例1. 如图所示,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF =AC ,FD =CD ,求证:BE ⊥AC .ABCDEF 12分析:要证BE ⊥AC ,可推证∠C +∠1=90°,由已知∠2+∠1=90°,只需证明∠2=∠C ,结合已知条件,只需证R t △BDF ≌R t △ADC 即可.证明:∵AD ⊥BC ,∴∠BDA =∠ADC =90°,∴∠1+∠2=90°.在R t △BDF 和R t △ADC 中,⎩⎪⎨⎪⎧BF =AC FD =CD ,∴R t △BDF ≌R t △ADC (HL ),∴∠2=∠C (全等三角形对应角相等), ∵∠1+∠2=90°, ∴∠1+∠C =90°,∴∠BEC =180°-90°=90°, ∴BE ⊥AC .评析:证明直角三角形全等时,可根据条件灵活选择方法.题型二:证明线段的相等例2. 如图所示,已知AB =AD ,AE =AC ,∠1=∠2,求证:DE =BC .A BCE D123分析:要证DE =BC ,而DE 、BC 分别是△ADE 和△ABC 的两条边,故只需求证△ABC ≌△ADE .结合已知由“SAS ”可证.证明:∵∠1=∠2,∴∠1+∠3=∠2+∠3, 即∠DAE =∠BAC .在△ADE 和△ABC 中,⎩⎪⎨⎪⎧AD =AB∠DAE =∠BAC AE =AC,∴△ADE ≌△ABC (SAS ), ∴DE =BC .评析:根据条件,已知两边对应相等,只需其夹角∠DAE =∠BAC ,即可由SAS 证得全等,实际上,△ADE 可看作是△ABC 绕点A 旋转得到的.题型三:证明角相等例3. 如图所示,AC =BD ,AB =DC .求证:∠B =∠C .ABCDE分析:要想证得∠B =∠C ,可观察∠B 与∠C 所在的△ABE 与△DCE 是否全等,由已知难以证其全等.再观察条件可以把∠B 与∠C 放在△ABD 与△DCA 中(需连结AD ),可以利用三角形全等的条件SSS 证明.证明:连结AD .在△ABD 和△DCA 中,⎩⎪⎨⎪⎧AB =DCDB =AC AD =DA,∴△ABD ≌△DCA (SSS ),∴∠B =∠C .评析:证明线段相等或角相等时,需证明它们所在的两个三角形全等,当所在的两个三角形不全等时,可结合已知条件,把图形中的某两点连结起来构造全等三角形.题型四:证明线段的和差问题例4. 如图所示,在R t △ABC 中,AB =AC ,∠BAC =90°,过A 的任一条直线AN ,BD ⊥AN 于D ,CE ⊥AN 交AN 的延长线于E ,求证:DE =BD -CE .分析:要证DE =BD -CE ,而DE =AE -AD ,故可想到证BD =AE ,AD =CE ,而其分别在△ABD 与△CAE 中,显然要证这两个三角形全等.证明:∵∠BAC =90°,BD ⊥AN , ∴∠1+∠2=90°,∠3+∠1=90°. ∴∠2=∠3.∵BD ⊥AN ,CE ⊥AN , ∴∠BDA =∠AEC =90°.在△ABD 和△CAE 中,⎩⎪⎨⎪⎧∠BDA =∠AEC ∠2=∠3AB =AC∴△ABD ≌△CAE (AAS ),∴BD =AE ,AD =CE (全等三角形对应边相等). ∵DE =AE -AD ,∴DE =BD -CE .评析:在一个图形中,有多个垂直关系时,常用“同角或等角的余角相等”来证明两角相等,也可把本题改编为探索题,即直线AN 绕A 点旋转,则DE 、DB 、CE 会有怎样的关系,DE =BC -CE 还成立吗?题型五:构造全等三角形解决实际问题例5. 要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D 使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在一条直线上(如图所示),这时测得DE 的长就是AB 的长,写出已知和求证,并进行证明.AB CD EFG分析:本题实质是用全等三角形的原理说明AB =DE .解:已知:AB ⊥BD ,ED ⊥BD ,垂足分别为B 、D ,点C 在BD 上,且BC =CD ,点A 、C 、E 在同一条直线上,求证:DE =AB .证明:∵AB ⊥BD ,ED ⊥BD ,垂足分别为B 、D . ∴∠CBA =∠CDE =90°,∵点A 、C 、E 在同一条直线上, ∴∠ACB =∠ECD .在△ABC 和△EDC 中,⎩⎪⎨⎪⎧∠CBA =∠CDEBC =DC ∠ACB =∠ECD,∴△ABC ≌△EDC (ASA ),∴DE =AB (全等三角形对应边相等).评析:对于实际应用问题,首先要将它转化为数学问题,再根据数学知识去解决.【方法总结】三角形全等说理中,如果已知中没有直接给出全等的三个所需条件,这时就需要根据已知条件去推导出所需条件,常遇下列几种情况: 1. 利用平行线的性质推导角的相等关系; 2. 利用垂直关系推导角的相等;3. 利用边和角的和差推导边和角的相等;4. 利用三角形内角和的有关结论推导角的相等;5. 运用公共角、对顶角、公共边等题目中隐含条件推导边和角相等.【模拟试题】(答题时间:40分钟)1. (2007年某某)如图,将△BOD 绕点O 旋转180°后得到△AOC ,再过点O 任意画一条与AC 、BD 都相交的直线MN ,交点分别为M 和N .试问:线段OM =ON 成立吗?若成立,请进行证明;若不成立,请说明理由.NMODCB A2. (2007年某某)已知:如图,在△ABC 中,AB =BC ,∠ABC =90°.F 为AB 延长线上一点,点E 在BC 上,BE =BF ,连接AE 、EF 和CF .(1)求证:AE =CF ; (2)若∠CAE =30°,求∠EFC 的度数.ABCEF*3. 已知:如图所示,在△ABC 中,∠B =2∠A ,AB =2BC ,求证:AC ⊥BC .ABCDE124. 已知,如图所示,在△ABC 中,D 是BC 边的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F ,求证:∠AEF =∠EAF .A BCDEF G5. 已知:如图所示,在△ABC 中,∠A =2∠B ,CD 是∠ACB 的平分线,求证:BC =AD +AC .AB CDE12**6. 已知,如图所示,等腰R t △ABC 中,∠A =90°,∠B 的平分线交AC 于D ,过C 作BD 的垂线交BD 的延长线于E .求证:BD =2CE .ABCDE【试题答案】1. 成立,可证△AOM ≌△BON .2. (1)证△ABE ≌△CBF ;(2)30°.3. 本题可先作∠ABC 的平分线BD 交AC 于点D ,由∠ABC =2∠A ,又∠ABC =2∠1=2∠2,得到∠A =∠1=∠2,则△ABD 为等腰三角形.再取AB 中点E ,连结DE ,借助等腰三角形的性质,得到DE ⊥AB ,再由BE =12AB =BC ,∠1=∠2,BD =BD ,得到△DBE≌△BDC .由全等三角形的对应角相等,得到∠BCD =∠BED =90°,即AC ⊥BC .4. 分析与证明:由AD 是中线,可“延长中线一倍”,借助中线性质构造全等三角形.延长AD 至G ,使DG =AD ,连BG ,由DG =AD ,∠BDG =∠CDA ,BD =CD 得到△BDG ≌△CDA .由全等三角形的对应边相等,对应角相等,得到AC =BG ,∠EAF =∠G .而AC =BE ,则BE =BG ,所以∠BEG =∠G ,而∠AEF =∠BEG ,从而得到∠AEF =∠EAF .5. 分析与证明:由CD 是∠ACB 的平分线,可利用角平分线的对称性.在BC 上取一点E ,使CE =CA ,连DE ,由CA =CE ,∠1=∠2,CD =CD ,可得△ACD ≌△ECD .由全等三角形的对应边相等,对应角相等,得到AD =ED ,且∠CED =∠A =2∠B ,而∠CED =∠BDE +∠B ,得到∠BDE =∠B ,从而BE =DE =AD ,所以BC =BE +CE =AD +AC .6. 分析与证明:要证BD =2CE ,可延长BA 、CE 交于点F .由BE 平分∠CBF ,BE ⊥CF ,得到△BCF 为等腰三角形.根据等腰三角形的性质可得CE =EF ,即CF =2CE .再由∠BAD=∠CAF=90°,AB=AC,∠ABD=90°-∠F=∠ACF,得到R t△ABD≌R t△ACF,从而由全等三角形的对应边相等立即得到BD=CF=2CE.FAEDB C。
人教版初中数学 小专题 截长补短、倍长中线法构造全等三角形(等腰)
1、已知:如图,在ABC 中,AB AC ,D、E在BC上,
且DE=EC,过D作
交AE于点F,DF=AC.
求证:AE平分
7.已知:如图,AD,AE 分别是△ ABC 和△ ABD 的中线,且 BA=BD.求证:AE=12AC.
证明:延长 AE 至 F,使 EF=AE,连接 DF. ∵AE 是△ABD 的中线,∴BE=DE. ∵∠AEB=∠FED,∴△ABE≌△FDE.∴∠B=∠BDF,AB= DF. ∵BA=BD,∴∠BAD=∠BDA,BD=DF. ∵∠ADF=∠BDA+∠BDF,∠ADC=∠BAD+∠B,∴∠ADF =∠ADC. ∵AD 是△ABC 的中线,∴BD=CD.∴DF=CD. ∴△ADF≌△ADC(SAS).∴AC=AF=2AE,即 AE=12AC.
如图,AB=AE,AB⊥AE,AD=AC,AD⊥AC,点M为 BC的中点,求证:DE=2AM. 解:延长AM至N,使MN=AM,连接BN, ∵点M为BC的中点,∴BM=CM. 又∵∠BMN=∠CMA, ∴△AMC≌△NMB(SAS). ∴AC = BN , ∠ C = ∠NBM , ∠ ABN = ∠ABC+∠C=180°-∠BAC=∠EAD. 又 ∵BN = AC = AD , AB = EA , ∴△ABN≌△EAD(SAS).∴DE=NA. 又AM=MN,∴DE=2AM.
小专题 截长补短、倍长中线法构造全等三角形
方法 利用“截长补短法”构造全等三角形 截长补短法,是初中数学几何题中一种辅助线的添加方法,也是 把几何题化难为易的一种思想。截长就是在一条线上截取成两段 ,补短就是在一条边上延长,使其等于一条已知边。 例1 已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,
求证:AE=AD+BE
2020秋人教版数学八年级上册解题技巧专题:构造全等三角形解决有关问题
∵在△AEF 和△AGF 中,
∠AFE=∠AFG,
AF=AF,
∠EAF ∠GAF,
∴△AEF≌△AGF(ASA).
∴AE=AG. ∴AE+CD=AG+CG=AC.
谢谢观看
Thank you for watching!
∴△CEF≌△CED(SAS). ∴EF=ED. ∵AE=AF+EF, ∴AE=AB+DE.
4.如图,在△ABC 中,∠B=60°,∠BAC、∠ACB 的平分线 AD、CE 交于点 F,试猜想 AE、CD、AC 三条线段之间的数量关系,并加以证明. 解:AE+CD=AC. 证明如下: 在 CA 上取点 G 使得 CG=CD, 连接 FG,如图所示.
2020秋季学期 数学·八年级上·RJ
快速对答案
1 详细答案 点击题序 2 详细答案 点击题序 3 详细答案 点击题序 4 详细答案 点击题序
提示:点击 进入习题
思路分析:如图,延长中线AM到D,使DM=AM, 连接BD,利用“SAS”可证得△ACM≌△DBM.
1.如图,在△ABC 中,D 为 BC 的中点. (1)求证:AB+AC>2AD; (1)证明:如图,延长 AD 至 E,使 DE=AD. ∵D 为 BC 的中点, ∴DB=CD. 在△ADC 和△EDB 中,
ED EC, ∵∠DEF ∠CEG,
FE EG,
∴△DEF≌△CEG. ∴DF=GC,∠DFE=∠G. ∵DF∥AB, ∴∠DFE=∠BAE. ∵DF=AC, ∴GC=AC. 过点 C 作△ACG 的中线 CM,则 AM=GM. ∵CM=CM,
∴△ACM≌△GCM(SSS). ∴∠G=∠CAE. ∴∠BAE=∠CAE,即 AE 平分∠BAC.
∵∠AFC=180°- 1 (∠BAC+∠ACB)=180°- 1
6.中考数学专题03 全等三角形中的辅助线构造(举一反三)(原卷版)
专题03 全等三角形中的辅助线构造【举一反三】【苏科版】【考点1 角分线上点向角两边作垂线构全等】【方法点拨】过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题;【例1】如图,已知BP平分∠ABC,PD⊥BC于D,BF+BE=2BD,求证:∠BFP+∠BEP=180°.【变式1-1】(2019秋•汉阳区期中)已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P 在射线OM上滑动,两直角边分别与OA、OB交于C、D.(1)PC和PD有怎样的数量关系是.(2)请你证明(1)得出的结论.【变式1-2】(2019•北京校级期中)已知∠MAN=120°,AC平分∠MAN,点B、D分别在AN、AM上.(1)如图1,若∠ABC=∠ADC=90°,请你探索线段AD、AB、AC之间的数量关系,并证明之;(2)如图2,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【变式1-3】(2019秋•东区校级月考)如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(不需证明)(2)如图③,在△ABC中,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【考点2 截取法构全等】【方法点拨】利用对称性,在角的两边截取相等的线段,构造全等三角形;【例2】(2019秋•黄浦区校级期中)已知:在四边形ABCD中,BC>BA,∠A+∠C=180°,且∠C=60°,BD平分∠ABC,求证:BC=AB+DC.【变式2-1】已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.【变式2-2】(2019秋•邵阳期末)如图①,在△ABC中,∠ACB=2∠B,AD为∠BAC的角平分线,求证:AB=AC+CD小明同学经过思考,得到如下解题思路:在AB上截取AE=AC,连接DE,得到△ADE≌△ADC,从而易证AB=AC+CD(1)请你根据以上解思路写出证明过程;(2)如图②,若AD为△ABC的外角∠CAE平分线,交BC的延长线于点D,∠D=25°,其他条件不变,求∠B的度数.【变式2-3】(2019•长汀县校级模拟)观察、猜想、探究:在△ABC中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,求证:AB=AC+CD;(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【考点3 延长垂线段构全等】【方法点拨】题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形;【例3】如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE=(AC﹣AB).(提示:延长BE交AC于点F).【变式3-1】已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.求证:AC﹣AB=2BE.【变式3-2】(2019秋•通州区期末)已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.【变式3-3】(2019•成都校级期中)如图,△ABC中,过点A分别作∠ABC,∠ACB的外角的平分线的垂线AD,AE.D,E为垂足,求证:(1)ED∥BC;(2)ED=(AB+AC+BC).【考点4 倍长中线法构全等】【方法点拨】遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形.【例4】(2019秋•津南区校级期中)已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.【变式4-1】(2019秋•闵行区期中)如图,在△ABC中,AE平分∠BAC,交BC于点E,D是BC边上点,且DE=CE,点F在AE上,联结DF,满足DF=AC,求证:DF∥AB.【变式4-2】(2019春•富阳市校级期中)如图,AD为△ABC的中线,∠ADB和∠ADC的平分线分别交AB、AC于点E、F.求证:BE+CF>EF.【变式4-3】(2019秋•启东市校级月考)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是A.6<AD<8 B.6≤AD≤8C.1<AD<7 D.1≤AD≤7【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.【考点5 作平行线构全等】【方法点拨】有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.【例5】若两个三角形的一边及其对角对应相等,并有一对角互补(不是直角),则这两个三角形为友好三角形.如图1,点D在AB边上,CD=CB,则△ABC和△ACD就是友好三角形.(1)两个友好三角形全等.(从下面选择一个正确的填入)A.一定B.不一定C.一定不(2)如图2,在△ABC中,AB=AC,点D在AB上,点E在AC延长线上,连结DE交BC于其中BD≠BF,若△BDF和△CEF是友好三角形,求证:DF=EF.(3)如图3,CE是△ABC的中线,点D在AC上,BD与CE交于点F,CF=AE,DF=DC,图中与△ACE 成友好三角形的是.【变式5-1】(2019秋•建湖县期末)如图,在△ABC,AD平分∠BAC,E、F分别在BD、AD上,且DE=CD,EF=AC,求证:EF∥AB.【变式5-2】(2019春•河口区校级期中)如图所示,在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC 交BC于E,交CD于F,FG∥AB交BC于G.试判断CE,CF,GB的数量关系,并说明理由.【变式5-3】△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q,求证:AB+BP=BQ+AQ.(有多种辅助线作法)【考点6 旋转法构全等】【方法点拨】对题目中出现有一个公共端点的相等线段时,可试用旋转方法构造全等三角形。
专题训练 构造全等三角形的方法
学习目标:1.掌握线,角,角平分线,垂线的尺规作图。2.掌握构造全等三角形的方法
二、截长补短构造全等三角形
2.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E 在AD上,求证:BC=AB+CD.
学习目标:1.掌握线,角,角平分线,垂线的尺规作图。2.掌握构造全等三角形的方法
3.如图,在△ABC中,∠ABC=60°,AD,CE分别
M
N
O
解:射线OC即为所求.
课本P50页练习 第1题
学习目标:1、掌握角平分线的尺规作图。2、理解并会运用角平分线的性质。
知识讲解
作平角∠AOB的角平分线OC. .
A O B
反向延长OC.得直线CD,则直线C D与直线AB是什么关系? 我们得到作一条直线垂线的方法.
学习目标:1.掌握线,角,角平分线,垂线的尺规作图。2.掌握构造全等三角形的方法
一、倍长中线构造全等三角形 1.如图,△ABC中,D为BC的中点. (1)求证:AB+AC>2AD;
(2)若AB=5,AC=3,求AD的取值范围.
证明:(1)延长 AD 到 E 使 DE=AD,连接 BE, BD=DC, 在△ADC 和△EDB 中, ∠EDB=∠ADC,∴△ADC≌△EDB(SAS), DE=AD, ∴AC=BE,在△ABE 中,AB+BE>AE,即 AB+BE>2AD,∴AB +AC>2AD (2)∵AB-BE<AE<AB+BE,∴AB-AC<2AD<AB +AC,即 2<2AD<8,∴1<AD<4
学习目标:1.掌握线,角,角平分线,垂线的尺规作图。2.掌握构造全等三角形的方法
证明:(1)∵∠ACB=∠DCE,∴∠ACD=∠BCE,又 ∵AC=BC,DC=EC,∴△ACD≌△BCE(SAS)
中考数学几何模型专题专题四—全等三角形
专题四全等三角形模型17 “一线三等角”全等模型模型展现基础模型怎么用?1.找模型当在一条线段上,存在三个相等的角(锐角或直角或钝角),且有一组边相等时,考虑用“一线三等角”全等模型2.用模型找准三个等角,再根据平角性质、三角形内角和及外角性质进行等角代换判定三角形全等巧学巧记简记“一线三等角,两头对应好,互补导等角,全等轻易找”.满分技法“—线三等角”模型常以等腰三角形、等边三角形、等腰直角三角形、四边形(正方形或矩形或梯形)为背景,在几何综合题中考查.结论分析结论1:∠APC∠∠BDP证明:如图,∠点Р在线段AB上,∠ ∠APC+∠2+∠DPB=180°,在∠APC和∠BDP中,∠1+∠APC+∠C=180°,∠DPB+∠3+∠D=180°,∠∠1=∠2= ∠3,∠∠DPB=∠C ,∠APC=∠D,又∠AP= BD或AC=BP或CP=PD,∠∠APC∠∠BDP结论2:∠APC∠∠BDP证明:如图,点P在线段AB的延长线上,∠∠1=∠C+∠APC,∠2=∠D+∠BPD,∠3=∠BPD+∠APC ,∠1=∠2=∠3,∠∠D= ∠APC ,∠CAP= ∠PBD,∠AP=BD或AC=BP或CP=PD,∠∠APC∠∠BDP模型拓展拓展延伸若题干中“一线三等角”中无对应线段相等,则为“一线三等角”相似模型(见本书P154模型49“一线三等角”相似模型).典例小试例1如图,在∠ABC中,AB=AC(点拨:∠B=∠C),点D,E,F分别在边AB ,BC,AC 上,若∠B=∠DEF(点拨:∠B= ∠C=∠DEF), ED=EF(点拨:一组边对应相等),CF=3, 则BE的长为()A.3B.6C.9D. 12考什么?等腰三角形的性质,三角形外角的性质,全等三角形的判定与性质例2 (2021陕西)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6 cm,CD∠BC,则线段CE的长度是()考什么?等腰三角形的判定与性质,全等三角形的判定与性质,勾股定理例3 (2021南充)如图, ∠BAC=90°, AD是∠BAC内部一条射线,若AB=AC,BE∠AD 点E,CF∠AD于点F,求证:AF=BE.考什么?直角三角形的性质,全等三角形的判定及性质思路点拨“一线三等角”模型无论是同侧型还是异侧型,主要根据等.角转换,得到角相等,再结合已知条件证明全等.实战实演1.如图,∠ABC中,AC=BC,∠B=45°,A(0,4), C(-2, 0),则中点B的坐标为()2.如图,在四边形ABCD中,∠B=∠C=60°,BC=1,点E是BC上一点,若∠ADE为等边三角形,则AB+CD的值为.3.∠ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上.∠1=∠2=∠BAC,若∠ABC的面积为6,则∠ABE与∠CDF的面积之和为.4.如图∠,在∠ABC中,AB=AC,点D,A,E三点都在直线l上.若∠BDA=∠AEC=∠BAC=α.(1)猜想并证明DE , BD,CE之间的数量关系;(2)如图∠,若α= 120°,且∠ACF为等边三角形,求证:∠DEF为等边三角形.模型18 “半角”全等模型模型展现基础模型已知:∠BAC =2α,AB =AC .∠DAE =21∠BAC =α已知:∠BDC =120°BD = CD ,∠EDF = 60°已知:∠BAC =90°AB =AC∠DAE =45°旋转2a 变形后旋转120°变形后旋转90°变形后 怎么用? 1.找模型一个角包含着该角的半角,如120°角包含60°角,90°角包含45°角,或者出现21关系,则考虑使用“半角”模型 2.用模型∠找旋转点(含半角的角的顶点),构造旋转;∠证全等;∠利用全等得到边角的关系结论分析结论2: ∠∠BDE ∠∠CDG , ∠DEF ∠∠DGF ; ∠EF = BE +FC证明:如图,以点D 为旋转中心,线段DE 按顺时针方向旋转120°到DG ,连接CG ,则有DE =DG ,∠EDG = 120°∠ ∠BDE +∠EDC =∠EDC +∠CDG = 120°, ∠∠BDE =∠CDG在∠BDG 和∠CDG 中,BD CD BDE CDG DE DG =⎧⎪=⎨⎪=⎩∠∠ ∠∠BDG ≅∠CDG ∠BE =CG在∠EDG 和∠GDF 中,DE DG EDF GDF DF DF =⎧⎪=⎨⎪=⎩∠∠ ∠∠EDG ≅∠GDF∠EF =GF =FC +CG =FC +BE满分技法对于“半角”模型,一般情况下都需要做辅助线(旋转角度或构造等角) ,构造全等,然后通过证明全等得到相关结论.模型拓展旋转120°变形后旋转90°变形后拓展延伸菱形、正方形中含半角,与基本模型中的解法一致,常在几何综合题中,以菱形、正方形为背景,考查“半角”模型.例1如图, 在等边∠ABC 中,点E ,F 分别在AB ,AC 上,点D 为∠ABC 外一点,且∠EDF =60°,∠BDC = 120°. BD = DC (点拨: 含半角,含等边)设∠AEF 的周长为C 1,等边OABC 的周长为C 2,.若DE = DF ,则12c c 的值为______________.例1题图等边三角形的性质,全等三角形的判定与性质例2如图,已知∠ABC是以点C为直角顶点的等腰直角三角形(点拨:∠ ACB=90°,AC= BC),,点E、F在AB边上,∠ECF=12∠ACB(点拨:12关系,即半角).若AE=2, EF=3,则BF的长为。
中考数学复习知识点总结与解题方法专题讲解2---倍长中线模型构造全等三角形
中考数学复习知识点总结与解题方法专题讲解专题02 倍长中线模型构造全等三角形【专题说明】倍长中线是指加倍延长中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。
常用于构造全等三角形。
中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS”证明)(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【知识总结】题干中出现三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等在△ABC中 AD是BC边中线延长AD到E,使DE=AD,连接BE作CF⊥AD于F,作BE⊥AD的延长线于E 连接BE延长MD到N,使DN=MD,连接CD1、如图,已知在△ABC中,D为AC中点,连接BD.若AB=10cm,BC=6cm,求中线BD的取值范围。
解:如图,延长BD至E,使BD=DE,连接CE,∵D为AC中点∴AD=DC,在△ABD和△CED中,BD=DE,∠ADB=∠CDEAD=CD∴△ABD≌△CED(SAS)∴EC=AB=10在△BCE中,CE-BC<BE<CE+BC10-6<BE<10+6∴4<2BD<16∴2<BD<82、已知,如图△ABC中,AM是BC边上的中线,求证:AM<1(AB+AC)2解析:延长AM到D,使MD=AM,连CD∵AM是BC边上的中线,∴BM=CM又AM=DM,∠AMB=∠CMD∴△ABM≌△DCM,∴AB=CD在△ACD中,则AD<AC+CD即2AM<AC+AB∴AM<1(AB+AC)23、如图,在△ABC中,AD交BC于点D,点E是BC的中点,EF∥AD 交CA的延长线于点F,交EF于点G,若BG=CF,求证:AD为△ABC的角平分线.解析:延长FE,截取EH=EG,连接CH可证得:△BEG≌△CEH(SAS)∴∠BGE=∠H,BG=CH∵CF=BG,∴CH=CF,∴∠F=∠H=∠FGA∵EF∥AD∴∠F=∠CAD,∠BAD=∠FGA∴∠CAD=∠BAD∴AD平分∠BAC.4、如图,AD为△ABC的中线,∠ADB和∠ADC的平分线分别交AB、AC 于点E、F,求证:BE+CF>EF.解析:延长ED 到H ,使DE =DH ,连接CH ,FH ,∵AD 是△ABC 的中线,∴BD =DC∵DE 、DF 分别为∠ADB 和∠ADC 的平分线∴∠1=∠4=12∠ADB ,∠3=∠5=12∠ADC又∵∠1=∠2,∴∠4=∠2 ∴∠4+∠5=∠2+∠3=90°∴△EFD ≌△HFD (AAS )∴EF =FH在△BDE 和△CDH 中,DE =DH∠1=∠2BD =DC∴△BDE≌△CDH(SAS)∴BE=CH在△CFH中,由三角形三边关系定理得:CF+CH>FH∵CH=BE,FH=EH∴BE+CF>EF.5、在Rt△ABC中,∠A=90°,点D为BC的中点,点E,F分别为AB,AC上的点,且ED⊥FD,以线段BE,EF,FC为边能否构成一个三角形?若能,请判断三角形的形状?解析:连接AD,作BG∥FC,与FD延长线交于G,连接EG,∵BG平行FC,∴∠FCD=∠DBG,∠CFD=∠G在△DFC和△BDG中,∠DFC=∠G∠FCD=∠DBGBD=CD∴△DFC≌△BDG(AAS)∴FC=BG,DG=DF,∠DBG=∠ACB又∵ED⊥FD,∴EF=EG∵∠ABC+∠ACB=90°,∴∠ABG=∠ABC+∠DBG=∠ABC+∠ACB=90°∴△EBG为直角三角形∴BE.EF,FC为边能构成一个三角形,且为直角三角形.。
初中数学经典几何模型02-倍长中线模型构造全等三角形(含答案)
初中数学经典几何模型专题02 倍长中线模型构造全等三角形【专题说明】倍长中线是指加倍延长中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。
常用于构造全等三角形。
中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS ”证明)(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【知识总结】题干中出现三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等在△ABC 中 AD 是BC 边中线延长AD 到E , 使DE =AD ,连接BE作CF⊥AD于F,作BE⊥AD的延长线于E连接BE延长MD到N,使DN=MD,连接CD1、如图,已知在△ABC中,D为AC中点,连接BD.若AB=10cm,BC=6cm,求中线BD的取值范围。
(AB+AC)2、已知,如图△ABC中,AM是BC边上的中线,求证:AM<123、如图,在△AB C中,AD交BC于点D,点E是BC的中点,EF∥AD交CA的延长线于点F,交EF于点G,若BG=CF,求证:AD为△ABC的角平分线.4、如图,AD为△ABC的中线,∠ADB和∠ADC的平分线分别交AB、AC于点E、F,求证:BE+CF>EF.5、在Rt△ABC中,∠A=90°,点D为BC的中点,点E,F分别为AB,AC上的点,且ED⊥FD,以线段BE,EF,FC 为边能否构成一个三角形?若能,请判断三角形的形状?【基础训练】1、如图,已知在△ABC中,AD是BC边上的中线,E是AD上一点,延长BE交AC于F,AF=EF,求证:AC=BE.2、如图所示,已知△AB C中,AD平分∠BAC,E,F分别在BD,AD上,DE=CD,EF=AC.求证EF∥AB.3、已知△ABC中,AB=AC,CF是AB边上的中线,延长AB到D,使BD=AB,求证:CD=2CE.4、如图,在正方形ABCD 中,AD ∥BC ,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,且AG =1,BF =2.若GE ⊥EF ,则GF 的长为多少?5、如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,求证:AB =AC .G FEAD BC CDBA【巩固提升】1、如图,在△ABC中,AD为BC边上的中线.(1)按要求作图:延长AD到点E,使DE=AD;连接BE.(2)求证:△ACD≌△EBD.(3)求证:AB+AC >2AD.(4)若AB=5,AC=3,求AD的取值范围.AD2、如图,在△ABC 中,AD 平分∠BAC ,且BD =CD . 求证:AB =AC .DCBA3、如图,CB 是△AEC 的中线,CD 是△ABC 的中线,且AB =AC . 求证:①CE =2CD ;②CB 平分∠DCE .D CB A3、 如图,在△ABC 中,D 是BC 的中点,E 是AD 上一点,BE =AC ,BE 的延长线交AC 于点F ,求证:∠AEF =∠EAF .F ED CBA4、 如图,在△ABC 中,AD 交BC 于点D ,点E 是BC 的中点,EF ∥AD 交CA 的延长线于点F ,交AB于点G ,BG =CF ,求证:AD 为△ABC 的角平分线.GFE DCBA5、 如图,在四边形ABCD 中,AD ∥BC ,点E 在BC 上,点F 是CD 的中点,且AF ⊥AB ,已知AD =2.7,AE =BE =5,求CE 的长.FEDC BA6、如图,在正方形ABCD中,CD=BC,∠DC B=90°,点E在CB的延长线上,过点E作EF⊥BE,且EF=BE.连接BF,FD,取FD的中点G,连接EG,CG.求证:EG=CG且EG⊥CG.G FE D CB A初中数学经典几何模型专题02 倍长中线模型构造全等三角形 答案【专题说明】倍长中线是指加倍延长中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学:专题——构造全等三角形解题
【本讲教育信息】
一、教学内容:
专题——构造全等三角形解题
1. 构造全等三角形证明角相等及线段的垂直、相等及和差等关系.
2. 构造全等三角形解决实际问题.
二、知识要点:
全等三角形是初中几何的重要内容之一,在几何证明题中有着极其广泛的应用.然而在许多情况下,给定的题设条件及图形并不具有明显的全等条件,这就需要我们认真分析、仔细观察,根据图形的结构特征,挖掘潜在因素,通过添加适当的辅助线,巧构全等三角形.借助全等三角形的有关性质,就会迅速找到证题途径,直观易懂,简捷明快.
三、考点分析:
三角形是最常见的几何图形之一,是后续知识的基础,是历年中考命题的热点,三角形全等的条件是三角形的一大重点.中考考查仍然是要求能应用所学知识解决比较简单的实际问题以及联系比较紧密的知识考查双基.从题型设计上看,由传统的以填空题、选择题为主转向综合应用和自主探究的阅读、探索等新颖题型、答案不唯一,具有开放性和创新性.考查数学的分类
思想、方程思想以及转化思想.
【典型例题】
题型一:证明线段的垂直
例1.如图所示,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC.
∵∠1+∠2=90°,
∴∠1+∠C=90°,
∴∠BEC=180°-90°=90°,
∴BE⊥AC.
评析:证明直角三角形全等时,可根据条件灵活选择方法.
题型二:证明线段的相等
例2.如图所示,已知AB=AD,AE=AC,∠1=∠2,求证:DE=BC.
分析:要想证得∠B=∠C,可观察∠B与∠C所在的△ABE与△DCE是否全等,由已知难以证其全等.再观察条件可以把∠B与∠C放在△ABD与△DCA中(需连结AD),可以利用三角形全等的条件SSS证明.
证明:连结AD.
【方法总结】
三角形全等说理中,如果已知中没有直接给出全等的三个所需条件,这时就需要根据已知条件去推导出所需条件,常遇下
列几种情况:
1. 利用平行线的性质推导角的相等关系;
2. 利用垂直关系推导角的相等;
3. 利用边和角的和差推导边和角的相等;
4. 利用三角形内角和的有关结论推导角的相等;
5. 运用公共角、对顶角、公共边等题目中隐含条件推导边和角相等.
【模拟试题】(答题时间:40分钟)
1. (2007年宜宾)如图,将△BOD绕点O旋转180°后得到△AOC,再过点O任意画一条与AC、BD都相交的直线MN,交
点分别为M和N.试问:线段OM=ON成立吗?若成立,请进行证明;若不成立,请说明理由.
**6. 已知,如图所示,等腰R t△ABC中,∠A=90°,∠B的平分线交AC于D,过C作BD的垂线交BD的延长线于E.求
证:BD=2CE.。